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Abstract

In this note, we prove a well-known conjecture on the Ricci flow under a curvature condition,
which is a pinching between the Ricci and Weyl tensors divided by suitably translated scalar
curvature, motivated by Cao’s result (Commun Anal Geom 19(5):975-990, 2011).
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1 Introduction

Consider the Ricci flow
0,8(t) = —2Ricgyr), g0)=g, t€l0,7), (I.D)

on a given closed n-dimensional Riemannian manifold (M, g). Here T is the maximal time
of (1.1) which is finite or infinite according to Hamilton’s result [8]. In this paper, we assume

T € (0, ). (1.2)
In this case, we have
,ll)n} mﬁx IRmgr)|g(r) = 00 (1.3)
by Hamilton [8], and
lim max |Ricg()lg(r) = 00 (1.4)
t—T ¢

by Sesum [10] (for another proof see [9]). For scalar curvature, Cao [3] proved that

oo, (1.5)

Wot)le
either lim max Rg(;) =00 or lim max Rg;) < oo and lim w =
t—T M t—T M =T Reiry +C
where C is a positive constant such that miny R, + C > 0 (hence, R;q) + C > R >
miny Rg() + C > 0 by the evolution equation of R(;)) and, Wy () is the Weyl tensor of
g(t). A well-know conjecture on scalar curvature is
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Conjecture 1.1 Under the condition (1.2), the Ricci flow (1.1) has the following property

lim max R, () = 00. (1.6)
t—T M

The above conjecture was proved for Kéhler-Ricci flow by Zhang[11] and for type-I maximal
solution of Ricci flow by Enders, Miiller and Topping [7].

In avery recent paper, Buzano and Di Matteo obtained an important result about Conjecture
1.1 in [2], where they showed that (see Corollary 1.12 in [2]) under an extra condition on
injective radius bound of Ricci flow (i.e., inj(M, g(r)) > a(supys4jo., IRiCg(s) |g(3~))_1/2 for
somew > 0)andn < 8, Conjecture 1.11is true. Whenn > 8, they also studied the singularities
(see Theorem 1.13, [2]).

On the other hand, under the condition of boundedness of scalar curvature and finite 7,
Bamler [1] proved that there exists an open subset X of M such that g(¢) converges in C*°(X)
to a Riemannian metric gr on ¥ as t — 7T, and the Hausdorff dimension of M \ X, with
respect to some pseudo-length metric dr (i.e., the limit of the induced length metric d; of
g(t)) on M, is not greater than n — 4.

In this paper, we give a partial answer of Conjecture 1.1. Given an arbitrary positive
number €, we choose a positive constant C := C¢ such that miny R, +C > € > 0, and then
Rg(1) + C = €. Define two quantities along the Ricci flow

2 2

. wE _ Wewlge IRl Ricenlgq (7
T RHO? Ry + O (RO (Ryy +OF '
Cao [3] proved that, for any T’ € (0, T), the inequality
1
h<Ci+- max f1/? (1.8)

€ Mx[0,T']

holds on M x [0, T’], where C| is a universal constant depending only on M, g, €, and n.
Using (1.8) we can easily deduce (1.5).
According to Proposition 1.1 in [4], we can obtain

8 . . .. .
OWwP? = -2|VvW? + —ZW,-,MR”‘RJ‘Z + (WK WO W, WP (1.9)
n— y

where U = O () := 9y — Ag(ry = 9, — A. There exists a positive constant C,,, depending

only on n, so that C,, > § and
S(WUKE L wikityw .o WPd < Co| W . (1.10)
Motivated by (1.8), we make the following assumption: for any 7’ € [0, T), the inequality
h>Cyemax 12— Cy, (1.11)

[0,7']

holds on M x [0, T'], for some € and universal constants C; and Cp, ¢ with % >Cpe > leCn'

Theorem 1.2 Under the condition (1.11), Conjecture (1.1) holds. More precisely, there exist
constants C, ¢ and Cy such that if a Ricci flow (1.1) is singular at a finite time T, and
satisfying the pinching condition (1.11), then its scalar curvature must blow up at T .

Going through the following proof of Theorem 1.2, we observe that (1.11) can be replaced
by the following condition
IRic|? > Cp.e (R + C)|W| (1.12)

along the Ricci flow (1.1), where C = C; satisfies miny Ry + C > € > 0.
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Remark 1.3 We now suppose R > Rpin := miny R € (0,4/C,), where C,, is determined
by (1.10). In this case, we can take € = Ry and C = 0. Then the conclusion (1.5) implies
that W
8080 < ¢ — 1im max Ry = oo, (1.13)
Rg(,) t—-T M

while (1.12) becomes

Wele Ricg(n |7
(W) lg() < gD lg(r) — lim max Ry() = 0. (1.14)

— 2
Rg(t) n Rg(t) t—T M

Here C), is a constant satisfying Rmin < C,, < 4/C,. In our situation, it is clear that the
condition in (1.13) is stronger than that in (1.14), e.g., W) le¢)/Re@ry < C (for some C
satisfying nC < Cy) implies |Wg()lo(1)/Rer) < C,’1|Ricg(t)|§(t)/R§(t). Choosing normal

coordinates we can assume that Ricg () = diag(Ag, ..., A,). From
2
2 2 : 2
Rey=| Do k| =n Y A =nlRice g
1<i<n 1<i<n

we can conclude that |Ricg(t)|§(t)/R§(z) > 1/n.

2 Proof of Theorem 1.2

We start from an elementary identity.

Lemma 2.1 For any functions F, G we have
D<F>—DF FOG (VF,VG) F

=< +2 —2—|VG|*. 2.1

G G? G? G

Proof Compute

°(s)

F
0 — A) (5)

&F-G—F-93,G i(ViF-G—F-ViG)
G

GZ
&F F . (ViF F
=— - —98G-V - —V;G
G G? G G?
&F F AF -G —(VF,VG) VF.G*—-2FGVG
= _ —_0G- + V:G
G G? G? G*
which yields (2.1). O
Now we choose
F=|W? G:=(R+C)? (2.2)

where as before C = C¢ is a positive constant so that miny R + C > € > 0. We then get
from (2.1) that
( (W ) Ow? (Wi

_ _ 2
(R+0C)?)  (R+0)? (R+C)4D(R+C) +2

(VIW]2, V(R 4+ C)?)
(R + C)*
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(W 22
—2m|V(R+C) 2. 2.3)

Thanks to
V(R+C)? =2(R+ CO)V(R + O),
OR+C)? =@ —AR+C)? = 2(R+C);R—V'[2(R+ C)Vi(R+ O)]
=2(R+ C);R —2|V(R+ C)|> —=2(R + C)A(R + C),

we arrive at
|W Ojw|? W
O ((R+C)2> =~ R 0P RO [2(R + O)TR - 2|V(R + O)?]
VIW|?, (R+C)V(R+C w2
+4( (W] ((R+C))4( )) _8(R|—|—|C)4|V(R+C)|2
or
w2 o\ Owp |W|?0OR W2 2
((R+C)2) S®ior C®iop CwyopVMEFO
+ mmwﬁ, (R+ C)V(R + C)). (2.4)
On the other hand,
v( |W|? ) _VIWP - (R+C)? —2|W2(R+ CO)V(R + C)
(R+0C)2) (R4 C)*
_ _VIwp -2 WP V(R +C)
C(R+0)? T(R+0C)
2 2
VIWI W] VIn(R + O).

T (R+CO2 T(R+C?
If we introduce the tensor Zg;jxe := (R + C)VoWijre — VaR - Wijge, then
1Z1? = (R+ CPIVW +|VRPIW = (VIWP, (R + O)V(R + O)).
For any y € [0, 4], we obtain from (2.4) and the evolution equation for the scalar curvature
that
Ow|? [Ric|?

_ ~ ~ .
Df=&iop HYric HIVRERFOI+E=yV/ VInR+0)

2= VIR + O 4y YW IVREWE 12
(R+C)? (R + C)* (R+C)*

(2.5)

It then follows from (1.9) and (2.5) that

VW2 |Ric|?
4f + @ —y){VSf, VIn(R + C))

Bf=0=-2%vcr Y r+c

1Z?
(R+C)4
S(Wiike 4 Wika)Wpiqupqu + n§2 WijklRikRj[
* (R+C)? ' =0

+ Q=Y fIVIn(R+O)* -y

@ Springer



Geometriae Dedicata (2024) 218:73 Page50f8 73

Choosing y = 2 and using (1.7), (1.10), we have
1Z|?
(R+ C)4
+ Co f3?(R+0) +— fl/zh(R +0). (2.7)

Of < —4fh(R+C) — +2(Vf,VIn(R + C))

Proof of Theorem 1.2 Given T’ € (0, T) and consider the time interval [0, T']. Suppose f
achieves its maximum at a point (xo, z)) € M x [0, T']. The condition (1.11) now implies

h=Crefy”” —Ca fo:= flxo.10).
at this point (xg, f9). Plugging it into (2.7) and using (1.8), we find

0 < —450(Cucfo”* = CH(R+C)+ Cu f*

8
+-— 0‘/2<c +- f”2> (R+C)

(R+C)

= (Ch—4Co ) 3P (R+C) + <4c2 + %—) fo(R+C)
8Cy

——fy2(R+C)
-2
at (xo, fp). Because R+ C > € > 0and C, > %Cn, we can conclude that
32 8 1 12
(4Cu.e — Cn) 1y 4C, 2t o Jfo+ f

at (xo, t9). Hence fo < C(n, €) at (xo, to); explicitly,

G+ 2+ H7
2t im (@ f)} — Cn. €.

Jfo <max 1,
Cne — 3Ca

Consequently, we get f < C(n,€) in M x [0, T'] and hence in M x [0, T). According to

(1.5), we must have lim;_, 7 maxy; Rg(;) = oo. o

3 A remark on four-dimensional case

When n = 4, we can make the constant C, ¢ in (1.11) explicitly. Recall first the following
property for closed 4-manifold (M, g) in [6]. The Weyl tensor W defines a symmetric operator
W A2M — AZM, that is,

1.
Wa)ke := Ea” Wijke,

and then, by the Hodge star operator, splits into two operators W+ : A>*M — A2 M with
trWE = 0, which induce tensors W=. In this notation, we can write W = diag(WJr WT).

For any point x € M, we can choose an oriented orthogonal basis ™, nT, 87 (resp.
w ,n,07) of /\% M (resp. A " M), consisting of eigenvectors of V\/i that llwt|| =
lIn*]l = 116%]] = V2 and (* < pu* < v¥)

WE = = (Aot ® o* + uFn® @ n* + vt ©60%),

l\)\b—‘
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Here ||T|? := %T}I.HipT"l'""p = %|T|2 for T € APM. Moreover, wt, n*, 0% form a
quaternionic structure on Ty M:

igi

Pq,E E — — ol — .
8 WipWy; =g’ nll?nw 8 9!1) qj = T8ij
and
Pq + ra,fpt —_ £ pqii_“
8 wlpan _011 8 '711701 = @ijs 0117 qj = Mij:

Using this decomposition, we can prove (see for example [5])
ik plq 1 ij ktpq rq 1 rq
WijkeW' =g W; P = 5 iike W pgWEPL o Wi WieP? = EWiquWkl . @G
Now we can simplify the evolution Eq. (1.9) in dimension n = 4:
OIW|? = —2|VW[? 4+ 4Wijre RERIE + 8(WIKE - Wikityw . WP 3.2)
We may take normal coordinates. Then

(WKL WROW 5 WPk = (Wijie + Wikj)Wpijg Wpkeg
= WikjeWipjq Wipeq + Wijke Wpijg Wpkeq
= %Wijke WijpgWiepg + Wijke Wpijg Wpkeq
by the first identity in (3.1). For A := W;jieWpijqg Wpreq we have
A= —WijkeWpkeqgWijpg + Wipiqa) = WijkeWipegWijpg — Wijke Wpkeg Wipig

1
= = WijkeWiipg Wiepg + Wijke Wipeg Wipig

2
1 1
= EWiij WiipgWiepg + Equkz Wijke | Wyqipj
1 1 1
= EWiij"Viqu Wiepg + Equke Equij Wieij
1
= EWiijWiqu Wkepg — ZqukZWkeij Wiipg = ZWiijWkaq Wpqgij-

Hence
- o 3
(WKL WROW 5 WPt = Wijke + Wikio) Wpijg Wpkeg = 2 Wiike Wijpg Witpq

and
OIW> = =2|VW|* + 6Wijxe WPIW, K + 4W; ke R*RIE, n = 4. (3.3)

It is clear that

ij ke
6Wijke whrd Wy =

| N

[0+ @D+ + 0P+ @)’ + 0’
and 1
Z'W'z =02+ WD+ N+ AP+ )P+ )
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Then
1

y 6
ke
6lek[ lepq qu < g X 6 X M

36
W? = 6—4|W|3.

Therefore we can take C4 = 1 in (1.10) and then any constant C4 ¢ in (1/4, 1/€).

4 A remark on the proof of Theorem 1.2

If we choose F = |W|? and G = (R + C)* witha > 0in (2.1), then

2 2 2
( W] ) _OWE __IWE ey
(R+C) (R+C)* (R+ )
(VIW]2, V(R + C)%) |W|2 -
2 (R+ C)2 _2(R+C)3a|V(R+C) I”. @41

From V(R + C)* = a(R + C)* VR and
OR+C)* =a(R+C)* 'OR —a(x — 1)(R + C)* 2|VR|?

we from (4.1) that

w2 oiwi WPOR _ wtD—" v+ o)
= - - S EE—— n
R+0*) " R+ Y®Ryopr YT Ry 02
2a 2 a—1
+W(VIW|,(R+C) V(R + 0)). 4.2)
With the same tensor Z as in Sect. 2, The following two identities
|W|? VIW? |W|?
— —a VIn(R + O),
(R + C)* (R+C) (R+C)
1ZI> = (R+ CIVW* + [VRAW|* — (VIW]%, (R + C)V(R + C))
show that
|W > 4k Ow|?
O ——— )=y (V[———— ), VIn(R+C —_
((R+C)a "W rroe) VIREO) T Riow
|W2OR to )|VW|2 o ) |Z|?
- o—y)——— —La—y)——
(R + Oy PR+ oy PR+ cp
4 )
— (¢ —y)(a— l)leH(R-FCN s (4.3)
where 0 < y < 2a. In particular, choosing y = 0,
W2 0w/ |W[*OR VW
= — o
(R+C) (R+ O) (R + C)o+! (R+C)
—2aﬂ—a(a—l)ﬂ|Vln(R+C)lz (4.4)
(R + C)ot2 (R+C) S
Putting @ = 1 in (4.4) yields
0 W2 :D|W|2+2|VWI2_2|W|2|Ric|2_2 1Z|? @5)
R+C R+C (R + C)? (R+C)3 '
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If we choose y = 2«0 — 2 with @ > 1 in (4.3), we get

< WP )_ OIWP+2YWPE _ IWPRie? ) 1ZP
R+0) " (R+O)" YR+0)H TR+ )yt
|W?
+ (o — 1)((%—2)ﬂ|V1H(R—|-C)I2 (4.6)
(R+C) ) '
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