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Abstract
Branched coverings boast a rich history, ranging from the ramification of Riemann surfaces to
the realization of 3-manifolds as coverings branched over knots and spanning both geometric
topology and algebraic geometry. This work delves into branched coverings “à la Fox” of
(G, X)-manifolds, encompassing three main avenues: Firstly, we introduce a comprehensive
class of singular (G, X)-manifolds, elucidating elementary theory paired with illustrative
examples to showcase its efficacy and universality. Secondly, building on Montesinos’ work,
we revisit and augment the prevailing knowledge, formulating a Galois theory tailored for
such branched coverings. This includes a detailed portrayal of the fiber above branching
points. Lastly, we identify local attributes that guarantee the existence of developingmaps for
singular (G, X)-manifolds within the branched coverings framework. Notably, we pinpoint
conditions that ensure the existence of developing maps for these singular manifolds. This
research proves especially pertinent for non-metric singular (G, X)-manifolds like those of
Lorentzian or projective nature, as discussed by Barbot, Bonsante, SuhyoungChoi, Danciger,
Seppi, Schlenker, and the author, among others. While examples are sprinkled throughout, a
standout application presented is a uniformization theorem “à la Mess” for singular locally
Minkowski manifolds exhibiting BTZ-like singularities.
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1 Introduction

1.1 Somemotivational examples

Consider H the hyperbolic plane and Isom+(H) � O0(1, 2;R) � PSL(2;R)1 its group of
direct isometries. The quotient of H by a geometrically finite discrete torsion-free subgroup
of Isom+(H), say Γ , gives a locally hyperbolic manifold, a H-manifold, say Σ := Γ \H.
Such a Σ admits a developing map D : ˜Σ → H and a holonomy homomorphism ρ :
π1(Σ) → Isom+(H) where ˜Σ is the universal covering of Σ and π1(Σ) its fundamental
group. If, furthermore, the holonomies of the ends of Σ are parabolic, then one can associate
to each end an ideal point “at infinity”, effectively compactifying Σ to some Σ (which is the
Freudenthal compactification [23] ofΣ). The geometric model (Isom+(H), H) is an instance
of a geometric structure in the sense of Ehresmann [24], popularised by Thurston [48] and
others [2, 12, 13, 25, 29, 40, 43] ie a couple (G, X) where X is a locally path-connected
Hausdorff topological space and G is a group acting analytically on X by homeomorphisms.
Here “analytically” means that for all g, h ∈ G, if the restrictions to any nontrivial open
subset U of g and h agree, then g = h. A (G, X)-manifold is then a second countable

1 The index 0 indicates the connected component of identity.
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Hausdorff topological space M endowed with an atlas whose change of charts lies in G. The
existence of a developingmap from the universal covering of such a manifold M to the model
space X and of a holonomy from its fundamental group to the model group G is a general
property as long as the universal covering exists.2

The manipulation of such points “at infinity” (or even irrational conical singularities),
though legal and quite simple in this specific context, requires some additional care in the gen-
eral setting of (G, X)-manifolds especially if one considers nonmetric analytical structures
such as conformal structures, Lorentzian structures or affine structures ie, (Aff(Rn), R

n)-
structures. Compactifications and completions are not (G, X)-manifolds anymore but rather
“singular” (G, X)-manifolds. The notion of singularity is not a unified concept: singularities
are usually described in a specific context, making clear what those singularities entail. Most
“singularities” arise either via

– completion or compactification procedures as presented above (see also [17, 20]);
– quotienting a regular (G, X)-manifold by a discrete group acting properly discontinu-

ously by automorphisms [34];
– gluings of simplices of the model space X (when it makes sense) [8, 26],
– suspensions such as presented in [5, 47].

In all instances, the regular locus is open and dense. Additional properties are, however,
required for any weak form of analyticity to hold. In fact, consider X = R

2 and G either
Isom(E2) � O2(R) � R

2 or Aff(R2) � GL2(R) � R
2 acting as usual on R

2; then consider
the manifold M = R

2 together with the (G, X)-structure induced by the atlas composed of a
unique chart Id : R2\S → R

2\S for some subset S. If S is a singleton, using the metric, it is
easy to check that one can extend uniquely the flat metric structure to the wholeR

2. The same
statement is true in the affine case. However, if S is a line segment, say S = {0}×[−1, 1], the
uniqueness of the atlas extension can be proved only in the metric case, while in the affine
case, uniqueness fails. More precisely, in the affine case, one can add any one of the charts

ϕλ,μ :
R×] − 1, 1[ −→ R×] − 1, 1[

(x, y), x ≤ 0 �−→ (λx, y)

(x, y), x ≥ 0 �−→ (μx, y)

, λ, μ > 0.

The new regular locus is then the complement of two points, and its holonomy is trivial if and
only if λ = μ. In any case, different extensions of the initial atlas give rise to inequivalent
affine structures.3

1.2 Singular (G, X)-manifolds and branched coverings

We show that an efficient definition for singular (G, X)-manifold is that they have a (G, X)-
atlas defined almost everywhere in the sense that its support is portly: open, dense and locally
connected in the whole manifold.4 The complement of a portly subset is called skeletal. In
Sect. 2, wewrite a primer on such singular (G, X)-manifolds, generalizing elementary results
to this context, showing that this definition is satisfactory.

2 In [24] elements of proof are presented for G a Lie group acting on a manifold X , a careful proof for the
group of conformal transformations or isometries of a Riemannian manifold see [35] or [25]. The generality
considered here is contained in neither reference, but the arguments still work [16].
3 If however we only consider extensions of the (G, X)-atlas which are defined on the whole R

2 then in both
cases the extension is unique.
4 A subset Y ⊂ X is locally connected in X if for all open connected W ⊂ X , the intersection W ∩ Y is
connected.
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Beyond elementary analyticity statements, we would like a good notion of developing
map, holonomy, and universal covering for singular (G, X)-manifolds. A natural first step
in this direction is to consider, for some singular (G, X)-manifold M , the universal covering
R̃eg(M) of its regular locus Reg(M), which gives rise to a map R̃eg(M)→ M , then try to
complete R̃eg(M) in a natural way.

We argue that Fox has provided this natural way in the 1950s [27, 33] with the notions of
spread, complete spread, and completion of spread and then extended to include branched
coverings; we refer the interested reader toMontesinos [39] for an up to date review.We shall
recall fundamental properties of coverings à la Fox as well as extend it in two directions.
First, we define a Galois Theory of branched coverings with the important addition of a
characterization of Galoisian universal branched coverings above given loci. In particular, we
prove in Proposition 3.52 that for a Hausdorff, connected, locally path-connected topological
space X , the universal covering branched above a skeletal locus S is Galoisian if and only if
X\S is semi-locally simply connected in X in a sense we will define. Second, we give a path
space description of the universal covering branched above a given locus akin to that of the
universal unbranched covering; see Theorem 2. To this end, we introduce a notion of almost
trivial loop. Most intermediary results and definitions presented are folkloric; however, to the
author’s knowledge, most are not presented in the generality considered in the present work,
and the notion of “semi-locally simply connected in” is new as well as the path description
of the maximal branched covering.

Coming back to singular (G, X)-manifolds, we introduce the classes of tame singular
(G, X)-manifolds and virtually tame singular (G, X)-manifolds that admit natural develop-
ingmaps.We prove localization Theorems to ensure those global properties can be efficiently
derived from local ones. See Theorems 4 and 5.

1.3 General references

We use freely standard notions from general topology (separation and countable basis
hypotheses, compact-open topology), algebraic topology (first fundamental group, semi-
local simple connectedness, Galois correspondence, etc.), group actions and category theory
(categories, commutative diagrams, projective limits).We refer the reader uncomfortablewith
some of these notions to reference texts [14, 15, 32, 41, 46, 50]. Thurston’s book [48] contains
many intuitions and constructions; however, the only reference textbook on the fundamentals
of (G, X)-manifolds is Goldman’s book [30]. Benzecri thesis [7] as well as Ratcliff’s [43]
and Bonahon’s [13] books which include some metric background in the (G, X)-manifold
context and some elementary account of conical singularities. However, our assumptions
may be slightly more general at times. We may also refer to the (yet unpublished) book of
Choi [20]. Having a particular interest in Lorentzian manifolds, the author kindly asks the
reader to pardon his tendency to draw nontrivial examples from those. The reader unfamiliar
with the geometry of Lorentzian manifolds may find useful [3, 42].

2 Singular (G,X)-manifolds (I): bases and examples

Wegive ourselves some analytical structure (G, X), ie, a connected, locally connected, Haus-
dorff topological space X together with a faithful action of a group G by homeomorphisms
such that for all φ1, φ2 ∈ G and all nontrivial open subset U ⊂ X if the actions of φ1

and φ1 agree on U they agree on X . A (G, X)-atlas on a topological space M is a family
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(Ui ,Vi , ϕi )i∈I where for all i ∈ I , Ui is an open subset of M , Vi is an open subset of X
and ϕi : Ui → Vi an homeomorphism, with the property that for all i, j ∈ I such that
Ui ∩ U j 
= ∅ and for all connected component W of Ui ∩ U j , there exists a φ ∈ G such that
φ ◦ ϕi |W = ϕ j |W . By analyticity of (G, X), such a φ is unique. The support supp(A) of
such an atlas A is defined as the union of the Ui . A (G, X)-manifold is a second countable
Hausdorff topological space M endowed with a (G, X)-atlas whose support is M .

The simplest example of singularities occurring in the literature of (G, X)-manifolds are
conical singularities in homogeneous Riemannian manifolds.

Example 2.1 Let α > 0 and n ≥ 2, define E
n
α = R

n−2 × R
2 endowed with cylindrical

coordinates (z, r , θ) ∈ R
n−2×R+×R/Z and theRiemannianmetricg = dz2+dr2+αr2dθ2.

This Riemannian metric is well-defined and locally Euclidean on the complement of the
domain {r = 0}. One can thus endow the domain {r > 0}with a (En, R

n
�SO(n))-structure.

However, this geometric structure cannot be extended to the whole R
n except for α = 2π .

An obstruction is given by the holonomy ρ : π1({r > 0}) = Z→ R
n

� SO(n), indeed ρ(1)
is the rotation of angle α which is non trivial when α /∈ 2πN

∗.

In the previous example, manifolds with conical singularities have an underlying metric
space structure that gives a natural notion of isomorphism class. In a way, the author feels
that such an underlying structure distracts from the fact that the notion of isomorphism
between singular (G, X)-manifolds does not depend on such metrics and is actually more
general. Gluing projective polyhedra leads to “singular” projective manifolds, and it would
feel “unnatural” to define isomorphism classes for such manifolds based upon some metric
choice. As an illustration of the richness of nonmetric singularities and their usefulness,
we wish to refer, for instance, to [5] for a fundamental study of conical 2 + 1 Lorentzian
singularities or [19, 22] for their role in geometric transitions.

The present section is devoted to the most basic definitions and properties of the notion of
singular (G, X)-manifolds we introduce. It encompasses most singularities of the literature,
and we show some elementary properties ensuring the theory of such manifolds works well.

2.1 Topological preliminaries

Recall that for X a topological space, a subset U ⊂ X is locally connected in X if for all
open connectedW ⊂ X , the intersectionW ∩ U is connected. Note in particular that if X is
connected, then U is connected.

Definition 2.2 (Portly/skeletal subset) Let X be a Hausdorff locally connected topological
space, a subset U of X is portly (in X ) if U is open dense and locally connected in X . A
subset S ⊂ X is skeletal if its complement in X is portly.

Example 2.3 The following examples of S are skeletal in X .

– S finite and X a surface;
– S a tame knot in a 3-manifold X ;
– S the k-skeleton of a pure n-dimensional simplicial complex X with k ≤ n − 2;
– S a Cantor set wildly embedded into an n-manifold X .

Portly subsets have nice properties, the proof of which relies on usual connectedness and
density arguments and are thus left to the reader, most can be found in [16, 27, 33, 37].
Consider a locally connected Hausdorff topological space X .
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– finite intersections of portly subsets are portly;
– if U ⊂ V , U is portly in X and V is open, then V is portly (hence unions of portly subsets

are portly);
– if U ⊂ V and U is portly in X then U is portly in V;
– if U is portly in V and V is portly in X then U is portly in X ;
– locally portly subsets are portly (ie if (Ui )i∈I is a family of open subsets and for each

i ∈ I , Vi ⊂ Ui is a portly subset of Ui , then
⋃

i∈I Vi is portly in
⋃

i∈I Ui );

– if X
f−→ Y is a local homeomorphism and U ⊂ Y is portly in Y then f −1(U) is portly in

X .

– if X
f−→ Y is a continuous open surjective and U ⊂ X is portly in X then f (U) is portly

in Y .

2.2 Almost everywhere (G, X)-atlases

The objects of this section are a.e. (G, X)-atlases, which are the first step toward (G, X)-
structures defined almost everywhere.

Definition 2.4 An almost everywhere (G, X)-atlas on a topological space M is a (G, X)-atlas
supported by some portly subset of M .

In order to avoid caveats, we need to build suitable maximality properties for such (G, X)-
atlases. We can first extend the usual properties to this context. A (G, X)-atlas is complete if
for all (U,V, φ) ∈ A and all U ′ ⊂ U we have (U ′, φ(U ′), φ|U ′) ∈ A. We can complete
any (G, X)-atlas by adding missing sub-charts; the completed atlas is still a (G, X)-
atlas. In our context, a (G, X)-atlas A = (Ui ,Vi , φi )i∈I is thinner than a (G, X)-atlas
B = (U ′j ,V ′j , φ′j ) j∈J if the support ofA is a subset of the support of B and for all p ∈ suppA
and all j ∈ J such that p ∈ U ′j , there exists g ∈ G and i ∈ I such that p ∈ Ui ⊂ U ′j and
φi = g ◦ φ′j |Ui

. Notice that if such an A is thinner than such a B, then the completion of A
is still thinner than B.

What we need and now provide is the flexibility to manipulate atlases that are defined up
to some “negligible set” akin to the similar notion in measure theory.

Lemma 2.5 Let N be a locally connected topological space. Let (Bk)k∈K be a family of a.e.
(G, X)-atlases on N. Assume for all (k, k′) ∈ K 2, there exists an a.e. (G, X)-atlas A such
that A is thinner than both Bk and Bk′ .

Then, the union
⋃

k∈K Bk is an a.e. (G, X)-atlas.

Proof Let k, k′ ∈ K and write Bk = (Ui ,Vi , φi )i∈I (k) and Bk′ = (Ui ,Vi , φi )i∈I (k′). Let
i ∈ I (k), j ∈ I (k′) such that Ui ∩ U j 
= ∅ and let ̂W ⊂ Ui ∩ U j be an open connected non
empty subset. Let A be an a.e. (G, X)-atlas supported by some portly subset M ⊂ N which
is thinner that both Bk and Bk′ . Without loss of generality, we assume that A is complete.

– Consider p ∈ ̂W ∩ M and a chart (U,V, φ) of A around p such that U ⊂ ̂W . The
existence of such a chart is guaranteed sinceA is complete and thinner than Bk , Bk′ . Let
W ⊂ U be an open connected neighborhood of p. There exists unique g, h ∈ G such
that

φ|W = g ◦ φi |W φ|W = h ◦ φ j |W ,

hence

φ j |W = (h−1g) ◦ φi |W .
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Define gp,U,W := h−1g so that φ j |W = gp,U,W ◦ φi |W .
– We show that gp,U,W depends neither on U nor on W nor on p.

Fixing p ∈ ̂W∩M , consider (U,V, φ) and (U ′,V ′, φ′) two charts ofA on a neighborhood
of p aswell asW andW ′ twoopen connectedneighborhoodsof p inU andU ′ respectively.
Since

∀x ∈ φi (W ∩W ′), gp,U,W (x) = φ j (φ
−1
i (x)) = gp,U ′,W ′(x)

we thus have gp,U,W = gp,U ′,W ′ so gp := gp,U,W only depends on p. Furthermore,
if q ∈ W , we prove the same way that gq,U,W = gp,U,W . Finally, the map W ∩
M → G, p �→ gp is locally constant. Since M is portly and since ̂W is connected, the
intersection ̂W ∩ M is connected and p �→ gp is constant on ̂W ∩ M .

– We proved there exists g ∈ G such that

∀x ∈ M ∩ ̂W, φ j (x) = g ◦ φi (x)

Sinceφi , φ j and g are continuous, X is Hausdorff and M is dense, the intersection ̂W∩M
is then dense in ̂W and

φ j |̂W = g ◦ φi |̂W .

Finally, Bk ∪ Bk′ is an a.e. (G, X)-atlas, moreover k, k′ ∈ K are arbitrary thus
⋃

k∈K Bk is
an a.e. (G, X)-atlas. ��
Corollary 2.6 Let M be a locally connected Hausdorff topological space. Consider the set E
of a.e. (G, X)-atlas A on M ordered by A ≤ B if the completion of A is thinner than B.

Then, for every A ∈ E the maximum

max (B : A ≤ B ∈ E})
is well-defined.

Proof By Lemma 2.5, this maximum is
⋃

B≥A B. ��

2.3 Category of singular (G, X)-manifolds

Definition 2.7 An a.e. (G, X)-structure on a topological space M is an a.e. (G, X)-atlas on
M which maximal in the sense of Corollary 2.6.

Definition 2.8 Asingular (G, X)-manifold is a locally connectedHausdorff second countable
topological space M endowed with an a.e. (G, X)-structure.

The support of its a.e. (G, X)-atlas is called its regular locus denoted Reg(M), and the
complement of Reg(M) is called the singular locus denoted Sing(M).

Definition 2.9 (a.e. (G, X)-morphism) Let M and N be two singular (G, X)-manifolds.
An a.e. morphism φ : M → N is a continuous map such that there exists portly subsets

U ⊂ Reg(M) and V ⊂ Reg(N ) such that φ|V|U : U → V is a (G, X)-morphism.

Remark 2.10 Composition of a.e. (G, X)-morphisms is an a.e. (G, X)-morphism. The cate-
gory SingGX of singular (G, X)-manifold, which morphisms are a.e. (G, X)-morphisms, is
then well defined. Isomorphisms of singular (G, X)-manifolds are then maps that are both
homeomorphisms and a.e. (G, X)-morphisms.
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Remark 2.11 A.e. (G, X)-morphisms are analytical: if two are equal on an open set, they are
equal everywhere.

Remark 2.12 Let M → N be a continuous map between singular (G, X)-manifolds. The
following properties are equivalent.

(i) f is an a.e. (G, X)-morphism;
(ii) f is locally an a.e. (G, X)-morphism;
(iii) f|U is an a.e. (G, X)-morphism for some portly set U ⊂ M .

Lemma 2.13 Let M and N be singular (G, X)-manifolds and let f : M → N an be a.e.
(G, X)-morphism. Let E be the set of open subsets U ⊂ Reg(M) such that f (U) ⊂ Reg(N )

and f |Reg(N )
|U is a (G, X)-morphism.

Ordered by the inclusion, E has a maximum.

Proof Let U0 := ⋃

U∈E U , the map f |Reg(N )

|U0
is locally a (G, X)-morphism hence a (G, X)-

morphism. Finally, U0 ∈ E is certainly the maximum. ��

Definition 2.14 Let M and N be singular (G, X)-manifolds and let f : M → N an a.e.
(G, X)-morphism. The maximal open subset of M on which f induces a (G, X)-morphism
is the regular locus of f , which we denote by Reg( f ).

The following properties give characterizations of Reg( f ) in typical situations, limiting
what can go wrong.

Lemma 2.15 Let M and N be singular (G, X)-manifolds and let f : M → N an a.e.
(G, X)-morphism. Then,

Reg( f ) = Reg(M) ∩ f −1(Reg(N )).

Proof The left-hand side is clearly included in the right-hand side. Via restrictions to charts,
it suffices to prove the special case of N = X hence M = f −1(Reg(N )).

Let x ∈ Reg(M) and let (U,V, ϕ) be a connected chart around x . The map f ◦ ϕ−1
induces a (G, X)-morphisms from ϕ(U ∩ Reg( f )) to X . Since Reg( f ) is locally connected
in M and U is connected, ϕ(U ∩ Reg( f )) is also connected and there exists a unique g ∈ G
such that

∀y ∈ ϕ(U ∩ Reg( f )), f ◦ ϕ−1(y) = g(y).

Since ϕ : U → V is a homeomorphism and U ∩ Reg( f ) is dense in U , then ϕ(Reg( f ) ∩ U)

is dense in V . Since f ◦ ϕ−1 is continuous, we have

∀y ∈ U, f (y) = g ◦ ϕ(y).

Finally, f is a regular on U . The result follows. ��

Lemma 2.16 Let M
f−→ N be a continuous map with M locally connected Hausdorff topo-

logical space and N a singular (G, X)-manifold.
If f is a.e. a local homeomorphism, there exists a unique a.e. (G, X)-structure on M such

that f is an a.e. (G, X)-morphism.
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Proof Let O ⊂ M and P ⊂ Reg(N ) both portly such that f |P|O is a local homeomorphism.
By usual results, there exists a unique a.e. (G, X)-structure A supported on O such that

f |P|O is a (G, X)-morphism. Since O,P are portly, we thus defined an a.e. (G, X)-structure
on M such that f in an a.e. (G, X)-morphism.

Assume that M is endowed with an a.e. (G, X)-structure B supported on some portly

subset O′ ⊂ M such that f |P|O′ is a (G, X)-morphism. In particular f | f (O′∩O)

|O′∩O is a (G, X)-
morphism, therefore the A|O′∩O = B|O′∩O . By Corollary 2.6 and maximality A = B and
O = O′. ��
Definition 2.17 With the notations of Lemma 2.16, the unique a.e. (G, X)-structure f ∗A on
M is called the pullback by f of the a.e. (G, X)-structure A of N .

Corollary 2.18 Let L
f−→ M

g−→ N be locally connected, Hausdorff topological space. And
let A be an a.e. (G, X)-structure on N. Then f ∗g∗A = (g ◦ f )∗A.

Lemma 2.19 Let M and N be singular (G, X)-manifolds and let f : M → N an a.e.
(G, X)-morphism. Then,

Reg( f ) = Reg(M) ∩ {x ∈ M | f is a local homeomorphism around x}
Proof By definition, Reg( f ) ⊂ Reg(M), furthermore a (G, X)-morphism is always a local
homeomorphism; therefore, the left-hand side is included in the right-hand side. Furthermore,
letA,B be the a.e. (G, X)-atlases of M, N respectively. Since f is a.e. a (G, X)-morphism,
then it is a.e. a local homeomorphism;wemay thus apply Lemma 2.16 to show that f ∗B = A.
In particular, if f |V|U is an homeomorphism for some U,V then Reg(U) = f −1(Reg(V))∩ U
and f : Reg(U)→ Reg(V) is a (G, X)-morphism. Therefore, if f is a local homemorphism
around x and in Reg(M) then x ∈ Reg(U) for a U such as above thus f is (G, X)-morphism
around x and x ∈ Reg( f ). ��
Corollary 2.20 If an a.e. (G, X)-morphism is also a local homeomorphism, then it preserves
both regular and singular loci.

Remark 2.21 As a consequence, an isomorphism M
f−→ N of singular (G, X)-manifolds is an

isomorphism of almost everywhere (G, X)-atlas in the sense that given the maximal almost
everywhere (G, X)-atlases A and B of M and N respectively, the pullback f ∗B and A are
equal. It is then an isomorphism in every natural way relative to singular (G, X)-manifolds.

2.4 Common construction of singular (G, X)-manifolds

From the literature, we can list common construction leading to “informal” singular (G, X)-
manifolds:

– branched coverings;
– gluings of projective polyhedron; [1, 6, 10, 12, 17]
– a quotient of some (G, X)-manifold M by some discrete group Γ acting via (G, X)-

morphisms [34];
– suspensions [5, 47];
– completions [17]

Branched coverings will be studied more thoroughly in the following sections. When
X ⊂ RPn and G ⊂ PGL(n + 1;R), gluings of projective polyhedra via elements of G
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have a natural (G, X)-structure on the complement of the (n − 2)-skeleton. The latter being
skeletal, such gluings are singular (G, X)-manifolds with our definitions. This includes, in
particular, most usual Lie group actions, such as semi-Riemannian isometry groups, as well
as conformal and symplectic actions. We will not cover completions.

2.4.1 Quotients

The first example that comes to mind is the following.

Example 2.22 Consider X = M = E
n and G = Isom+(En) identifying E

n with R
n and

n ∈ N≥2. The point-wise stabilizer of S = R
n−2 × {(0, 0)} is isomorphic to SO(2;R), we

choose Γ ⊂ Stab(S) a finite group of rotations of order p. The group Γ acts freely on M\S,
which is portly; therefore, the quotient Γ \M has a natural singular (G, X)-structure. The
metric on Reg(Γ \M) extends continuously to Γ \M . As ametric space Γ \M is isomorphic
to E

n
2π/p described in Example 2.1.
Variations on this example can be done either by replacing X with another Riemannian

spaceform such asH
n or S

n . More generally, one can take a submodel of the projective model
space: X ⊂ KPn and G ⊂ PGL(n;K) for K ∈ {R, C} with G preserving X .

We can relate this example to a known5 result for regular (G, X)-manifolds.

Proposition 2.23 Let M be a (G, X)-manifold and let Γ be a discrete group acting freely
and properly discontinuously on M. Then, there exists a unique (G, X)-structure on Γ \M
such that the natural projection M → Γ \M is a (G, X)-morphism.

In the example above, the action is not free, and the singular locus of the quotient cor-
responds to the “non-free locus”: the projection of the set of points of nontrivial stabilizer.
Nonetheless, we may extend the last Proposition to a.e. (G, X)-manifolds.

Proposition 2.24 Let M be a singular (G, X)-manifold, and let Γ be a discrete group acting
properly discontinuously on M by a.e. (G, X)-morphisms.

If there exists a portly Γ -invariant subset U on which Γ acts freely then Γ \M has a
unique a.e. (G, X)-structure such that the natural projection M → Γ \M is an a.e. (G, X)-
morphism.

Proof of Proposition 2.24 By assumption, the quotient Γ \M is Hausdorff. Furthermore, the
projection M

π−→ Γ \M is open; hence, as an open quotient of a locally connected and second
countable space, Γ \M is locally connected and second countable. Let U ⊂ M be a portly Γ -
invariant subset on which Γ acts freely, since Γ acts by a.e. (G, X)-morphisms, in particular
Γ preserves Reg(U). By Proposition 2.23, the quotient Γ \Reg(U) admits a unique (G, X)-
structure such that π

|Γ \Reg(U)

|Reg(U) is a (G, X)-morphism. Since π is open and surjective, the
image of a portly subset of M is a portly subset of Γ \M ; in particular, π(Reg(U)) is portly.
Therefore, the (G, X)-structure on Γ \Reg(U) induces an a.e. (G, X)-structure A on Γ \M
for which π is an a.e. (G, X)-morphism.

IfΓ \M is endowed with some other a.e. (G, X)-structureB for which π is an a.e. (G, X)-
morphism then π

|Reg(B)

|V is a (G, X)-morphism for some portly subset V ⊂ Reg(M) and thus

π
|Reg(B)∩Reg(A)

|U∩V is a (G, X)-morphism both for A and B. In particular, on the portly subset
π(U ∩ V) ⊂ supp(A) ∩ supp(B), the two (G, X)-structures agree. By Lemma 2.5 and
maximality of A and B, we conclude that A = B. ��
5 See chapter 5 of [30]. There, only differentiable (G, X)-manifolds are considered with G a Lie group;
however, the proof does not rely on such assumptions.
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Example 2.25 Consider D∞ the topological space {(r , θ) ∈ R+ × R | r > 0 or θ = 0}
endowedwitht the topology generated by the usual one onR

∗+×R and open subsets {(r , θ) ∈
D∞ | r < r0} for r0 > 0. We may refer to the space D∞ as the “infinite angle disc.”

The infinite angle cylinder, the spaceC
(n)∞ := D∞×R

n , can be endowedwith an a.e. affine
structure for some choice G ⊂ Aff(Rn) and X ⊂ R

n via pullback by a local homeomorphism
D : {r > 0} → X . We call this singular (G, X)-manifold ˜M and naturally, Sing( ˜M) ⊂ {r =
0}.

Take Γα = Z acting on ˜M via k · (r , θ, z) = (r , θ + kα, z) for some α ∈ R
∗+, assume

that Γα acts via a.e. (G, X)-morphisms, then M := Γα\˜M is naturally a singular (G, X)-
manifold homeomorphic to R

n endowed with cylindrical coordinates. Its singular locus is
Sing(M) = {r = 0}.

Consider the special case X = E
1,2 eg R

3 endowed with the bilinear form Q(t, x, y) =
x2 + y2 − t2 of signature (2, 1); with G = Isom0(X) the identity component of the affine
isometry group. E

1,2 is the 3-dimensional Minkowski space and G the group of isometries
preserving both orientation and time orientation (see Sects. 5.1 and 5.2 for more details). We
can recover several instances of Lorentzian singularities [5, 11] for different choices of D.

– D(r , θ, z) = (z+σθ/α, r cos(θ/α), r sin(θ/α)) then M is the so-called massive particle
of mass m = 1− α/2π and spin σ .

– Consider

D (r , θ, t) = Pθ · (x0 + rv + tu)

with x0 ∈ X arbitrary, (Pθ )θ∈R the 1-parameter family of parabolic isometries fixing point
wise x0+Ru some future lightlike vector and 〈v|u〉 < 0. Then M is a so-called extreme
BTZ whitehole that we shall focus on in Sect. 5. Choosing D′(r , θ, t) = D(r , θ,−t)
gives an extreme BTZ blackhole instead.

– Variations allow to construct so-calledMisner particles, BTZwhite/blackholes. It suffices
to choose u spacelike instead and v spacelike or future/past timelike, respectively.

So-called tachyons (resp. photons) can be obtained as variations of the above example
with a hyperbolic (resp. parabolic) action ofΓ = Z on the coordinate θ with the identification

D∞ = R
∗+ × R̃P1 ∪ {(0, 0)}.

All these examples can also be obtained via gluings of polyhedra.

Remark 2.26 The previous examples are instances of developing maps defined on the univer-
sal covering of some singular space branched over its singular locus. This is the archetype
we will describe with more precisions in Sect. 4.

2.4.2 Suspensions

One can construct conical singularities (without spin) iteratively following a method of
Thurston [47].

1. Let us say that any compact (S1,SO(2))-manifold is regular, so there is no singular model
to construct.

2. Assume you have constructed local models of singularities in (Sn,SO(n+1))-manifolds.
A (Sn,SO(n + 1))-manifold with conical singularities is then a metric space locally
isometric to either of the local models.

3. You can then construct local model of singularity for (Sn+1,SO(n + 2)).
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(a) Take a (Sn,SO(n + 1))-manifold M with conical singularities and with M homeo-
morphic to S

n , denote its Riemannian metric by gwhich is defined on the complement
of the singularities;

(b) Define the suspension of M by ̂M = (M ×R+)/ ∼ the set of (θ, r) where (θ1, 0) ∼
(θ2, 0) for all θ1, θ2 ∈ M ;

(c) Endow ̂M with a Riemannian metric

ĝ(θ, r) = d r⊗ d r+ sin(r)2g(θ)

which is “regular”, eg locally isometric to S
n+1, on rays through “regular” points of

M .

This way, we obtain usual conical singularities in dimension 2, then so-called “collisions” of
conical lines in dimension 3, etc.

From (Sn−1,SO(n))-manifolds with conical singularities one can construct conical local
models for (Hn, SO(n, 1)) and (En, R

n × SO(n)) replacing sin(r)2 by sinh2(r) and r2

respectively in the formula for Riemannian metric of the suspension above. One can show
that gluings of finitely many Spherical (or Euclidean or hyperbolic) polyhedra give rise to
such singularities on the codimension k ≥ 2 skeletons of the underlying simplicial complex.

We are led to the following definition.

Definition 2.27 (Topological suspension) Let Σ be a topological space; the topological sus-
pension of Σ is

susp(Σ) := (Σ × R+)/∼
where (σ, r) ∼ (σ ′, r ′) if r = r ′ = 0; endowed with the topology generated by the quotient
topology on {r > 0} and the image of Σ × [0, ε[ for ε > 0. We also define O := {r = 0}.
Remark 2.28 One may check that the suspension preserves Hausdorff as well as the first and
second countable properties.

Remark 2.29 The infinite angle disc D∞ is the suspension of R.

Counter-Example 2.30 The topology we chose is the same as the quotient topology if Σ is
compact; however, the suspension susp(R) endowed with the quotient topology is not first
countable. Indeed, a basis of open neighborhoods of O is given by U f := {(θ, r) | r < f (θ)}
for f : R → R

∗+ continuous. For any sequence ( fn)n∈N we may construct g : R → R

continuous and such that ∀n ∈ N, g(n) := 1
2 min( fk : k ≤ n). This way, ∀n ∈ N,U fn Ug

which proves (U fn )n∈N is not a basis of neighborhoods of O.

Remark 2.31 The topological suspension is, in fact, a functor from the category of topological
space to itself, as continuous maps can be extended radially in a natural way. Suspension
preserves injectivity, surjectivity, and embeddings.

Geometrical suspension as above can be described abstractly as a lift of the topological
suspension functor susp

Top
susp

Top

SingGX SingHY
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where (G, X) and (H , Y ) are analytical structures, and the vertical arrows are the forgetful
functor. Thurston method provides a functors SingS

n → SingS
n+1 and Bonsante, Barbot,

Schlenker [5] generalized to a functor SingHS
2 → SingE

1,2 whereHS
2 := (E1,2\{O})/R

∗+
is the space of rays from the origin in E

1,2 with automorphism group G := SO0(1, 2). For
these suspensions, the image of regular (G, X)-manifolds are regular except possibly at O
and are regular at O if and only if Σ is homeomorphic to a sphere.6

To ensure that iterated suspensions described above are of this type, we need to prove the
following.

Proposition 2.32 Let Σ be a Hausdorff, connected, locally connected topological space and
let U ⊂ Σ be a portly subset. Then susp(U)\{O} is a portly subset of susp(Σ).

Let us to recall a classical connectivity Lemma, the proof of which is omitted.

Lemma 2.33 Let M be a topological space and let (Ui )i∈I be a nonempty family of nonempty
connected open subset. Define on I the equivalence relation∼ generated by i ∼ j ifUi∩U j 
=
∅.

The
⋃

i∈I Ui is connected if and only if I/ ∼ is a singleton.

Proof of Proposition 2.32 Let π : Σ × R+ → susp(Σ) be the natural projection and define
V := susp(U)\{O}. We also introduce ψ : susp(Σ)\{O} → Σ induced by the projection
Σ × R

∗+ → Σ . Notice that π|Σ×R∗+ is an embedding, therefore V = π(U × R
∗+) is open.

Since U is dense in Σ and since ψ is open, then V = ψ−1(U) is dense in susp(Σ)\{O}. For
any neighborhood W of {O} and for all σ ∈ Σ , for r small enough π(σ, r) ∈W; then O is
also in the closure of V and V is dense in susp(Σ).

Let W be a connected open subset of susp(Σ).

– Assume that O /∈ W . We may write W = ⋃

i∈I Wi with Wi = π( ̂Wi×]ri , r ′i [), 0 <

ri < r ′i and ̂Wi open subset of Σ . Since Σ is locally connected, we assume without loss
of generality that each ̂Wi is connected. Denote by ∼1 the equivalence relation defined
in Lemma 2.33 for the family (Wi )i∈I so that I/ ∼1 is singleton.
Then consider the family (Wi∩V)i∈I and define∼2 the associated equivalence relation on
I . On the one hand, ifWi ∩W j 
= ∅ then by density of V we have (Wi ∩V)∩(W j ∩V) =
(Wi ∩W j )∩ V 
= ∅. Therefore, ∼1 and ∼2 are equal, so I/ ∼2= I/ ∼1 is a singleton.
Furthermore, Wi ∩ V = π(( ̂Wi ∩ U)×]ri , r ′i [); since Wi is connected and U portly,
̂Wi ∩U is connected and so isWi ∩V . Again by Lemma 2.33,W ∩V =⋃

i∈I (Wi ∩V)

is connected.
– Assume that O ∈ W , to reduce to the previous case, it suffices to prove that W\{O}

is connected too. Consider O = π({(σ, r) : σ ∈ Σ, r ∈ [0, f (σ )[}) with
f (σ ) := sup{r∗ > 0 | ∀r < r∗, π(σ, r) ∈ W}. Note that, since W is open,
∀σ ∈ Σ, (σ, f (σ )) /∈W .
Assume that f is not lower semi-continuous, then (sinceΣ is first countable) there exists

6 Although the following remark is valid for the whole present work, this place is as good as any. The
topological suspension above is too crude to encompass even projective structures: consider hyperbolic cusps,
although they may be naturally understood as 0-angle conical singularities in a hyperbolic surface, hyperbolic
isometries are in the stabilizer of the point at infinity corresponding to the cusp in the universal covering.
One may check that the hyperbolic rescaling does not change the isomorphism class of the cusp. A correct
general suspension description must deal with this case. A better description of local models of singularities,
in particular of suspension, should probably be done via a notion of germ of local models; leading to a sheaf
theoretical formulation of singular (G, X)-manifolds. We do not wish to dive any deeper in this direction for
now.
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some σ ∈ Σ and some sequence σn → σ such that � := lim f (σn) < f (σ ). The
sequence π(σn, f (σn)) converges toward (σ, �) ∈ W but ∀n ∈ N, π(σn, f (σn)) /∈ W .
Contradiction, f is thus lower semi-continuous.
We may thus construct some neighborhood WO of O in W such that WO =
⋃

i∈J π( ̂W j × [0, r j [) with ̂W j connected and open. We notice that
⋃

k∈J
̂W j = Σ

is connected, that the relation∼ on j in Lemma 2.33 for the families ( ̂W j ) j∈J , (W j ) j∈J

and (W j\{O}) j∈J are equal. Since every ̂W j , j ∈ J is connected, so are the W j\{O};
we deduce that WO\{O} is connected.
Write W\{O} = ⋃

k∈K∪{O}(Wk\{O}) with (Wk)k∈K the family of connected compo-
nent of W\{O}, in particular ∀k ∈ K ,Wk\{O} = Wk . Since W is connected, for all
k ∈ K , we have (Wk\{O})∩ (WO\{O}) =Wk ∩WO 
= ∅. We may apply Lemma 2.33
again to conclude that W\{O} is connected.

��
Remark 2.34 The proof above works for the quotient topology.

3 Branched coverings à la Fox: spreads, paths and Galois

Although some of the results of this section may be proven with more generality, all topolog-
ical spaces are Hausdorff, locally path-connected, and first countable unless explicitly stated
otherwise.

In this section, we recall fundamentals on spreads and branched coverings with some
enrichments. Considering thosewill be needed later on, we prefer to lay out a solid foundation
and providemost of the proofs. Some results presented in Sects. 3.1 and 3.2, though not found
in the literature by the author, are probably “folkloric”. Our presentation is in part redundant
with [36–39], but our different purposes lead to divergences. For instance, to our knowledge,
Lemma 3.23 and Proposition 3.24 are new.

To the author’s knowledge, the path representation of maximal branched coverings7 pre-
sented in Sect. 3.3 as well as the topological characterization of Galoisian maximal branched
coverings presented in Sect. 3.4 are both new. The former is a natural extension of the usual
description of the universal covering as a space of paths to branched coverings. The critical
point is the introduction of the adequate homotopy equivalence relation: almost-homotopic
loops. An extension of the classical semi-local simple connectedness notion based on almost-
homotopy equivalence is then introduced and shown to characterize branching locus giving
rise to Galoisian coverings, which is described in Sect. 3.4. Examples and counter-examples
are given throughout the section.

3.1 Preliminaries on spreads

Definition 3.1 (Category of spreads) A spread X
p−→ Y is a continuous map such that the

topology of X is generated by the connected components of the preimages of open subsets
of Y .

We define the category of spreads Spr whose objects are spreads and morphisms in

Hom(X
p−→ Y , X ′ p′−→ Y ′) are couples of continuous functions ( f , g) such that the following

7 The path representation is not used in the second part of the work on singular (G, X)-manifolds but fits
nicely both in the present study of branched coverings and the subsequent study of developingmaps of singular
(G, X)-manifolds. The author believes that this will prove helpful for future studies.
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diagram commutes

X

p

g
X ′

p′

Y
f

Y ′

.

Remark 3.2 Let X
p−→ Y be a spread, with U,V open of X and Y respectively such that

p(U) ⊂ V , the (co)restriction p|V|U is a spread.

Definition 3.3 Let X
p−→ Y be a continuous map, the ordinary locus Ordp(Y ) of Y is the set

of point y ∈ Y for which there exists an open neighborhood U evenly covered by p ie, such
that p maps each connected component of p−1(U) homeomorphically onto U . The ordinary
locus Ordp(X) of X is the preimage of the ordinary locus of Y .

We will write Ord instead of Ordp when there is no ambiguity.

Remark 3.4 The ordinary loci are open but may not be connected. The only obstruction for
the restriction Ord(X)→ Ord(Y ) to be a covering is the connectedness of Ord(X).

Remark 3.5 Let X
p−→ Y be a surjective continuous map. Then

p(X\Ord(X)) = Y\Ord(Y ).

Lemma 3.6 Let X
p−→ Y be a continuous map inducing a covering X1 → Y1 for some

X1 ⊂ X and Y1 ⊂ Y with X1 portly and Y1 open.
Then Y1 ⊂ Ord(Y ), X1 ⊂ Ord(X) and p−1(Y1) = X1.

Proof Let y ∈ Y1 and let U ⊂ Y1 be an open neighborhood of y evenly covered by p|Y1|X1
ie

p−1(U) ∩ X1 =
(

p|Y1|X1

)−1
(U) =

⊔

i∈I

Vi

with Vi open connected and p|Ui
|Vi

homeomorphisms for all i ∈ I .

Assume by contradiction there exists some x ∈ p−1(U)\X1, consider some connected
open subset V such that x ∈ V ⊂ p−1(U). Since X1 is portly, V ∩ X1 is connected and dense
in V , thus V ∩ X1 ⊂ Vi for some i ∈ I and x ∈ Vi . Let x ′ := (p|U|Vi

)−1 ◦ p(x) and letW,W ′
disjoint open neighborhoods of x and x ′ respectively with W ′ ⊂ Vi . Since p(x) ∈ p(W ′)
which is open, there exists some open neighborhood W ′′ ⊂ W of x such that p(W ′′) ⊂
p(W ′). Therefore, ∅ 
= p(W ′′ ∩ Vi ) ⊂ p(W ′) = p(W ′ ∩ Vi ). This contradicts injectivity
on p|Vi , hence p−1(U) ⊂ X1 and U is evenly covered by p. In particular, p−1(Y1) = X1.

Therefore, Y1 ⊂ Ord(Y ) and Ord(X) = p−1(Ord(Y )) ⊃ p−1(Y1) = X1 ��
Though not the core of the present work, for pedagogical purposes, we provide counter-

examples to Lemma 3.6 we feel help understand some caveats when dealing with spreads.

Counter-Example 3.7 The conclusion of Lemma 3.6 fails if Y1 is not open.
Consider X = R× {0} and Y = R

2 with p the inclusion map. p is a continuous map (it
is even a spread) and induces a covering X → X ⊂ Y but Ord(Y ) = ∅.
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Counter-Example 3.8 The conclusion of Lemma 3.6 fails if X1 is not portly.

– If X1 is not open, then take x ∈ X1\I nt(X1), for a neighborhood V of x small enough,
the set V ∩ X1 is mapped homeomorphically to some open neighborhood U of p(x). For
V small enough, p(V) ⊂ U thus p(V\X1) ∩ p(V ∩ X1) 
= ∅. In other words, p is not
injective in any neighborhood of x. In particular, p(x) /∈ Ord(Y ) and x /∈ Ord(X).

– Take X ⊂ Y = R
2 with the Euclidean norm, X = {x | ‖x‖ ≥ 1}∪{λx | λ ∈]0, 1], ‖x‖ =

1, x ∈ Q
2}. Endow Y with its usual topology but X with the coarsest topology making

the natural injection X → Y a spread: the subset {λx | λ ∈]0, 1[, ‖x‖ = 1, x ∈ Q
2} is

homeomorphic to
∐

i∈N]0, 1[. Define piecewise p(x) = x
‖x‖2 if ‖x‖ ≤ 1 and p(x) = x

if ‖x‖ > 1. Take X1 = {x | ‖x‖ > 1} = Y1. Notice that X1
p−→ Y1 is a homeomorphism,

hence a covering, X is Hausdorff, second countable and locally path-connected, X
p−→ Y

is a spread, Y1 is open, and X1 is open locally connected in X. However, Ord(Y ) = ∅
since for every open neighborhood U of some y ∈ p(X), the preimage p−1(U) contains
points x with ‖x‖ < 1 but p is not a local homeomorphism around such a point.

Lemma 3.9 Let Xi
pi−→ Yi be spreads for i ∈ {1, 2} and let ( f , g) be a spread isomorphism

from X1 → Y1 to X2 → Y2. Then g(Ord(X1)) = Ord(X2) and f (Ord(Y1)) = Ord(Y2).

Proof Let U be an open connected neighborhood of p1(x) evenly covered by p1, let (Ûi )i∈I

the connected components of p−11 (U) and define V := f (U) and V̂i := g(Ûi ) for i ∈ I .
Since f and g are bijective and f ◦ p1 = p2 ◦ g, we have

p−12 (V) = g ◦ p−11 ◦ f −1(V) = g ◦ p−11 (U) =
⊔

i∈I

V̂i

and each V̂i is both open and connected.

Furthermore, p|V
2|V̂i
◦ g|V̂i

|Ûi
= f |V|U ◦ p|U

1|Ûi
for all i ∈ I and g|V̂i

|Ûi
as well as f |V|U ◦ p|U

1|Ûi
are

homeomosphims; therefore, for all i ∈ I , p|V
2|V̂i

is an homeomorphism. Finally, V is evenly

covered by p2. The result follows. ��
Definition 3.10 (Complete spread, spread completion) Let X

p−→ Y be a spread. For y ∈
p(X), consider the set X y of maps

χ : {U ⊂ Y open and connected neighborhood of y} → {V ⊂ X open connected}
increasing for the inclusion and such that χ(U) is a connected component of p−1(U) for all

U . The spread X
p−→ Y is complete if for all y ∈ p(X) and all χ ∈ X y , the intersection of

χ(U) for U going through all open, connected neighborhood of y is nonempty.

A completion of a spread X
p−→ Y is a spread X ′ p′−→ Y together with a spread morphism

(I dY , ι)

X

p

ι
X ′

p′

Y Y

such that ι is an embedding, X ′ is complete and the image of ι is portly.

Recall that a functor T is fully faithful if the induced function Hom(X , Y ) →
Hom(T (X), T (Y )) is bijective.
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Theorem 1 [27, 36] Every spread admits a unique completion up to isomorphism; further-
more, the completion of spread is a fully faithful functor from Spr to itself.

Let X
p−→ Y be a spread and let b ∈ Y . Let U be a connected neighborhood basis of b. For

U ∈ U , let XU be the space of connected components of p−1(U) endowed with the discrete

topology. Define bonding maps XU
πUV−−→ XV by setting for U ⊂ V the image πUV (̂U) of

̂U ∈ XU to be the unique ̂V ∈ XV such that ̂U ⊂ ̂V . For x ∈ p−1(b) and U ∈ U , denote by
xU the connected component of x in p−1(U). We have a natural continuous map

p−1(b) −→ lim←−
U∈U

XU

x �−→ (xU )u∈U
.

Proposition 3.11 [36] Let X
p−→ Y be a spread and let b ∈ Y . Let U be a connected neigh-

borhood basis of b.
Then, the natural map p−1(b)→ lim←−U∈U XU is injective and open. Furthermore, it is a

homeomorphism if and only if the spread X
p−→ Y is complete.

Proof Denote by φ the natural map p−1(b)
φ−→ lim←− XU . For every x ∈ p−1(b), since p is a

spread, a neighborhood basis of x is given by the connected components of x in each p−1(U)

for U ∈ U . If two elements x1, x2 ∈ X have the same image by φ then x1, x2 ∈ φ(x1)U for
all U ∈ U . Hence, x1, x2 have a common neighborhood basis. The space X so x1 = x2; we
deduce that φ is injective.

Notice that for all U ∈ U and all V ∈ XU ,

φ(V ∩ p−1(b)) = π−1U (V)

with πU the natural map lim←−W∈U XW −→ XU . On the one hand, such π−1U (V) form a basis

of the topology of lim←− XU . On the other hand, since p is a spread, such V ∩ p−1(V) form a

basis for the topology of p−1(b). Therefore, φ is open.

Let Û =
(

Û
)

U∈U ∈ lim←−i∈I
Xi . The intersection

⋂

U∈U Û contains at most a point

x ∈ p−1(b) and for such an x , we have φ(x) = Û . Reciprocally, if Û ∈ φ(p−1(b)) then
φ−1(Û) ∈⋂

Û∈Û Û .
Therefore, φ is surjective if and only if ∀Û ∈ lim←− XU ,

⋂

Û∈Û Û 
= ∅. Which is merely a

pedantic way to write that the spread X
p−→ Y is complete. ��

Corollary 3.12 [36] Let X
p−→ Y be a spread, then the fibers of p are totally discontinuous.

3.2 Primer on branched coverings

The object of this section is to recall fundamentals on branched coverings from definition
to path-lifting characterization, essential properties, and composition. We end this section
with the existence and uniqueness of universal branched covering with constrained branching
locus. This will be the basis for further analysis.

As before, unless explicitly stated otherwise, all topological spaces are Hausdorff, locally
path-connected and first countable. In the present section, as well as the following, we will
make intensive use of the following Lemmata, which, for brevity’s sake, we will not refer to
systematically.
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Lemma 3.13 Let X be a connected first countable, locally path-connected, Hausdorff topo-
logical space and let U ⊂ X be a portly subset. For all a ∈ U and all b ∈ X, there exists a
path γ : [0, 1] → X from a to b such that γ ([0, 1[) ⊂ U .

Proof Let (a, b) ∈ U × X and let (Vn)n∈N be a decreasing base of open connected neighbor-
hood of b. Since U is portly, in particular U is dense and there exists a sequence (bn)n∈N such
that ∀n ∈ N, bn ∈ Vn ∩U . Since U is portly and X is connected, then U is connected, and we
can choose a path γ0 in U from a to b0. Then for n ∈ N, bn and bn+1 are both in U ∩ Vn and
since U is portly and Vn open connected, U ∩ Vn is open connected (hence path-connected)
and we can choose a path γn+1 in U ∩Vn from bn to bn+1. The concatenation of the sequence
of path (γn)n∈N is a path γ : [0, 1[→ U such that lim1− γ = b. The result follows. ��
Lemma 3.14 Let X be a connected first countable, locally path-connected Hausdorff topo-
logical space and let X1 a subset containing a portly subset. Then, X1 is first countable,
locally path connect and Hausdorff.

Proof To begin with, X1 inherits Hausdorff and first countable properties from X as any
subspace. It remains to show local path-connectedness. Take U ⊂ X1, some portly subset of
X . Let x ∈ X1 and let V1 be an open neighborhood of x in X1. Choose some connected open
V of X such that x ∈ V2 := V ∩ X1 ⊂ V1. It suffices to show that V2 is path-connected, so
we choose some a, b ∈ V2. Since U is portly in X , the intersection U ∩V is portly in V . Take
any c ∈ U ∩ V and apply Lemma 3.13 to construct paths γ1 from c to a and γ2 from c to b
such that γi ([0, 1[) ⊂ U ∩ V ⊂ V2 for i ∈ {1, 2}. Concatenating the reverse of the former
with the latter, we obtain a path from a to b contained in V2. ��
Definition 3.15 (Branched covering) A branched covering is a complete surjective spread
X → Y , with X and Y connected, whose ordinary locii in X and Y are portly subsets of X
and Y respectively. We call Y the base space, X the total space, and the inverse image of a
point a of Y is called the fiber above a.

We say that X → Y is branched over Y\Ord(Y ). The latter is the branching locus of
X → Y , and for S ⊂ Y , we say that X → Y is possibly branched over S if S contains its
branching locus.

Remark 3.16 The branching loci of a branched covering are skeletal and thus closed with an
empty interior.

Remark 3.17 The ordinary part Ord(X) → Ord(Y ) of a branched covering X → Y is a
covering. Indeed, X is open connected and Ord(X) is portly so Ord(X) = Ord(X) ∩ X is
connected.

Lemma 3.18 If X
p−→ Y is a branched covering, then the preimage of a portly subset of Y is

portly in X.

Proof Let U be a portly subset of Y . The map Ordp(X)
p−→ Ordp(Y ) is a local homeo-

morphism and Ordp(Y ) is portly in Y thus p−1(Y ∩ Ordp(Y )) is portly in Ordp(X). Since
Ordp(X) is portly in X , then p−1(Y ∩ Ordp(Y )) is portly in X . The subset p−1(Y ) ⊂ X is
open and contains a portly subset of X ; it is thus also portly. ��

We begin with a branched covering version of the lifting property for complete spreads
(“Corollary of the extension Theorem” in Fox [27]).
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Lemma 3.19 Let X
p−→ Y be a spread with X connected, which induces a covering X1 → Y1

for some X1 and Y1 portly subsets of X and Y respectively. Then the following are equivalent:

(i) X → Y is a branched covering;
(ii) X → Y is a complete spread
(iii) for every Hausdorff locally connected topological space Q and every homotopy H :

Q× [0, 1] → Y such that H(Q× [0, 1[) ⊂ Y1, every partial lift Ĥ : Q× [0, 1[→ X1

of H extends continuously to some lift Q × [0, 1] → X of H;
(iv) for every path γ : [0, 1] → Y such that γ ([0, 1[) ⊂ Y1, every partial lift γ̂ : [0, 1[→ X1

extends continuously to some lift [0, 1] → X of γ .

Proof To begin with, by Lemma 3.6 we have X1 ⊂ Ord(X) and Y1 ⊂ Ord(Y ) so both
Ord(X) and Ord(Y ) are portly.

One has (i)⇒ (i i) by definition, (i i)⇒ (i i i) is a direct consequence of the corollary of
Fox mentioned above, and (i i i)⇒ (iv) is trivial (it suffices to take Q a singleton). Assume
(iv) and consider some y0 ∈ Y1. Since Y1 is portly in Y , for every y ∈ Y by Lemma 3.13
there exists a path γ : y0 � y such that γ ([0, 1[) ⊂ Y1. Since X1 → Y1 is a covering, γ|[0,1[
lifts to some γ̂ : [0, 1[→ X1. By assumption, γ̂ admits a limit x at 1 and by continuity,
p(x) = y. Therefore, p is surjective. Consider X → Y the completion of X → Y ; without
loss of generality, we may assume that X ⊂ X and also denote by p the map X → Y . Notice
that since X1 is portly in X and X is portly in X , then X1 is portly in X . Let x ∈ X and let
ŷ0 be some lift of y0 in X1. Let γ̂ be some path from ŷ0 to x in X such that γ̂ ([0, 1[) ⊂ X1.
Since γ̂|[0,1[ is a lift in X1 of the path p ◦ γ̂|[0,1[ ⊂ Y1, assuming (iv) we deduce that γ̂|[0,1[
has limit at 1 in X . Therefore x = γ̂ (1) = lim1− γ̂|[0,1[ ∈ X . Finally, X ⊂ X hence X = X
and X → Y is complete. ��
Lemma 3.20 [36] Let X

p−→ Y be a branched covering, let U be some open connected subset

of Y and let V be a connected component of p−1(U). Then V p−→ U is a branched covering.

Proof To begin with, sing U,V are open, the restriction p|V|U is a spread. Since Ord(X) is
dense, we can choose some x̂ ∈ Ord(X) ∩ V; define x := p(x̂). Since Y is locally pathwise
connected and since Ord(Y ) is portly, then Ord(Y ) ∩ U is path-connected. We then can and
do consider a path γ : [0, 1] → Ord(Y ) ∩ U from x to some y ∈ Ord(Y ) ∩ U . Consider the
unique lift γ̂ of γ inOrd(X) such that γ̂ (0) = x̂ . On the one hand, γ̂ ([0, 1]) ⊂ p−1(U); on the
other end, γ̂ ([0, 1]) is connected. Therefore, γ̂ is actually a path in V and γ ([0, 1]) ⊂ p(V).
The path γ is arbitrary, so p(Ord(X) ∩ V) = Ord(Y ) ∩ U and

Ord(X) ∩ V p−−→ Ord(Y ) ∩ U

is a covering.

Since X
p−→ Y is a branched covering, it satisfies item (iv) of Lemma 3.19. Since X , Y

are locally path-connected, this item is clearly satisfied by V p−→ U . Finally, V → U is a
branched covering ��
Corollary 3.21 Let X

p−→ Y be a branched covering. Then p is open, furthermore for every

connected open U ⊂ Y and every connected component V of p−1(U) the map V p−→ U is
surjective.

Proof Surjectivity is part of the definition of branched coverings and thus follows from
Lemma 3.20. For all such U,V we thus have p(V) = U . Since p is a spread, such V is a basis
of the topology of X ; hence p is open. ��
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Corollary 3.22 Let X
p−→ Y be a branched covering, let U be some portly subset of Y then

p−1(U)
p−→ U is a branched covering.

Proof From Lemma. 3.18 the subset p−1(U) is portly in X and since X is connected so is
p−1(U). The result then follows from Lemma 3.20. ��

Lemma 3.23 Let X
p−→ Y be a branched covering, let Y1 ⊂ Y containing a portly subset of

Y then p−1(Y1)
p−→ Y1 is a branched covering.

Proof Denote X1 := p−1(Y1) and q := p|Y1|X1
. Take some U ⊂ Y1 portly in Y .

– By Lemma 3.18, the subset ̂U := p−1(U) ⊂ X1 is portly in X .
– By Lemma 3.14, X1, Y1 are first countable, Hausdorff, locally path-connected.
– Let V an open subset of X1 and x ∈ V . Consider V1 open subset of X such that V =

V1 ∩ X1. Since p is a spread, there exists some open subset U1 ⊂ Y and some connected
component W1 of p−1(U1) such that x ∈ W1 ⊂ V1. Since ̂U ⊂ X1 is portly in X , the
subset W1 ∩ ̂U is connected and dense in W1 ∩ X1. It follows that W2 := W1 ∩ X1 is
connected and thus a connected component of q−1(U1 ∩ Y1). Moreover, W2 is open in

X1 and x ∈W2 ⊂ V . Therefore, X1
q−→ Y1 is a spread.

– Define r := p|U|̂U . By Corollary 3.22, ̂U r−→ U is a branched covering, in particular

Ordr (̂U)
p−→ Ordr (U) is a covering. Furthermore Ordr (̂U) is portly in ̂U which is portly

in X1, so Ordr (̂U) is portly in X1. The same way, Ordr (U) is portly in Y1.
– Let γ : [0, 1] → Y1 such that γ ([0, 1[) ⊂ Ordr (U) and let γ̂ : [0, 1[→ Ordr (U) be a lift

of γ . Since X
p−→ Y is a branched covering, γ̂ extends continuously at 1 and

p ◦ γ̂ (1) = lim
1−

p ◦ γ̂ = lim
1−

γ = γ (1) ∈ Y1.

Consequently, γ̂ (1) ∈ p−1(Y1) = X1.

We checked the assumptions of Lemma 3.19 as well as point (iv) of the equivalence. We

thus conclude that X1
q−→ Y1 is a branched covering. ��

Proposition 3.24 Let X
p−→ Y

q−→ Z be two branched coverings. Then the following are
equivalent:

(i) X
q◦p−−→ Z is a branched covering,

(ii) q(Y\Ordp(Y )) is skeletal in Z.

Proof To begin with, the composition of spread is a spread, so q ◦ p is a spread.

– (i)⇒ (i i). Let U ⊂ Ordq◦p(Z) be a connected open evenly covered subset and define

(q ◦ p)−1(U) =
⊔

i∈I

Ûi ; ∀i ∈ I , Vi := p(Ûi )

respectively the connected component decomposition of the preimage of U and their
image by p. For all i ∈ I , on the one hand Vi is open connected by Corollary 3.21, on
the other hand (q ◦ p)

|U
|Ûi

is injective, furthermore q is open and q(Vi ) = U . Therefore,

q |U|Vi
is bijective open thus an homeomorphism.

Denote by V̂i the connected component of q−1(U) containing Vi . If Vi 
= V̂i we may
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find some j ∈ I such that V̂i = V̂ j and such that Vi ∩ V j 
= ∅; as well as some
y ∈ (V i\Vi ) ∩ V j . An argumentation like the one of Lemma 3.6 yields a contradiction

showing that in fact ∀i ∈ I ,Vi = V̂i . We conclude that q−1(U)
q−→ U and for all i ∈ I ,

p−1(Vi )
p−→ Vi are coverings; with the preimages being a disjoint union of connected

components among the Vi and Ûi respectively. As a consequence

Ordq◦p(X)
p−→ p(Ordq◦p(X)) = q−1(Ordq◦p(Z))

q−→ Ordq◦p(Z)

is a composition of coverings. Therefore:

q(Y\Ordp(Y )) ⊂ q(Y\q−1(Ordq◦p(Z))) = Z\Ordq◦p(Z)

The latter is skeletal; thus, so is the former.
– (i i)⇒ (i). Consider Y0 := Ordp(Y ) ∩ Ordq(Y ), and consider Z1 := Z\q(Y\Y0). We

note that

Z1 = Z\(q(Y\Ordp(Y )) ∪ q(Y\Ordq(Y )) = Ordq(Z)\q(Y\Ordp(Y ))

Since Ordq(Z) is portly and q(Y\Ordp(Y )) is skeletal, Z1 is portly. Since q is a covering,
it is a surjective local homeomorphism, so Y1 := q−1(Z1) is portly in Y . Furthermore,

Y1 ⊂ Y0. Since r := q
|Ordq (Z)

|Ordq (Y ) is a covering, then its (co)restriction is also q |Z1
|Y1 = r |Z1

|r−1(Z1)

is a covering. The same way, p|Y1|X1
is a covering with X1 :=

(

p
|Ordp(Y )

|Ordp(X)

)−1
(Y1) and X1

is portly. Therefore, (q ◦ p)
|Z1
|X1

is a composition of covering hence a covering.
Applying Lemma 3.19, we see that item (iv) is stable by composition of branched
coverings. Therefore, q ◦ p is a branched covering.

��

Lemma 3.25 Let X
p−→ Y be a branched covering and U ⊂ Y some portly subset. The spread

X → Y is isomorphic to the completion of p−1(U)→ Y .

Proof X → Y is a completion of the spread p−1(U)→ Y which is unique up to isomorphism
by Theorem 1. ��

Recall that a connected, locally path-connected Hausdorff topological space X is semi-
locally simply connected if every x ∈ X admits a neighborhood U such that every loop γ

in X of base point x is trivial in X . By standard results [15], it is a necessary and sufficient
condition for such a topological space X to admit a universal covering.

Proposition 3.26 Let Y be a connected, locally path-connected, Hausdorff topological space.
Let S be a skeletal subset of Y .

If Y\S is semi-locally simply connected, then there exists a covering ˜Y S of Y possibly
branched over S, which is maximal among such branched coverings. Furthermore, ˜Y S is

unique up to isomorphism and universal in the sense that for any covering X
p−→ Y possibly

branched over S, there exists a covering ˜Y S → X possibly branched over p−1(S).

Remark 3.27 One could sum up the proof below by saying Fox’s completion induces a cate-
gory equivalence between the category of covering of Y\S and the category of covering of
Y possibly branched over S.
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Proof Assume Y\S is semi-locally simply connected. Then define ˜Y S the completion of
spread Ỹ\S → Y with Ỹ\S the universal covering of Y\S. For any branched covering

X
p−→ Y possibly branched over S, since Y\S ⊂ Ord(Y ) is portly, p−1(Y\S) is portly (hence

connected) and p−1(Y\S) → Y\S is a covering. Hence, there exists a covering morphism
Ỹ\S → p−1(Y\S). Since the completion of p−1(Y\S)→ Y and Ỹ\S → Y are respectively
X and ˜Y S , by Theorem 1 we obtain a morphism of branched covering ˜Y S → X , which is
itself a branched covering, and its ordinary locus in X contains p−1(Y\S). Finally, ˜Y S → X
is possibly branched over p−1(S).

If X → Y is a maximal covering possibly branched over S, then the induced cover-
ing p−1(Y\S) → Y\S is maximal among covering of Y\S hence its universal covering.
Therefore, X is isomorphic to ˜Y S . ��
Remark 3.28 Considering the maximal covering ˜Y S of some Y possibly branched over some
subset S, there is an ambiguity: the branching locus of ˜Y S might be smaller than S. One can
consider the example where Y = S

2 the 2-dimensional sphere and S is a singleton; since the
complement of a point is simply connected, the maximal covering of S

2 possibly branched
above S is trivial and the branching locus is empty.

Example 3.29 To illustrate Proposition 3.24, follows an instance of a composition of branched
coverings that fails to be a covering.

Taking notions from Example 2.25, Consider Z = D, Y = D∞ with Y
q−→ Z the quotient

map which is a branched covering. Consider Y0 = {(r , θ) | θ ∈]0, 1[} and choose (rn, θn)n∈Z
a countable dense family in Y0. Consider S := (rn, θn + n)n∈Z. We see that S is skeletal and

that Y\S is semi-locally simply connected. We thus consider X := ˜Y S p−→ Y the maximal
covering possibly branched over S.

Notice that q(Y\Ordp(Y )) = q(S) is dense in Z and hence not skeletal; therefore, the
composition q ◦ p is not a branched covering.

3.3 Paths andmaximal branched covering

The abstract description of Fox’s completion of a spread, though very general, may benefit
froma path point of view. This section is devoted to a path description of themaximal covering
possibly branched above some locus akin to the path description (as a set of homotopy classes
of paths) of the universal covering of a Hausdorff, connected, locally path-connected, semi-
locally simply connected topological space.

To begin with, we introduce some notations as well as a refinement of the homotopy
equivalence relation so that we can keep track of the branched locus of a branched covering.
Considering some connected Hausdorff, locally path-connected topological space X , some
connected open subset U and some x, y ∈ U we denote by ΩX (x, y,U) the set of path
γ : [0, 1] → X such that γ (0) = x ,γ (1) = y and γ (]0, 1[) ⊂ U . The index X is dropped
whenever clear from the context. This set will always be endowed with its compact-open
topology and two paths γ1, γ2 of Ω(x, y,U) are homotopic with respect to U if they are in
the same connected component of Ω(x, y,U) or, equivalently, if there exists a homotopy
H : [0, 1]2 → X with fixed ends such that H(0, ·) = γ1, H(1, ·) = γ2 and such that
H([0, 1]×]0, 1[) ⊂ U . The composition of paths is denoted ∗ so that γ1 ∗ γ2 represents any
parameterization of the concatenation of γ1 then γ2. We also use the notation γ−1 : t �→
γ (1− t).

The homotopic relation is not suitable for our purpose as this section, as well as the
following, will make clear; we thus introduce a weaker equivalence relation.
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Definition 3.30 (Almost trivial loop) Let X be a Hausdorff, locally path-connected topolog-
ical space, let U ⊂ X be an open subset and let x ∈ U .

A loop γ ∈ Ω(x, x,U) is almost trivial with respect to U if its connected component in
Ω(x, x,U) intersects Ω(x, x,V ∩ U) for all neighborhood V of x .

Example 3.31 Consider Y = R
3 with carthesian coordinates x, y, z and its usual Euclidean

distance; let S1 = {y = z = 0} and
S2 = {y = sin(1/x) : x ∈ R

∗} ∪ {x = z = 0, |y| ≤ 1};
denote O = (0, 0, 0) the origin. We make the following claims.

– The fundamental group of Y\Si is isomorphic to Z for both i = 1 and i = 2. The
isomorphism is given by “the number of turns” around Si .

– Every loop γ ∈ Ω(O, O, Y\S1) is homotopically trivial hence almost trivial.
– Every loop γ ∈ Ω(O, O, Y\S2) is almost trivial.
– There exists non homotopically trivial loops γ ∈ Ω(O, O, Y\S2).

Proof The first two claims are left to the reader. Let us prove the last two.

– Consider any ball B = B(O, r) centered at O , we may choose some t1, t2 such that
γ ([0, t1]), γ ([t2, 1]) ⊂ B. By compactness γ ([t1, t2]) there exists ε ∈ [0, r [ such that
γ|[t1,t2] stays at distance at least 2ε of S2. Since Y\B(S2, ε) is homeomorphic to Y\S1, we
see that γ ([t1, t2]) is homotopic in Y\S2 with fixed extreminites to a path in B\B(S2, ε).
Finally, γ is homotopic in Ω(O, O, Y\S2) to a path in Ω(O, O, B\S2).

– Consider some γ ∈ Ω(O, O, Y\S2) such that

∀t < 1/4, γ (t) = (0, 0, t), γ (1− t) = (0, 0,−t)

and assume by contradiction that γ is homotopically trivial. Let H be a homotopy from
γ to O in Ω(O, O, Y\S2) and let c : [0, 1]2 → [0, 1]2 such that for all s, c(s, ·) is
piecewise affine with

c(s, 0) = (0, 0) c(s, 1/5) = (0, 1/2− s/2)

c(s, 2/5) = (s, 1/2− s/2) c(s, 3/5) = (s, 1/2+ s/2)

c(s, 4/5) = (0, 1/2+ s/2) c(s, 1) = (0, 1).

We see that H ′ = H ◦ c is still a homotopy from γ to O in Ω(O, O, Y\S2) with the
additional property that

∀s ∈ [0, 1], ∃!λs > 0, ∀t < 1/5,

H ′(s, t) = (0, λs t, 0) H ′(s, 1− t) = (0,−λs t, 0).

Denoting H ′′(s, t) = H ′(s, 3t+1
5 ) and I (X , Y ) the mod 2 intersection numbers of X and

Y [31], this property implies that

∀s ∈ [0, 1], I (H ′′(s, ·), {z = 0}) = 1.

Let U = B(O, 1/2) be the ball of center 0 and radius 1/2 and let η > 0 such that for
s > 1− η, H ′′(s, ·) ⊂ U . We notice that U ∩ {z = 0}\S2 is disconnected, we denote by
C the set of its connected components (which are all closed submanifolds of dimension
2 of {z = 0}\S2) and define

f : C −→ Z/2Z

C �−→ I (H ′′(s, ·), C)
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which is well defined and does not depend on s > 1− η since the intersection number is
a homotopic invariant and has finite support by compactness of H ′′(s, [0, 1])∩ {z = 0}.
On the one hand,

∑

C∈C
f (C) = I (H(s, ·), {z = 0}) = 1.

On the other hand, ∀C ∈ C, O /∈ C thus for allC ∈ C, there existsω > 0 such that for all
s > 1−ω, we have H(s, ·)∩C = ∅. In other word, ∀C ∈ C, f (C) = 0. Contradiction.

��
Definition 3.32 (Almost homotopic paths) Let X be a Hausdorff, locally path-connected
topological space, let U ⊂ X be an open subset, and let (x, y) ∈ U × U .

Two paths γ1, γ2 ∈ Ω(x, y,U) are almost homotopic with respect toU if the loop (γ2)
−1∗

γ1 is almost trivial with respect to U .

Remark 3.33 Implicitely, two almost homotopic paths γ1, γ2 always satisfy γ1(1) = γ2(1)
and γ1(0) = γ2(0).

Lemma 3.34 Let X be a Hausdorff, first countable, connected, locally path-connected topo-
logical space, let U ⊂ X be an open subset, and let x ∈ U .

For γ ∈ Ω(x, x,U), the following are equivalent:

(i) γ is almost trivial with respect to U;
(ii) for all open neighborhoodV of x and for all t0, t1 ∈]0, 1[ such that t0 < t1 and γ ([0, t0]∪
[t1, 1]) ⊂ V , there exists a path ω : γ (t0) � γ (t1) in V ∩ U such that γ is homotopic to
γ|[0,t0] ∗ ω ∗ γ|[t1,t0] in Ω(x, x,U).

Proof (i i) trivially implies (i), we thus assume that γ is almost trivial with respect to U .
Let V be an open neighborhood of x and let t0 < t1 such that γ ([0, t0] ∪ [t1, 1]) ⊂ V . Let
H : [0, 1] × [0, 1] → X be a homotopy from γ to some path γ0 ∈ Ω(x, x,V) such that
∀s ∈ [0, 1], H(s, ·) ∈ Ω(x, x,U). Consider the following closed connected subset B of the
boundary of [0, 1] × [0, 1]:

B := {0} × [0, t0] ∪ [0, 1] × {0} ∪ {1} × [0, 1] ∪ [0, 1] × {1} ∪ {0} × [t1, 1].
Since H(B) ⊂ V , there exists a connected open neighborhood W of B in [0, 1] × [0, 1]
such that H(W) ⊂ V . Take some path η : [t0, t1] → W such that η(t0) = (0, t0), η(t1) =
(0, t1) and η(]t0, t1[) ⊂]0, 1[×]0, 1[ and define ω := H ◦ η. With η(·) = (η1(·), η2(·)), the
homotopy

J :
[0, 1] × [0, 1] −→ X

s ∈ [0, 1], t ∈ [0, t0] �−→ H(0, t)
s ∈ [0, 1], t ∈ [t0, t1] �−→ H (s · η1(t), (1− s)t + s · η2(t))
s ∈ [0, 1], t ∈ [t1, 1] �−→ H(0, t)

is such that J (0, ·) = γ and J (1, ·) = γ|[0,t0] ∗ ω ∗ γ|[t1,t0], moreover for all s ∈ [0, 1], we
have J (s, ·) ∈ Ω(x, x,U). The result follows. ��
Lemma 3.35 Let X be a Hausdorff, first countable, connected, locally path-connected topo-
logical space, let U ⊂ X be an open subset, and let (x, y) ∈ U × U .

Then, the “almost homotopic” relation is an equivalence relation in Ω(x, y,U).
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Proof The relation is clearly reflexive and symmetric; we shall then prove that it is also
transitive. Let γ1, γ2, γ3 ∈ Ω(x, y,U) such that γ1, γ2 are almost homotopic with respect to
U and such that γ2, γ3 are almost homotopicwith respect toU . LetV be an open neighborhood
of x and let t ∈]0, 1[3 such that ∀i ∈ {1, 2, 3}, γi ([ti , 1]) ⊂ V . By Lemma 3.34, there exists
a path ω1 (resp. ω2) in V ∩ U from γ1(t1) to γ2(t2) (resp. from γ2(t2) to γ3(t3)) such that
γ−11 ∗ γ2 is homotopic to (γ1|[t1,1])−1 ∗ ω1 ∗ γ2|[t2,1] (resp. such that γ−12 ∗ γ1 is homotopic
to (γ2|[t2,1])−1 ∗ω2 ∗ γ3|[t3,1] ). Then (γ1|[0,t1])−1 ∗ γ2|[0,t2] ∗ω−11 is homotopically trivial and
the loop γ−11 ∗ γ3 is homotopic to

(γ1|[t1,1])−1 ∗
(

(γ1|[0,t1])−1 ∗ γ2|[0,t2] ∗ ω−11

)

∗ ω1 ∗ (γ2|[0,t2])−1 ∗ γ3

which is thus homotopic to (γ1|[t1,1])−1 ∗ ω1 ∗ (γ2|[0,t2[)−1 ∗ γ3. The same way, the loop
(γ2|[0,t1])−1 ∗ γ3|[0,t3] ∗ ω−12 is homotopically trivial and γ−11 ∗ γ3 is then homotopic to
(γ1|[t0,1])−1 ∗ ω1 ∗ ω3 ∗ γ3|[t3,1] ∈ Ω(x, x,V ∩ U). Finally, γ−11 ∗ γ3 is almost trivial with
respect to U and γ1 is almost homotopic to γ3. ��

Lemma 3.36 Let ˜Y S p−→ Y be a maximal covering possibly branched above some S, let
(x, y) ∈ (Y\S) × Y and let x̂ ∈ p−1(x). Let γ1, γ2 ∈ Ω(x, y, Y\S) and let γ̂1, γ̂2 be the
respective lifts of γ1 and γ2 such that γ̂1(0) = γ̂2(0) = x̂ .

Then, γ̂1(1) = γ̂2(1) if and only if γ1 and γ2 are almost homotopic.

Proof Assume γ1 and γ2 are almost homotopic. For U some standard neighborhood of γ̂1(1).
By Corollary 3.21, p(U) is a connected open neighborhood of y, and since γ1 and γ2 are
almost homotopic, γ1 is homotopic to a path γ ′1 of the form γ2|[0,t2] ∗ ω ∗ γ1|[t1,1] with
t1 ∈]0, 1[ such that γi ([ti , 1]) ⊂ p(U) for i ∈ {1, 2} and ω ∈ Ω(γ2(t2), γ1(t1), Y\S). Since
γ1 and γ ′1 are homotopic and p−1(y) is totally disconnected, then γ1(1) = γ ′1(1). Since
ω ∗ γ1|[t1,1] ⊂ p(U), the lift η of ω ∗ γ1|[t1,1] such that η(0) = γ2(t2) stays in U . In particular
γ̂1(1) = η(1) ∈ U . Therefore, γ̂1(1) is in the closure of all neighborhood of γ̂2(1), since ˜Y S

is Hausdorff we conclude that γ̂1(1) = γ̂2(1).
Assume γ̂1(1) = γ̂2(1). Let U ⊂ ˜Y S be some standard neighborhood of γ̂1(1), let t1, t2 ∈

]0, 1[ such that γ̂i ([ti , 1]) ⊂ U for i ∈ {1, 2} and let ω ∈ Ω(γ̂1(t1), γ̂2(t2),U ∩ p−1(Y\S)).
Since p−1(Y\S) is simply connected, the loop γ̂1|[0,t1] ∗ ω ∗ (γ̂2|[0,t2])−1 is homotopically
trivial. Therefore, γ̂2 is homotopic to γ̂1|[0,t1] ∗ω∗ γ̂2|[t2,1], hence γ2 is homotopic to γ1|[0,t1] ∗
(p◦ω)∗γ2|[t2,1]. Finally, the loop (γ1)

−1∗γ2 is homotopic to (γ1)
−1∗γ1|[0,t1]∗(p◦ω)∗γ2|[t2,1]

which is homotopic to (γ1|[t1,1])−1 ∗ (p ◦ ω) ∗ γ2|[t2,1] ⊂ U . The loop (γ1)
−1 ∗ γ2 is thus

almost trivial and γ1 is almost homotopic to γ2. ��

Theorem 2 Let Y be a first countable connected locally path-connected Hausdorff topo-
logical space and let S ⊂ Y be a skeletal subset. Let y0 ∈ Y\S and let Ω :=
⋃

x∈Y Ω(y0, x, Y\S). Define X as the set of almost homotopy classes of Ω with respect
to Y\S and define the map ϕ : Ω → Y , γ �→ γ (1).

Then, ϕ induces a branched covering X
ϕ−−→ Y isomorphic to ˜Y S p−−→ Y .

Proof Let ŷ0 be some lift of y0 in ˜Y S . Consider the functionψ : Ω → ˜Y S which associate to
γ ∈ Ω the point γ̂ (1) where γ̂ is the unique lift of γ in ˜Y S such that γ̂ (0) = ŷ0. By Lemma
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3.36, ψ induces an injective function ψ : X → ˜Y S , the following diagram commutes

X

ϕ

ψ
˜Y S

p

Y Y

and it suffices to prove that ψ is an homeomorphism.

– Since ˜Y S is first countable and p−1(Y\S) is portly, for all x ∈ ˜Y S there exists a path
γ̂ ∈ Ω(ŷ0, x, p−1(Y\S)) and, for such a path, ψ(p ◦ γ̂ ) = γ̂ (1) = x . The map ψ is
thus surjective, hence bijective.

– Let U be a neighborhood of some x ∈ ˜Y S , since p is a spread and by Corollary 3.21
without loss of generality, we may assume U is a connected component of p−1(p(U))

and consider some γ ∈ Ω such that ψ(γ ) = x . Recall that p(U) is also open.
Take some t0 ∈]0, 1[ such that γ ([t0, 1]) ⊂ p(U). Since Y\S is semi-locally simply
connected, for all t ∈ [0, t0] there exists some path-connected open neighborhood V ⊂
Y\S of γ (t) such that all loop in V are homotopically trivial in Y\S. By compactness,
we can choose finitely many such neighborhoods (Vi )i∈[[1,n]] as well as an increasing
sequence α ∈ [0, t0][[0,n]] such that: α0 = 0, αn = t0 and ∀i ∈ [[1, n]], γ ([αi−1, αi ]) ⊂
Vi . Define Vn+1 := U and Wi the connected component of γ (αi ) in Vi ∩ Vi+1 for
i ∈ [[1, n]] and define

O :=
⎧

⎨

⎩

η ∈ Ω

∣

∣

∣

∣

∣

∣

∀i ∈ [[1, n]], η([αi−1, αi ]) ⊂ Vi )

∀i ∈ [[1, n]], η(αi ) ∈Wi

η([t0, 1]) ⊂ p(U)

⎫

⎬

⎭

.

O is an open neighborhood of γ for the compact-open topology of Ω . Let η ∈ O, forall
i ∈ [[1, n]], choose a path ωi ∈ Ω(γ (αi ), η(αi ),Wi ). We also define ω0 as the constant
path at y0.We notice that for all i ∈ [[1, n, ]], the loop γ|[αi−1,αi ] ∗ωi ∗(η|[αi−1,αi ])−1∗ωi−1
is homotopically trivial. Therefore, η is homotopic to the loop η′ := γ|[0,t0] ∗ωn ∗η|[t0,1].
Consider the lifts γ̂ and η̂′ of γ and η′ respectively, both starting at ŷ0. They are equal
on [0, t0]; since γ and η both stay in p(U), the paths γ̂ and η̂′ stay in the same connected
component of p−1(p(U)), hence they both stay inU .We then deduce thatψ(η) = η̂′(1) ∈
U thus ψ(O) ⊂ U . Finally, ψ is continuous, and so is ψ .

– Let U ⊂ Y open and K ⊂ [0, 1] compact, defineO := {γ ∈ Ω | γ (K ) ⊂ U}. Four cases
can occur:

1. If 0 ∈ K and y0 /∈ U , then ψ(O) = ∅;
2. If 0 /∈ K or y0 ∈ U ;

(a) If 1 /∈ K , then ψ(O) = ˜Y S ;
(b) If 1 ∈ K 
= [0, 1], then ψ(O) = p−1(U);
(c) If K = [0, 1] then ψ(O) is the connected component of ŷ0 in p−1(U).

Case (1) is trivial. In case (2.a), consider x ∈ ˜Y S , γ ∈ Ω such that ψ(γ ) = x . Take
some t0 ∈]0, 1[ such that [t0, 1] ∩ K = ∅ and consider the path η(t) = y0 if t ≤ t0 and
η(t) = γ ( t−t0

1−t0
) if t ∈ [t0, 1]. We indeed have ψ(η) = ψ(γ ) = x . A similar argument

shows case (2.b). Then, in case (2.c), we have y0 ∈ U and the connected component Û of
ŷ0 in p−1(U) is path-connected. For x ∈ Û , there thus exists some path γ̂ ∈ Ω(ŷ0, x, Û)

and, for such a path, ψ(p ◦ γ ) = x . Furthermore p ◦ γ ⊂ U thus p ◦ γ ∈ O. Therefore,
Û ⊂ ψ(O). Certainly, ψ(O) ⊂ p−1(U) and since γ̂ is connected and γ̂ (0) = ŷ0 ∈ Û ,

123



Geometriae Dedicata (2024) 218 :43 Page 27 of 51 43

then ψ(O) ⊂ Û . Finally, ψ(O) = Û , the connected component of ŷ0 in p−1(U).
We deduce from the previous analysis that ψ is open; hence, ψ is open.

Together, the points above show that ψ is a homeomorphism. ��
We end this section with two corollaries of Proposition 3.11, the proofs of which are left

to the reader, and two examples illustrating possible behaviors of the fiber above a branching
point.

Definition 3.37 Let X
p−→ Y be a covering branched over S ⊂ Y . Given two paths γ1, γ2

with fixed start point a ∈ Y\S and free endpoint in an open connected subset U ⊂ Y\S; γ1
and γ2 are p-homotopic if their lifts, from the same start point, end in the same connected
component of p−1(U).

Proposition 3.38 Let X
p−→ Y be a covering branched over S ⊂ Y . Let a ∈ Y\S and let

U ⊂ Y be open and connected. Define π1(a, p,U) the set of paths with fixed start at a and
free end in U up to p-homotopy.

Then, for all b ∈ Y and all connected neighborhood basis U of b we have

p−1(b) � lim←−
U∈U

π1(a, p,U)

where the projective system is given by the natural maps π1(a, p,U) → π1(a, p,V) for
U ⊂ V .

Proposition 3.39 Let Y be a first countable connected locally path-connected Hausdorff
topological space and let S ⊂ Y skeletal such that Y\S is semi-locally simply connected.

Let a ∈ Y\S and let U ⊂ Y be open and connected. Denote ˜Y S p−→ Y the maximal cover of
Y possibly branched over S. Define π1(a,U) the set of paths with fixed start at a and free
end in U up to homotopy.

Then, for all b ∈ Y and all connected neighborhood basis U of b we have

p−1(b) � lim←−
U∈U

π1(a,U)

where the projective system is given by the natural maps π1(a,U)→ π1(a,V) for U ⊂ V .

Example 3.40 Consider Y = R
2 and S = {( 1n , 0) : n ∈ N

∗ ∪ {∞}}. The fiber above (0, 0)
in ˜Y S is homeomorphic to Z

N endowed with the weak topology; hence, it is not locally
compact. This answers positively Problem 10.8 of [36].

Proof Consider the neighborhood basis given by the discs Dn centered at (0, 0) of radius
1

n−1/2 for n ∈ N
∗. Leta = (2, 0) and b := (0, 0), for n ∈ N

∗, the naturalmapπ1(a, Dn+1)→
π1(a, Dn) has an infinite fiber above every point. The result then follows from Proposition
3.39. ��

3.4 Galoisian branched coverings

The usual notion of Galoisian covering can be extended naturally to branched coverings via
the group of automorphisms of a branched covering.Although, aswe shall see, the completion
of a Galoisian covering need not be Galoisian. The main result of this section is a topological
criterion akin to semi-local simple connectedness, which ensures maximal branched cover-
ings are Galoisian, see Proposition 3.52. It allows the state a Galoisian correspondence for
branched covering stated in Theorem 3.
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Definition 3.41 (Automorphisms of a spread) Let X
p−→ Y be a spread, an automorphisms

of p is an homeomorphism ϕ of X such that p ◦ ϕ = p. Denote by Γ (X/Y ) the group of
spread automorphisms of X above Y . We also denote by Γx the stabilizer of x if x ∈ X and
by ΓU the set-wise stabilizer of U if U is a subset of X .

Note that a spread automorphism is just an automorphism in the category Spr.

Definition 3.42 A branched covering X
p−→ Y is Galoisian if the group Γ (X/Y ) of auto-

morphism of p acts transitively on the fibers of p. It is called quasi-Galoisian if p is the
completion of a Galoisian covering.

Remark 3.43 If a branched covering X
p−→ Y is Galoisian then p induces an homeomorphism

Γ (X/Y )\X → Y .

Lemma 3.44 Let X
p−→ Y be a branched covering, the group of automorphisms of p is exactly

the group of automorphisms of the induced branched covering p−1(U)→ U for any U portly
in Y :

Γ (X/Y ) = Γ (p−1(U)/U).

Proof An automorphism φ of X → Y lifts the identity thus for any U subset of Y , the
automorphism φ preserves p−1(U). In particular, for any U portly subset of Y , such a φ

induces an automorphism of p−1(U) −→ U . Furthermore, with U portly in Y , by functo-
riality of the spread completion and since the completion of p−1(U) → Y is X → Y , an
automorphism of p−1(U) −→ U extends uniquely to a automorphism of X −→ Y . Therefore,
Γ (X/Y ) = Γ (p−1(U)/U)). ��
Corollary 3.45 Let X

p−→ Y be a branched covering, then

Γ (X/Y ) = Γ (Ord(X)/Ord(Y )).

The maximal covering branched over some locus need not be Galoisian. Indeed, one
can consider Y = R

2 and S := {(1/n, 0) : n ∈ N
∗} ∪ {(0, 0)}. On the one hand, the

automorphisms group of˜Y S is countable (it is the fundamental group ofY\S, thus a free group
generated by countably infinitely many generators). On the other hand, there are uncountably
infinitely many homotopy classes in of path from (2, 0) to (0, 0) and none of these classes
are equivalent in the sense of Theorem 2; hence the fibre above (0, 0) is uncountable. The
action of Γ (X/Y ) is then not transitive on the fiber above 0, and ˜Y S → Y is not Galoisian.

Definition 3.46 (semi-locally simple connectedness) Let X be aHausdorff, connected, locally
path-connected topological space. We say that an open subset U is semi-locally simply
connected at x ∈ U if there exists a connected open neighborhood V of x such that every
loop γ of Ω(x, x,V ∩ U) seen as an element of Ω(x, x,U) is almost trivial.

U is then semi-locally simply connected in X if U is dense and semi-locally simply
connected at every point of X

Remark 3.47 The definition of semi-locally simply connected is coherent with the usual
definition of semi-locally simply connected. Indeed, a topological space X is semi-locally
simply connected if and only if it is semi-locally simply connected in itself.

Remark 3.48 Using the same notations as in the definition above, there are generic situations
in which dense open subsets are semi-locally simply connected at every point of the whole
space.
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– If X is a manifold and X\U is a submanifold of codimension at least 2, more generally
if X is a simplicial complex and X\U is a union of facets (such that U is still dense and
locally connected);

– or if X admits a basis of neighborhoods such that for each V of said basis, V ∩ U is
semi-locally simply connected in V;

then U is locally simply connected at every point of X .

Lemma 3.49 Let X
p−→ Y be a quasi-galoisian branched covering. Let a ∈ Y and â ∈ p−1(a),

the orbit Γ (X/Y )â is dense in p−1(a).

Proof We use the same notation as in Proposition 3.11. Since the branched covering p is
quasi-Galoisian, for every U ∈ U , Γ (X/Y ) acts transitively on XU . Furthermore, Γ (X/Y )

acts by homeomorphisms on X , hence preserves connected components; its action thus
commutes with the bonding maps of the projective system (XU )U∈U . Finally, the action of
Γ (X/Y ) on each XU lifts to an action on lim←−U XU whose orbits are dense. ��

Proposition 3.50 Let X
p−→ Y be a quasi-Galoisian branched covering possibly branched

over S ⊂ Y .
For all b ∈ Y and all connected neighborhood basis (Ui )i∈I of b we have

p−1(b) � lim←−
i∈I

Γ (X/Y )/ΓÛi

where Ûi is the connected component of b̂ in p−1(Ui ) for i ∈ I .

Proof Since X
p−→ Y is quasi-Galoisian, Γ (X/Y ) acts transitively on the connected compo-

nents of p−1(U) for every open U ⊂ Y . The group ΓV is by definition the stabilizer of V
for V a connected of p−1(U) for some open U ⊂ Y . The discrete spaces Γ (X/Y )/ΓÛ and
XU are thus homeomorphic (using the same notations as Proposition 3.11). The result then
follows from Proposition 3.11. ��

Lemma 3.51 Let X
p−→ Y be a quasi-Galoisian branched covering possibly branched over

S ⊂ Y and let b ∈ Y .
Assume that Γ (X/Y ) is countable, then the following are equivalent:

(i) p−1(b) is discrete;
(ii) p−1(b) is countable;
(iii) Γ (X/Y ) acts transitively on p−1(b).

Proof Consider a neighborhood basis (Un)n∈N of b in Y indexed over N such that Un ⊂ Um

whenever n ≥ m. Denote by Xn the discrete space of connected components of p−1(Un)

and (pn,m)n≥m : Xn → Xm the bonding maps which associated a connected component V
of p−1(Un) its connected component in p−1(Um). For n ∈ N, define Nn := #p−1n+1,n(x) for
some x ∈ Xn . Since the action of Γ (X/Y ) is transitively on each Xn and commutes with the
bonding maps, Nn does not depend on the choice of x and Nn ≤ ℵ0.
– If Nn > 1 for infinitely many n ∈ N, then the projective limit lim←−n

Xn is uncountable,
hence the action ofΓ (X/Y ) is not transitive. Furthermore, a basis of the topology is given
by the inverse image of subsets of the Xn by the natural projection pm : lim←−n

Xn → Xm .
None of these preimages is reduced to a point; hence, the topology of lim←−n

Xn is not
discrete.
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– If Nn > 1 only for finitely many n ∈ N, then the projective limit lim←−n
Xn is stationnary.

Then lim←−n
Xn � Xm for some m ∈ N big enough. In particular lim←−n

Xn is discrete and,
by Lemma 3.49, the action of Γ (X/Y ) on it is transitive, since Γ (X/Y ) is countable
then so is lim←−n

Xn .

��
Proposition 3.52 Let Y be a connected, locally path-connected, second countable, Hausdorff
topological space and let S ⊂ Y skeletal such that Y\S is semi-locally simply connected.

Let ˜Y S p−→ Y be the maximal covering of Y possibly branched above S. The following are
equivalent:

(i) ˜Y S p−→ Y is Galoisian;
(ii) Y\S is semi-locally simply connected in Y ;

Proof We write Γ = Γ (˜Y S/Y ) and X = ˜Y S . By Lemma 3.51, we can replace (i) by the
equivalent statement that the fibers of p are discrete.

– (i i) ⇒ (i). Assume that Ord(Y ) is semi-locally simply connected at every point of Y
and consider some y ∈ Y , we show that p−1(y) is discrete.
If y ∈ Ord(Y ), it follows from the standard theory of (unbranched) covering; henceforth
we assume y /∈ Ord(Y ) and consider some connected open neighborhood U of y such
that for every loop γ ∈ Ω(y,Ord(U)), the constant loop at y is in the adherence of the
connected component of γ in Ω(y,Ord(Y )). We choose a connected component V of
p−1(U) and consider x1, x2 ∈ p−1(y)∩V . Consider a path γ̂ ∈ Ω(x1, x2,Ord(X)∩V).
Such a path exists since V is connected and Ord(X) portly; hence Ord(X) ∩ V is open
dense in V and path-connected.
For any open neighborhood W of y, by hypothesis we can choose some γ1 ∈ Ω(y,W)

in the connected component of γ0 = p ◦ γ̂ in Ω(y,Ord(Y ). Let H : [0, 1] × [0, 1] →
Y be a homotopy from γ0 to γ1 in Ω(y,Ord(Y )) the ordinary part of H defined on
]0, 1[×[0, 1] → Y lifts to Ord(X) and, by Lemma 3.19, this lift extends continuously to
a lift ˜H : [0, 1] × [0, 1] → X of H . Since the fibers of p are totally disconnected and
∀s ∈ [0, 1], H(0, s) = H(1, s) = y, then ˜H(0, ·) and ˜H(1, ·) are constant. In particular,
x1 and x2 are in the same connected component in p−1(W). We deduce that x1 = x2 by
Proposition 3.11. Finally, V ∩ p−1(y) is a singleton.

– (i) ⇒ (i i). Assume the fibers of p are discrete and consider some neighborhood V of
some x ∈ X such that V∩ p−1(p(x)) = {x}; denote by U := p(V). Since p is a branched
covering, by Corollary 3.21 we may choose V connected and such that V is a connected
component of p−1(U).
Consider some path γ ∈ Ω(y,U) and some lift γ̂ : [0, 1] → V . Since γ (0) = γ (1) = y
both γ̂ (0) and γ̂ (1) are in p−1(y) ∩ V and are thus equal to x ie γ̂ ∈ Ω(x,V).
Let W be some neighborhood of y, choose some t0, t1 ∈]0, 1[ such that γ (]0, t0]) ⊂
W and γ ([t1, 1[) ⊂ W . The connected component Ŵ of x in p−1(W) contains both
γ̂ ([t1, 1[) and γ̂ (]0, t0]); moreover Ŵ ∩ Ord(X) is path-connected; there thus exists a
path ω : γ̂ (t1) � γ̂ (t0) in Ŵ . Since Ord(X) is the universal covering of Ord(Y ), it
is simply connected and the loop γ|[t0,t1] ∗ ω is trivial. Therefore, γ̂ is homotopic to
γ̂[t1,1] ∗ω−1 ∗ γ̂[0,t0]. Hence, γ̂ is homotopic inΩ(x,Ord(X)) to a loop inΩ(x,Ord(Ŵ).
Finally, γ is homotopic in Ω(y,Ord(Y )) to a loop in Ω(x,Ord(W)). The open subset
W is arbitrary, then Ord(Y ) is semi-locally simply connected at y.

��
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The following Theorem is then a direct consequence of Propositions 3.52 and 3.26.

Theorem 3 (Galois correspondance) Let Y be a connected, locally path-connected Hausdorff
topological space and let S ⊂ Y skeletal. Assume Y\S is semi-locally simply connected in
Y .

Then, the maximal covering ˜Y S possibly branched over S is Galoisian.
Furthermore, every covering X of Y possibly branched over S is isomorphic to the quotient

of ˜Y S by a subgroup of Γ (˜Y S/Y ). Finally, this subgroup is normal if and only if X is Galoisian.

Example 3.53 In the following situations, Y\S is semi-locally simply connected in Y

1. Y is a n-manifold with n ≥ 2 and S is a finite subset;
2. Y is a 3-manifold and S is a tame knot.
3. Y is a simplicial complex of dimension n and S is a (n − 2)-skeleton.

Example 3.54 Consider Y = R
2 and S = {( 1n , 0) : n ∈ N

∗ ∪ {∞}} and denote by Γ the
absolute Galois group Γ (˜Y S/Y ). We see that Y\S is not semi-locally simply connected in
Y . Let Γ2 := 〈Γ [γn]2Γ : n ∈ N〉 where γn is a simple loop around (1/n, 0). Consider Y2,
the completion of the spread Γ2\Ord(˜Y S)→ Y . The fiber above (0, 0) in Y2 is a Cantor set.
This answers positively Problem 10.7 of [36].

Example 3.55 If S is a wild Cantor [9] embedded into Y = S
3, then Y\S is not semi-locally

simply connected in Y .

4 Singular (G,X)-manifolds (II): tame andwild

In this section, we utilize elements laid out on branched coverings to construct singular
equivalents to tools of the standard theory of (G, X)-manifolds. A fundamental property
of regular (G, X)-manifolds is the developement Theorem: let M be a connected (G, X)-
manifold and let ˜M be its universal covering, there exists a couple (D, ρ) with ρ : π1(M)→
G and D : ˜M → X a ρ-equivariant (G, X)-morphism; furthermore the couple is unique up
to the action of G.

One of the goals is to allow for efficient proof of uniformization results. For instance, if
D is injective ˜M naturally identifies set-wise to a domain in X and we may identify set-wise
M to ρ\D( ˜M). As will become apparent in the examples given in the last section of the
present work, topology is a core difficulty. We may define a developing map as merely an
a.e. (G, X)-morphism from ˜M to X ; this leads to tamely singular (G, X)-manifolds.

Example 4.1 Let n ∈ N and θ ∈ R
∗+\{2π} and M = E

n+2
θ so that Sing(M) = {r =

0} in cylindrical coordinates. We observe that ˜E
n+2
θ := ˜MSing(M) can be identified with

susp(R) × R
n . In cylindrical coordinates (r , θ, z1, . . . , zn) ∈ R+ × R × R

n , the covering
˜E

n+2
θ can be endowed with the singular Euclidean metric dr2 + r2dθ2 +∑n

i=1 dz2i and we
can define the developing map

D : ˜E
n+2
θ −→ E

n+2
(r , θ, z1, . . . , zn) �−→ (r cos θ, r sin(θ), z1, . . . , zn)

.

However, the following example shows that many interesting examples are not tamely
singular.
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Example 4.2 Using notation from 2.25, the extremeBTZ-likewhiteholemodel has amaximal
branched covering but no developing map. Indeed, one can observe that the developing map

D :
Reg(C(3)∞ ) −→ E

1,2

(

τ, r,
θ

2π

)

�−→
⎛

⎝

t
x
y

⎞

⎠ =
⎛

⎝

τ + 1
2 rθ

2

τ + 1
2 rθ

2 − r
−rθ

⎞

⎠

.

does not extends continuously at r = 0. For instance, the sequence (τn, rn, θn)N∗ with

∀n ∈ N
∗, τn = 0, rn = 1

n
, θn = n

is such that (τn, rn, θn)
n→+∞−−−−→ (0, 0, 0) in C

(3)∞ but D(τn, rn, θn) is unbounded.

Aiming at a uniformization for this last example leads to a notion of virtually tame singular
(G, X)-manifolds by relaxing the continuity assumption on the developing map. In this
context, we are able to construct uniformization results.

Of course, a natural definition of a developing map (even discontinuous) is not guaranteed
in general, as the following example shows.

Example 4.3 Let M = S
2 and N ∈ M endowed with a singular (Isom+(E2), E

2)-structure
induced by a stereographic projection S

2\{N } → E
2. On the one hand, M is a singular

Euclidean manifold with Sing(M) = {N } and ˜MSing(M) = M . On the other hand, the
developingmapD : Reg(M)→ E

2 given by the stereographic projection cannot be extended

continuously and no sequence xn
n→+∞−−−−→ N with ∀n ∈ N, xn ∈ Reg(M) is such that

(D(xn))n∈N converges.

The present section lays out distinctions between singularities in (G, X)-manifolds based
on the existence or absence of developing maps. We thus introduce notions of tame and
virtually tame singular (G, X)-manifolds; the section revolves around the localization of
these notions. Localization achieved in Theorems 4 and 5.

In the whole section, we need a guarantee that we are allowed to consider the maximal
covering possibly branched over any skeletal subset of any open subset. We thus make an
extra assumption on X .

Definition 4.4 A topological space X is locally unloopable if it is locally path-connected and
if for all x ∈ X and all neighborhood U of x , there exists an open neighborhood V ⊂ U of x
which is semi-locally simply connected.

Lemma 4.5 Let (G, X) be an analytical structure with X locally unloopable. Then every
connected singular (G, X)-manifold M admits a maximal covering possibly branched over
some given skeletal subset S as long as S ⊃ Sing(M).

Proof Since S ⊃ Sing(M), we have M\S = Reg(M)\S. Since X is locally unloopable
and since Reg(M)\S is locally homeomorphic to X , in particular, Reg(M)\S is locally
unloopable. Since M is connected and Reg(M)\S portly, then Reg(M)\S is connected and
thus unloopable. ��

In the whole section (G, X) is an analytical structure with X locally unloopable.
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4.1 Ramified coverings, group actions

In this section, we prove natural technical properties one expects to hold for the theory to
work smoothly.

Proposition 4.6 Let M be a singular (G, X)-manifold and let N
π−→ M be a branched

covering.
N has a unique a.e. (G, X)-structure for which π is an a.e. (G, X)-morphism. and

Reg(π) ⊃ Reg(N ) ∩ Ord(π).
Furthermore, the Galois group Γ ( ˜M S/M) acts by a.e. (G, X)-morphisms.

Proof By Lemma 2.16 there exists a unique a.e. (G, X)-structure on N such that π is an a.e.
(G, X)-morphism. Lemma 2.15 implies that

Reg(π) = Reg(N ) ∩ {x | f local homeo. at x} ⊃ Reg(N ) ∩ Ord(π)

The Galois group Γ (N/M) acts by homeomorphisms on ˜M S , and π is an a.e. local
homeomorphism. Denoting A,B the a.e. (G, X)-atlases of N , M respectively, we may thus
apply Proposition 2.16

γ ∗A = γ ∗π∗B = (π ◦ γ )∗B = π∗B = A.

In other words, γ is an a.e. (G, X)-morphism. ��
Corollary 4.7 Let M be a singular (G, X)-manifold and let S be a skeletal subset of M
containing Sing(M). Then ˜M S admits a unique a.e. (G, X)-structure such that the natural
projection ˜M S → M is an a.e. (G, X)-morphism.

Furthermore, the Galois group Γ ( ˜M S/M) acts by a.e. (G, X)-morphisms.

4.2 Developingmap and tameness

In this section, M, N will denote connected singular (G, X)-manifolds. For brevity’s sake,
whenever it makes sense, we will denote by ˜M the maximal covering of M possibly branched
over Sing(M), which can also be denoted by ˜MSing(M) in the notation of the previous section.

4.2.1 Developing maps

Definition 4.8 (developing map) Let N
p−→ M be a branched covering of singular (G, X)-

manifold. A developing map D of N → M is any a.e. (G, X)-morphism N → X .
We say that M admits a developing map if there exists a branched covering ̂M → M

possibly branched above Sing(M) and a developing map of ̂M → M
For simplicity’s sake, whenever it makes sense, a developing map of ˜M → M is simply

called a developing map of M .

Up to reduction to portly subset, the proofs of the following three Lemmas are identical
to the usual proof in the regular context and are thus skipped.

Lemma 4.9 Let N
f1, f2−−−→ X be a.e. (G, X)-morphisms, then there exists a unique g ∈ G

such that f1 = g f2.
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Lemma 4.10 Let M be a singular (G, X)-manifold and Γ be a group acting on N by a.e.
(G, X)-morphisms.

For any a.e. (G, X)-morphism M
f−→ X there exists a unique morphism ρ : Γ → G such

that f is ρ-equivariant.

Definition 4.11 Let N
p−→ M be a quasi-Galoisian branched covering of singular (G, X)-

manifold admitting a developing map D. The holonomy of N → M (associated to D) is the
morphism ρ of Lemma 4.10.

Remark 4.12 A developing map D of a quasi-Galoisian covering M → N sends points to
some fixed point of their stabilizer: D(x) ∈ Fix(ρ(Γx )).

Remark 4.13 Let M be a singular (G, X)-manifold. The holonomy of ˜M → M is indeed the
holonomy of Reg(M) in the usual sense.

Lemma 4.14 Let N
p−→ M be a quasi-Galoisian branched covering of singular (G, X)-

manifold. If it admits a couple (D, ρ) of developing map and holonomy, then all other
such couples are obtained via conjugation, ie: if (D′, ρ′) is another couple developing map
and holonomy, then there exists a unique g ∈ G such that (D′, ρ′) = (g ◦ D, ρg) with
ρg : γ �→ gρ(γ )g−1.

Lemma 4.15 Let M
p−→ N be a quasi-Galoisian branched covering of singular (G, X)-

manifolds. Then, the following are equivalent:

(i) there exists an a.e. (G, X)-morphism M → X and the holonomy of M → N is trivial,
(ii) there exists an a.e. (G, X)-morphism N → X.

Proof Assume (i) and consider some a.e. (G, X)-morphism M
D−→ X as well as the equiva-

lence relation x ∼ y if p(x) = p(y) for x, y ∈ M . By Lemma 3.49, the action of Γ (M/N )

has a dense orbit in the fiber of p then the equivalence classes of ∼ are the closure of orbits
of Γ (M/N ). Furthermore, since ρ = 1 thenD is constant on the orbit of Γ (M/N ) and con-
tinuous, hence constant on the equivalence classes of ∼. Therefore, D induces a continuous
map ∼ \M → X . Moreover, p induces a continuous map ∼ \M → N which is open by
Corollary 3.21, injective by definition and surjective since p is surjective; hence∼ \M → N
is a homeomorphism. We thus constructed a continuous map D : N → X . Notice that D is
a (G, X)-morphism on Ord(N ) by usual results on (G, X)-manifolds. Finally, D is an a.e.
(G, X)-morphism.

Assume (i i) and consider some N
D−→ X , the map M

D◦p−−→ X is thus an a.e. (G, X)-
morphism and

∀γ ∈ Γ (M/N ), D ◦ γ = D ◦ p ◦ γ = D ◦ p = D

so ρ = 1 ie the holonomy of M → N is trivial. ��
Lemma 4.16 Let f : M → N be a morphism of singular (G, X)-manifolds, and let M̂ and
N̂ be branched coverings of M and N respectively. If f̂ : M̂ → N̂ is a lift of f , then f̂ is a
morphism of singular (G, X)-manifolds.

Proof One can restrict to portly subsets to reduce the Lemma to the case where M, N are
regular, M̂, N̂ are unbranched coverings, and f is a (G, X)-morphism. Standard results apply.

��
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Proposition 4.17 Let M be a singular (G, X)-manifold. The following are equivalent:

(i) there exists an a.e. (G, X)-morphism ˜M → X,

(ii) there exists a branched covering of N
p−→ M which admits a developing map.

Proof Clearly, (i) ⇒ (i i). Assume (i i) and consider some branched covering N
p−→ M

and a developing map N
D−→ X . Denote by S := M\Ordp(M) and ˜S the lift of S to

˜M := ˜MSing(M). Since S ⊂ S ∪ Sing(M), by Proposition 3.26, the map N
D−→ X lifts

to an a.e. (G, X)-morphism ̂M := ˜M S∪Sing(M)
̂D−−−→ X . The developing map of Reg(M)

is a (G, X)-morphism R̃eg(M)
D0−→ X thus a (G, X)-morphism ̂M ′

̂D0−→ X were ̂M ′ is
the universal covering of R̃eg(M)\˜S which embeds naturally in ̂M since it is the universal
covering of Reg(M)\S. By Lemma 4.15, the holonomy

Γ := Γ ( ̂M ′/̃Reg(M)) = Γ ( ̂M/ ˜M)
ρ−−−→ G

of ̂M ′ → R̃eg(M) is trivial. Futhermore, there exists g ∈ G such that g ◦ ̂D|̂M ′ = ̂D0;

therefore ̂D0 extends continuously to ̂M
̂D0−→ X . Since the action of Γ on ̂D0|̂M ′ is trivial

and since ̂M ′ is dense in ̂M , the action of Γ on ̂D0 is trivial. We can thus apply Lemma 4.15
again to obtain a continuous extension of D0 to ˜M . ��

4.2.2 Tame singularities

Following the discussion of the previous sections, we introduce the notion of time singular
(G, X)-manifolds.

Definition 4.18 A singular (G, X)-manifold M is tame if it admits a developing map.

Since the notion of developing map is global, we need to localize tameness to ease the
manipulation of this property.

Lemma 4.19 Let M, N be singular (G, X)-manifolds and let M → N be an a.e. (G, X)-
morphism. If N is tame, then M is tame.

Proof The morphism M → N lifts to a morphism ˜M → ˜N . We can compose the latter by
the developing map ˜N → X of N to obtain a developing map of M . ��
Corollary 4.20 A branched covering of a tame singular (G, X)-manifold is tame.

Corollary 4.21 Open subsets of tame singular (G, X)-manifolds are tame.

Theorem 4 Let M be a singular (G, X)-manifold the following are equivalent:

1. M is tamely singular
2. M locally tamely singular.

Proof Denote by ˜M
p−→ M the maximal covering of M ramified above Sing(M).

Assume M tamely singular, for any x ∈ M and any neighborhood U of x , by local
connectivity, there exists an connected open neighborhood V ⊂ U of x . Take any connected
component W of p−1(V) so that W → V is a branched covering, by universality there
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exists a branched covering ˜V q−→ W . Take a developing map D of M , the map D|W ◦ q is a
developing map of V hence V is tamely singular.

Assume M locally tamely singular. Let x̃ ∈ ˜M and let U be an open, connected neigh-
borhood of x := p(̃x) admitting a developing map. Define ˜U π−→ U the natural branched

covering. The natural injection U ι−→ M lifts to an a.e. (G, X)-morphism ˜U ι̃−→ ˜M . Let

Reg( ˜M)
DM−−→ X be a (G, X)-morphism, the map Reg(˜U)

DM ◦̃ι−−−→ X is a (G, X)-morphism

and extends continuously to an a.e. (G, X)-morphism ˜U DU−−→ X . Let Û be the connected

component of ι̃(˜U) in p−1(U); by Lemma 3.20, ̂U p−→ U is a branched covering, by Proposi-

tion 3.26 there thus exists a map ˜U π ′−→ ̂U such that p◦π ′ = π . Since ˜U/̂U is quasi-Galoisian,
this map is unique up to the action of Γ (˜U/̂U). Since p ◦ ι̃ = π , we conclude that π ′ = ι̃ ◦ γ

for some γ ∈ Γ ( ˜M/ ̂M). In particular, ι̃|̂U is a branched covering.
Using the same argumentation as in the proof of Proposition 4.17, we show that DU

descends to an a.e. (G, X)-morphism ̂U → X which extends continuously DM|̂U . Finally,
DM extends continuously at x̃ and, since x̃ is arbitrary, to the whole ˜M . ��

The following remark, though trivial, is important.

Remark 4.22 Let M be a tamely singular (G, X)-manifold. If M admits an injective devel-

oping map N
D−→ X for some branched covering N of M then M is isomorphic to

Γ (N/M)\D(N ) where

– Γ (N/M) acts on X via the holonomy of D;
– D(N ) is endowed with the topology making D an homeomorphism.

The specification of the topology is important as the developingmapD, though continuous,
may not be open in neighborhoods of singular points.

Example 4.23 Take X the closed unit disc in R
2 and identify the open disc with the pointcaré

disc H. Take G, the group of isometries of the Poincaré disc. Note that G acts by home-
omorphisms on X . Consider M a genus g surface and S ⊂ M a finite subset such that
2g − 2 + s > 0. Endow M\S with a finite volume complete hyperbolic metric. On the one

hand, M is a tamely singular (G, X)-manifold with injective developing map ˜M
D−→ X . On

the other hand, an open neighborhood U of a singular point x of ˜M is homeomorphic to a
domain {r < r0} in the “infinite angle disc”D∞ introduced in Example 2.25.Wemay choose
U so that D(U ) is a horodisc centered at D(x). Such a domain is not open for the topology
of X .

4.3 Singular models

In common settings, singularities are not arbitrary: they are assumed to be isomorphic to
some model such as (E2

θ )θ>0 for singular locally Euclidean surfaces or (E1,2
α )α>0 for flat

3-spacetimes with massive particles.

4.3.1 Analytic family

Definition 4.24 Let M be a singular (G, X)-manifold. The automorphisms group of M
denoted Aut(M) is the group of isomorphisms of singular (G, X)-manifolds from M to
itself.
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Definition 4.25 A family (Xα)α∈A of singular (G, X)-manifolds each endowed with a non-
empty subset Sα ⊂ Sing(Xα) is an analytic family of model spaces if for all α1, α2 ∈ A and

all a.e. (G, X)-isomorphism U1
ϕ−→ U2 where U1,U2 are connected open subsets of Xα1 and

Xα2 respectively we have:

U1 ∩ Sα1 
= ∅ ⇒ α1 = α2 and ∃φ ∈ Aut(Xα1), ϕ = φ
|U2
|U1

.

Definition 4.26 (X A-atlas) Let (Xα)α∈A be an analytic family of model spaces and let M be
a singular (G, X)-manifold.

For α ∈ A, an Xα-chart around x ∈ Sing(M) is a triplet (U,V, φ) with x ∈ U ⊂
M, φ(x) ∈ Sα,V ⊂ Xα open and connected; and U φ−→ V an isomorphism. If such a chart
exists, we say that x has type α.

An X A-chart is an Xα-chart for some α ∈ A. An X A-atlas is a collection of X A-charts
covering M .

Definition 4.27 Let (Xα)α∈A be an analytic family of model spaces and let M be a singular
(G, X)-manifold.

A X A-manifold is a singular (G, X)-manifold M admitting a X A-atlas

Remark 4.28 A singular point x ∈ Sing(M) of a X A-manifold M has exactly one type.

Indeed, let Ui
ϕi−→ Vi ⊂ Xαi be isomorphisms with Ui ,Vi open for i ∈ {1, 2} and with

x ∈ U1 ∩ U2. Restricting ϕ1, ϕ2 if necessary, we may assume U1 = U2 connected so that

V1
ϕ2◦ϕ−11−−−−→ V2 is an isomorphism, Moreover, V1 contains the singular point ϕ1(x) ∈ Sα1 so

by analyticity α1 = α2.

Remark 4.29 By Theorem 4, a X A-manifold is tame if and only if all models are tame.

Example 4.30 It follows from Proposition 1.3 of [17] that the family (E
1,2
θ )θ≥0 is analytic.

Counter-Example 4.31 Start from Σ a singular S
2-manifold homeomorphic to a sphere with

s ≥ 3 conical singularities of respective angles (θi )i∈[[1,s]]. We know from Troyanov [49] that
one can construct such a surface for arbitrary (θi )i∈[[1,s]] as long as

0 <

s
∑

i=1
(θi − 2π)+ 4π ≤ min(4π, θi : i ∈ [[1, s]]).

Apply the Thurston suspension method described in Sect. 2.4.2, the constructed manifold M
is a singular (SO(4), S

3)-manifold (we may either apply by Proposition 2.32 or check that
directly). We call O its center.

An automorphism of M has to fix O since the singular locus is homeomorphic to a line
except at O; furthermore, it preserves distances and geodesics. By considering the sphere of
some radius ε > 0 centered at O, we see that the natural map Aut(Σ)→ Aut(M) is a group
isomorphism. As a consequence, except for very particular Σ , Aut(M) is trivial. For instance,
if all the θi are different then Aut(M) = {I d}. These remarks hold for all neighborhoods of
O.

For a generic Σ , since locally we may construct a rotation around any of the axes, and
since those cannot be extended as an automorphism of M, we conclude that for S ⊂ Sing(M),
(M, S) is analytic if and only if S = {O}.
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4.3.2 Amotivational example: the BTZmodel space

The BTZmodel spaceE
1,2
0 is defined asR

3 endowedwith the singularE
1,2-structure induced

by the flat Lorentzian metric ds2 = −2dτdr + dr2 + r2dθ in cylindrical coordinates. The
singular locus ofE1,2

0 is then Sing(E1,2
0 ) = {r = 0} and the regular locus isReg(E1,2

0 ) := {r >

0}. Following example 2.25, fromwhich we reuse notations, we denote themaximal covering
of E

1,2
0 possibly branched over Sing(E1,2

0 ) by ˜E
1,2
0 . Since E

1,2
0 is simply R

3 and Sing(E1,2
0 )

is a simply a line,˜E1,2
0 is homeomorphic to the maximal covering of R

3 branched over a line

denoted by C
(3)∞ and parameterize using cylindrical coordinates (τ, r, θ) ∈ R× R+ × R. A

natural candidate for a developing map is given by

D :

˜E
1,2
0 −→ E

1,2

(

τ, r,
θ

2π

)

�−→
⎛

⎝

t
x
y

⎞

⎠ =
⎛

⎝

τ + 1
2 rθ

2

τ + 1
2 rθ

2 − r

−rθ

⎞

⎠

(τ, 0, ·) �−→
⎛

⎝

τ

τ

0

⎞

⎠

which can be checked to be a E
1,2-morphism on Reg(˜E1,2

0 ) = {r > 0} but is discontinuous
at every points of Sing(˜E1,2

0 ) = {r = 0}. Furthermore, one may check that for all x =
(τ, 0, 0) ∈ Sing(˜E1,2

0 ) we have
⋂

U�x

D(Reg(U)) = {(λ, λ, 0) : λ ≥ τ }

so that there is no way to extend D continusouly to {r = 0} keeping the standard topologies
of ˜E

1,2
0 and E

1,2.

Consider the topology T of ˜E
1,2
0 generated by the standard topology T0 and the sets of

the form

Uλ =
{

(τ, r, θ) ∈ ˜E
1,2
0 | rθ2 < λ

}

, λ ∈ R
∗+.

Then D : (˜E
1,2
0 , T ) → E

1,2 is continuous and element of Aut(˜E1,2
0 ) are T -continuous,

furthermore the quotient topology induced on E
1,2
0 is the usual topology. Finally, we note

that Reg(˜E1,2
0 ) is T -portly.

4.3.3 Virtually tamemodels

Some model spaces of interest, such as the BTZ model space, are not tame but are almost
tame in the sense that we may extend the developing map in a unique fashion, allowing us
to construct a developing map on X A-manifolds.

Definition 4.32 A singular (G, X)-manifold M is virtually tame if there exists a first count-
able locally path connected (strong) topologyT on ˜M thinner than the natural (weak) topology
such that:

(A) The quotient topology induced by T on M is the natural one.
(B) the developing map D : Reg( ˜M)→ X admits a T -continuous extension;
(C) elements Γ ( ˜M/M) are T -continuous;
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(D) the lift of Reg(M) to ˜M is T -portly in ˜M .

We call such a T a tamifying topology.

Definition 4.33 A singular (G, X)-manifold M is locally Galoisian if for every U ⊂ M
open, Reg(U) is semi-locally simply connected in U .

The goal of this section is to prove the following localization property.

Theorem 5 Let (Xα)α∈A be an analytical family of locally Galoisian model spaces. If for
every α ∈ A, there exists a tamifying topology Tα such that the group Aut(˜Xα) acts Tα-
continuously, then every X A-manifold is virtually tame.

To this end, we will need technical results on branched coverings involving two topologies
on the same underlying space. In every instance, we shall refer to the strong and weak
topologies, the former being the thinner of the two.

Definition 4.34 Let (M, TM ), (N , TN ) be topological spaces and Let M
p−→ N be a continu-

ous map. For any topology T on N define p∗T the topology of M generated by TM and the
TM -connected components of p−1(O) for O ∈ T .

Lemma 4.35 Let M be a first countable, connected locally path connected Hausdorff topo-
logical space. Let S ⊂ M be a skeletal subset such that M\S is semi-locally simply connected

in M; consider a sub-covering ˜M S p−→ N
q−→ M.

Let T be a (strong) thinner first countable and locally path-connected topology on N for
which elements of Γ (N/M) are continuous. Consider the induced strong topology p∗T on
˜M S. Assume, in addition, there exists some R ⊂ Ordp(N ) strongly portly in N on which
strong and weak topologies agree.

Then, we have the following

(a) ˜M S is strongly first countable connected locally path connected;
(b) strong and weak topologies agree on p−1(R);
(c) p−1(R) is strongly portly;
(d) elements of Γ ( ˜M S/M) are strongly continuous;

(e) ˜M S p−→ N is a branched covering for the strong topologies.

Remark 4.36 Intuitively, if (M, TM )
p−→ (N , TN ) is a spread and T is thinner than TN , then

the strong topology p∗T is the coarsest topology on M such that (M, p∗T )
p−→ (N , T )

is a spread. However, the definition does not guarantee that TM -connected components are
p∗T -connected components. Point (e) above is thus non-trivial.

Proof To begin with, we define ̂R := p−1(R) and note that by definition of the ordinary

loci, ̂R p−→ R is a covering for the weak topologies. Then, it is not difficult to see that
(p|R|̂R)∗T|R = (p∗T )|R so that point (b) is clear. We also note that it follows from the
definitions that p is continuous for the strong topologies.

To show point (d), consider some γ ∈ Γ ( ˜M S/M) and take some γ ∈ Γ (N/M) such that
p ◦ γ = γ ◦ p. For ̂O a weak connected component of some p−1(O) with O strong open,
since γ is a weak homemorphism γ−1(̂O) is a weak connected component of (p◦γ )−1(O) =
(γ ◦ p)−1(O). Since γ is strongly continuous, γ−1(O) is strongly open so that ̂O is strongly
open since it is a weak connected component of p−1(γ−1(O)).
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Claim: For all strong open ̂O ⊂ ˜M S that is a weak connected component p−1(O) for
some strong open O ⊂ N then ̂O ∩ ̂R 
= ∅; Furthermore, for all ŷ ∈ ˜M S and for all strong
neighborhood ̂O ′ � ŷ, there exists ̂O � ŷ such that ̂O ⊂ ̂O′ and such that for all x̂ ∈ ̂O ∩ ̂R,
there exists a a weakly continuous path γ̂ : x̂ � ŷ with γ̂ ([0, 1[) ⊂ ̂R ∩ ̂O. All such paths
are strongly continuous. We may assume that ̂O ∩ ̂R is connected.

Indeed, take ̂O,O as above and take ŷ ∈ ̂O and y = p(ŷ). Without loss of generality, we
may assume O is strongly connected. Since N is strongly first countable connected locally
path connected, since O is strongly connected and R strongly portly, O ∩ R 
= ∅ so we
may choose x ∈ O ∩ R 
= ∅ and by Lemma 3.13 there exists a strongly continuous path
γ : x � y such that γ ([0, 1[) ⊂ R. By Proposition 3.52, ˜M S → M is Galoisian and thus
so is ˜M S → N . There thus exists some weakly continuous lift γ̂ of γ such that γ (1) = ŷ.
Therefore, ŷ = γ̂ (1) and γ (0) are in the same weak connected component of p−1(O) hence
γ̂ (0) ∈ ̂O ∩ ̂R eg ̂O ∩ ̂R 
= ∅.

Choose ŷ ∈ ˜M S and ̂O′ � ŷ and define y := p(ŷ), since ˜M S → N is Galoisian, there
exists some weak open neighborhood U � y such that the connected component of p−1(U)

has exactly one preimage of y in each weak connected componen. Hence, choosing ̂O and
O with the additional property thatO ⊂ U we have ̂O∩ p−1(y) = {ŷ}. Then, for x̂ ∈ ̂O∩ ̂R
arbitrary and x := p(x̂) we may consider the same γ : x � y as before and then its
weakly continuous lift γ̂ such that γ̂ (0) = x̂ . Therefore, γ̂ (1) is in the same weak connected
component of p−1(O) as x̂ so in ̂O and thus γ̂ (1) = ŷ. Since weak and strong topologies
agree on ̂R, γ̂ is strongly continuous on [0, 1[. Take any open ̂O′ � ŷ being a weak connected
component of p−1(O′) for some strong open O′. Since γ is strongly continuous, for some
ε > 0, we have γ ([1 − ε, 1]) ⊂ O′ so that γ̂ ([1 − ε, 1]) ⊂ p−1(O′). Therefore for all
t ∈ [1 − ε, 1[, γ̂ (t) and γ̂ (1) = ŷ are in the same weak connected component of p−1(O′)
thus γ̂ ([1− ε, 1]) ⊂ ̂O′. The path γ̂ : x̂ � ŷ is thus strongly continuous.

Finally, if we consider in addition some ẑ ∈ ̂O ∩ ̂R and z := p(ẑ). Since x, z ∈ O ∩R
which is path connected, we may choose a path γ : x � z which lifts to a path x̂ � ẑ in
̂R ∩ ̂O hence ̂O ∩ ̂R is connected.

We now continue the proof of the Lemma.

– The first part of the claim shows that ̂R is strongly dense.
– Let ŷ ∈ ˜M S and y = p(ŷ). Take a countable basis of neighborhood (Oi )i∈I of y. A basis

of neighborhood of ŷ is provided by weak connected components ̂Oi of ŷ in p−1(Oi )

for i ∈ I . Hence, ˜M S is strongly first countable.
– Let ŷ ∈ ˜M S and y = p(ŷ). Take ̂O � ŷ such that the second part of the claim is

satisfied (say for ̂O′ = ˜M S). The statement implies that {ŷ} ∪ ̂O ∩ ̂R is path connected.
Take any ẑ ∈ ̂O and choose ̂O1 ⊂ ̂O such that {ẑ} ∪ ̂O1 ∩ ̂R is path connected. Since
∅ 
= ̂O1 ∩ ̂R ⊂ ̂O ∩ ̂R we may find a strongly continuous path γ̂ from ŷ to ẑ via some
arbitrary point x̂ ∈ ̂O1 ∩ ̂R. Hence, ˜M S is strongly locally path connected.

– Since every point of ˜M S admits a strongly connected neighborhood, since ̂R is weakly
connected (thus strongly connected by point (b)) and ̂R is strongly dense, ˜M S is strongly
connected.

– ̂R is strongly open as the only weak connected component of p−1(R). It is also dense.
LetW be a strongly connected open subset of ˜M S , let x̂, ŷ ∈W ∩ ̂R and let γ̂0 : x̂ � ŷ
be a strongly continuous path. For all t ∈ [0, 1], there exists a strong neighborhood ̂Ot of
γ̂ (t) statisfying the second part of the claim (with ̂O′ =W). Choose a family of such open
sets, by the compactness of [0, 1] there exists sequences t0 = 0 < t1 < · · · < tn = 1
and τ ∈ [0, 1][[0,n−1]] such that for all i ∈ [[0, n − 1]], γ̂ ([ti , ti+1]) ⊂ ̂Oτi . For each
i ∈ [[1, n−1[[, we choose some x̂i ∈ ̂Oτi−1 ∩ ̂Oτi ∩ ̂R and define x̂0 = x̂ and x̂n = ŷ. We
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can construct a strongly continuous path γ̂ ′ : x̂0 � x̂n by choosing for each i ∈ [[0, n−1]]
a strongly continuous path x̂i � x̂i+1 taking its parameter in [ti , ti+1] and its values in
̂Oτi ∩ ̂R. The path γ̂ ′ takes its values inW ∩ ̂R and joins x̂ to ŷ, we conclude thatW ∩ ̂R
is path connected.
Finally, ̂R is strongly portly.

– Consider the topology T ′ on ˜M S generated by strong connected components of preimage
of strong open of N . Since for any strong open U the strong, connected components are
included in a weak connected component, the topology T ′ is thinner than the strong
topology on ˜M S . On the other hand, the strong topology on ˜M S is locally connected, so
any connected generator of T ′ is a strong open. We conclude that p is a spread for the
strong topologies.

– Apply Lemma 3.19 with X = ˜M S, Y = N , X1 = ̂R, Y1 = R for the strong topologies;
to show that p is a branched covering for the strong topologies, it suffices to prove that
for any path γ : x � y such that γ ([0, 1[) ⊂ R, any partially lifts γ̂|[0,1[ extends strongly
continuously at 1.
Since p is a branched covering for the weak topologies, γ̂|[0,1[ admits a weak limit at 1,
we denote γ̂ its weak continuous extension so [0, 1]. The claim ensures that γ̂ is actually
strongly continuous. We conclude that p is a branched covering.

��
Proof of Theorem 5 Assume that for every α ∈ A, there exists a tamifying topology Tα such

that the group Aut(˜Xα) acts Tα-continuously. Let M be a X A-manifold. Denote by ˜M
p−→ M

the maximal covering of M possibly branched over Sing(M). For each α ∈ A, we give
ourselves a tamifying topology Tα on ˜Xα and a Tα-continuous developing map Dα given by

hypothesis (b). We choose a developing map Reg( ˜M)
D−→ X .

Let (U,V, φ) be a X A-chart with V ⊂ Xα , let ˜Xα
q−→ Xα the maximal branched covering

and let ̂U be a connected component of p−1(U). Take any connected component̂V of q−1(V).

By Lemma 3.20, ̂U p−→ U and̂V q−→ V are branched coverings. Define˜V r−→ ̂V and ˜U �−→ ̂U the

natural maximal coverings and lift φ to an homemorphism ˜U
˜φ−→ ˜V . Consider the topology

r∗Tα defined in Lemma 4.35 on ˜V , we pull it back to ˜U by ˜φ to get (r ◦ ˜φ)∗Tα and then
consider the quotient topology on ̂U . Using the universality of maximal branched covering,
one may check this topology does not depend on r , ˜φ or �. We call TU,V,φ the topology
constructed this way on p−1(U). We define the topology T on ˜M generated by the topology
of Reg( ˜M) and the elements of TU,V,φ on each for (U,V, φ) going through all X A-charts.

˜U
˜φ

�

˜V

r

X Reg( ˜M)
D

˜M

p

̂U

p

̂V

q

˜Xα

q

Dα
X

M U φ V Xα
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Since Xα is locally Galoisian, the branched coverings ˜V → V , ˜V → ̂V , ˜U → U , ˜U → ̂U
and ˜Xα → Xα are all Galoisian. Lemma 4.35 applies to ˜V → ̂V → V taking R = ̂V ∩
q−1(Reg(Xα)). Indeed,R is strongly portly in̂V by assumption (D) and since˜V := ˜VSing(V)

we have

R := ̂V ∩ q−1(Reg(Xα)) = q−1(Reg(V)) ⊂ Ordr (̂V).

– The topology TU,V,φ on ̂U does not depend on (V, φ)

If we consider two Xα-charts (U,V1, φ1) and (U,V2, φ2) then V1
φ−11 ◦φ2−−−−→ V2 is an

isomorphism. By analyticity, φ−11 ◦φ2 is the restriction of an automorphism of Xα which
lifts to an automorphism of ˜Xα . Therefore, there exists ψ ∈ Aut(˜Xα) such that ψ(̂V1) =
̂V2. By hypothesis,ψ is Tα-continuous so (̂V1, Tα) � (̂V2, Tα) then TU,V1,φ1 = TU,V1,φ2 .

– The strong topology on ˜M is first countable and locally path connected:
By Lemma 4.35, the strong topology on a given ˜U is first countable and locally path

connected. Since ˜U �−→ ̂U is Galoisian, � is open for the strong topologies, so the strong
topology on ̂U is first countable and locally path connected.

(A) The quotient topology induced by TU on U is by construction the pull back by φ of

the quotient topology induced by r∗Tα on V . Since ˜V r−→ V is a branched covering
for the strong topology, the quotient topology of r∗Tα on ̂V is Tα which induces the
natural topology on V .
We deduce that the quotient topology induced by the strong topology on ˜M is the
natural topology M .

(B) – Γ (̂V/V) is the set of the restriction of the elements of Γ (˜Xα/Xα) stabilizing ̂V
setwise, these acts strongly continuously by hypothesis (C) on Xα . By Lemma
4.35, the Galois group Γ (̂V/V) acts strongly continuously on ˜V .

– DenoteDU := Dα◦r◦˜φwhich is strongly continuous andnote thatDU |Reg(˜U) is a

(G, X)-morphism.Theholonomyof˜U → ̂U is trivial hence for allγ ∈ Γ (˜U/̂U),
(DU ◦ γ )|Reg(˜U) = DU |Reg(˜U).

By the previous point and strong density of Reg(˜U) we deduce that

∀γ ∈ Γ (˜U/̂U), DV ◦ γ = DV .

– Since ˜U → ̂U is Galoisian, Γ (˜U/̂U) acts transitively on the fibers of �. We can

thus descend DU to an a.e. (G, X)-morphism ̂U
DU ,V,φ−−−−→ X with ̂U endowed

with the strong topology.
Since D|Reg(̂U) = gDU |Reg(̂U) for some g ∈ G, the developing map D|Reg(̂U)

extends to a strongly continuous map on ̂U . Finally, D|Reg( ˜M) extends to an a.e.

(G, X)-morphism for the strong topology on ˜M .
(C) Let γ ∈ Γ ( ˜M/M), for every X A-chart (U,V, φ), it sends connected component ̂U

of p−1(U) to connected component so the local model of such a p(̂U) is the same as
p ◦ γ (̂U). The topology TU on γ (̂U) can then be constructed choosing the maximal

branched covering ˜U γ ◦�−−→ γ (̂U). As a consequence, the strong topology on γ (̂U) is
the image by γ of the strong topology on ̂U . Therefore, γ−1 is strongly continuous.
We deduce that Γ ( ˜M/M) acts strongly continuously on ˜M .

(D) Recall that we applied Lemma 4.35 with R = q−1(Reg(V)) so that

r−1(R) ⊂ Ordq◦r (˜V) ∩ Reg(˜V) = Ordp◦�◦˜φ(˜V) ∩ Reg(˜V)
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and then its image by �◦˜φ is a subset of p−1(Reg(U)) ⊂ ̂U . Since r−1(R) is strongly
portly, its image by the strongly open surjective map � ◦ ˜φ is also strongly portly.
Since p−1(Reg(U))∩ ̂U is weakly open thus strongly open, and since it contains � ◦
˜φ(r−1(R)); then p−1(Reg(U))∩̂U is strongly portly in ̂U . Therefore, p−1(Reg(M))

is locally strongly portly, hence strongly portly.

��

Remark 4.37 Hypothesis (C) for the model spaces is necessary for the proof. Take θ ∈
R+\{0, 2π} and consider E

1,2
θ as a singular model. We may choose as tamifying topology

either the natural one or the tamifying topology T we defined on E
1,2
0 . Indeed, properties

(A),(C) and (D) are purely topological and ˜E
1,2
0 → E

1,2
0 is isomorphic to ˜E

1,2
θ → E

1,2
θ in

Spr. Property (B) is certainly satisfied since E
1,2
θ is tame. We may thus construct a messed

up tamifying topology on ˜E
1,2
θ by taking the topology T ′ generated by the natural one and

the restriction of T to {t > 0}. Since the Galois group acts by ’rotation’ around the ’axis’
{r = 0}, it preserves T ′. However, the automorphism group also contains translations along
the t-axis, which send points from t < 0 to t > 0.

The proof above thus fails at the first step since the induced topology TU,V,φ for Sing(U) 
=
∅ depends on whether V ⊂ {t > 0} or V ⊂ {t > 0} or any other intermediary cases with
(0, 0, 0) ∈ V .

That being said, the author ignores whether one could remove this hypothesis by showing
that from a given tamifying topology, the coarsest topology that makes the developing map
and the automorphisms continuous would still satisfy (A) and (D).

Finally, the following remark, though trivial, is important.

Remark 4.38 Let M be a virtually tamely singular (G, X)-manifold. If M admits an injective

developing map N
D−→ X for some branched covering N → M possibly branched above

Sing(M) then M is isomorphic to Γ (N/M)\D(N ) where

– Γ (N/M) acts on X via the holonomy of D;
– N is endowed with the quotient of a tamifying topology T ;
– D(N ) is endowed with the topology generated by that of X and the images by D of T .

5 An application: uniformization of E
1,2
0 -manifolds

In this section, we present an ’application’ of the theory developed. Our aim is to present
a uniformization result for E

1,2
0 -manifolds eg singular (Isom(E1,2), E

1,2)-manifolds with

singularities modeled on E
1,2
0 . Those manifolds are not tame, but we will show they are

virtually tame. We can thus define Γ ( ˜M/M)-equivariant developing maps on any E
1,2
0 -

manifold, and we wish to apply Remark 4.38 to some reasonable class of E
1,2
0 -manifolds.

We begin with a short introduction to the geometry of Minkowski space is necessary.

5.1 Geometry of Minkowski space

We choose X = E
1,2, the affine space R

3 endowed with cartesian coordinates (t, x, y)

and a quadratic form Q(t, x, y) = −t2 + x2 + y2 of signature (1, 2); together with G =
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O0(1, 2;R) � R
3, the identity component of its group of affine isometry. We will denote

(E1,2,O0(1, 2;R) � R
3)-manifolds by E

1,2-manifolds for simplicity sake.
We choose the point O = (0, 0, 0) ∈ E

1,2 and call it the origin of E
1,2, we have a natural

projection O0(1, 2;R) � R
3

� E
L−→ O0(1, 2;R) we will refer to as linear part. O0(1, 2;R)

acts naturally on the paraboloid model of the hyperbolic plane H := {(t, x, y) ∈ E
1,2 | t >

0, Q(t, x, y) = −1} and O0(1, 2;R) � PSL(2;R). We say that φ ∈ O0(1, 2;R) � R
3 is

parabolic (resp. elliptic, resp. hyperbolic) if the action of its linear part L(φ) onH is parabolic
(resp. elliptic, resp. hyperbolic). A useful characterization is that φ is

– parabolic if φ stabilizes set-wise exactly one lightlike line,
– elliptic if φ stabilizes set-wise exactly one timelike line,
– hyperbolic if φ stabilises set-wise two lightlike lines.

5.2 Causality of Minkowski space

Minkowski space E
1,2 is naturally endowed with two partial order relations induced by strict

orders defined as follows: for any p := (t, x, y), q := (t ′, x ′, y′) we say that p < q (resp.
p  q) if Q(q − p) ≤ 0 (resp. Q(q − p) < 0) and t ′ > t . A non-trivial vector u is lightlike
if Q(u) = 0, causal if Q(u) ≤ 0, timelike if Q(u) < 0 and spacelike if Q(u) > 0. A line
is lightlike (resp. spacelike, resp. timelike) if its direction is lightlike (resp. spacelike, resp.
timelike). The relation < is the causal order, while is the chronological order. A curve is
future causal (resp. chronological) if it is increasing of the order < (resp. ).

One can check that the group G acts by non-decreasing homeomorphisms for both orders,
e.g.:

∀p, q ∈ E
1,2, ∀φ ∈ O0(1, 2;R), p < q ⇒ φ p < φq.

∀p, q ∈ E
1,2, ∀φ ∈ O0(1, 2;R), p  q ⇒ φ p  φq.

5.3 Locally Minkowski manifolds andMess–Bonsante–Barbot theorem

Every E
1,2 -manifold is naturally endowed with two sheaves of pre-order relations inherited

from the order relations of E
1,2. Future causal or chronological curves are curves that are

locally increasing for respective pre-orders (or equivalently, that are increasing in charts).
Properties of these sheaves of pre-order provide a hierarchy of E

1,2-manifolds [44]. Let
M be a E

1,2-manifold.

– M is causal if its induced pre-order ≤ is an order.
– M is globally hyperbolic if there exists a surface Σ ⊂ M such that every future causal

curves intersect Σ exactly once. Such a surface is called a Cauchy surface of M .
– M is globally hyperbolic Cauchy-compact if it admits a compact Cauchy-surface
– M is globally hyperbolic Cauchy-complete if it admits a smooth Cauchy-surface on

which the semi-Riemannian metric of M induces a complete Riemannian metric.

Following notations of [42], for M a E
1,2-manifold and p ∈ M , we denote

J+(p) := {q ∈ M | p ≤ q} J−(p) := {q ∈ M | p ≥ q}
I+(p) := {q ∈ M | p  q} I−(p) := {q ∈ M | p " q}.

Aclassical result ofGeroch [28, 44] implies that aE
1,2-manifolds M is globally hyperbolic

if and only if M is causal and if J+(p) ∩ J−(q) is compact for all p, q ∈ M . Another
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classical result of Choquet-Bruhat and Geroch [18, 45] shows that any globally hyperbolic
E
1,2-manifolds M embeds naturally into a Cauchy-maximal globally hyperbolic extension.

The precise definition of Cauchy-maximality is not relevant for the following except as a
hypothesis; we therefore omit to develop it further.

Following the work of Mess [40], Bendetti and Bonsante [4, 12] and Barbot [2], a uni-
formization of globally hyperbolic Cauchy-maximal Cauchy-complete E

1,2-manifolds is
known. Let M be such a manifold of Cauchy surface Σ . For simplicity’s sake, we restrict
ourselves to Σ of finite type with genus g and s punctures such that 2g − 2 + s > 0. In

this case, there exists a representation π1(Σ)
ρ−−→ O0(1, 2;R) � R

3 whose linear part is
discrete and faithful as well as a ρ-invariant convex domain Ω ⊂ E

1,2 such that M � ρ\Ω
and ˜M � Ω . Furthermore, up to reversing the causal order, there exists a ρ-invariant family
(Δi )i∈I of lightlike lines such that

Ω =
⋂

i∈I

I+(Δi ).

Note that for each i ∈ I , the set I+(Δi ) is an open halfspace of E
1,2.

5.4 Some complements on the BTZmodel

Recall that we introduced the developing map

D :

˜E
1,2
0 −→ E

1,2

(

τ, r,
θ

2π

)

�−→
⎛

⎝

t
x
y

⎞

⎠ =
⎛

⎝

τ + 1
2 rθ

2

τ + 1
2 rθ

2 − r

−rθ

⎞

⎠

(τ, 0, ·) �−→
⎛

⎝

τ

τ

0

⎞

⎠

is continuous for the topology TBT Z generated by the natural topology of˜E1,2
0 and open sets

of the form

Uλ =
{

(τ, r, θ) ∈ ˜E
1,2
0 | rθ2 < λ

}

, λ ∈ R
∗+.

The image of this map is the causal future of a lightlike lineΔ ieD(˜E
1,2
0 ) = J+(Δ). More

precisely, Δ is the line directed by −→u = (1, 1, 0) through the origin of Minkowski space,
D(˜E

1,2
0 ) is then the union of Δ with the open half space of E

1,2 above the plane directed

by −→u ⊥ through the origin. The Galois group Γ := Γ (˜E
1,2
0 /E

1,2
0 ) is isomorphic to Z and

stabilizes point-wise the singular locus; taking γ a generator of Γ (˜E
1,2
0 /E

1,2
0 ), the holonomy

ρ sends γ to φ := ρ(γ ) which thus stabilizes point-wise the image of Sing(E1,2
0,∞) ie Δ.

Since Δ is lightlike, φ is parabolic.
We did not quite prove that E

1,2
0 is virtually tame, let us correct this.

Proposition 5.1 The E
1,2
0 model space is virtually tame.

Proof From the motivational example given in Sect. 4.3.2, the only missing property is that
the induced quotient topology on E

1,2
0 is indeed the natural one.

For any λ > 0, the image of Uλ in E
1,2
0 contains

{

(τ, r, θ) | r < λ
4π2

}

and is thus open.

Therefore, the quotient topology on E
1,2
0 is the natural topology. ��

123



43 Page 46 of 51 Geometriae Dedicata (2024) 218 :43

Proposition 5.2 All E
1,2
0 -manifolds are virtually tame.

Proof By Proposition 5.1, the model space E
1,2
0 is virtually tame. From the motivational

example given in Sect. 4.3.2we have thatAut(˜E1,2
0 ) acts strongly continuously. Topologically,

E
1,2
0 is homeomorphic to R

3 and Sing(E1,2
0 ) is a line. Therefore E

1,2
0 is locally Galoisian.

Theorem 5 thus applies. ��
We now identify the right topology to put on˜E

1,2
0 . To begin with the holonomy is faithful

and that D is injective, therefore the developing map induces a bijective map

D : E1,2
0 −→ Γ \J+(Δ).

using the tamifying topology of E
1,2
0 we deduce that D is continuous.

However, the map D is not open thus not a homeomorphism if the righthand side is
endowed with the quotient topology of the usual topology of J+(Δ). Actually, Γ \J+(Δ) is
not even Hausdorff. The situation is very similar to that of cuspidal singularities viewed as
point on the unit circle in the closure of the discmodel ofH embedded intoR

2. To see that, con-
sider the sequence (τn, rn, θn)n∈N in ˜E

1,2
0 with τn = −1, rn = 1/n and θn =

√
2n. Observe

that D(τn, rn, θn)
n→+∞−−−−→ (0, 0, 0) but that (τn, rn, θn)

n→+∞−−−−→ (−1, 0, 0). Furthermore,

choose some sequence (kn)n∈N such that θn−kn is bounded so thatD(τn, rn, θn−kn)
n→+∞−−−−→

(−1, 0, 0). Since (τn, rn, θn) and (τn, rn, θn−kn) areΓ -conjugate for all alln ∈ N they induce
the same sequence in E

1,2
0 . Its image by D thus has two distincts limits.

To force this map to be a homeomorphism, one has to add to the topology of J+(Δ) the
image by D of neighborhood basis of points in {r = 0} ⊂ ˜E

1,2
0 which leads to the following

definition.

Definition 5.3 (BTZ topology) LetΔ be a lightlike line inE
1,2. The BTZ topology on J+(Δ)

is the topology generated by the one induced by the natural topology ofE
1,2 and open subsets

of the form I+(p)∪]p,+∞[ for p ∈ Δ where ]p,+∞[ denote the relatively open future
half-ray from p.

With this definition we have the following.

Proposition 5.4 If J+(Δ) is endowed with the BTZ topology, then the map D : E
1,2
0 →

Γ \J+(Δ) is an isomorphism of singular E
1,2-manifold.

This last remark will be useful.

Remark 5.5 The tamifying topology TBT Z is generated by TBT Z -open diamond eg the sets
of the form I ntTBT Z

(

J−(p) ∩ J+(q)
)

for p, q ∈ ˜E
1,2
0 .

5.5 Themaximal branched covering ofE
1,2
0 -manifolds

Consider M a E
1,2
0 -manifold, ie a singular E

1,2-manifold whose singular locus is locally

modelled on E
1,2
0 . As notice above, the E

1,2
0 is locally Galoisian so ˜M → M is Galoisian.

And by Proposition 5.2, M is virtually tame
We may add that the singular locus being a 1-submanifold of non trivial holonomy, ˜M is

exactly branched over Sing(M). We summarize this as follow.

Proposition 5.6 Let M be a E
1,2
0 -manifold, then M admits a Galoisian maximal covering

exactly branched above Sing(M) and admits a developing map continuous for the tamifying
topology TBT Z . Furthermore, ˜M is a ˜E

1,2
0 -manifold.
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For simplicity sake, in the rest of the section, “Developing map” of some E
1,2
0 -manifold M

will always refer to the one for the TBT Z -topology.
The goal of this section is to show, similarly to Cauchy-complete Cauchy-maximal

E
1,2-manifolds, that Cauchy-complete Cauchy-maximal E

1,2
0 -manifolds can be realized as

quotients of convex domains of Minkowski space.
Causal notions introduced in the Sect. 5.3 above extend naturally to ˜E

1,2
0 -manifolds and

E
1,2
0 -manifolds. Although, most of the proofs of elementary causal properties for Lorentzian

manifold extend mutatis mutandis to such manifolds, a cautious reader will have to re-
prove most properties from scratch. A proper framework for general topological spacetimes
applying our manifolds of interests can be found in [16] and the author aims at publishing
them.

Definition 5.7 A ˜E
1,2
0 -manifold M is future distinguishing if the map x �→ I+(x) defined

on M is injective.

Definition 5.8 AsingularE1,2-manifold M endowedwith some causal pre-order≤ extending
the one on Reg(M) is causally connected if for all x, y ∈ M such that x ≤ y, there exists a
future causal path from x to y.

The proof of the following two Lemmas are omitted as they fall in the elementary causal
property mentionned above and proving them (though logically necessary) is not particularly
useful for our current exposition.

Lemma 5.9 Globally hyperbolic E
1,2
0 -manifolds and ˜E

1,2
0 -manifolds are future distinguish-

ing.

Lemma 5.10 E
1,2
0 -manifolds and ˜E

1,2
0 -manifolds are causally connected.

Lemma 5.11 Let M be a E
1,2
0 -manifold and let D : ˜M → E

1,2 be a developing map. Then
D is increasing on M eg

∀x, y ∈ M, x < y ⇒ D(x) < D(y).

Proof The restriction of such a map to a chart neighborhood is the restriction of a developing
map of the localmodel space. Since the developingmaps of eachmodel spaces are increasing,
D is locally increasing. Furthermore, since M is connected, it is causally connected therefore
D is increasing. ��
Definition 5.12 A E

1,2
0 -manifold M is future complete if for all x ∈ ˜M

D(J+(x)) = J+(D(x)) and D(I+(x)) = I+(D(x)).

Proposition 5.13 Globally hyperbolic Cauchy-complete E
1,2
0 -manifolds are future complete.

Proof From Theorem 3 of [17] the regular par of M is globally hyperbolic and Cauchy-
complete. Barbot uniformization Theorem [2] then implies future completeness of the regular
part. Finally Lemma 2.4 of [17] implies that the singular locus contains full future BTZ rays.

��
Definition 5.14 A ˜E

1,2
0 -manifold M is future distinguishing if the map x �→ I+(x) defined

on M is injective.
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Lemma 5.15 Let M be a Globally hyperbolic E
1,2
0 -manifolds. Its maximal branched covering

˜M is future distinguishing.

Although, one has to re-prove most causal properties from scratch, the proof of this Lemma
it not different from the proof of the similar statement for Lorentzian manifolds.

Theorem 6 Let M be a globally hyperbolic Cauchy-complete Cauchy-maximal E
1,2
0 -

manifold, let ˜M its maximal covering branched over Sing(M), of developing map and
holonomy (D, ρ). We note Γ := Γ ( ˜M/M) � π1(Reg(M)) its Galois group. Then, up
to time reversal of M:

– D is injective
– ρ is faithful, discrete and torsion-free;
– there exists a Γ -invariant family of relatively open future complete lightlike rays (Δi )i∈I

and a Γ -invariant family of lightlike planes (Π j ) j∈J such that

D( ˜M) =
⋂

i∈I

J+(Δi ) ∪
⋂

j∈I

I+(Π j )

– endowing D( ˜M) with the BTZ topology in the neighborhood of the lightlike rays (Δi )i∈I ,
the developing map induces an isomorphism

M
D−−−→ ρ\D( ˜M)

Proof FromTheorem3 of [17], the regular part of M is globally hyperbolic, Cauchy-maximal
and Cauchy-complete; therefore, by general result of Barbot [2], the restriction D|Reg( ˜M) is
injective, ρ is faithful, discrete and without torsion and

Ω := D(Reg( ˜M)) =
⋂

j∈I

I+(Π j )

for some Γ -invariant family (Π j ) j∈J of lightlike planes. Furthermore, Γ acts totally discon-
tinuously and freely on Ω . Notice that Ω is future complete ie for all x ∈ Ω, J+(x) ⊂ Ω .

Note that from Lemma 5.11, D is increasing. Let x ∈ Sing( ˜M), its stabilizer Γx is
isomorphic to Z and for γ ∈ Γx\{1}, ρ(γ ) is parabolic. Therefore, the set of fix points of Γx

in E
1,2 is a lightlike line Δ. The restriction of D to the connected component Sx of Sing( ˜M)

containing x is increasing with image Δx := D(Sx ) ⊂ Δ. Since Sx is a totally ordered
relatively open future half line, so is its image D(Δx ) ⊂ Δ.

Since Γ does not act freely on Sx , it does not acts freely via ρ on Δ, therefore Δ does not
intersectsΩ . SinceD is TBT Z -continuousD(Δx ) lie in the closure ofΩ henceD(Δx ) ⊂ ∂Ω .
Finally, since J+(D(Δx )) = I+(D(Δx )) ∪D(Δx ) and since M is future complete,

Ω ⊃ D(I+(Sx )) = I+(D(Sx ))

so D( ˜M) has the wanted form.
Let x, y ∈ ˜M such that D(x) = D(y). Since M is future complete, we have

D(I+(x)) = I+(D(x)) = I+(D(y)) = D(I+(y)) ⊂ Ω

and since I+(x) and I+(y) are subsets of Reg(M) and D|Ω|Reg(M) is a bijection we deduce

that I+(x) = I+(y). Since ˜M is globally hyperbolic, it is future distinguishing and x = y.
Finally, D : ˜M → E

1,2 is injective.
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ThemapD|Reg( ˜M) is open since it is a local homeomorphism. The image of a neighborhood

basis of a singular point x ∈ Sing( ˜M) is obtains by considering sets of the form Ip,q :=
Int(J+(p) ∩ J−(q)) with p ∈ J−(x) and q ∈ I+(x). By taking p, q sufficiently close to x ,
such a neighborhood can be chosen in a causally convex in M chart neighborhood U of x .
This way Int(J+(p)∩ J−(q)) = Int(J+U (p)∩ J−U (q)) and the image byD of such a domain
is the exactly (I+(D(p))∪D(]p,+∞[)∩ I−(D(q)) with ]p,+∞[ the future half BTZ ray
from p in ˜M . Therefore, the image of such D(Ip,q) together with the topology induced by
E
1,2 generates the BTZ topology on D( ˜M).
For the BTZ topology on D( ˜M), the map D : ˜M → D( ˜M) is then a Γ -invariant homeo-

morphism and induces a isomorphism of singular E
1,2-manifolds Γ \˜M � ρ\D( ˜M). Since

˜M → M is Galoisian, M � Γ \˜M and M � ρ\D( ˜M). ��
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