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Abstract
Weview space-filling circle packings as subsets of the boundary of hyperbolic space subject to
symmetry conditions basedon adiscrete groupof isometries. This allows for the applicationof
counting methods which admit rigorous upper and lower bounds on the Hausdorff dimension
of the residual set of a generalized Apollonian circle packing. This dimension (which also
coincides with a critical exponent) is strictly greater than that of the Apollonian packing.
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1 Introduction

The Apollonian packing is an infinite collection of circles whose corresponding discs cover a
region almost everywhere (see Fig. 1). The residual set (the space not covered) is a Cantor-like
set with Hausdorff dimension satisfying

1.302327 < δA < 1.310876. (1)

The main result of this paper is that the Hausdorff dimension of a non-Apollonian packing
to be introduced briefly satisfies

1.327266 < δ < 1.348771. (2)

This is the first set of rigorous bounds on the residual set dimension for a packing other than
the Apollonian packing.

The genesis of circle packings can be traced back to the works of Apollonius of Perga
(ca 262-190 BC). In Apollonius’ book Tangencies, he solved the following problem: given
three circles in the plane, construct the tangent circles. Variations include the cases when
one or more of the given circles has radius zero (a point), or radius infinity (a line). Kasner
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[15] described an iterative construction process which yielded what we now refer to as the
Apollonian packing; and also proved that the Apollonian packing is complete, meaning the
residual set occupies zero area. The techniques and notation introduced in Kasner’s paper
were furthered in later works such as [7, 26, 27].

Given a connected open region � ⊆ R
2, we will refer to a circle packing, or just packing,

P , as a disjoint union of open discs in �. The residual set isR = �−P . We say that a given
packing is complete if Vol(R) = 0. We will call a packing bounded if � is a bounded subset
of R2. Associated to a bounded circle packing is a sequence of radii {rn}∞n=1 which can be
reordered to decrease to zero. Consider the “L-function"

L(t) =
∞∑

n=1

r tn . (3)

Notice that L(2) = 1
π
Vol(P). If t = 1, the sequence of partial sums represents a sum of

circumferences apart from a factor of 1
2π . For the Apollonian packing, this full series diverges

[20, 26]. It is then natural to study the critical exponent

S = inf

{
t :

∞∑

n=1

r tn < ∞
}

= sup

{
t :

∞∑

n=1

r tn = ∞
}

. (4)

For the Apollonian and generalized (or non-Apollonian) packing to be described briefly, the
Hausdorff dimension of the residual set coincides with the critical exponent [16].

It has been known for some time that there are non-Euclidean aspects to packing problems
[18]. David Boyd’s “separation" formula [9] (which can be traced back to Darboux [11] and
Clifford [10]) is used to determine a polyspherical coordinate system for packed spheres.
With themachinery of hyperbolic (orLobackevsky) geometry,wemay interpret the separation
of two spheres as theminimal distance connecting two disjoint hyperbolic planes.Wewill use
the pseudosphere or vector model of hyperbolic geometry. See [1–3, 12, 21] for additional
introductory information.

Lorentz (orMinkowski) space R3,1 is defined as the set of vectors in R4 together with the
Lorentz product

�x ◦ �y = x1y1 + x2y2 + x3y3 − x4y4. (5)

More generally, any symmetric 4× 4 matrix J of signature (3, 1) will define, up to a change
of basis, a Lorentz product via �x ◦ �y = �xt J �y. The surface cut by the equation �x ◦ �x = −1 is
a hyperboloid of two sheets. The top or forward sheet

H = {�x : �x ◦ �x = −1, x4 > 0}
together with the metric d where

�x ◦ �y = ||�x ||||�y|| cosh d(�x, �y) = − cosh d(�x, �y) (6)

is a model of hyperbolic geometry, H3. The linear maps preserving the Lorentz product,
called Lorentz transformations can be identified with the matrix group

OJ (R) = {T ∈ M4×4(R) : T �x ◦ T �y = �x ◦ �y for all �x, �y ∈ R
4}, (7)

and the group of isometries of the model H can be identified with

O+
J (R) = {T ∈ OJ (R) : TH = H}. (8)
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Fig. 1 An initial configuration of the four basis vectors alongwith some symmetries (dotted lines) as visualized
on the boundary of the model of hyperbolic space induced by the circulant J above. �e1 and �e2 represent the
two large circles while �e3 and �e4 the horizontal lines

Reflection through the plane �n ◦ �x = 0 is

R�n(�x) = �x − 2 · Proj�n(�x) = �x − 2
�x ◦ �n
�n ◦ �n �n. (9)

A subgroup of interest is the discrete group O+
J (Z) and, generally speaking, the symmetries

of a packing (often reflections) may be represented by a subgroup of finite index in O+
J (Z).

Fix the standard basis {�e1, �e2, �e3, �e4}. The matrix

J = (�ei ◦ �e j ) = −

⎛

⎜⎜⎝

−1 1 1 1
1 −1 1 1
1 1 −1 1
1 1 1 −1

⎞

⎟⎟⎠ (10)

diagonalizes with eigenvalues {2, 2, 2,−2}. Thus, the bilinear form (�x, �y) �→ �xt J �y = �x ◦ �y
provides a model of Lorentzian 4−space, which is isometrically equivalent to the Poincaré
upper half space model [4]. With the interpretation that �e j represents a normal vector to the
plane �x ◦ �e j = 0, then in view of formula (6), J conveys to us that the configuration of
basis vectors represents mutually tangent planes. Since planes intersect the boundary ∂H3

in Euclidean circles or planes, J defines a configuration of 4 mutually tangent circles on the
boundary. It is then, in general, a non-trivial problem to identify a subgroup � ≤ O+

J (Z)

which acts on these four planes (or faces) whose orbit is a complete packing (in this case,
the Apollonian packing.)

2 The separation-3 (or boyd/mallows) packing

In the case of the Apollonian packing, the basis vectors {�e1, �e2, �e3, �e4} may be chosen to
represent mutually tangent circles, which in turn implies that the separation matrix has the
above circulant form. Boyd [6] showed the existence of several packingswhich do not possess
the mutually tangent condition. One such set of examples begins if the disks represented by
�e1 and �e2 are disjoint [5]. Let r1 and r2 be the radii of �e1 and �e2 on the boundary and s the
distance between their centers. The separation formula [9]

cosh d(�e1, �e2) = s2 − r21 − r22
2r1r2

(11)
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Fig. 2 A region of a
Boyd/Mallows packing with
integer curvatures

Fig. 3 A set of generating symmetries (dotted lines/circles) for the Boyd/Mallows packing which intersect
tangentially

implies that if r1 = r2 = 1
2 and s = √

2, then we get a separation of 3; and via (6),
−( �e1 ◦ �e2) = 3. This leads to using the matrix

J = −

⎛

⎜⎜⎝

−1 3 1 1
3 −1 1 1
1 1 −1 1
1 1 1 −1

⎞

⎟⎟⎠

to define a Lorentz product as well as a packing of disks with some distinct differences
compared to the Apollonian packing. It is also possible to choose −J above and all the
results are the same modulo minus signs. The existence of this particular packing was first
shown in [6]. Although Boyd provides the separation matrix and a general description of the
construction process, it was likely not until [17] that pictures of this packing were published.
Additional analysis was done in [14].

This packing may be generated by taking the image of

� = 〈
R�n1 , R�n2 , R�n3 , R�n4 , R�n5

〉

acting on the faces

{�e1, �e2, �e3, �e4, �e1 + �e2 − �e4}
where �n1 = (−1, 1, 2, 2), �n2 = (1,−1, 2, 2), �n3 = (1, 1,−2, 0), �n4 = (3, 1, 2,−2), and
�n5 = (1, 3, 2,−2).

Let {rn} be a sequence of radii of the disks packed within a bounded region of a
Boyd/Mallows or separation-3 packing. We wish to bound the new critical exponent
SBoyd/Mallows = δBoyd/Mallows = δ defined by (4), which coincides with the Hausdorff dimen-
sion of the residual set [24]. Let �k = (a, b, c, d) = (�e1 ◦ �E, �e2 ◦ �E, �e3 ◦ �E, �e4 ◦ �E), with
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�E the point at infinity. Writing �kt J−1�k = 0 gives an analogue of the Descarte’s quadruple
relationship

− 1

8
(a2 + b2) − 1

2
(c2 + d2) + 1

4
ab + 1

2
(a + b)(c + d) = 0. (12)

Define the quadratic form

K (�k) = �kt J−1�k
and define cn as being the smaller of the two solutions to K (cn, cn−1, a, b) = 0. The sequence
{cn} is the set of curvatures of “center disks" down the necklace opposite the triangle from the
bounding circleC of curvature c = c0 in Fig. 4. By symmetry, {bn} and {an} are the curvatures
of the center tails of circles in necklaces opposite bounding circles B and A, respectively.
To solve for a1, we know that the the disks corresponding to a and a1 are disjoint, so
solving K (a1, a, b, c) = 0 results in a1 = a + 2b + 2c ± √

8
√
ab + ac + bc. Similarly,

b1 = 2a + b + 2c ± √
8
√
ab + ac + bc, and also, c1 = 2a + 2b + c ± √

8
√
ab + ac + bc.

Lemma 1 Let A, B, and C be three pairwise externally tangent circles with curvatures a, b,
and c = c0. Let {Cn} be the sequence of disks in which C1 is the smaller of the disks tangent
to A and B, and at a separation of 3 from C. Let Cn be the smaller of the disks tangent to A
and B at a separation of 3 from Cn−1. Then, for all n ∈ N,

cn = c + 2n2(a + b) + n
√
8d (13)

where d = √
ab + ac + bc.

Proof : Let {�e1, �e2, �e3, �e4} be the standard basis with the above separation matrix and let

�k = (curv(�e1), curv(�e2), curv(�e3), curv(�e4))
= (�e1 ◦ �E, �e2 ◦ �E, �e3 ◦ �E, �e4 ◦ �E) = (c, c1, a, b)

(curvature is Lorentz product with �E [4].) Consider the reflections R1 = R(1,−1,2,2) and
R2 = R(1,−1,0,0). Then, R2R1 = P is a parabolic translation moving �e1 to �e2 and

Pn =

⎛

⎜⎜⎝

1 − n −n 0 0
n n + 1 0 0

2n(n − 1) 2n(n + 1) 1 0
2n(n − 1) 2n(n + 1) 0 1

⎞

⎟⎟⎠ .

Then,

cn = curv(Pn�e1) = curv(1 − n, n, 2n(n − 1), 2n(n − 1))

= (1 − n)(�e1 ◦ �E) + n(�e2 ◦ �E) + 2n(n − 1)((�e3 + �e4) ◦ �E)

= (1 − n)c + nc1 + 2n(n − 1)(a + b).

Note that, based on Fig. 4 which uses curvatures a, b, c and c1, the point at infinity is not
�e3 + �e4. Using c1 = 2a + 2b + c + √

8d gives the desired result. ��
For example, using T (0, 1, 2) pictured above, we have c1 = 8, c2 = 18, c3 = 32 etc.

Since the necklace opposite the curvilinear triangle from either A, B or C has three “tails",
we need formulas for the curvatures of the circles in the “left" and “right" tails.

123



52 Page 6 of 15 Geometriae Dedicata (2024) 218 :52

Lemma 2 Let A, B, and C be three pairwise externally tangent circles with curvatures a, b,
and c. Let {Cn,r } be the sequence of circles in which C1,r is the smaller of the circles tangent
to C1 and C2, and at a separation of 3 from A. Let Cn,l be the smaller of the circles tangent
to Cn+1 and Cn at a separation of 3 from B. Then, for all n ∈ N,

cn,r = a + 2b + 2c + 4(n2 + n)(a + b) + (2n + 1)
√
8d (14)

and

cn,l = 2a + b + 2c + 4(n2 + n)(a + b) + (2n + 1)
√
8d. (15)

Proof : As before, let �k = (�e1 ◦ �E, �e2 ◦ �E, �e3 ◦ �E, �e4 ◦ �E) = (c, c1, a, b). Consider the
reflection R�n3 = R(1,1,−2,0). Then, R�n3(�e3) = (1, 1,−1, 0) and

Pn(1, 1,−1, 0) = (1 − 2n, 1 + 2n, 4n2 − 1, 4n2)

implying

cn,r = (1 − 2n)c + (1 + 2n)c1 + (4n2 − 1)a + 4n2b.

Substituting in c1 = 2a + 2b + c + √
8d gives the desired result for cn,r . Interchanging a

and b gives cn,l . ��

Let T (a, b, c) be the curvilinear (or triply asymptotic) triangle bounded by three mutually
externally tangent circles A, B,C of curvatures a, b, c, with 0 ≤ a ≤ b ≤ c, and b > 0. The
condition b > 0 guarantees that T (a, b, c) has finite area even if a = 0, in which case A is
a line. For t > 0, define

M(a, b, c; t) =
∞∑

n=1

r tn (16)

where the rn are the radii of the disks in the Boyd/Mallows packing within T (a, b, c) and the
equality holds in the extended sense. To save writing space, we may suppress the variable t ,
writing M(a, b, c). First note that based on the symmetries �, M is symmetric in the three
variables a, b, c.

Lemma 3 M(a, b, c; t) is decreasing in each variable a, b, c. M is strictly decreasing if
t > δ, and M(a, b, c; t) = +∞ if t < δ, where δ = S is the critical exponent.

Note that, apriori, δ may depend on (a, b, c). We will see shortly that this is not the case.

Proof : If t < δ, equality holds trivially in the extended sense (∞ = ∞). Next
let t > δ and ε > 0. If we replace c �→ c + ε then by Lemmas 1 and 2,
an, an,l , an,r , bn, bn,l , bn,r , cn, cn,l , cn,r strictly increase.We now expandM(a, b, c) bywrit-
ing M(a, b, c) as a sum of 3 necklaces (each with 3 bands of circles), four central triangles,
and 18 sub-triangle bands (6 from each necklace):
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Fig. 4 The 0th iteration necklace of the Boyd/Mallows packing

M(a, b, c) =
∞∑

n=1

(
a−t
n + a−t

n,l + a−t
n,r + b−t

n + b−t
n,l + b−t

n,r + c−t
n + c−t

n,l + c−t
n,r

)

+ M(a, c1, b1) + M(b, c1, a1) + M(c, b1, a1) + M(c1, b1, a1)

+
∞∑

n=1

(M(b, an, an,l) + M(b, an+1, an,l) + M(an, an,l , an,r )

+ M(an+1, an,l , an,r ) + M(c, an, an,r ) + M(c, an+1, an,r )

+ M(c, bn, bn,l) + M(c, bn+1, bn,l) + M(bn, bn,r , bn,l)

+ M(bn+1, bn,r , bn,l) + M(a, bn, bn,r ) + M(a, bn+1, bn,r )

+ M(a, cn, cn,l) + M(a, cn+1, cn,l) + M(cn, cn,l , cn,r )

+ M(cn+1, cn,l , cn,r ) + M(b, cn, cn,r ) + M(b, cn+1, cn,r )) (17)

(see Fig. 4). Since t > δ, M(a, b, c+ ε; t) < M(a, b, c; t). Since M is symmetric in each of
a, b, c, it follows that M is strictly decreasing in each variable. ��

Note that since 0 ≤ a ≤ b ≤ c and b > 0, then c1 ≤ b1 ≤ a1, an+1 ≤ an,l ≤ an,r ,
bn+1 ≤ bn,r ≤ bn,l , and cn+1 ≤ cn,l ≤ cn,r , the above sums with M(·, ·, ·) in (17) are written
in increasing curvature.

If T (a, b, c) is dilated by a factor of 1
α
, where α > 0, then the radii rn are replaced by

1
α
rn and a, b, c are scaled by α. So, M is homogenous of degree −t :

M(αa, αb, αc; t) = α−t M(a, b, c; t). (18)

Remark 1 The Boyd/Mallows packing in T (0, 1, 1) is not an integer packing since, for
instance cn = 1 + 2n2 + √

8n. The packing in Fig. 2 contains triangles T (0, 1, 2) but not
T (0, 1, 1).

Lemma 4 Let M be defined by (16) and 0 ≤ a ≤ b ≤ c with b > 0. Then,

(a + c)−t M(0, 1, 1; t) ≤
(
a + b + c

2

)−t

M(0, 1, 1; t) ≤ M(a, b, c; t),

M(a, b, c; t) ≤ 1

2
((a + b)−t + c−t )M(0, 1, 1; t) ≤ b−t M(0, 1, 1; t) (19)
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with the inequality holding in the extended sense when t < S = δ.

Sketch of proof:The outermost inequalities are immediate as (a+c)−t ≤ (a+(b+c)/2)−t

and 1
2 ((a + b)−t + c−t ) ≤ b−t . Using Lemmas 1 and 2 and (17), a curvature occurring in

T (a, b, c) may be written as

curv = w1a + w2b + w3c + w4d

with w j > 0. This, along with M being homogenous, decreasing in each variable, and
symmetric in each variable, we may repeat the arguments in [8] and the claim follows.

Lemma 4 shows that M(a, b, c; t) < ∞ if and only if M(0, 1, 1; t) < ∞, allowing us to
analyze the Boyd/Mallows packingwithin T (0, 1, 1). Moreover, δ is independent of (a, b, c).

To help us understand the forthcoming definitions, we will first exhibit one way to craft a
self-similar inequality for M . Based on (17), define

h0(t) =
∞∑

n=1

(
a−t
n + a−t

n,l + a−t
n,r + b−t

n + b−t
n,l + b−t

n,r + c−t
n + c−t

n,l + c−t
n,r

)
.

Applying the more coarse but simpler inequality M(a, b, c; t) ≤ b−t M(0, 1, 1; t) to (17),

M(a, b, c) ≤ h0(t) + 2M(0, 1, 1)
(
c−t
1 + b−t

1

+
∞∑

n=1

(a−t
n + a−t

n+1 + a−t
n,l + b−t

n + b−t
n+1 + b−t

n,r + c−t
n + c−t

n+1 + c−t
n,l)

)
. (20)

If we write

f̃0(t) = 2(c−t
1 + b−t

1

+
∞∑

n=1

(a−t
n + a−t

n+1 + a−t
n,l + b−t

n + b−t
n+1 + b−t

n,r + c−t
n + c−t

n+1 + c−t
n,l))

and let (a, b, c) = (0, 1, 1), then

M(0, 1, 1; t) ≤ h0(t) + M(0, 1, 1; t) f̃0(t). (21)

If μ̃0 satisfies f̃0(μ̃0) = 1, then Theorem 1 will show that μ̃0 > S. Similarly, applying
(a + c)−t M(0, 1, 1; t) ≤ M(a, b, c; t) gives
M(a, b, c) ≥ h0(t)

+ M(0, 1, 1)
(
(a + b1)

−t + (b + a1)
−t + (c + a1)

−t + (c1 + a1)
−t

+
∞∑

n=1

(2(b + an,l)
−t + 2(c + an,r )

−t + (an + an,r )
−t + (an+1 + an,r )

−t

+ 2(c + bn,l)
−t + 2(a + bn,r )

−t + (bn + bn,l)
−t + (bn+1 + bn,l)

−t

+ 2(a + cn,l)
−t + 2(b + cn,r )

−t + (cn + cn,r )
−t + (cn+1 + cn,r )

−t )
)
. (22)

Letting g̃0(t) be the function to the right of M(0, 1, 1) above with (a, b, c) = (0, 1, 1), we
can write

M(0, 1, 1) ≥ h0(t) + M(0, 1, 1)g̃0(t).

Theorem 1 will also show that if g̃0(λ̃0) = 1, then λ̃0 < S.
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We now define functions similar to f̃0, g̃0, and h0, but based on the tighter inside inequal-
ities of (19). First define a set-valued function τ which collects the triples of curvatures
(x, y, z) when T (x, y, z) occurs as a sub-triangle per Fig. 4. Define

τ(a, b, c) = {(a, c1, b1), (b, c1, a1), (c, b1, a1), (c1, b1, a1)}∪
∞⋃

n=1

{(b, an, an,l), (b, an+1, an,l), (an, an,l , an,r ),

(an+1, an,l , an,r ), (c, an, an,r ), (c, an+1, an,r ),

(c, bn, bn,l), (c, bn+1, bn,l), (bn, bn,r , bn,l),

(bn+1, bn,r , bn,l), (a, bn, bn,r ), (a, bn+1, bn,r ),

(a, cn, cn,l), (a, cn+1, cn,l), (cn, cn,l , cn,r ),

(cn+1, cn,l , cn,r ), (b, cn, cn,r ), (b, cn+1, cn,r )}. (23)

Define

f̃0(κ; a, b, c; t) =
∑

(x,y,z)∈τ(a,b,c)

y−t , (24)

g̃0(κ; a, b, c; t) =
∑

(x,y,z)∈τ(a,b,c)

(x + z)−t , (25)

f0(κ; a, b, c; t) =
∑

(x,y,z)∈τ(a,b,c)

1

2
((x + y)−t + z−t ), (26)

g0(κ; a, b, c; t) =
∑

(x,y,z)∈τ(a,b,c)

(
x + y + z

2

)−t

, (27)

h0(κ; a, b, c; t) =
∞∑

n=1

(
a−t
n + a−t

n,l + a−t
n,r + b−t

n + b−t
n,l + b−t

n,r + c−t
n + c−t

n,l + c−t
n,r

)
. (28)

For κ ≥ 0 and a set l consisting of curvature triples, define

S (κ; l) = l ∪
⋃

(x,y,z)∈l
y<κ

τ(x, y, z) − {(p, q, r) ∈ l : q < κ} (29)

and S 0(κ; l) = l. Define iterates of S as

S 2(κ; l) = S (κ;S (κ; l))
S 3(κ; l) = S (κ;S (κ;S (κ; l)))

123
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Fig. 5 A first iteration of the necklace packing for any c1 < κ ≤ b1. The green/gray disks are added because
those four sub-triangles have a middle curvature smaller than κ

etc. For m ≥ 1, define

f̃m(κ; a, b, c; t) =
∑

(x,y,z)∈S m (κ;τ(a,b,c))

y−t , (30)

g̃m(κ; a, b, c; t) =
∑

(x,y,z)∈S m (κ;τ(a,b,c))

(x + z)−t , (31)

fm(κ; a, b, c; t) =
∑

(x,y,z)∈S m (κ;τ(a,b,c))

1

2
((x + y)−t + z−t ) (32)

gm(κ; a, b, c; t) =
∑

(x,y,z)∈S m (κ;τ(a,b,c))

(
x + y + z

2

)−t

(33)

hm(κ; a, b, c; t) = hm−1(κ; a, b, c; t)
+

∑

(x,y,z)∈S m−1(κ;τ(a,b,c))
y<κ

h0(κ; x, y, z; t) (34)

For fixed κ, a, b, c, and m, the functions fm, gm, and hm above are defined when t > 1
2 . At

t = 1
2 , they are harmonic-type series since cn � n2. If c1 > 1, they are positive, continuous,

strictly monotone decreasing functions of t , tending to∞ as t → 1
2

+
and 0 as t → ∞. Based

on the above definitions of fm, gm, and hm , if κ is smaller than all sub-triangle curvatures,
we expect that the iteration should terminate; in other words, fm = fm+1 = · · · . The
following lemma establishes that the breaking of necklace triangles into sub-triangles occurs
with curvatures which grow at an exponential rate (Fig. 5).

Lemma 5 If κ ≤ 5n+1b, then

S n+1(κ; τ(a, b, c)) = S n(κ; τ(a, b, c)) for all n ≥ 0.

Proof : On any triangle triple (a, b, c) with 0 ≤ a ≤ b ≤ c and b > 0, we have

min{y : (x, y, z) ∈ τ(a, b, c)} = c1
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and

c1 = c + 2a + 2b + √
8
√
ab + ac + bc ≥ 3b + √

8
√
b2 > 5b.

So, if κ ≤ 5b < c1, then by (29),

S (κ; τ(a, b, c)) = S 0(κ; τ(a, b, c)) = τ(a, b, c).

If true for 1, ..., n − 1, then by choosing κ ≤ 5n+1b, the union and set exclusion on the right
hand side of (29) for S n+1 will be empty, and the claim follows. ��
Corollary 1 Fix n ≥ 0 and let m ≥ 0. If κ ≤ 5n+1b then

fm(κ; a, b, c; t) = fn(κ; a, b, c; t) (m ≥ n)

gm(κ; a, b, c; t) = gn(κ; a, b, c; t) (m ≥ n)

hm(κ; a, b, c; t) = hn(κ; a, b, c; t) (m ≥ n).

When (a, b, c) = (0, 1, 1), c1 = 3 + √
8. Let β0 = 3 + √

8. Iterating c1 = 2a + 2b + c +√
8
√
ab + ac + bc by replacing (a, b, c) → (0, βm

0 , βm
0 ),

min{y : (x, y, z) ∈ S m(∞; τ(0, 1, 1))} = 2(0) + 2βm
0 + βm

0 + √
8
√

β2m
0

= (3 + √
8)βm

0 = βm+1
0 .

The κ-cutoff values in Table 1 are �βm� where βm = βm+1
0 .

Theorem 1 Let S be the critical exponent of the Boyd/Mallows packing. Let κ > 0,
m ≥ 0, and t > 1

2 . Let μm(κ) and λm(κ) satisfy fm(κ; 0, 1, 1;μm(κ)) = 1 and
gm(κ; 0, 1, 1; λm(κ)) = 1. Then,

λm(κ) ≤ S ≤ μm(κ). (35)

Moreover, if 1 < κ ≤ (3 + 2
√
2)m+1, then

0 < μm(κ) − λm(κ) <
2.3

log κ
. (36)

Proof : With (a, b, c) = (0, 1, 1), c1 = 3 + 2
√
2 > 1, so fm and gm are strictly decreasing,

continuous functions. Thus, μm(κ) and λm(κ) are unique. Define

Mj (a, b, c; t) =
∑

q≤c j1

q−t , (37)

where the sum is over curvatures q occurring in T (a, b, c). We will first show that

Mj (0, 1, 1; t) ≤ hm(κ; 0, 1, 1; t) + Mj (0, 1, 1; t) fm(κ; 0, 1, 1; t). (38)

Let m = 0, fix κ > 0, and t > 1
2 . Using (19) applied to Mj ,

Mj (a, b, c; t) < h0(κ; a, b, c; t) +
∑

(x,y,z)∈τ(a,b,c)

Mj (x, y, z; t)

≤ h0(κ; a, b, c; t) +
∑

(x,y,z)∈τ(a,b,c)

1

2
((x + y)−t + z−t )Mj (0, 1, 1; t)

= h0(κ; a, b, c; t) + f0(κ; a, b, c; t)Mj (0, 1, 1; t). (39)
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If also true for 1, ...,m − 1, then using the definitions of fm and hm ,

Mj (a, b, c; t)
< h0(κ; a, b, c; t) +

∑

(x,y,z)∈τ(a,b,c)
y<κ

Mj (x, y, z; t)

+
∑

(x,y,z)∈τ(a,b,c)
κ≤y

M j (x, y, z; t)

< h0(κ; a, b, c; t)
+

∑

(x,y,z)∈τ(a,b,c)
y<κ

(hm−1(κ; x, y, z; t) + fm−1(κ; x, y, z; t)Mj (0, 1, 1; t))

+
∑

(x,y,z)∈τ(a,b,c)
κ≤y

1

2
((x + y)−t + z−t )Mj (0, 1, 1; t)

< hm(κ; a, b, c; t) + Mj (0, 1, 1; t) fm(κ; a, b, c; t). (40)

This establishes (38) by induction. Now let t > μm(κ), making fm(κ; 0, 1, 1; t) < 1. Then,

Mj (0, 1, 1; t) <
hm(κ; 0, 1, 1; t)

1 − fm(κ; 0, 1, 1; t) . (41)

Since Mj ↗ M , letting j → ∞, shows that when t > μm(κ), M(0, 1, 1; t) is bounded
above by the finite quantity hm(κ; 0, 1, 1; t)/(1 − fm(κ; 0, 1, 1; t)). Thus μm(κ) ≥ S.

Using (17) and (19), we may write M(a, b, c; t) as a sum of hm “tails" and remaining
sub-triangle packings:

M(a, b, c; t) = hm(κ; a, b, c; t) +
∑

(x,y,z)∈S m (κ;τ(a,b,c))

M(x, y, z; t)

≥ hm(κ; a, b, c; t) +
∑

(x,y,z)∈S m (κ;τ(a,b,c))

(
x + y + z

2

)−t

M(0, 1, 1; t)

= hm(κ; a, b, c; t) + gm(κ; a, b, c; t)M(0, 1, 1; t).
Letting (a, b, c) = (0, 1, 1) establishes

hm(κ; 0, 1, 1; t)
1 − gm(κ; 0, 1, 1; t) ≤ M(0, 1, 1; t).

If t > λm(κ) then gm < 1 since gm is decreasing. Since

lim
t→λm (κ)+

gm(κ; 0, 1, 1; t) = 1

and

lim
t→λm (κ)+

hm(κ; 0, 1, 1; t)
1 − gm(κ; 0, 1, 1; t) ≤ lim

t→λm (κ)+
M(0, 1, 1; t) = M(0, 1, 1; λm(κ))

then M(0, 1, 1; λm(κ)) = ∞, which shows that λm(κ) ≤ S.
Next, we show that for fixed κ, a, b, c, t ,

gm ≥ g̃m ≥ 5.5−t f̃m ≥ 5.5−t fm . (42)
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The outermost inequalities follow from (19). For the inside inequality, with m = 0, we
compare x + z to y for (x, y, z) ∈ τ(a, b, c). For instance, if (x, y, z) = (c, an, an,r ) (the
9th necklace term in τ(a, b, c)) then

c + an,r = 2a + b(1 + 4n + 4n2) + c(3 + 4n + 4n2) + √
8d(2n + 1)

≤ 5.5(a + b(2n2) + c(2n2) + √
8dn) = 5.5an .

The 11th and 21st terms in τ(a, b, c) can also be compared with the constant 5.5, while the
other terms can be compared with constants (also independent of κ and m) ranging between
2 and 5. Thus, (x + z)−t ≥ 5.5−t y−t for all (x, y, z) ∈ S m(κ; τ(a, b, c)), establishing (42).

Now let 1 < κ ≤ βm . By Corollary 1, λm(κ) = λm+1(κ) = ... and μm(κ) = μm+1(κ) =
... and y ≥ κ for all (x, y, z) ∈ S m(κ; τ(a, b, c)). Let ε > 0 be given. Since κ

βm
≤ 1, if q

is a curvature occurring in the expression of f̃m(κ; 0, 1, 1; t), then q ≥ βm , so κ
q ≤ 1. Thus,

(
κ
q

)ε ≤ 1ε = 1 and so

f̃m(κ; 0, 1, 1; t) =
∞∑

n=1

q−t
n ≥

∞∑

n=1

κεq−t−ε
n = κε f̃m(κ; 0, 1, 1; t + ε). (43)

Numerical computation (see next section) showed that μ5(39201) = 1.348771, so λm(κ) ≤
1.348771 for all κ and m. Thus, 5.5−λm (κ) ≥ 5.5−1.348771 = 0.100327. Using (42), (43),
setting C = 0.100327, ε = μm(κ) − λm(κ), and κ > 1 to ensure log κ > 0,

1 = gm(κ; 0, 1, 1; λm(κ))

≥ 5.5−λm (κ) f̃m(κ; 0, 1, 1; λm(κ))

≥ Cκε f̃m(κ; 0, 1, 1; λm(κ) + ε)

≥ Cκε fm(κ; 0, 1, 1; λm(κ) + ε)

= Cκμm (κ)−λm (κ) fm(κ; 0, 1, 1;μm(κ))

= Cκμm (κ)−λm (κ). (44)

This proves (36) and concludes the proof of the theorem. ��
Remark 2 The above condition 1 < κ ≤ βm is necessary in establishing the multiplicative
inequality (43). For example, if m = 0 and κ = 6 > β0 = 3 + √

8, then τ(0, 1, 1) includes
(0, 3 + √

8, 3 + √
8) so the property κ/q ≤ 1 fails. If 0 < κ ≤ 1, then log κ ≤ 0 and the

inequalities leading to (44) flip and give no useful information. If κ = 1, (43) degrades to
the (already known) monotonic decreasing property of f̃m . 0 < κ ≤ 1 could be treated as a
separate case, but in our computations we seek values of κ > 104.

Remark 3 It is likely possible to prove (42) without f̃m and g̃m . For comparison, μ̃m and λ̃m ,
are included in Table 1.

3 Numerical results

The functions τ,S , fm , and gm were incorporated into a computer program written using
Sage mathematics software [23]. All computations were run on personal computers with 8
Gigabytes of random access memory and a single central processor unit. Table 1 provides
the computed upper and lower bounds. The convergence rate with both sets of inequalities
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Table 1 Table of upper and lower
bounds of S = δ for various κ and
m of the Boyd/Mallows packing

m κ λ̃m (κ) λm (κ) μm (κ) μ̃m (κ)

0 ≤ β0 1.238656 1.304679 1.391406 1.549702

1 16 1.274746 1.316674 1.367061 1.445461

1 33 1.278722 1.318153 1.365074 1.437800

2 100 1.288116 1.320996 1.359760 1.417712

2 197 1.292704 1.322415 1.357262 1.408436

3 1153 1.300423 1.324607 1.353417 1.394080

4 6725 – 1.326166 1.350711 –

5 39201 – 1.327266 1.348771 –

appears to be roughly 1
log κ

. The functions λm and μm provide closer starting values (λ0(κ)

and μ0(κ)) to S as compared to λ̃m and μ̃m . As suggested by Theorem 1, the approximate
slope of fm, gm, f̃m, and g̃m is − log κ . A numerical root-finding algorithm incorporating a
Newton type map x0 �→ − A

log κ
(1 − f0(κ; 0, 1, 1, x0)) + x0 was employed using a constant

approximate slope. The value of A ≈ 1.5 as well as the initial guess for x0 can be adjusted to
offer faster or slower convergence to the root of fm −1, gm −1, f̃m −1, or g̃m −1. Iterations
of the Newton type map were done until | fm(κ; 0, 1, 1; xn)− 1| < 10−7, xn = x0, x1, x2, ...
and similar for gm , f̃m , g̃m .

The κ values of 33, 197, 1153, 6725, and 39201were rounded down from the cutoff values
of β1 = β2

0 ≈ 33.97, β2 = β3
0 ≈ 197.99 etc., where β0 = 3+2

√
2 ≈ 5.82. The other values

of 16 and 100were inserted to illustrate that further refinement can happen evenwith the same
number of iterations. The fact that λ1(16) = 1.316674 > 1.310876 > δA proves that the
critical exponent of the Boyd/Mallows packing is strictly greater than the critical exponent
of the Apollonian packing. The longest calculations took approximately 6h to complete. The
above values are truncated, not rounded.

To obtain bounds for the critical exponent of the Apollonian packing, δA, analogous
functions fm,A, gm,A, λm,A, μm,A, were created. A κ-cutoff value of 166464 was used to
provide 6 levels of iteration. Obtaining the roots λ6,A and μ6,A yielded (1).

The author has also computed a heuristic estimate of S = δ by methods which originate
in [9, 13, 19]. Since each generator of O+

J (Z) has a matrix representation, the problem of
estimating δ is equivalent to determining the average growth rate of the orbit of a vector under
random products of certain non-commuting matrices. After a similarity transformation, these
integer matrices correspond to Lorentz transformations (see [25] or [22]) which generate a
discrete subgroup of the full Lorentz group O3,1(R). Define the “height" function

h(�x) = �x ◦ �D = 4x1 + 4x2 + 2x3 + 2x4. (45)

Again let � = 〈
R�n1 , R�n2 , R�n3 , R�n4 , R�n5

〉
and consider the image of � on the faces

{�e1, �e2, �e3, �e4, �e1 + �e2 − �e4} (see Fig. 3). A finite subset of this image was created with these
5 faces as a “seed". There were calculated to be 13, 244, 370 vectors with a height below
219. These vectors were then sorted according to height and then fit by linear least-squares
regression to the curve y = axb. The resulting growth rate of 1.33544546879 fits between
the rigorous bounds displayed in Table 1 and is merely 0.002573 off from the arithmetic
average of the lower and upper bounds λ5(39201) and μ5(39201).
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