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Abstract
In this note, we prove a well-known conjecture on the Ricci flow under a curvature condition,
which is a pinching between the Ricci and Weyl tensors divided by suitably translated scalar
curvature, motivated by Cao’s result (Commun Anal Geom 19(5):975–990, 2011).
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1 Introduction

Consider the Ricci flow

∂t g(t) = −2Ricg(t), g(0) = g, t ∈ [0, T ), (1.1)

on a given closed n-dimensional Riemannian manifold (M, g). Here T is the maximal time
of (1.1) which is finite or infinite according to Hamilton’s result [8]. In this paper, we assume

T ∈ (0,∞). (1.2)

In this case, we have
lim
t→T

max
M

|Rmg(t)|g(t) = ∞ (1.3)

by Hamilton [8], and
lim
t→T

max |Ricg(t)|g(t) = ∞ (1.4)

by Sesum [10] (for another proof see [9]). For scalar curvature, Cao [3] proved that

either lim
t→T

max
M

Rg(t) = ∞ or lim
t→T

max
M

Rg(t) < ∞ and lim
t→T

|Wg(t)|g(t)
Rg(t) + C

= ∞, (1.5)

where C is a positive constant such that minM Rg + C > 0 (hence, Rg(t) + C ≥ R ≥
minM Rg(t) + C > 0 by the evolution equation of Rg(t)) and, Wg(t) is the Weyl tensor of
g(t). A well-know conjecture on scalar curvature is
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Conjecture 1.1 Under the condition (1.2), the Ricci flow (1.1) has the following property

lim
t→T

max
M

Rg(t) = ∞. (1.6)

The above conjecture was proved for Kähler-Ricci flow by Zhang[11] and for type-I maximal
solution of Ricci flow by Enders, Müller and Topping [7].

In a very recent paper,Buzano andDiMatteoobtained an important result aboutConjecture
1.1 in [2], where they showed that (see Corollary 1.12 in [2]) under an extra condition on
injective radius bound of Ricci flow (i.e., inj(M, g(t)) ≥ α(supM×[0,t] |Ricg(s)|g(s))−1/2 for
someα > 0) and n < 8,Conjecture 1.1 is true.When n ≥ 8, they also studied the singularities
(see Theorem 1.13, [2]).

On the other hand, under the condition of boundedness of scalar curvature and finite T ,
Bamler [1] proved that there exists an open subset� ofM such that g(t) converges inC∞(�)

to a Riemannian metric gT on � as t → T , and the Hausdorff dimension of M \ �, with
respect to some pseudo-length metric dT (i.e., the limit of the induced length metric dt of
g(t)) on M , is not greater than n − 4.

In this paper, we give a partial answer of Conjecture 1.1. Given an arbitrary positive
number ε, we choose a positive constant C := Cε such that minM Rg +C ≥ ε > 0, and then
Rg(t) + C ≥ ε. Define two quantities along the Ricci flow

f := |W |2
(R + C)2

= |Wg(t)|2g(t)
(Rg(t) + C)2

, h := |Ric|2
(R + C)2

= |Ricg(t)|2g(t)
(Rg(t) + C)2

. (1.7)

Cao [3] proved that, for any T ′ ∈ (0, T ), the inequality

h ≤ C1 + 1

ε
max

M×[0,T ′]
f 1/2 (1.8)

holds on M × [0, T ′], where C1 is a universal constant depending only on M, g, ε, and n.
Using (1.8) we can easily deduce (1.5).

According to Proposition 1.1 in [4], we can obtain

�|W |2 = −2|∇W |2 + 8

n − 2
Wi jk�R

ik R j� + 8(Wi jk� + Wikj�)Wpi jqW
p
k�

q (1.9)

where � = �g(t) := ∂t − �g(t) = ∂t − �. There exists a positive constant Cn , depending
only on n, so that Cn > ε

4 and

8(Wi jk� + Wikj�)Wpi jqW
p
k�

q ≤ Cn |W |3. (1.10)

Motivated by (1.8), we make the following assumption: for any T ′ ∈ [0, T ), the inequality

h ≥ Cn,ε max
[0,T ′]

f 1/2 − C2, (1.11)

holds on M ×[0, T ′], for some ε and universal constantsC2 andCn,ε with 1
ε

> Cn,ε > 1
4Cn .

Theorem 1.2 Under the condition (1.11), Conjecture (1.1) holds. More precisely, there exist
constants Cn,ε and C2 such that if a Ricci flow (1.1) is singular at a finite time T , and
satisfying the pinching condition (1.11), then its scalar curvature must blow up at T .

Going through the following proof of Theorem 1.2, we observe that (1.11) can be replaced
by the following condition

|Ric|2 ≥ Cn,ε(R + C)|W | (1.12)

along the Ricci flow (1.1), where C = Cε satisfies minM Rg + C ≥ ε > 0.
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Remark 1.3 We now suppose R ≥ Rmin := minM R ∈ (0, 4/Cn), where Cn is determined
by (1.10). In this case, we can take ε = Rmin and Cε = 0. Then the conclusion (1.5) implies
that |Wg(t)|g(t)

Rg(t)
≤ C 	⇒ lim

t→T
max
M

Rg(t) = ∞, (1.13)

while (1.12) becomes

|Wg(t)|g(t)
Rg(t)

≤ C ′
n

|Ricg(t)|2g(t)
R2
g(t)

	⇒ lim
t→T

max
M

Rg(t) = ∞. (1.14)

Here C ′
n is a constant satisfying Rmin < C ′

n < 4/Cn . In our situation, it is clear that the
condition in (1.13) is stronger than that in (1.14), e.g., |Wg(t)|g(t)/Rg(t) ≤ C (for some C
satisfying nC ≤ C ′

n) implies |Wg(t)|g(t)/Rg(t) ≤ C ′
n |Ricg(t)|2g(t)/R2

g(t). Choosing normal
coordinates we can assume that Ricg(t) = diag(λ1, . . . , λn). From

R2
g(t) =

⎛
⎝ ∑

1≤i≤n

λi

⎞
⎠

2

≤ n
∑

1≤i≤n

λ2i = n|Ricg(t)|2g(t)

we can conclude that |Ricg(t)|2g(t)/R2
g(t) ≥ 1/n.

2 Proof of Theorem 1.2

We start from an elementary identity.

Lemma 2.1 For any functions F,G we have

�
(
F

G

)
= �F

G
− F�G

G2 + 2
〈∇F,∇G〉

G2 − 2
F

G3 |∇G|2. (2.1)

Proof Compute

�
(
F

G

)
= (∂t − �)

(
F

G

)

= ∂t F · G − F · ∂t G

G2 − ∇ i
(∇ i F · G − F · ∇i G

G2

)

= ∂t F

G
− F

G2 ∂tG − ∇ i
(∇i F

G
− F

G2 ∇i G

)

= ∂t F

G
− F

G2 �G − �F · G − 〈∇F,∇G〉
G2 + ∇ i F · G2 − 2FG∇ i G

G4 ∇i G

which yields (2.1). �
Now we choose

F = |W |2, G := (R + C)2 (2.2)

where as before C = Cε is a positive constant so that minM R + C ≥ ε > 0. We then get
from (2.1) that

�
( |W |2

(R + C)2

)
= �|W |2

(R + C)2
− |W |2

(R + C)4
�(R + C)2 + 2

〈∇|W |2,∇(R + C)2〉
(R + C)4
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− 2
|W |2

(R + C)6
|∇(R + C)2|2. (2.3)

Thanks to

∇(R + C)2 = 2(R + C)∇(R + C),

�(R + C)2 = (∂t − �)(R + C)2 = 2(R + C)∂t R − ∇ i [2(R + C)∇i (R + C)]
= 2(R + C)∂t R − 2|∇(R + C)|2 − 2(R + C)�(R + C),

we arrive at

�
( |W |2

(R + C)2

)
= �|W |2

(R + C)2
− |W |2

(R + C)4

[
2(R + C)�R − 2|∇(R + C)|2]

+ 4
〈∇|W |2, (R + C)∇(R + C)〉

(R + C)4
− 8

|W |2
(R + C)4

|∇(R + C)|2

or

�
( |W |2

(R + C)2

)
= �|W |2

(R + C)2
− 2

|W |2�R

(R + C)3
− 6

|W |2
(R + C)2

|∇ ln(R + C)|2

+ 4

(R + C)4
〈∇|W |2, (R + C)∇(R + C)〉. (2.4)

On the other hand,

∇
( |W |2

(R + C)2

)
= ∇|W |2 · (R + C)2 − 2|W |2(R + C)∇(R + C)

(R + C)4

= ∇|W |2
(R + C)2

− 2
|W |2

(R + C)3
∇(R + C)

= ∇|W |2
(R + C)2

− 2
|W |2

(R + C)2
∇ ln(R + C).

If we introduce the tensor Zai jk� := (R + C)∇aWi jk� − ∇a R · Wi jk�, then

|Z |2 = (R + C)2|∇W |2 + |∇R|2|W |2 − 〈∇|W |2, (R + C)∇(R + C)〉.
For any γ ∈ [0, 4], we obtain from (2.4) and the evolution equation for the scalar curvature
that

� f = �|W |2
(R + C)2

− 4 f
|Ric|2
R + C

− 6 f |∇ ln(R + C)|2 + (4 − γ )〈∇ f ,∇ ln(R + C)〉

+ 2(4 − γ ) f |∇ ln(R + C)|2 + γ
|∇W |2

(R + C)2
+ γ

|∇R|2|W |2
(R + C)4

− γ
|Z |2

(R + C)4
.

(2.5)

It then follows from (1.9) and (2.5) that

� f = (γ − 2)
|∇W |2

(R + C)2
− 4 f

|Ric|2
R + C

+ (4 − γ )〈∇ f ,∇ ln(R + C)〉

+ (2 − γ ) f |∇ ln(R + C)|2 − γ
|Z |2

(R + C)4

+ 8(Wi jk� + Wikj�)Wpi jqW p
k�

q + 8
n−2Wi jk�Rik R j�

(R + C)2
. (2.6)
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Choosing γ = 2 and using (1.7), (1.10), we have

� f ≤ −4 f h(R + C) − 2
|Z |2

(R + C)4
+ 2〈∇ f ,∇ ln(R + C)〉

+ Cn f
3/2(R + C) + 8

n − 2
f 1/2h(R + C). (2.7)

Proof of Theorem 1.2 Given T ′ ∈ (0, T ) and consider the time interval [0, T ′]. Suppose f
achieves its maximum at a point (x0, t0) ∈ M × [0, T ′]. The condition (1.11) now implies

h ≥ Cn,ε f
1/2
0 − C2, f0 := f (x0, t0),

at this point (x0, t0). Plugging it into (2.7) and using (1.8), we find

0 ≤ −4 f0(Cn,ε f
1/2
0 − C2)(R + C) + Cn f

3/2
0 (R + C)

+ 8

n − 2
f 1/20

(
C1 + 1

ε
f 1/20

)
(R + C)

= (Cn − 4Cn,ε) f
3/2
0 (R + C) +

(
4C2 + 8

n − 2

1

ε

)
f0(R + C)

+ 8C1

n − 2
f 1/20 (R + C)

at (x0, t0). Because R + C ≥ ε > 0 and Cn,ε > 1
4Cn , we can conclude that

(4Cn,ε − Cn) f
3/2
0 ≤

(
4C2 + 8

n − 2

1

ε

)
f0 + 8C1

n − 2
f 1/20

at (x0, t0). Hence f0 ≤ C(n, ε) at (x0, t0); explicitly,

f0 ≤ max

⎧⎨
⎩1,

[
C2 + 2

n−2 (C1 + 1
ε
)

Cn,ε − 1
4Cn

]2
⎫⎬
⎭ =: C(n, ε).

Consequently, we get f ≤ C(n, ε) in M × [0, T ′] and hence in M × [0, T ). According to
(1.5), we must have limt→T maxM Rg(t) = ∞. �

3 A remark on four-dimensional case

When n = 4, we can make the constant Cn,ε in (1.11) explicitly. Recall first the following
property for closed 4-manifold (M, g) in [6]. TheWeyl tensorW defines a symmetric operator
W : ∧2M → ∧2M , that is,

(Wα)k� := 1

2
αi jWi jk�,

and then, by the Hodge star operator, splits into two operatorsW± : ∧2,±M → ∧2,±M with
trW± = 0, which induce tensors W±. In this notation, we can write W = diag(W+,W−).

For any point x ∈ M , we can choose an oriented orthogonal basis ω+, η+, θ+ (resp.
ω−, η−, θ−) of ∧2,+

x M (resp. λ
2,−
x M), consisting of eigenvectors of W± that ||ω±|| =

||η±|| = ||θ±|| = √
2 and (λ± ≤ μ± ≤ ν±)

W± = 1

2

(
λ±ω± ⊗ ω± + μ±η± ⊗ η± + ν±θ± ⊗ θ±)

,
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W± =
⎡
⎣

λ± 0 0
0 μ± 0
0 0 ν±

⎤
⎦ , 0 = λ± + μ± + ν±.

Here ||T ||2 := 1
p Ti1···i p T

i1···i p = 1
p |T |2 for T ∈ ∧pM . Moreover, ω±, η±, θ± form a

quaternionic structure on TxM :

gpqω±
i pω

±
q j = gpqη±

i pη
±
q j = gpqθ±

i pθ
±
q j = −gi j

and
gpqω±

i pη
±
q j = θ±

i j , gpqη±
i pθ

±
q j = ω±

i j , gpqθ±
i pω

±
q j = η±

i j .

Using this decomposition, we can prove (see for example [5])

Wi jk�W
i
p
k
qW j

p�q = 1

2
Wi jk�W

i j
pqW

k�pq , WipjqWk�
pq = 1

2
Wi jpqWk�

pq . (3.1)

Now we can simplify the evolution Eq. (1.9) in dimension n = 4:

�|W |2 = −2|∇W |2 + 4Wi jk�R
ik R j� + 8(Wi jk� + Wikj�)Wpi jqW

p
k�

q . (3.2)

We may take normal coordinates. Then

(Wi jk� + Wikj�)Wpi jqW
p
k�

q = (Wi jk� + Wikj�)Wpi jqWpk�q

= Wikj�WipjqWkp�q + Wi jk�Wpi jqWpk�q

= 1

2
Wi jk�Wi jpqWk�pq + Wi jk�Wpi jqWpk�q

by the first identity in (3.1). For A := Wi jk�Wpi jqWpk�q we have

A = −Wi jk�Wpk�q(Wi jpq + Wjpiq) = Wi jk�Wkp�qWi jpq − Wi jk�Wpk�qW jpiq

= 1

2
Wi jk�Wi jpqWk�pq + Wi jk�Wkp�qW jpiq

= 1

2
Wi jk�Wi jpqWk�pq +

(
1

2
Wpqk�Wi jk�

)
Wqipj

= 1

2
Wi jk�Wi jpqWk�pq + 1

2
Wpqk�

(
1

2
Wqpi jWk�i j

)

= 1

2
Wi jk�Wi jpqWk�pq − 1

4
Wpqk�Wk�i jWi jpq = 1

4
Wi jk�Wk�pqWpqi j .

Hence

(Wi jk� + Wikj�)Wpi jqW
p
k�

q = (Wi jk� + Wikj�)Wpi jqWpk�q = 3

4
Wi jk�Wi jpqWk�pq

and
�|W |2 = −2|∇W |2 + 6Wi jk�W

i jpqWpq
k� + 4Wi jk�R

ik R j�, n = 4. (3.3)

It is clear that

6Wi jk�W
i jpqWpq

k� = 6

8

[
(λ+)3 + (μ+)3 + (ν+)3 + (λ−)3 + (μ−)3 + (ν−)3

]

and
1

4
|W |2 = (λ+)2 + (μ+)2 + (ν+)2 + (λ−)2 + (μ−)2 + (ν−)2.
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Then ∣∣∣6Wi jk�W
i jpqWpq

k�
∣∣∣ ≤ 6

8
× 6 × 1

43/2
|W |3 = 36

64
|W |3.

Therefore we can take C4 = 1 in (1.10) and then any constant C4,ε in (1/4, 1/ε).

4 A remark on the proof of Theorem 1.2

If we choose F = |W |2 and G = (R + C)α with α > 0 in (2.1), then

�
( |W |2

(R + C)α

)
= �|W |2

(R + C)α
− |W |2

(R + C)2α
�(R + C)α

+ 2
〈∇|W |2,∇(R + C)α〉

(R + C)2α
− 2

|W |2
(R + C)3α

|∇(R + C)α|2. (4.1)

From ∇(R + C)α = α(R + C)α−1∇R and

�(R + C)α = α(R + C)α−1�R − α(α − 1)(R + C)α−2|∇R|2

we from (4.1) that

�
( |W |2

(R + C)α

)
= �|W |2

(R + C)α
− α

|W |2�R

(R + C)α+1 − α(α + 1)
|W |2

(R + C)α+2 |∇ ln(R + C)|2

+ 2α

(R + C)2α
〈∇|W |2, (R + C)α−1∇(R + C)〉. (4.2)

With the same tensor Z as in Sect. 2, The following two identities

∇
( |W |2

(R + C)α

)
= ∇|W |2

(R + C)α
− α

|W |2
(R + C)α

∇ ln(R + C),

|Z |2 = (R + C)2|∇W |2 + |∇R|2|W |2 − 〈∇|W |2, (R + C)∇(R + C)〉
show that

�
( |W |2

(R + C)α

)
= γ

〈
∇

( |W |2
(R + C)α

)
,∇ ln(R + C)

〉
+ �|W |2

(R + C)α

− α
|W |2�R

(R + C)α+1 + (2α − γ )
|∇W |2

(R + C)α
− (2α − γ )

|Z |2
(R + C)α+2

− (α − γ )(α − 1)
|W |2

(R + C)α
|∇ ln(R + C)|2, (4.3)

where 0 ≤ γ ≤ 2α. In particular, choosing γ = 0,

�
( |W |2

(R + C)α

)
= �|W |2

(R + C)α
− α

|W |2�R

(R + C)α+1 + 2α
|∇W |2

(R + C)α

− 2α
|Z |2

(R + C)α+2 − α(α − 1)
|W |2

(R + C)α
|∇ ln(R + C)|2. (4.4)

Putting α = 1 in (4.4) yields

�
( |W |2
R + C

)
= �|W |2 + 2|∇W |2

R + C
− 2

|W |2|Ric|2
(R + C)2

− 2
|Z |2

(R + C)3
. (4.5)
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If we choose γ = 2α − 2 with α ≥ 1 in (4.3), we get

�
( |W |2

(R + C)α

)
= �|W |2 + 2|∇W |2

(R + C)α
− 2α

|W |2|Ric|2
(R + C)α+1 − 2

|Z |2
(R + C)α+2

+ 2(α − 1)

〈
∇

( |W |2
(R + C)α

)
,∇ ln(R + C)

〉

+ (α − 1)(α − 2)
|W |2

(R + C)α
|∇ ln(R + C)|2. (4.6)
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