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Abstract
Torsion-sensitive intersection homology was introduced to unify several versions of Poincaré
duality for stratified spaces into a single theorem. This unified duality theorem holds with
ground coefficients in an arbitrary PID andwith no local cohomology conditions on the under-
lying space. In this paper we consider for torsion-sensitive intersection homology analogues
of another important property of classical intersection homology: topological invariance. In
other words, we consider to what extent the defining sheaf complexes of the theory are inde-
pendent (up to quasi-isomorphism) of choice of stratification. In addition to providing torsion
sensitive versions of the existing invariance theorems for classical intersection homology, our
techniques provide some new results even in the classical setting.
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1 Introduction

In [10] we introduced categories of torsion-sensitive perverse sheaves (more briefly ts-
perverse sheaves) and studied their duality properties. In the classical category of perverse
sheaves on a stratified pseudomanifold [1], the intermediate extensions of the coefficient
systems are the “Deligne sheaves” whose hypercohomology groups are the intersection
homology groups of Goresky and MacPherson. The primary motivation in [10] was to create
a generalization of theseDeligne sheaves for which the various intersection homology duality
theorems of Goresky–MacPherson [13, 14], Goresky–Siegel [15], and Cappell–Shaneson [4]
all arise as special cases of a single more general duality theorem that incorporates certain
torsion phenomena into the sheaf complexes but does not require the special local coho-
mological conditions on spaces that are needed for some of the original theorems. Indeed,
the ts-Deligne sheaves of [10], which are the intermediate extensions of ts-coefficient sys-
tems, fulfill that goal, and furthermore they can be characterized by a simple set of axioms
generalizing the Deligne sheaf axioms of Goresky and MacPherson.

After providing a generalization of Poincaré duality for singular spaces, the next most
important property of intersection homology is its topological invariance: while the inter-
section homology groups are defined in terms of a stratification of the space, the resulting
intersection homology groups are independent of the choice of stratification, at least assum-
ing certain restrictions on the perversity parameters. In this paper we consider the topological
invariance of the ts-Deligne sheaves up to quasi-isomorphism, including confirming a con-
jecture made in [10]. In addition to extending versions of past topological invariance results
to the torsion sensitive category, our techniques specialize to improve the previous known
results about ordinary intersection homology.

In particular, our main theorem will be the following:

Theorem (Theorem 3.6) Suppose that X and X denote two CS set stratifications of the same
underlying space withX coarsening X. Let E be a ts-coefficient system such thatX is adapted
to E (and hence so is X). Let �p and �p be respective ts-perversities on X and X that are E-
compatible, and let P∗ and P∗ be the respective ts-Deligne sheaves with coefficients E . Then
P∗ is quasi-isomorphic to P

∗.

Here CS sets are a class of stratified space generalizing pseudomanifolds, and so it includes
irreducible algebraic and analytic varieties, and the E-compatibility condition imposes both
growth rate conditions on the perversities in relation to each other as well as conditions on
how they interact with the coefficient system E . While it will take some time below to explain
all of the definitions in detail, we note as a corollary the special case in which our ts-perversity
�p is simply one of the original perversity parameters p̄ of Goresky and MacPherson. In this
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case, our result implies, by a different route, the original topological invariance result for
intersection homology; see [12] for a detailed treatment of just this special case.

Corollary (Goresky–MacPherson [14]) Let X be an n-dimensional topological stratified
pseudomanifold, e.g. a Whitney stratified irreducible complex variety, and let Y be the same
space with a different stratification as a stratified pseudomanifold. Let p̄ be a perversity as
defined by Goresky and MacPherson, i.e. a function p̄ : Z≥2 → Z such that p̄(2) = 0
and p̄(k) ≤ p̄(k + 1) ≤ p̄(k) + 1. Then letting I p̄ H∗ denote the Goresky–MacPherson
intersection homology groups,

I p̄ H∗(X) ∼= I p̄ H∗(Y ).

To explain further, we briefly outline some of the history.

History. The original intersection homology groups of Goresky and MacPherson [14] are
defined on stratified pseudomanifolds and depend on perversity parameters p̄ : Z≥2 → Z

satisfying the original Goresky–MacPherson conditions: p̄(2) = 0 and p̄(k) ≤ p̄(k + 1) ≤
p̄(k)+ 1. If X is an n-dimensional stratified pseudomanifold, so in particular a filtered space
X = Xn ⊃ Xn−2 ⊃ · · · ⊃ X0 with each Xm − Xm−1 an m-manifold (possibly empty), then
the Deligne sheaf is constructed beginning with a local system E on X − Xn−2 and then
performing a sequenceof pushforwards and truncations over strata of increasing codimension.
The perversity value p̄(k) determines the truncation degree following the pushforward to the
codimension k strata. Goresky and MacPherson [14] showed that for a fixed perversity and
local system the resulting sheaves are independent (up to quasi-isomorphism) of the precise
choice of pseudomanifold stratification; a more detailed exposition was provided by Borel
in [2, Section V.4].

King [18] later gave a proof of the topological invariance of intersection homology with-
out using sheaves and requiring only that p̄ be nonnegative as well as the growth condition.
Furthermore, King worked in the broader category of CS sets and allowed strata of codimen-
sion one. However, it should be noted that when p̄ has values such that p̄(k) > k − 2 the
singular chain intersection homology of [18] is not quite the same thing as the sheaf-theoretic
intersection homology of [14]; see [9] for a discussion. In our book on singular chain intersec-
tion homology [11], we call King’s singular chain intersection homology “GM intersection
homology,” while that arising from the Deligne sheaf hypercohomology is called “non-GM
intersection homology.” If p̄(k) ≤ k−2 for all k, as is the case in the original work ofGoresky
and MacPherson [14], then these theories all agree. A sheaf theoretic approach to GM inter-
section homology and its topological invariance can be found in Habegger and Saper [16],
while a singular chain approach to non-GM intersection homology has been developed in [7,
11, 20]. Topological invariance of non-GM intersection homology is considered in [6], where
it is shown that topological invariance holds with p̄(1) > 0 and p̄(k) ≤ p̄(k+1) ≤ p̄(k)+1
so long as all changes to the stratification occur within a fixed choice of n−1 skeleton Xn−1,
but not in general otherwise.

It has since become apparent that it is useful to utilize perversities that depend not just
on codimension but on the strata themselves so that we define p̄ : {singular strata} →
Z (if X is an n-dimensional CS set, the n-dimensional strata are called regular and the
lower dimensional strata are singular). A version of Deligne sheaves suited to such general
perversities is defined in [8], and the corresponding singular chain non-GM intersection
homology is studied in this generality in [11]. Clearly in this generality topological invariance
becomes amore subtle issue. Nonetheless, there are such results, typically comparing just two
stratifications of the same space, X and X, with X refining X (or, equivalently, X coarsening
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Table 1 Types of perversities and resulting topological invariance

Type Definition Conditions Top. invariance

GM perversity Z≥2 → Z p̄(2) = 0 PL IH [13]

p̄(k) ≤ p̄(k + 1) ≤ p̄(k) + 1 Sheaf IH [14]

King perversity Z≥1 → Z p̄(k) ≤ p̄(k + 1) ≤ p̄(k) + 1 Singular IH [18]

Partial for sheaf IH [6]

General perversity {sing. strata} → Z With conditions [5, 24]

ts-perversity {sing. strata} → Z × 2P(R) See Sect. 3

X ). Valette [24] works with piecewise linear intersection homology on piecewise linear
pseudomanifolds and arbitrary perversities p̄ : {singular strata} → N satisfying p̄(S) ≤
codim(S) − 2 for each singular stratum S. He shows, in our notation, that if X refines X and
if their respective perversities p̄ and p̄ satisfy p̄(S) ≤ p̄(S) ≤ p̄(S) + codim(S) − codim(S)

whenever S is a singular stratum of X contained in the singular stratum S of X then the
intersection homology groups agree, i.e. I p̄ H∗(X) ∼= I p̄H∗(X). Note that with Valette’s
assumptions the GM and non-GM intersection homologies automatically agree.

More recently, Chataur et al. [5] consider what they call K ∗-perversities and show that a
K ∗-perversity on a CS set X can be pushed forward to a perversity on the intrinsic coarsest
stratification X∗ and that the two resulting intersection homology groups are isomorphic.
This theorem holds for non-GM intersection homology (which is called “tame intersection
homology” in [5]), and there is also a version for GM-intersection homology with fewer con-
ditions on the perversities. They also show that it is similarly possibly to pull a K ∗-perversity
back to any refinement of X and obtain isomorphic intersection homology groups. Our results
below include the non-GM (tame) intersection homology versions of these theorems as well
as those of Valette as special cases.

Results. We now outline our results, mostly in order of presentation below.Wework through-
out from the sheaf-theoretic point of view, which has the benefit of easily allowing for twisted
coefficient systems and also in that quasi-isomorphism of sheaves implies isomorphism of
the hypercohomology groups with any system of supports. Thus, in particular, our sheaf
quasi-isomorphisms imply isomorphisms of intersection homology groups both with com-
pact supports and with closed supports, the latter corresponding to intersection homology of
locally-finite singular chains [7, 8].

In Sect. 2 we review background material, including definitions of ts-perversities, ts-
coefficient systems, and ts-Deligne sheaves, all of which generalize the standard versions. In
particular, a ts-perversity is a function �p : {singular strata} → Z× 2P(R), where P(R) is the
set of primes (up to unit) of our ground PID R and 2P(R) is its power set. We write �p(S) =
( �p1(S), �p2(S)). Using this additional information about primes, torsion data is incorporated
into the definition of the ts-Deligne sheaf utilizing the “torsion-tipped truncation” functor
constructed in [10] in place of the standard truncation. If �p2(S) = ∅ for all S and the ts-
coefficient system is just a local system in degree 0 then the ts-Deligne sheaf reduces to the
classical Deligne sheaf [8, 14]. Section2.4 discusses some further natural assumptions about
coefficient systems that will be utilized in our broadest topological invariance results.

In Sect. 3 we define what we call E-compatibility between ts-perversities �p and �p on a CS
setX and its refinement X . Here E is a ts-coefficient system common toX and X . This compat-
ibility depends on E only over the regular strata ofX and is necessary to get the compatibility
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started. From there compatibility is essentially a Goresky–MacPherson-type growth condi-
tion, but involving also the torsion information from �p2 and �p2. This compatibility condition
generalizes that of Valette [24], which itself stems from the Goresky–MacPherson growth
condition, by incorporating the torsion information and also allowing �p1(S) > codim(S)−2.
The central result of the paper is Theorem 3.6, which shows that the ts-Deligne sheaves from
E-compatible ts-perversities are quasi-isomorphic. In Sects. 3.1.1 and 3.1.2 we apply Theo-
rem 3.6 to pullback and pushforward perversities, recovering generalizations of the theorems
of Chataur et al. [5]. In particular, we discuss pushforwards to arbitrary coarsenings, not just
the intrinsic coarsening.

In Sect. 3.2 we consider quasi-isomorphisms of ts-Deligne sheaves arising from two
CS set stratifications of a space without the assumption that one refines the other. This
requires restricting ourselves to ts-perversities that depend only on codimension, i.e. functions
�p : Z≥1 → Z × 2P(R), such that �p1 satisfies the Goresky–MacPherson growth condition
and �p2 satisfies certain growth conditions on sets of primes. These ts-perversities are called
constrained or weakly constrained depending on our requirements for the value of �p1(2).
For constrained ts-perversities that are also appropriately compatible with the ts-coefficient
systems E (by a condition relating torsion information about E with �p2(2)), we show in
Theorem 3.23 that any two stratifications yield quasi-isomorphic ts-Deligne sheaves so long
as the closures of their codimension one strata agree. In particular, this theorem holds if one
makes the classical assumption that codimension one strata are forbidden. We also show in
the same theorem that we can weaken the hypotheses to weakly constrained perversities and
no compatibility requirement between �p and E so long as the the two stratifications have the
same regular strata (or, equivalently, the same codimension one skeleta). These two results
generalize the classical Goresky–MacPherson topological invariance in [14] and that for
“superperversities” in [6]. The key idea is to apply Theorem 3.6 using appropriate common
coarsenings of the two stratifications. Such intrinsic stratifications, relative to coefficient
systems and fixed subspaces, are constructed in Sect. 6, generalizing those in [16, 18].

Section 4 concerns the extent to which the conditions for E-compatibility between ts-
perversities are necessary in order to obtain quasi-isomorphic ts-Deligne sheaves. We show
that the conditions on singular strata of X contained in regular strata of the coarsening X are
strictly necessary: if they fail for any stratum the sheaves cannot be quasi-isomorphic. By
contrast, the conditions on singular strata of X contained in singular strata of the coarsening
X are only “necessary in general,” meaning that we can construct examples in which failure
of the conditions implies failure of quasi-isomorphism. However, these conditions may not
be necessary in special cases, for example if certain stalk cohomology groups vanish due to
the specific topology of some space; see Sect. 4.3 for further details. One of our main tools
in this section will be a formula for computing the ts-Deligne sheaf hypercohomology for
a join Sk ∗ X in terms of the ts-Deligne sheaf hypercohomology of X ; see Corollary 4.6.
This formula is obtained by first computing the hypercohomology for the suspension �X in
Proposition 4.4, which is illuminating in its own right, and then making a nice application of
Theorem 3.6 to the iterated suspension.

The original Goresky–MacPherson proof of topological invariance involved support and
“cosupport” axioms concerning the dimensions on which Hi ( f ∗

x P∗) and Hi ( f !
xP∗) may

fail to vanish, P∗ being the Deligne sheaf and fx the inclusion of the point x into X . Our
arguments to this point do not involve these axioms and so are fundamentally different from
those in [14]. In Sect. 5 we develop versions of these support and cosupport axioms for
ts-Deligne sheaves with strongly or weakly constrained ts-perversities. Strongly constrained
ts-perversities require �p1(2) = 0 while simply “constrained” is a bit weaker; the stronger
constraint in this section is not strictly necessary but simplifies the discussion. In the strongly

123



105 Page 6 of 43 Geometriae Dedicata (2023) 217 :105

constrained case we provide criteria to recognize ts-Deligne sheaves without reference to any
specific stratification, leading to Theorem 5.10, a statement of topological invariance more
analogous to the original Goresky–MacPherson invariance theorem of [14, Uniqueness The-
orem] or [2, Theorem 4.15]. The weakly constrained version, Theorem 5.14, again requires
a fixed choice of the regular strata and is more analogous to the main theorem of [6].

Lastly, Sect. 6 concerns the details about relative intrinsic stratifications.

Remarks When �p2(S) = ∅ for all S and E is a local system concentrated in degree 0, our
ts-Deligne sheaves reduce to the Deligne sheaves of [8, 14]. With this assumption, many,
though not all, of our results reduce to some previously-known theorems, as outlined above.
However, we believe that even in these cases our proofs are quite different, as our main
invariance results in Sect. 3 do not require analogues of the Goresky–MacPherson support
and cosupport axioms. For the reader interested only in the classical Deligne sheaves and
Goresky–MacPherson perversities, we have extracted a simplified version of this new argu-
ment and presented it in [12] together with a very short second proof of the topological
invariance of classical intersection homology that does use support and cosupport axioms.

More generally, some of the assumptions below simplify whenever E is just a globally
defined local system of free modules, and we attempt to provide some flags in the exposition
to help the reader primarily interested in that case.

We thank Jörg Schürmann for pointing out some very helpful references and Scott Nollet
for many useful conversations. We also thank David Chataur, Martin Saralegi-Aranguren,
and Daniel Tanré for both ongoing stimulating mathematical discussion and their generous
hospitality. Finally, we thank the anonymous referee for suggesting several improvements to
the exposition.

2 Definitions and background

2.1 Spaces

Our spaces will be paracompact dimensionally homogeneous CS sets, whose precise defini-
tion we recall below. CS sets include topological and piecewise linear pseudomanifolds. In
fact, we have the hierarchy

{PL pseudomanifolds} ⊂ {topological pseudomanifolds} ⊂ {CS sets}.
The primary difference between CS sets and topological stratified pseudomanifolds, given
our additional dimensional homogeneity condition, is that the links of points of pseudoman-
ifolds must themselves be stratified pseudomanifolds, while the links of points in CS sets
need only be compact filtered spaces. PL pseudomanifolds are defined just as topological
pseudomanifolds are with the added condition that all spaces and maps describing local con-
ditions must be piecewise linear. Classical PL pseudomanifolds, which are those simplicial
complexes consisting exclusively of n-simplices such that each n− 1 face of each n-simplex
is glued to exactly one n − 1 face of another n-simplex, are a special case. All irreducible
complex algebraic and analytic varieties can be given stratifications that realize them as PL
pseudomanifolds; this is also true of real varieties that possess a dense manifold subset. Con-
nected orbit spaces of manifolds under smooth actions of compact Lie groups are also PL
pseudomanifolds. For more details and an overview of all these spaces, see [11, Chapter 2].

We choose to work with CS sets both for their added generality but also because one of
our key tools will be intrinsic stratification and the intrinsic stratification of a CS set is also
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a CS set. Goresky and MacPherson [14] construct “canonical p̄-filtrations” for topological
pseudomanifolds, but, in addition to depending on the choice of perversity, the resulting filtra-
tions do not necessarily give the space the structure of a stratified pseudomanifold. So, while
Goresky–MacPherson [14] and Borel [2] treat topological pseudomanifolds as the primary
objects, we follow King [18] by working in the even more general but self-contained class
of CS sets. The class of PL pseudomanifolds is also preserved on passing to intrinsic stratifi-
cations (see [11, Corollary 2.10.19.]), but we note that topological pseudomanifolds include
such important non-PL examples as suspensions of topological manifolds and topological
manifolds stratified by the inclusion of locally-flat, but not PL, embedded submanifolds.
This includes, for example, locally flat topological knots in high dimensions. Moreover, as
our fundamental language is sheaf theory, the added generality of CS sets does not much
increase the difficulty of our results, and in some cases this choice provides simplifications.
For example, we don’t at any point need to take care about PL structures.

We now recall the definition of CS sets due to Siebenmann [22, 23]. An n-dimensional
CS set X is a Hausdorff space equipped with a filtration

X = Xn ⊃ Xn−1 ⊃ · · · X0 ⊃ X−1 = ∅
such that Xk := Xk − Xk−1 is a k-manifold (possibly empty) and for x ∈ Xk there is an open
neighborhood U of x in Xk , an open neighborhood N of x in X , a compact filtered space
L (which may be empty), and, letting cL denote the open cone on L , a homeomorphism
h : U × cL → N such that h(U × c(L j )) = Xk+ j+1 ∩ N for all j . The space L is called
a link of x , and N is called a distinguished neighborhood of x . Note that if L = ∅ then
cL = (cL)0 is a point. Dimensional homogeneity means that we assume X − Xn−1 is dense.
Such spaces are locally compact [11, Lemma 2.3.15], metrizable [5, Proposition 1.11], and
of finite cohomological dimension ([11, Lemma 6.3.46] and [3, Theorem II.16.8]). See [11,
Section 2.3] for more details about CS sets in general. All CS sets in this paper will be
assumed paracompact and dimensionally homogeneous without further mention. We also
assume X is n-dimensional unless specified otherwise.

Following Borel [2, Section V.2], we let Uk = X − Xn−k , and noting that Uk+1 is the
disjoint union of Uk and Xn−k , we also take ik : Uk ↪→ Uk+1 and jk : Xn−k ↪→ Uk+1. For
any x ∈ X , we write fx : {x} ↪→ X . The connected components of Xk are the k-dimensional
strata. Strata in Xn = Xn − Xn−1 are regular strata and strata in Xk for k ≤ n − 1 are
singular strata. Note that strata may have codimension one, which is sometimes forbidden
in other contexts.

We often abuse notation and use X to refer both to the underlying space and to the space
equipped with the stratification; when we wish to emphasize the underlying space or do not
yet want to specify the stratification we also write |X |. If X and X are two stratifications
of the same space |X |, we say that X coarsens X , or that X is a refinement of X, if each
stratum of X is a union of strata of X . Our standard notation will be X for a CS set and X

for a coarsening of X . We will use X for the intrinsic stratifications constructed in Sect. 6. If
we wish to speak of the same space with two a priori unrelated stratifications, we write the
stratificationsX andY; if we construct a common coarsening ofX andY , we will sometimes
call that Z.

2.2 Algebra

Algebraically, we fix a PID R as our ground ring throughout, and we let P(R) be the set of
primes of R up to unit. This means that the elements of P(R) are technically equivalence
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classes such that p ∼ q if p = uq for some unit u, though we will abuse notation by letting
a prime stand for its equivalence class; cf. [10, Section 2]. The following is Definition 2.1 of
[10].

Definition 2.1 If A is a finitely-generated R-module and℘ ⊂ P(R), we define the℘-torsion
submodule of A to be

T℘ A =
{
x ∈ A | nx = 0 for some product n =

s∏
i=1

pmi
i such that pi ∈ ℘ and mi , s ∈ Z≥0

}
,

i.e. T℘ A is the submodule annihilated by products of powers of primes in ℘. If T℘ A = A,
we say that A is ℘-torsion. If T℘ A = 0, we say that A is ℘-torsion free.We take the empty
product to be 1, so in particular if ℘ = ∅ then T℘ A = 0 and every A is ∅-torsion free. If
p ∈ P(R) is a single element, we abuse notation and write T pA instead of T {p}A.

2.3 ts-Deligne sheaves

We now recall some material from [10], leading to the definition of ts-Deligne sheaves.
All sheaves are sheaves of R-modules, and we think of ourselves as working in the derived
category so that∼= denotes quasi-isomorphism. If S∗ is a sheaf complex, thenHi (S∗) denotes
the derived cohomology sheaf and Hi (X;S∗) denotes hypercohomology.

We begin with ts-perversities [10, Definitions 4.1 and 4.18]:

Definition 2.2 For a PID R, let P(R) be the set of primes of R (up to unit), and let 2P(R)

be its power set. A torsion-sensitive perversity (or simply ts-perversity) on a CS set X is a
function �p : {singular strata of X} → Z × 2P(R). We denote the components of �p(S) by
�p(S) = ( �p1(S), �p2(S)).

The complementary ts-perversity, or dual ts-perversity, D �p is defined by D �p(S) =
(codim(S) − 2 − �p1(S), P(R) − �p2(S)), i.e. the first component is the complementary
perversity to p̄ in the Goresky–MacPherson sense and the second component is the set of
primes in R complementary to �p2(S).

We also recall the notion of a ℘-coefficient system, slightly generalizing [10, Defini-
tion 4.2]. On a pseudomanifold, these are the objects in the heart of the natural t-structures
℘D♥ constructed in [10, Definition 5.1]. We give an explicit description here.

Definition 2.3 Let ℘ ⊂ P(R) be a set of primes of the PID R. We will call a complex of
sheaves1 E on a space M a ℘-coefficient system if

1. H1(E) is a locally constant sheaf of finitely generated ℘-torsion modules,
2. H0(E) is a locally constant sheaf of finitely generated ℘-torsion free modules, and
3. Hi (E) = 0 for i �= 0, 1.

More generally, if M is a disjoint union of spaces, we call E a ts-coefficient system if it
restricts on each component of M to a ℘-coefficient system for some ℘ (which may vary by
component).

Suppose X is a CS set and E is a ts-coefficient system defined over a subset U ⊂ X . We
call U the domain of E , denoted by Dom(E). We say that the stratification of X is adapted
to E if X − Xn−1 ⊂ Dom(E), i.e. if E is defined on (at least) the regular strata of X ; cf.
[2, Section V.4.12]. Of course this is automatically satisfied if E is defined on all of X , for
example if E is a local system on X .

1 Even though E is a complex of sheaves, we do not write E∗ in order to emphasize the role of E as coefficients.
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Remark 2.4 As noted in [2, Remark V.4.14.c], even if we restrict our coefficients to local
systems concentrated in a single degree and defined on dense open submanifolds of pseudo-
manifolds, there can exist E for which there does not exist a CS set stratification adapted to
E . For example, define E to be the local system on R

2 − (0, 0) ∪ {(1/n, 0)|n ∈ Z≥1} with
stalk Z and nontrivial monodromy on a small loop around each (1/n, 0).

Given a ts-perversity �p and a ts-coefficient system E to which X is adapted, the associated
ts-Deligne sheaf is defined for pseudomanifolds in [10, Definition 4.4] and shown there for
pseudomanifolds to be an intermediate extension of E with respect to a certain t-structure
[10, Proposition 5.12]. The construction holds as well for CS sets, and the ts-Deligne sheaf
P∗
X , �p,E , often written simply as P∗, is defined as

P∗
X , �p,E = t

X0
≤ �p Rin∗ . . . t

Xn−1
≤ �p Ri1∗E .

Here each tXk
≤ �p is a locally torsion-tipped truncation functor as defined in [10, Section 3]. We

refer the reader there for more details but note that for S∗ defined on Uk+1 we have

1.
(
t
Xn−k
≤ �p S∗

)
x

= S∗
x if x ∈ Uk ,

2. if x ∈ S ⊂ Sn−k for a singular stratum S then

Hi
((

t
Xn−k
≤ �p S∗)

x

) ∼=

⎧⎪⎨
⎪⎩
0, i > �p1(S) + 1,

T �p2(S)Hi (S∗
x ), i = �p1(S) + 1,

Hi (S∗
x ), i ≤ �p1(S).

If E is a local system (i.e. a locally constant sheaf of finitely generated R-modules)
concentrated in degree 0, if �p1 satisfies the Goresky–MacPherson conditions, and if �p2(S) =
∅ for all S, then this is just the classical Deligne sheaf of Goresky and MacPherson from
[14].

As for the traditional Deligne sheaves, the critical feature of the ts-Deligne sheaves is the
“cone formula.” As we will prove below in Lemma 4.2, if x is a point of a CS set with a
neighborhood of the form R

k × cL and if S is the stratum containing the cone points, then

Hi (P∗
x )

∼=

⎧⎪⎨
⎪⎩
0, i > �p1(S) + 1,

T �p2(S)
H

i (L;P∗|L), i = �p1(S) + 1,

H
i (L;P∗|L), i ≤ �p1(S).

We use this below to compute the hypercohomology of a suspension in Proposition 4.4.
Analogously to the Goresky–MacPherson Deligne sheaves, the ts-Deligne sheaves can be

characterized by axioms. Here is the first set of axioms from [10, Definition 4.7], generalized
for CS sets. We write S ∗

k for S ∗|Uk .

Definition 2.5 Let X be an n-dimensional CS set, and let E be a ts-coefficient system onU1.
We say that the sheaf complex S ∗ on X satisfies the Axioms TAx1(X , �p, E) if

a. S ∗ is quasi-isomorphic to a complex that is bounded and that is 0 in negative degrees;
b. S ∗|U1

∼= E|U1 ;
c. if x ∈ S ⊂ Xn−k , where S is a singular stratum, then Hi (Sx ) = 0 for i > �p1(S) + 1

and H �p1(S)+1(Sx ) is �p2(S)-torsion;
d. if x ∈ S ⊂ Xn−k , where S is a singular stratum, then the attachment map

αk : Sk+1 → Rik∗Sk induces stalkwise cohomology isomorphisms at x in degrees
≤ �p1(S) and it induces stalkwise cohomology isomorphisms H �p1(S)+1(Sk+1,x ) →
T �p2(S)H �p1(S)+1((Rik∗Sk)x ).
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Theorem4.8 of [10],which alsoworks forCS sets, shows that the ts-Deligne sheaf complex
P∗
X , �p,E satisfies the axioms TAx1(X , �p, E), and conversely any sheaf complex satisfying

TAx1(X , �p, E) is quasi-isomorphic to P∗
X , �p,E . It is also observed in [10, Theorem 4.10] that

these sheaf complexes are X -clc, meaning that each sheaf Hi (P∗) is locally constant on
each stratum. This also continues to hold for CS sets, which have the property that if j is
any inclusion of a locally closed subset that is a union of strata then j∗, j !, j!, and Rj∗ all
preserve constructibility by [21, Proposition 4.0.2.3] (see also [21, Proposition 4.2.1.2.b]).

As in [2, 10, 14], we can reformulate some of these axioms.

Definition 2.6 We say S ∗ satisfies the Axioms TAx1’(X , �p, E) if

a. S ∗ is X -clc and it is quasi-isomorphic to a complex that is bounded and that is 0 in
negative degrees;

b. S ∗|U1
∼= E|U1 ;

c. if x ∈ S ⊂ Xn−k , where S is a singular stratum, then Hi (S ∗
x ) = 0 for i > �p1(S) + 1

and H �p1(S)+1(S ∗
x ) is �p2(S)-torsion;

d. if x ∈ S ⊂ Xn−k , where S is a singular stratum, and fx : x ↪→ X is the inclusion, then
(a) Hi ( f !

xS ) = 0 for i ≤ �p1(S) + n − k + 1
(b) H �p1(S)+n−k+2( f !

xS ) is �p2(S)-torsion free.

The following theorem is a slight generalization of [10, Theorem 4.13]:

Theorem 2.7 On a CS set, the axioms TAx1’(X , �p, E) are equivalent to the axioms
TAx1(X , �p, E) and so any sheaf complex satisfying TAx1’(X , �p, E) is quasi-isomorphic to
P∗
X , �p,E .
The proof is the same as that of [10, Theorem 4.13], replacing the theorems about

constructibility invoked fromBorel (e.g. [2, LemmaV.3.10.d]) with Schürmann’s [21, Propo-
sition 4.0.2.3].

2.4 Maximal ts-coefficient systems

Many of our theorems below compare ts-Deligne sheaves on two stratifications of a single CS
set, one coarsening another. For this it suffices to have a ts-coefficient system E defined on the
regular strata of the coarser of the two stratifications for then it restricts also to a ts-coefficient
system on the regular strata of the finer stratification. However, we will also be interested
in theorems concerning arbitrary stratifications, and in these cases we will need to construct
common coarsenings that remain adapted to E . The full details will be provided in Sect. 6,
though we discuss here some notions about coefficient systems that will be necessary at that
point as these will also be needed in some of our earlier theorem statements. In particular, to
construct these common coarsenings we will need to make some minor assumptions about
the domains of our ts-coefficient systems.

To motivate our restrictions, we recall that for classical intersection homology theory on
a stratified pseudomanifold X it is observed by Borel [2, Section V.4] that if E is a local
system (i.e. a locally constant sheaf of finitely-generated R-modules) defined on a dense
open submanifold of X whose complement has codimension ≥ 2 then there is a unique
largest submanifold of X to which E can be extended uniquely2 up to isomorphism [2,

2 This is no longer true if the local system is only defined on a dense open set whose complement has
codimension 1. For example let X = S1 with stratification S1 ⊃ {pt}. Suppose E is the constant sheaf with
stalk Z on S1 − {pt}. Then there are two non-isomorphic extensions of E to S1, namely the constant sheaf
with stalk Z and the twisted sheaf with stalks Z such that a generator of π1(S

1) acts by multiplication by −1.
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Lemma V.4.11] (though this submanifold may not necessarily be the largest n-dimensional
manifold contained in X due to monodromy). Since it is not clear that such a statement holds
for the more general ts-coefficient systems, we instead build a maximality assumption into
our coefficients when necessary. Since local systems have unique such maximal extensions,
we can convince ourselves that we therefore do not lose much generality. Alternatively, if
we limit ourselves to E composed of local systems, then Proposition 2.9 below shows that
maximality can be guaranteed.

Definition 2.8 Let X be an n-dimensional CS set. We will call a sheaf complex E on X a
maximal ts-coefficient system if

1. Dom(E) includes an open n-dimensional submanifold UE of X whose complement has
codimension ≥ 2,

2. E is a ts-coefficient system over UE (see Definition 2.3), and
3. there is no larger submanifold of X to which E extends as a ts-coefficient system.

Clearly ts-coefficient systems composed of constant sheaves defined on all of X are max-
imal. The following lemma shows that ts-coefficient systems composed of locally constant
sheaves (on open submanifolds of codimension at least 2) can be made maximal.

Proposition 2.9 Suppose E is a ts-coefficient system defined on an open dense submanifold
whose complement has codimension at least 2. If E is bounded (i.e. E i = 0 for sufficiently
large |i |) and each E i is a local system (a locally constant sheaf of finitely-generated R-
modules), then E has a maximal extension that is unique up to isomorphism. Furthermore, if
X is adapted to E then X remains adapted to the extension.

Proof By assumption, each E i is defined on an open dense submanifold U ⊂ X whose
complement has codimension at least 2, and so by [2, Lemma V.4.11] each E i has a unique
(up to isomorphism) extension Ẽ i to amaximal open subsetUi . LetW = ∩iUi , which remains
open and dense since all but finitely many of the Ui will be the largest open submanifold of
X . SinceU ⊂ Ui , we also haveU ⊂ W , and we let Ē i = Ẽ i |W . Also by [2, Lemma V.4.11],
each boundary map E i → E i+1 extends uniquely to a map Ē i → Ē i+1. This gives us a unique
(up to isomorphisms) complex Ē∗ on W that cannot be extended to a larger submanifold of
X .

The last statement of the lemma is trivial. ��
Another nice property of local systems is that if E is a maximal local system, X is adapted

to E with no codimension one strata, and UE is the maximal submanifold over which E is
defined, then UE is a union of strata of X . This is shown at the bottom of [2, p. 92]. We
will also need a property like this to define our common coarsenings, which motivates the
following definition. Once again we will then show that this condition is automatic when E
consists of local systems and there are no codimension one strata.

Definition 2.10 Suppose E is a maximal ts-coefficient system on X and thatUE is the largest
open submanifold on which E is defined. We say that the stratification of X is fully adapted
to E if

1. X − Xn−1 ⊂ UE , and
2. UE is a union of strata of X .

Proposition 2.11 Suppose E is a maximal ts-coefficient system on X such that each E i is a
local system. If X has no codimension one strata and is adapted to E then it is fully adapted.
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Proof The proof is essentially the same as the argument on [2, p. 92]: We will proceed by
contradiction. Let S be a stratum of X of minimal codimension so that S intersectsUE but is
not contained in it. Since X is adapted to E we must have codim(S) ≥ 1. Suppose x ∈ S has
a distinguished neighborhood N ∼= B × cL such that there is some point y ∈ B × {v} (with
v the cone vertex) such that y ∈ UE . We claim that then x ∈ UE .

First, since x and y are in the same stratum of X and as y must have a Euclidean
neighborhood in X (since y ∈ UE ), [11, Lemma 2.10.4] implies that x also has a
Euclidean neighborhood; thus both x and y (and similarly all points of B × {v}) are con-
tained in the maximal submanifold of X . Furthermore, by assumption UE must contain
N − (N ∩ S) = B× (cL −{v}), and if π : B×cL → cL is the projection then π∗(E|{y}×cL)

is a local system on N whose restriction to N − S is isomorphic to E|N−S . Since extension
of local systems is unique when there are no codimension one strata by [2, Lemma V.4.11],
π∗(E|{y}×cL) must agree with E where they overlap, and so we must have N ⊂ UE or else
the maximality of UE would be contradicted.

Now, since UE is open in X , we have UE ∩ S open in S. The above argument shows that
if x is in the closure of UE ∩ S in S then x ∈ UE ∩ S. So UE ∩ S is open and closed in the
connected set S and is thus all of S. ��

The preceding proposition can fail if there are codimension one strata:

Example 2.12 Let E be the local system onR2−{0}withZ stalks and nontrivial monodromy
around the origin. Let X = R

2 filtered as R2 ⊃ x-axis. Then E is maximal and X is adapted
to E , but it is not fully adapted, though it can be refined to be so.

As a more dramatic example, consider the example from Remark 2.4 of a maximal local
system E that is defined on the complement inR2 of (0, 0)∪{(0, 1/n)|n ∈ Z≥1}. If we again
filter X = R

2 as R2 ⊃ x-axis then again X is adapted to E , but there is no fully adapted
refinement.

3 Topological invariance

In this section we prove our main topological invariance theorems. These are mostly suffi-
ciency statements, demonstrating that if certain conditions hold between different perversities
on different stratifications of the same space, aswell as certain relations between the perversity
on the more refined stratification and the ts-coefficient system, then the two corresponding
ts-Deligne sheaves are quasi-isomorphic. We consider necessity in Sect. 4.

The following definition establishes our main criteria for comparison of ts-Deligne
sheaves. The first set of conditions is in a sense more important, as the second set is sat-
isfied automatically for sufficiently simple coefficient systems—see Remark 3.2.

Definition 3.1 Suppose that X andX denote two CS set stratifications of the same underlying
space with X coarsening X . Let �p and �p be respective ts-perversities on X and X, and let
E be a ts-coefficient system to which X (and hence also X ) is adapted. We will say that �p
and �p are E-compatible ts-perversities if the following conditions hold whenever a singular
stratum S of X is contained in a (singular or regular) stratum S of X:

1. If S is singular then �p1(S) ≤ �p1(S) ≤ �p1(S) + codim(S) − codim(S), and furthermore
(a) if �p1(S) = �p1(S) then �p2(S) ⊃ �p2(S),
(b) if �p1(S) = �p1(S) + codim(S) − codim(S), then �p2(S) ⊂ �p2(S).

2. If S is regular then −1 ≤ �p1(S) ≤ codim(S) − 1, and furthermore
(a) if �p1(S) = −1 then H1(Ex ) = 0 and H0(Ex ) is �p2(S)-torsion for all x ∈ S,
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(b) if �p1(S) = 0 then H1(Ex ) is �p2(S)-torsion for all x ∈ S,
(c) if �p1(S) = codim(S) − 2 then H0(Ex ) is �p2(S)-torsion free for all x ∈ S,
(d) if �p1(S) = codim(S) − 1 then H0(Ex ) = 0 and H1(Ex ) is �p2(S)-torsion free for all

x ∈ S.

Remark 3.2 If 0 ≤ �p1(S) ≤ codim(S) − 2 for all S and E is a globally defined local system
of free modules concentrated in degree 0, then all of condition 2 holds automatically.

Remark 3.3 Since E is clc on the regular strata by assumption, the torsion conditions of
property 2 hold for all x ∈ S if and only if they hold for some x ∈ S.

Remark 3.4 Wenotice that ifS is singular then compatibility as just defined places no absolute
constraints on the values of �p(S) and �p(S) but only relative constraints on how these must
relate to each other. By contrast, if S is regular then there are absolute constraints on the
values of �p1(S) and also, for the extreme values of �p1(S), constraints on how �p2(S) relates
to E . We will see such a dichotomy throughout. One consequence is that these conditions
forbid any codimension one stratum of X being contained in a regular stratum of X (unless
E is trivial on that regular stratum) as this would require either �p1(S) = −1 = codim(S)− 2
or �p1(S) = 0 = codim(S) − 1, and in either case the combined torsion assumptions imply
each H∗(Ex ) = 0 so that E is trivial.

Remark 3.5 One situation in which the conditions of Definition 3.1 are not necessary for
topological invariance is when perversity values are so extreme that their specific values
become irrelevant. For example, if �p1(S) < −1 then P∗

x = 0 for any x ∈ S regardless of the
actual value of �p(S). At the other extreme, [10, Theorem 4.15] implies that if X is a stratified
pseudomanifold, P∗ a ts-Deligne sheaf on X , and x ∈ Xn−k then Hi (P∗

x ) = 0 for i > k.
The main technical tool in the proof of that theorem is [10, Lemma 4.14], but the argument
for this lemma applies to any manifold stratified space (cf. [2, Lemma V.9.5]). The proof of
[10, Theorem 4.15] therefore generalizes to CS sets, using Lemma 4.1 below in the argument
instead of the citation to [2, Lemma V.3.8.b]. Consequently, if �p1(S) ≥ k then again the
specific values don’t matter. Therefore, for the purposes of Theorem 3.6 we could add to the
conditions of Definition 3.1 the possibility that if S ⊂ S then either both �p1(S) and �p1(S)

are < −1 or that they are both sufficiently large. However, rather than complicate Definition
3.1 even further, when considering the necessity of the conditions it is reasonable to assume
that the ts-perversities are efficient, i.e. that −1 ≤ �p1(S) ≤ codim(S) for all singular strata
S. If �p is not efficient, it can always be replaced by a ts-perversity that is efficient without
altering P∗. In any case, Theorem 3.6 does not require such assumptions.

We now come to the main theorem of the paper, which will be the basis for the results in
the rest of Sect. 3.

Theorem 3.6 Suppose that X andX denote two CS set stratifications of the same underlying
space with X coarsening X. Let E be a ts-coefficient system such that X is adapted to E (and
hence so is X). Let �p and �p be respective ts-perversities on X and X that are E-compatible,
and let P∗ and P

∗ be the respective ts-Deligne sheaves with coefficients E . Then P∗ is
quasi-isomorphic to P∗.

Proof By Theorem 2.7,P∗ is characterized uniquely up to quasi-isomorphism by the axioms
TAx1’(X , �p, E). Therefore, to prove the proposition, it is sufficient to show that P∗ also
satisfies these axioms. We will use that P∗ already satisfies the axioms TAx1’(X, �p, E).
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Axiom a. Since P∗ is X-clc, it is also X -clc since X refines X. Furthermore, P∗ is 0 for
∗ < 0 by construction, and the cohomology is nontrivial in a finite range of degrees by
Axioms b and c, which we verify below, and by the definition of ts-coefficient systems.

Axiom b. We know P
∗|X−Xn−1 ∼= E|X−Xn−1 , but X − Xn−1 ⊂ X − X

n−1 by assumption,
so also P

∗|X−Xn−1 ∼= E|X−Xn−1 .
Axiom c. Suppose x ∈ S ⊂ Xn−k for k ≥ 1. We must show that Hi (P∗

x ) = 0 for
i > �p1(S) + 1 and that H �p1(S)+1(P∗

x ) is �p2(S)-torsion.
First suppose that x is contained in a regular stratum of X. Then P

∗
x

∼= Ex , so Hi (P∗
x )

∼=
Hi (Ex ). We recall that Hi (Ex ) is automatically 0 if i �= 0, 1 and that −1 ≤ �p1(S) ≤
codim(S) − 1 by the compatibility assumption. If �p1(S) ≥ 1, then �p1(S) + 1 ≥ 2 and
Hi (Ex ) = 0 for i ≥ �p1(S) + 1. If �p1(S) = 0 then Hi (Ex ) = 0 for i > �p1(S) + 1 = 1 while
H �p1(S)+1(Ex ) = H1(Ex ) is �p2(S)-torsion in this case by the E-compatibility assumptions.
Finally, if �p1(S) = −1, the compatibility assumptions imply that H1(Ex ) = 0, and so
Hi (Ex ) = 0 for i > 0, while H0(Ex ) is �p2(S)-torsion.3

Now suppose that x is contained in the singular stratumS ofX. Thenwe know Hi (P∗
x ) = 0

for i > �p1(S)+1 and H �p(S)+1(P∗
x ) is �p2(S)-torsion. But by assumption �p1(S) ≤ �p1(S), and

if �p1(S) = �p1(S) then �p2(S) ⊂ �p2(S). It follows thatP∗ satisfiesAxiomcofTAx1’(X , �p, E).
Axiom d. Again suppose x ∈ S ⊂ Xn−k for k ≥ 1, and let fx : {x} ↪→ X be the inclusion.

We must show that Hi ( f !
xP

∗) = 0 for i ≤ �p1(S) + n − k + 1 and that it is �p2(S)-torsion
free when i = �p1(S) + n − k + 2.

Once again we first suppose that x is contained in a regular stratum of X. Then we
have f !

xP
∗ ∼= f ∗

x P
∗[−n] ∼= Ex [−n] by [2, Proposition V.3.7.b] and by assumption, and so

Hi ( f !
xP

∗) ∼= Hi (Ex [−n]) ∼= Hi−n(Ex ). So wemust show H j (Ex ) is 0 for j ≤ �p1(S)−k+1
and that it is �p2(S)-torsion freewhen j = �p1(S)−k+2.Recall thatH j (Ex ) = 0 automatically
for j �= 0, 1. Now, as �p and �p are E-compatible, we have that �p1(S) ≤ codim(S)−1 = k−1.
If �p1(S) ≤ k − 3 then �p1(S) − k + 2 ≤ −1 and so H j (Ex ) = 0 for j ≤ �p1(S) − k + 2. If
�p1(S) = k − 2, then �p1(S) − k + 2 = 0 so similarly H j (Ex ) = 0 for j < �p1(S) − k + 2
while H �p1(S)−k+2(Ex ) = H0(Ex ) is �p2(S)-torsion free in this case by the compatibility
assumptions. Finally, if �p1(S) = k − 1 so that �p1(S) − k + 2 = 1, we have that H0(Ex ) = 0
and H1(Ex ) is �p2(S)-torsion free again by the compatibility conditions.4

Next we suppose that x ∈ S ⊂ Xn−k and that S ⊂ S for S ⊂ Xn−� a singular stratum
of X. Let U ∼= R

n−� × cL be a distinguished neighborhood of x in the X stratification. By
abuse of notation, we can identify U with R

n−� × cL , letting P
∗ also denote its pullback to

this product neighborhood, which remains X-clc. Let x = (y, v) with fy : {y} ↪→ R
n−� and

fv : {v} ↪→ cL the vertex inclusion. Let π1 : Rn−�×cL → R
n−� and π2 : Rn−�×cL → cL

be the projections, and let s : cL ↪→ {y} × cL be the inclusion. By [17, Proposition 2.7.8]
(letting the Yn there be close balls in R

n−�), we have P∗ ∼= π∗
2 Rπ2∗P∗. Let RA denote the

constant sheaf on the space A with stalks in our ground ring R. Then

P
∗ ∼= RRn−�×cL

L⊗ P
∗ ∼= π∗

1RRn−�

L⊗ π∗
2 Rπ2∗P∗.

By [2, Remark V.10.20.c], whose hypotheses are satisfied due to the constructibility (see [21,
Proposition 4.0.2.2]),

f !
xP

∗ ∼= f !
yRRn−�

L⊗ f !
vRπ2∗P∗.

3 We see in this argument why �p1(S) ≥ −1 is required, as well as our torsion assumptions; see also Sect. 4.2,
below.
4 We see in this argument why �p1(S) ≤ codim(S) − 1 is required, as well as our torsion-free assumptions;
see also Sect. 4.2, below.
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For the first factor, by [2, Proposition V.3.7.b] we have f !
yRRn−�

∼= f ∗
y RRn−� [−(n−�)] =

R[−(n − �)], and so

f !
xP

∗ ∼= f !
vRπ2∗P∗[−(n − �)].

To compute Hi
(
f !
vRπ2∗P∗), consider the long exact sequence [2, Section V.1.8]

→ Hi
(
f !
vRπ2∗P∗) → H

i (cL; Rπ2∗P∗) α−→ H
i (cL − {v}; ī∗Rπ2∗P∗) →,

where ī : cL − {v} → cL fits into the Cartesian square

R
n−� × cL − R

n−� × {v} π̄2� cL − {v}

R
n−� × cL

i
�

∩

π2� cL.

ī

�

∩

We can see that ī∗Rπ2∗P∗ ∼= Rπ̄2∗i∗P∗ by replacing P
∗ with an injective resolution and

then considering sections over open sets. It follows that α is isomorphic to the attaching
map H

i (Rn−� × cL;P∗) → H
i (Rn−� × cL; Ri∗i∗P∗) = H

i (Rn−� × (cL − {v}); i∗P∗).
As P

∗ and Ri∗i∗P∗ are X-clc, [21, Proposition 4.0.2] implies that restriction to smaller
distinguished neighborhoods of x in X yields a constant map of constant direct systems, and
so this hypercohomology attaching map is isomorphic to the map it induces stalkwise in
the direct limit. And by the axioms TAx1(X, �p, E), which P

∗ satisfies, this attaching map
induces stalk-wise cohomology isomorphisms for i ≤ �p1(S) and an isomorphism onto the
�p2(S)-torsion module for i = �p1(S) + 1. So Hi

(
f !
vRπ2∗P∗) = 0 for i ≤ �p1(S) + 1. We

also know that H�p1(S)+2 (cL; Rπ2∗P∗) ∼= H
�p1(S)+2

(
R
n−� × cL;P∗) ∼= H

�p1(S)+2
(
P

∗
x

)
, the

latter by [21, Proposition 4.0.2.2] again, and this is 0 by axiom TAx1’c for P∗. Since we
have already noted that in degree �p1(S) + 1 the map α is an isomorphism onto the �p2(S)-
torsion module of H �p1(S)+1

(
cL − {v}; ī∗Rπ2∗P∗), it follows that H �p1(S)+2

(
f !
vRπ2∗P∗) is

�p2(S)-torsion free.
Returning now to Hi ( f !

xP
∗) ∼= Hi ( f !

vRπ2∗P∗[−(n − �)]) = Hi−n+�( f !
vRπ2∗P∗), we

conclude that Hi ( f !
xP

∗) = 0when i−n+� ≤ �p1(S)+1, i.e. when i ≤ �p1(S)+n−�+1, and
that H �p1(S)+n−�+2( f !

xP
∗) is �p2(S)-torsion free.By assumption, �p1(S) ≤ �p1(S)+codim(S)−

codim(S) = �p1(S) + k − �, so �p1(S) + n − � + 1 ≥ �p1(S) − k + � + n − � + 1 =
�p1(S) − k + n + 1. So Hi ( f !

xP
∗) = 0 for i ≤ �p1(S) − k + n + 1 as desired. Furthermore,

H �p1(S)−k+n+2( f !
xP

∗)will also be 0 unless the above inequalities are equalities, in which case
H �p1(S)−k+n+2( f !

xP
∗) = H �p1(S)−�+n+2( f !

xP
∗) is �p2(S)-torsion free. But we have assumed

for this scenario that �p2(S) ⊃ �p2(S) so that this module is also �p2(S)-torsion free.
We have now demonstrated all the axioms, completing the proof. ��

3.1 Pullback and pushforward perversities

Chataur et al. [5] consider the invarianceof intersectionhomologyunder refinement/coarsening
when the perversity on the finer stratification is pulled back from a perversity on the coarser
stratification or when the perversity on the coarser stratification is pushed forward from the
finer stratification. In the following two subsections we consider such constructions for ts-
perversities. We will see that pullback perversities can always be constructed and always
result in quasi-isomorphic ts-Deligne sheaves, generalizing [5, Corollary 6.13]. By contrast,
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pushforward perversities require certain conditions to be defined and then further conditions
to provide quasi-isomorphic ts-Deligne sheaves. Our results about pushforwards generalize
[5, Theorem C].

In this section we assume the following situation: We suppose that X and X denote two
CS set stratifications of the same underlying space with X coarsening X . Let ν : X → X

denote the identity map, which is a stratified map; we sometimes refer to ν as a coarsening
map. If S is a stratum of X , let Sν denote the stratum of X containing it.

3.1.1 Pullback perversities

We first define pullback perversities.

Definition 3.7 Let ν : X → X be a coarsening map. Suppose X is adapted to a ts-coefficient
system E , and let �p be a ts-perversity on X. We define the E-compatible pullback perversity
ν∗
E �p on the refinement X of X by:

1. if Sν is singular then ν∗
E �p(S) = �p(Sν),

2. if Sν is regular then ν∗
E �p(S) = (0, ℘), where ℘ is the smallest subset of P(R) such that

E is a ℘-coefficient system on S.

Remark 3.8 Since X refines X and E is adapted to X, for each singular stratum S of X
contained in a regular stratum of X the ℘ in the second condition always exists. In fact, we
could use in this condition any choice of ℘ ⊂ P(R) such that E is a ℘-coefficient system
on S for the purposes of the following theorem; we choose the smallest such ℘ just for
definiteness.

Theorem 3.9 If X has no stratum of codimension one contained in a regular stratum of X
then �p and ν∗

E �p are E-compatible. Consequently P∗
ν∗
E �p ∼= P

∗
�p.

Proof The first statement is immediate from the definitions. The second follows by Theorem
3.6. ��
Remark 3.10 If we assume in Theorem 3.9 that E is a local system concentrated in degree
0 (and so, in particular, a ∅-coefficient system) and if �p2(S) = ∅ for all S, then the
theorem becomes a statement about ordinary intersection homology that generalizes [5,
Corollary 6.12].

3.1.2 Pushforward perversities

Chataur, Saralegi and Tanré also introduce pushforward perversities in [5, Section 6]. More
specifically, they establish conditions under which a perversity can be pushed forward from
a stratification of a CS set to its intrinsic stratification and for which the corresponding
intersection homology groups are isomorphic. We first generalize pushforwards and place
them in our context:

Definition 3.11 Wewill say that the ts-perversity �p on X can be pushed toX if �p(Y ) = �p(Z)

for the two singular strata Y and Z of X whenever all the following conditions hold:

1. Y ν = Zν ,
2. Y ν is singular in X, and
3. dim(Y ) = dim(Z) = dim(Y ν).
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If this property holds then we define the pushforward ν∗ �p by ν∗ �p(S) = �p(S) if S is a
stratum of X such that S = Sν and dim(S) = dim(S). Every singular stratum of X must
contain such a stratum S, so ν∗ �p is well defined and without any ambiguity due to our
assumptions.

Remark 3.12 If �p is a ts-perversity that depends only on codimension, i.e. �p(S) = �p(T )

whenever codim(S) = codim(T ), then �p can be pushed forward to any coarsening. In this
case we may abuse notation and also write ν∗ �p simply as �p. As a further abuse, we can also
treat Z≥1 as the domain of �p writing �p(codim(S)) = �p(S).

Unfortunately, in contrast to Theorem 3.9, a perversity and its pushforward are not nec-
essarily E-compatible, even when the pushforward is defined. For example, we need only
let X be a trivially filtered manifold and let X be a refinement with a stratum S on which
�p1(S) < −1.

Of course Theorem 3.6 and the necessity condition in Sect. 4 show that E-compatibility is
our most general criterion for topological invariance, but for comparison with earlier results,
especially [5, Theorem C], it is useful to delineate in terms of �p exactly when �p and ν∗ �p
will be E-compatible. Inspection of the definitions yields the following (cf. the definition of
K ∗-perversities in [5, Definition 6.8]):

Proposition 3.13 Let ν : X → X be a coarsening map, and suppose X is adapted to the ts-
coefficient system E . Suppose �p is a perversity on X that can be pushed toX. For any singular
stratum S ⊂ X, let S̃ denote5 any stratum of X such that (S̃)ν = Sν and dim(S̃) = dim(Sν).
Then �p and ν∗ �p are E-compatible if the following conditions hold on �p:
1. If S̃ is singular then �p1(S̃) ≤ �p1(S) ≤ �p1(S̃) + codim(S) − codim(S̃), and furthermore

(a) if �p1(S̃) = �p1(S) then �p2(S̃) ⊂ �p2(S),
(b) if �p1(S) = �p1(S̃) + codim(S) − codim(S̃), then �p2(S̃) ⊃ �p2(S).

2. If S̃ is regular then −1 ≤ �p1(S) ≤ codim(S) − 1, and furthermore

(a) If �p1(S) = −1 then H1(Ex ) = 0 and H0(Ex ) is �p2(S)-torsion for all x ∈ S,
(b) if �p1(S) = 0 then H1(Ex ) is p2(S)-torsion for all x ∈ S
(c) if �p1(S) = codim(S) − 2, then H0(Ex ) is p2(S)-torsion free for all x ∈ S,
(d) if �p1(S) = codim(S) − 1 then H0(Ex ) = 0 and H1(Ex ) is �p2(S)-torsion free for all

x ∈ S.

Remark 3.14 Condition 1 on �p1 is essentially Condition B of [5, Definition 6.8], while Con-
dition 2 on �p1 corresponds there to Conditions A and D. Condition C of [5] is built into our
assumption that �p can be pushed forward. Note, however, that in [5] only pushforwards to
the intrinsic stratification are considered.

Remark 3.15 If 0 ≤ �p1(S) ≤ codim(S)− 2 for all S and E is a globally defined local system
of free modules in degree 0, then all of condition 2 holds automatically.

3.2 Constrained perversities

So farwe have considered only the situation inwhichwehave two stratifications, X andX, one
refining the other. In this case we have a point of comparison between any two ts-perversities

5 These S̃ are called source strata in [5]. Note that the precise choice of S̃ does not matter in the conditions
that follow as the assumption that �p can be pushed forward assures us that any two choices would give the
same perversity conditions.
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�p and �p on these stratifications since any stratum S of X is contained in a stratum S of X,
allowing us to compare �p(S) with �p(S). If we are given instead two arbitrary stratifications,
then our best hope for relating them seems to be if we can find a common refinement or
coarsening, in which case we can perhaps apply Theorem 3.6 twice, connecting each given
stratification with our common intermediary. More generally, we can attempt to compare all
stratifications of a given space by finding a universal common refinement or coarsening. We
will see that such common refinements do not always exist, even for just two stratifications
(Remark 3.27), but intrinsic common coarsenings do exist, as we’ll show in Sect. 6.

Of course we also need to be able to assign sufficiently compatible perversities to all
these stratifications. The simplest way to proceed when faced with all possible stratifications
seems to be to revert more closely to the original definition of Goresky and MacPherson
[13] in which perversities were assumed to be functions only of codimension. This allows
one to define perversities without any reference to a specific stratification: the perversity
simply assigns the same predetermined value to all strata of the same codimension. In such
a setting, Goresky and MacPherson proved a topological invariance statement of the form,
“if a perversity satisfies certain conditions then all stratifications (without codimension one
strata) of the same space with that perversity and a fixed coefficient system yield quasi-
isomorphic Deligne sheaves” [14, Theorem 4.1]. This theorem was slightly refined by Borel
[2, Section V.4]. In both cases, the proofs utilize common coarsenings, with the assumptions
about the perversities being strong enough to imply (in our language) E-compatibility among
the manifestations of the “same” perversity on all stratifications.

Analogously, our goal in this section is to construct ts-perversities that depend only on
codimension and such that all stratifications yield quasi-isomorphic ts-Deligne sheaves from
these ts-perversities. Of course we must also take into account adaptability to coefficient
systems and place certain limitations on the behavior of codimension one strata. The result
will be a sequence of theorems each with a pair of results. One of each pair places stricter
conditions on the perversities but allows for any stratifications up to some limitations on
compatibility of codimension one strata; the other removes some of the restrictions on the
perversities but forces us to fix the regular strata of the stratifications.

We start with the following definitions:

Definition 3.16 We call a ts-perversity �p constrained if it satisfies all of the following:

1. �p depends only on the codimension of strata (so we can write �p = ( �p1, �p2) : Z≥1 →
Z × 2P(R)),

2. �p1 satisfies the Goresky–MacPherson growth condition �p1(k) ≤ �p1(k + 1) ≤ �p1(k)+ 1
for k ≥ 1,

3. �p1(2) ∈ {−1, 0, 1},
4. If �p1(k + 1) = �p1(k) then �p2(k + 1) ⊃ �p2(k),
5. If �p1(k + 1) = �p1(k) + 1 then �p2(k + 1) ⊂ �p2(k).
If �p satisfies all these conditions except (3) then we say that �p is weakly constrained. If

�p1(2) = 0, we say that �p is strongly constrained.

When �p is constrained, it will also often be useful for us to consider ts-coefficient systems
E that are ts-perverse with respect to �p(2), in other words E ∈ �p(2)D♥(Dom(E)) using the
t-structure of [10, Remark 5.4] with the ts-perversity there taking the constant value �p(2) on
the domain of E . Explicitly this means the following:

1. If �p1(2) = −1 then H1(Ex ) = 0 and H0(Ex ) is �p2(2)-torsion for all x ∈ Dom(E),
2. If �p1(2) = 0 then H1(Ex ) is �p2(2)-torsion and H0(Ex ) is �p2(2)-torsion free for all

x ∈ Dom(E),
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3. If �p1(2) = 1 then H0(Ex ) = 0 and H1(Ex ) is �p2(2)-torsion free for all x ∈ Dom(E).

Remark 3.17 If �p1(2) = 0 and E is a globally defined local system of free modules in degree
0, then these conditions hold automatically.

Remark 3.18 Note that there are a few conditions specific to codimension 2, even though �p is
also defined for codimension one. This is because these conditions will govern what happens
when a singular stratum of X is contained in a regular stratum of X, but we know that for
topological invariance we must preclude this for codimension one strata of X anyway and so
these conditions only come into play starting at codimension 2.

Remark 3.19 Wewill not utilize strongly constrained ts-perversities until Sect. 5, where they
will be convenient.

We begin by considering when a constrained �p is E-compatible with itself across two
stratifications.

Proposition 3.20 Suppose X is a coarsening of X and that X is adapted to a ts-coefficient
system E . Suppose either
1. No codimension one stratum of X is contained in a regular stratum ofX, �p is constrained,

and E ∈ �p(2)D♥(Dom(E)), or
2. X

n−1 = Xn−1 and �p is weakly constrained.

Then �p on X and �p on X are E-compatible and so the ts-perversity �p ts-Deligne sheaves
P∗ on X and P

∗ on X are quasi-isomorphic.

Remark 3.21 The dichotomy here is a reflection of that of Remark 3.4. If we want to allow
singular strata of X in regular strata of X then we need an assumption that will force the
perversities on such strata into the absolute bounds−1 ≤ �p1(S) ≤ codim(S)−1 ofDefinition
3.1. The requirement �p1(2) ∈ {−1, 0, 1}, together with the Goresky–MacPherson growth
condition (which is in general necessary anyway for the singular-stratum-in-singular-stratum
cases—see Sect. 4) accomplishes this and is the weakest possible such requirement once we
have eliminated codimension one strata of X in regular strata of X (see Remark 3.4). If we
wish to dispense with this additional constraint on �p1(2) then we can instead ask that no
singular stratum of X be contained in a regular one of X, leading to the second alternative of
the proposition.

Of course we could also dabble in many more specific cases — for example we might
allow �p(2) = −2 and �p(3) = −1 but then simply forbid codimension 2 strata of X from
appearing in regular strata of X (plus conditions involving E). Such scenarios are in any case
still captured by Theorem 3.6, so we leave the reader to formulate his or her own variants
and instead consider just these two broad situations that are closest in keeping to the previous
theorems of [5, 6, 14].

Proof of Proposition 3.20 In each case we check the conditions of Definition 3.1. As noted
in Remark 3.12, in this case we simply write �p for both perversities, as well as writing
�p(codim(S)) = �p(S) when convenient.

Assuming the first hypotheses, suppose S is a singular stratum of X in the singular stratum
S ofX. Then codim(S) ≤ codim(S) so the first condition ofDefinition 3.1 follows by iterating
Condition 2 of Definition 3.16. Furthermore, since �p1 is non-decreasing, �p1(S) = �p1(S) only
if �p1(k) is constant from codim(S) to codim(S), in which case Condition 4 of Definition 3.16
inductively implies that �p2(S) ⊃ �p2(S) as needed. Similarly, if �p1(S) = �p1(S)+codim(S)−
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codim(S) then �p1(k + 1) = �p1(k) + 1 for codim(S) ≤ k < codim(S) and so Condition 5 of
Definition 3.16 implies �p2(S) ⊂ �p2(S).

Now suppose S is regular. By assumption codim(S) ≥ 2 and so the Goresky–MacPherson
growth condition on �p1, together with �p1(2) ∈ {−1, 0, 1}, ensures that −1 ≤ �p1(S) ≤
codim(S) − 1.

• If �p1(S) = −1, the growth condition implies that �p1(k) = −1 for 2 ≤ k ≤ codim(S).
Since E ∈ �p(2)D♥(Dom(E)), we have that H1(Ex ) = 0 and H0(Ex ) is �p2(2)-torsion for
all x in the domain of E , so in particular for x ∈ S. Now Condition 4 of Definition 3.16
implies that �p2(S) ⊃ �p2(2), so H0(Ex ) is also �p2(S)-torsion for all x ∈ S.

• If �p1(S) = codim(S) − 1, the growth condition implies that �p1(k) = k − 1 for 2 ≤
k ≤ codim(S) and in particular that �p1(2) = 1. Since E ∈ �p(2)D♥(Dom(E)), we have
H0(Ex ) = 0 and H1(Ex ) is �p2(2)-torsion free for all x in the domain of E , so in particular
for x ∈ S. Condition 5 of Definition 3.16 implies that �p2(S) ⊂ �p2(2), so H1(Ex ) is also
�p2(S)-torsion free for all x ∈ S.

• If �p1(S) = 0 the growth condition implies that �p1(2) ∈ {−1, 0}. If �p1(2) = −1 then
since E ∈ �p(2)D♥(Dom(E)), we have H1(Ex ) = 0 for all x in the domain of E , in which
case certainly H1(Ex ) is �p2(S)-torsion for all x ∈ S. If �p1(2) = 0 the growth condition
implies that �p1(k) = 0 for 2 ≤ k ≤ codim(S). Also since E ∈ �p(2)D♥(Dom(E)), H1(Ex )
is �p2(2)-torsion. Condition 4 of Definition 3.16 implies that �p2(S) ⊃ �p2(2), so H1(Ex )
is also �p2(S)-torsion for all x ∈ S.

• If �p1(S) = codim(S) − 2 the growth condition implies that �p1(2) ∈ {0, 1}. If �p1(2) = 1
then since E ∈ �p(2)D♥(Dom(E)), we have H0(Ex ) = 0 for all x in the domain of E , in
which case certainly H0(Ex ) is �p2(S)-torsion free for all x ∈ S. If �p1(2) = 0 the growth
condition implies that �p1(k) = k−2 for 2 ≤ k ≤ codim(S). SinceE ∈ �p(2)D♥(Dom(E)),
H0(Ex ) is �p2(2)-torsion free. Condition 5 of Definition 3.16 implies that �p2(S) ⊂ �p2(2),
so H0(Ex ) is also �p2(S)-torsion free for all x ∈ S.

In the second situation of the lemma, no singular stratum of X is contained in a regular
stratum of X. The argument is therefore exactly as above except that we don’t need to verify
any of Condition 2 of Definition 3.1. Therefore, we don’t need Condition 3 of Definition 3.16
nor the assumption that E ∈ �p(2)D♥(Dom(E)).

The final statement of the proposition follows from Theorem 3.6. ��
Corollary 3.22 Suppose that X and Y are any two CS set stratifications of the same space,
both of which are adapted to the ts-coefficient system E . Suppose either
1. �p is a constrained ts-perversity, E ∈ �p(2)D♥(Dom(E)), and X and Y possess a common

coarsening Z that is adapted to E such that no codimension one stratum of X or Y is
contained in a regular stratum of Z, or

2. �p is a weakly constrained ts-perversity and X and Y possess a common coarsening Z
that is adapted to E and such that X n−1 = Zn−1 = Yn−1.

Then X and Y have quasi-isomorphic ts-perversity �p ts-Deligne sheaves, i.e. P∗
X , �p,E ∼=

P∗
Y, �p,E .

Proof For each case apply Proposition 3.20 twice. ��
The preceding corollary shows that we can compare Deligne sheaves from different strat-

ifications provided appropriate common coarsenings exist. With minor hypotheses, such
common coarsenings are constructed in Sect. 6 with the following result. Recall the defi-
nitions of maximal ts-coefficient systems from Definition 2.8 and of “fully adapted” from
Definition 2.10.
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Theorem 3.23 Suppose that X and Y are any two CS set stratifications of the same space,
both fully adapted to the maximal ts-coefficient system E . Suppose either
1. �p is a constrained ts-perversity, E ∈ �p(2)D♥(Dom(E)), and the closure of the union of

the codimension one strata ofX (which may be empty) is equal to the closure of the union
of the codimension one strata of Y , or

2. �p is a weakly constrained ts-perversity and X n−1 = Yn−1.

Then X and Y have quasi-isomorphic ts-perversity �p ts-Deligne sheaves, i.e. P∗
X , �p,E ∼=

P∗
Y, �p,E .

Proof Let C1 denote the closure of the union of the codimension one strata of X . In the first
case, Proposition 6.4 yields an intrinsic stratificationXE,C1 that is a common coarsening ofX
andY that is adapted to E and such that no codimension one stratum ofX orY is contained in
a regular stratum ofX (in fact the closures of the unions of the codimension one strata ofX ,Y ,
andX are all the same set). In the second case, Proposition 6.4 yields an intrinsic stratification
XE,X n−1 = XE,X n−1 that is a common coarsening of X and Y that is adapted to E and such

that Xn−1
E,X n−1 = X n−1 = Yn−1. This last statement holds because Property 4 of Proposition

6.4 shows that ifUE is the domain of E then in this case XE,X n−1 −Xn−1
E,X n−1 = UE −X n−1,

which must be X − X n−1 as X is adapted to E . Thus X and XE,X n−1 have the same regular
strata and hence the same n − 1 skeleta, and similarly for Y .

The theorem now follows from the preceding corollary. ��
Remark 3.24 If we take E to be a constant sheaf concentrated in degree 0, set �p2(k) = ∅
for all k, and consider only pseudomanifold stratifications with no codimension one strata,
we recover from the first case of the theorem the original topological invariance result of
Goresky–MacPherson [14, Theorem 4.1], though with a fairly different proof (see also [12]).
Similarly, with the same assumptions on E and �p2 and with �p1(2) > 0, the second case of
the theorem recovers the main result of [6].

Remark 3.25 In general, if we are given two CS set stratifications X and Y of the same space
without any conditions on their codimension one strata there is not necessarily a common
coarsening X such that no codimension one stratum of X or Y is contained in a regular
stratum of X. For example, just let X be the plane R2 with its trivial stratification and let Y
be any other stratification with a codimension one stratum. The only common coarsening is
X itself, and a regular stratum of X already contains a codimension one stratum of Y . Even
if we rule out starting with such a bad situation, consider letting X and Y be stratifications
of R2, one with the x-axis as singular stratum and one with the y-axis as singular stratum.
Again, there is no appropriate common coarsening.

We have a similar result to Corollary 3.22 concerning common refinements instead of
common coarsenings, though this is generally less useful as common refinements do not exist
in general, even with restrictions on codimension one strata; see Remark 3.27. Nonetheless,
we include this corollary as it may occasionally be useful when working with spaces for
which the hypotheses of the preceding corollaries do not apply.

Corollary 3.26 Suppose that �p is any ts-perversity depending only on codimension and that
X andY are any two CS set stratifications of the same space, both of which are adapted to the
ts-coefficient system E . If X and Y posses a common refinement Z such that no codimension
one stratum of Z is contained in a regular stratum of X or Y , then the ts-perversity �p
ts-Deligne sheaves on X and Y are quasi-isomorphic.
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Proof This follows from Theorem 3.9 using Z as an intermediary. ��
Remark 3.27 Unfortunately, unlike the case of coarsenings for which any two stratifications
have a common coarsening (given appropriate assumptions on coefficients and codimension
one strata), common refinements do not exist in general. For example, let X be Rn , n ≥ 2,
stratified as Rn ⊃ {x1-axis}, and let Y be Rn stratified by R

n ⊃ A, where A is the image of
f : R → R

n given by f (t) = (t, t3 sin(1/t), 0, . . . , 0) for t �= 0 and f (0) = �0. Then A
is a C1 submanifold and so possesses a tubular neighborhood, making Y a CS set. But the
intersection of A and the x1-axis is the union of the origin with the points

{ 1
nπ

, 0, . . . , 0
}

and so any common refinement Z of the stratifications X and Y would require Z0 to have
an accumulation point, which is not possible for CS sets.

4 Necessity of the conditions

In this section we consider the necessity of the E-compatibility conditions on ts-perversities
(Definition 3.1) in order for our main topological invariance result (Theorem 3.6) to hold. We
will show that the “singular-in-regular” conditions are strictly necessary, using that the links
of strata in such situations are limited to homology spheres. For the “singular-in-singular”
conditions, there are many more possibilities and so we only have necessity in general,
meaning that we will construct examples that show that failure of the conditions of Definition
3.1 can result in non-quasi-isomorphic ts-Deligne sheaves unless certain stalk cohomology
modules (or some of their torsion submodules or torsion-free quotient modules) vanish. As
noted in Remark 3.5, such vanishing is assured when the first component of a ts-perversity
has values less than −1 or greater than codim(S) − 1, but for efficient ts-perversities (those
for which −1 ≤ �p1(S) ≤ codim(S) − 1 for all singular strata S) such vanishing depends on
the particulars of X , E , and �p. There are certainly stronger conditions that can be imposed
on (X ,X, E) that would allow some weakening of Definition 3.1. As an extreme example we
could take E = 0 in which case P∗ = P

∗ = 0 regardless of the stratifications or perversities.
Another less trivial, though still somewhat artificial, example is noted in Remark 3.21. In fact
all such extra conditions are likely to be somewhat artificial in our current general context.

For historical context, we recall that if E is concentrated in degree 0, if �p and �p depend
only on codimension, and if �p2(k) = �p2(k) = ∅ for all k ≥ 2 (with no codimension
one strata allowed) then P∗ and P

∗ will be the original Deligne sheaves of Goresky and
MacPherson [14]. In this case the hypercohomology groups with compact supports will
be the classical intersection homology groups. If p̄(k) ≤ k − 2 for all k, as in [14], then
these will agree with the singular intersection homology groups of King [18], called “GM
intersection homology” in [11]. For GM intersection homology, the Goresky–MacPherson
growth condition p̄(k) ≤ p̄(k + 1) ≤ p̄(k) + 1 is known to be necessary in general for
topological invariance; see King [18, Section 2]. The main idea is to compare c(�X) with
R×cX , where cX is the open cone on X and�X is the suspension. For compact stratified X
these spaces are topologically homeomorphic but with different natural stratifications coming
from that on X . Goresky and MacPherson also assume p̄(2) = 0 (and no codimension one
strata), thoughKing shows that this assumption is not necessary for the topological invariance
of singular chain GM intersection homology, only that p̄(1) ≥ 0.

If p̄(k) > k − 2 for any k the hypercohomology of the Deligne sheaf is called “non-
GM intersection homology” in [11]. Non-GM intersection homology can only be obtained
using singular chains after making some additional modifications; see [11, Chapter 6]. We
showed in [6, Section 3] that if p̄(2) > 0 then the non-GM intersection homology cannot be a
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topological invariant in general, but that if the Goresky–MacPherson growth condition holds
thenwewill have invariance under refinements such that Xn−1 = X

n−1. Thegeneral necessity
of the growth condition for non-GM intersection homology can be argued identically as in
the GM case, and we will use essentially the same basic argument below for the case of
singular strata of X in singular strata of X.

In the remainder of this section, we first develop some computational machinery in
Sect. 4.1. We then consider the “singular-in-regular” situation in Sect. 4.2 and the “singular-
in-singular” situation in Sect. 4.3. Throughout we continue our notation from the preceding
sections, namely X coarsens X with corresponding ts-perversities �p and �p and ts-Deligne
sheaves P∗ and P∗. We also assume X adapted to a ts-coefficient system E .

4.1 Computational tools

We need some tools for computation. Our first lemma is standard:

Lemma 4.1 Suppose Y is a filtered space, and let X = R
k × Y have the product filtration

X j = R
k × X j−k . If S∗ is X-clc then H

i (X;S∗) ∼= H
i (Y ;S∗|Y ), identifying Y with any

{z} × Y ⊂ R
k × Y .

Proof Let π : R
k × Y → Y be the projection and let s : {z} × Y ↪→ R

k × Y be the
inclusion. Since S∗ is X -clc, in particular H j (S∗) is constant along each R

k × {y}, and so
S∗ = π∗Rπ∗S∗ by [17, Proposition 2.7.8] (letting the Yn there be closed balls in Rk). Then
s∗S∗ ∼= s∗π∗Rπ∗S∗ = Rπ∗S∗, so H

i (Rk × Y ;S∗) ∼= H
i (Y ; Rπ∗S∗) ∼= H

i (Y ; s∗S∗) =
H

i (Y ;S∗|Y ). ��
Lemma 4.2 Let L be a compact filtered set such that X = R

k × cL is a CS set. Let x =
(s, v) ∈ R

k × cL with s ∈ R
k arbitrary and v ∈ cL the cone vertex, and let S be the

stratum R
k × {v}. If P∗ is a ts-Deligne sheaf on Rk × cL, then identifying L with some copy

(z, t, L) ⊂ R
k × (0, 1) × L ⊂ R

k × cL, we have

Hi (P∗
x )

∼=

⎧⎪⎨
⎪⎩
0, i > �p1(S) + 1,

T �p2(S)
H

i (L;P∗|L), i = �p1(S) + 1,

H
i (L;P∗|L), i ≤ �p1(S).

Proof LetW = X−S = R
k ×(cL−{v}) ∼= R

k+1×L , let i : W ↪→ X , and letP∗
W = P∗|W .

From the definition of the ts-Deligne sheaf and the torsion tipped truncation, we have

Hi (P∗
x )

∼=

⎧⎪⎨
⎪⎩
0, i > �p1(S) + 1,

T �p2(S)H �p1(S)+1((Ri∗P∗
W )x ), i = �p1(S) + 1,

Hi ((Ri∗P∗
W )x ), i ≤ �p1(S).

Since P∗
W is W -clc, Ri∗P∗

W is X -clc by [21, Proposition 4.0.2.3], and so Hi ((Ri∗P∗
W )x ) ∼=

H
i (X; Ri∗P∗

W ) by [21, Proposition 4.0.2.2]. But then

H
i (X; Ri∗P∗

W ) ∼= H
i (W ;P∗

W ) ∼= H
i (Rk+1 × L;P∗

W ) ∼= H
i (L;P∗|L),

using Lemma 4.1. ��
If L is itself a CS set, then P∗|L will itself be a ts-Deligne sheaf, as we show in the

next lemma. To establish notation, suppose X is a CS set and �p, E,P∗ are a ts-perversity,
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ts-coefficient system, and ts-Deligne sheaf on X . If Y ⊂ X is a CS set with the induced
stratification (in the sense of the statement of the lemma below) we will denote by �pY the
ts-perversity on Y such that �pY (S) = �p(Z) if the singular stratum S of Y is contained in the
singular stratum Z of X . We also write EY for the restriction of E to the intersection of its
domain with Y , and we will write P∗

Y for the Deligne sheaf on Y with respect to �pY , EY .

Lemma 4.3 Suppose that either

1. Y is an open subset of the CS set X stratified by Y j = Y ∩ X j or
2. Y is a CS set and X = R

m × Y with X j = R
m × X j−m and we identify Y with {z} × Y

for some z ∈ R
m.

Let �p, E be a ts-perversity and ts-coefficient system on X. ThenP∗|Y ∼= P∗
Y , i.e. the restriction

of the ts-Deligne sheaf on X to Y is quasi-isomorphic to the �pY , EY ts-Deligne sheaf on Y .

Proof Note that in both cases both X and Y are CS sets by [11, Lemmas 2.3.13 and 2.11.4].
We know that ts-Deligne sheaves are characterized up to quasi-isomorphic by the axioms
TAx1’. That P∗ satisfies these axioms on X implies that P∗|Y satisfies the axioms on Y . The
only axiom that is not obvious is the last axiom when X = R

m ×Y . In this case suppose X is
n-dimensional so that Y is n−m dimensional. Let x ∈ Y(n−m)−k ⊂ Xn−k . Let fx : {x} ↪→ X
and gx : {x} ↪→ Y for x in a singular stratum. Now, exactly as in the proof of Theorem 3.6, if
π : Rm × Y → Y is the projection we have f !

xP∗ ∼= g!
x Rπ∗P∗[−m], while Rπ∗P∗ ∼= P∗|Y

by the proof of Lemma 4.1. Thus

Hi ( f !
xP∗) ∼= Hi−m(g!

xP∗|Y ).

The axiom for P∗|Y now follows from the axiom for P∗. ��
In what followswe shall abuse notation andwrite the restrictions �pY , EY , andP∗

Y as simply
�p, E , and P∗ if it is clear what is meant from context. We let �X denote the (unreduced)
suspension, stratified by (�X)i = �(Xi−1) with (�X)0 = {n, s}, the union of the two
suspension points.

Proposition 4.4 Let Xn−1 be a compact CS set with suspension�X. Let �p be a ts-perversity
on�X such that �p(n) = �p(s), and denote the common value (p, ℘). Let E be a ts-coefficient
system to which �X is adapted, and let P∗ be the associated ts-Deligne sheaf. Then

H
i (�X;P∗) ∼=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

H
i−1(X;P∗), i ≥ p + 3,

H
p+1(X;P∗)/T℘

H
p+1(X;P∗), i = p + 2,

T℘
H

p+1(X;P∗), i = p + 1,

H
i (X;P∗), i ≤ p.

Proof LetU1 = �X−{s} ∼= cX andU2 = �X−{n} ∼= cX .We consider theMayer–Vietoris
sequence [17, Remark 2.6.10]

→ H
i (�X;P∗) → H

i (U1;P∗) ⊕ H
i (U2;P∗) → H

i (U1 ∩U2;P∗) → .

Note thatU1 ∩U2 ∼= (0, 1) × X so we haveHi (U1 ∩U2;P∗) ∼= Hi (X;P∗) by Lemma 4.1.
Now considerHi (U1;P∗). Since P∗ is �X -clc and sinceU1 is a distinguished neighbor-

hood of n, we have Hi (U1;P∗) ∼= Hi (P∗
n) by [21, Proposition 4.0.2.2]. Since this is 0 for

i > p+1, and similarly forU2, we haveHi (�X;P∗) ∼= H
i−1(U1∩U2;P∗) ∼= H

i−1(X;P∗)
for i > p + 2.
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For i ≤ p, using [21, Proposition 4.0.2.2] again implies that the hypercohomology
map from U1 to U1 − {n} = U1 ∩ U2 is isomorphic to the attaching map, which is
an isomorphism by axiom TAx1d, and similarly for U2. It follows that in this range
H

i (�X;P∗) ∼= H
i (Uj ;P∗) ∼= H

i (U ;P∗) ∼= H
i (X;P∗) for j = 1, 2.

In the middle range we have

0 � H
p+1(�X;P∗) � H

p+1(U1;P∗) ⊕ H
p+1(U2;P∗)

� H
p+1(U1 ∩U2;P∗) � H

p+2(�X;P∗) � 0.

Once again we have that Hp+1(U1;P∗) ∼= H p+1(P∗
n), which in this case gives the

group T℘
H

p+1(U1 ∩ U2;P∗) ∼= T℘
H

p+1(X;P∗) by Lemma 4.2. Each of the maps
H

p+1(Uj ;P∗) → H
p+1(U1 ∩U2;P∗) thus corresponds to the inclusion (up to sign) of the

℘-torsion subgroup. Sowe haveHp+1(�X;P∗) ∼= T℘
H

p+1(X;P∗) andHp+2(�X;P∗) ∼=
H

p+1(X;P∗)/T℘
H

p+1(X;P∗). ��
Example 4.5 We provide an example of a computation using Proposition 4.4 that also
demonstrates how Poincaré duality can fail for CS sets, both for classical homology and
cohomology and for ordinary intersection cohomology, while duality is recovered using
ts-Deligne sheaves.

Let X = RP3, which is orientable. Then, by standard computations, we have

Hi (�RP3) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Z, i = 4,

0, i = 3,

Z2, i = 2,

0, i = 1,

Z, i = 0,

Hi (�RP3) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Z, i = 4,

Z2, i = 3,

0, i = 2,

0, i = 1,

Z, i = 0.

This computation demonstrates the failure, in general, of classical Poincaré duality for singu-
lar spaces. Even with classical intersection homology, Poincaré duality typically only holds
rationally; see [2, 13, 14] and our remarks below the following computation.

However, let now E be the constant coefficient systemwith stalkZ, and let �p take the value
(1,∅) on the suspension points. The dual perversity D �p will then take the value (1, P(Z)).
By [10, Theorem 4.19], we know DP∗

�p[−n] ∼= P∗
D �p , which implies by [10, Corollary 4.21]

the nonsingular pairings

FHi (�RP3;P �p) ⊗ FH4−i (�RP3;PD �p) → Z

THi (�RP3;P �p) ⊗ TH4−i+1(�RP3;PD �p) → Q/Z,

where THi denotes the torsion subgroup and FHi denotes the torsion-free quotient. Indeed,
we can compute by Proposition 4.4:

123



105 Page 26 of 43 Geometriae Dedicata (2023) 217 :105

H
i (�RP3,P∗

�p) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

H3(RP3) = Z, i = 4,
H2(RP3)/T ∅H2(RP3) = Z2, i = 3,

T ∅H2(RP3) = 0, i = 2,
H1(RP3) = 0, i = 1,
H0(RP3) = Z, i = 0,

H
i (�RP3,P∗

D �p)) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

H3(RP3) = Z, i = 4,
H2(RP3)/T H2(RP3) = 0, i = 3,

T H2(RP3) = Z2, i = 2,
H1(RP3) = 0, i = 1,
H0(RP3) = Z, i = 0.

This is consistent with the existence of the claimed nonsingular pairings. By contrast, the
first of these hypercohomology computations with ts-perversity �p agrees with the classical
Goresky–MacPherson intersection cohomology for the self dual perversity p̄ with p̄(4) = 1,
but we see that these intersection cohomology groups cannot be self-dual. ��

As a corollary, and as a nice example of an application of Theorem 3.6, we compute
H

i (Sk ∗ X;P∗) for k > 0, where X is a compact CS set, Sk is the k-sphere with trivial
stratification, and Sk∗X is the join. Rather than use the join stratification of [11, Section 2.11],
however, it will be more natural for us below to use the following stratification. Recall that
we can decompose Sk ∗ X into cSk × X and Sk × cX (see [11, Section 2.11]). We give
Sk ×cX ⊂ Sk ∗ X the stratification it obtains from the cone and product stratifications, while
we stratify cSk × X as Dk+1 × X , where Dk+1 is the interior of the unit disk with the trivial
stratification. These two stratifications agree on the overlap Sk × (0, 1) × X and so patch
together to give a CS set stratification of Sk ∗ X . Letting v denote the cone vertex, we identify
Sk with the stratum Sk × {v} ⊂ Sk × cX ⊂ Sk ∗ X .

Corollary 4.6 Let X be a compact CS set, let Sk , k > 0, be the k-sphere with trivial stratifi-
cation, and let Sk ∗ X be the join with the stratification as above. Let �p be a ts-perversity on
Sk ∗ X, and let E be a ts-coefficient system to which Sk ∗ X is adapted. Then

H
i (Sk ∗ X;P∗) ∼=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

H
i−k−1(X;P∗), i > �p1(Sk) + k + 2,

H
�p1(Sk )+1(X;P∗)/T �p2(Sk )H �p1(Sk )+1(X;P∗), i = �p1(Sk) + k + 2,

0, �p1(Sk) + 1 < i < �p1(Sk) + k + 2,

T �p2(Sk )H �p1(Sk )+1(X;P∗), i = �p1(Sk) + 1,

H
i (X;P∗), i ≤ �p1(Sk).

Proof Let �k+1X be the k + 1 times iterated suspension of X . Topologically (ignoring
stratifications) �k+1X ∼= Sk ∗ X . Furthermore, the stratification of �k+1(X) as an iterated
suspension refines the stratification of Sk ∗ X . In fact, the stratifications are identical on
Sk ∗ X − Sk , which is Dk+1 × X with the product stratification. In particular, no singular
stratum of �k+1X is contained in a regular stratum of Sk ∗ X . Let �q be the ts-perversity
on �k X such that �q(Z) = �p(Z) for strata S shared by �k+1X and Sk ∗ X and such that
�q(Z) = �p(Sk) if Z is a stratum of �k+1X contained in Sk . Then �p and �q are E-compatible
for any E , and so by Theorem 3.6 the �p ts-Deligne sheaf on Sk ∗ X and the �q ts-Deligne sheaf
on �k+1X are quasi-isomorphic. The computation now follows by applying Proposition 4.4
iteratively. ��
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4.2 Singular strata in regular strata

In this section we will show that if S is a singular stratum of X contained in a regular stratum
S of X then the conditions of Definition 3.1 for such strata are strictly necessary in order to
have P∗ ∼= P

∗ over S. On S we have P∗ ∼= E so we will assume also that P∗ ∼= E over S and
see that contradictions occur if any of the conditions of Definition 3.1 for this scenario fail.

Suppose x ∈ S. Then x has a distinguished neighborhoodRn−k×cL , k > 0. Topologically
this is homeomorphic to cSn−k−1×cL ∼= c(Sn−k−1 ∗ L). Furthermore, since x is in a regular
stratum of X, we have (c(Sn−k−1 ∗ L), x) ∼= (Rn, x) by [11, Corollary 2.10.2] and its proof.
Thus H∗(Sn−k−1 ∗ L) ∼= H∗(Sn−1), and so L must be a k − 1 homology sphere. We will
write L as Lk−1 to remind us of this.

Returning to our ts-Deligne sheaves, we have H∗(P∗
x ) = H∗(Ex ). Since x has a Euclidean

neighborhood,E is clc on our neighborhood of x and so each derived cohomology sheafHi (E)

is constant on this neighborhood. By assumption there is some ℘ ⊂ P(R) such that H1(Ex )
is ℘-torsion while H0(Ex ) is ℘-torsion free. All other Hi (Ex ) are 0.

On the other hand, by Lemma 4.2,

Hi (P∗
x )

∼=

⎧⎪⎨
⎪⎩
0, i > �p1(S) + 1,

T �p2(S)
H

i (Lk−1; E), i = �p1(S) + 1,

H
i (Lk−1; E), i ≤ �p1(S).

Since there is some ℘ such that H1(Ex ) is ℘-torsion and H0(Ex ) is ℘-torsion free, any
map H0(Lk−1, H1(Ex )) → Hk−1(Lk−1, H0(Ex )) must be trivial, so the hypercohomology
spectral sequence for H∗(Lk−1; E) degenerates (using also that Lk−1 has the cohomology
of a k − 1 sphere). It follows that if k = 1 we have Hi (L0, E) ∼= Hi (Ex ) ⊕ Hi (Ex ), and if
k ≥ 3 we have

H
i (Lk−1; E) ∼=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

H1(Ex ), i = k,

H0(Ex ), i = k − 1,

H1(Ex ), i = 1,

H0(Ex ), i = 0,

0, otherwise.

Similarly if k = 2, the only possibly nontrivial groups are for i = 0, 1, 2withH0(L1; E) ∼=
H0(L1;H0(E)) ∼= H0(Ex ) and H

2(L1; E) ∼= H1(L1;H1(E)) ∼= H1(Ex ). But the only easy
information we have about H1(L1; E) is that it must fit in the extension problem

0 → H0(Ex ) → H
1(L1; E)

q−→ H1(Ex ) → 0. (1)

Given these preliminaries, we can now consider the necessity of the conditions of Def-
inition 3.1, separately in the cases k = 1, k = 2, and k ≥ 3, by comparing H∗(Ex ) with
H∗(P∗

x ) as obtained from the preceding computations.
k = 1. In this case Hi (Px ) comes by torsion-tipped truncating Hi (L0; E) ∼= Hi (Ex ) ⊕
Hi (Ex ). Thus there is no way that Hi (Px ) can equal Hi (P∗

x )
∼= Hi (Ex ), regardless of

perversity unless E is trivial. This shows why we must always rule out codimension one
strata of X in regular strata of X.
k ≥ 3. Given the computations above, we can readily see that if E is not trivial then H∗(Px ) ∼=
H∗(Ex ) (and hence H∗(Px ) ∼= H∗(Px )) if and only one of the following scenarios holds:

1. �p1(S) = −1, H0(Ex ) is �p2(S)-torsion, H1(Ex ) = 0,
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2. �p1(S) = 0, H1(Ex ) is �p2(S)-torsion, H0(Ex ) arbitrary,
3. 1 ≤ �p1(S) ≤ k − 3, H∗(Ex ) arbitrary,
4. �p1(S) = k − 2, H0(Ex ) is �p2(S)-torsion free, H1(Ex ) is arbitrary,
5. �p1(S) = k − 1, H0(Ex ) = 0, H1(Ex ) is �p2(S)-torsion free.

Of course here “arbitrary” still means within the limitations of E being a℘-coefficient system
for some ℘ ⊂ P(R), and we have recovered precisely the conditions from Definition 3.1.
k = 2. This case is a bit more delicate as we can’t pin downH1(L1; E) in general. However,
we see again that to have H∗(Px ) ∼= H∗(P∗

x )
∼= H∗(Ex ) with E nontrivial, it is first of all

necessary to have �p1(S) ≥ −1, and also by the same arguments if �p1(S) = −1, then we
must have H1(Ex ) = 0, and H0(Ex ) must be �p2(S) torsion.

If �p1(S) = 1 = k − 1, then to have H1(Px ) ∼= H1(Ex ) requires H1(L1; E) ∼= H1(Ex ),
which from the short exact sequence above requires H0(Ex ) = 0. And looking at degree 2
we must again have that H1(Ex ) is �p2(S)-torsion free.

If �p1(S) ≥ 2, then we must have H1(Ex ) = 0 for degree 2 to work but again we also need
H

1(L1; E) ∼= H1(Ex ) and so H0(Ex ) = 0, which forces E to be trivial.
Finally, suppose �p1(S) = 0 = k − 2. Then to have H∗(Px ) ∼= H∗(P∗

x ) we must have
T �p2(S)

H
1(L1; E) ∼= H1(Ex ). In particular, H1(Ex )must be �p2(S)-torsion. Let k : H1(Ex ) ↪→

H
1(L1; E) take H1(Ex ) isomorphically onto T �p2(S)

H
1(S; E), and consider the composition

qk, where q is the quotient map in (1). If z ∈ H1(Ex ), z �= 0, then z is ℘-torsion for
some ℘ such that E is a ℘-coefficient system, so qk(z) �= 0 or else there would be a ℘-
torsion element in ker(q) ∼= H0(Ez), violating that E is a ℘-coefficient system. Thus qk is
injective. Since H1(Ex ) is a finitely-generated torsion module over a PID, it is Artinian6 and
so every injective endomorphism is an isomorphism [19, Lemma II.4.α]. Precomposing k
with the inverse of this isomorphism provides a splitting of (1). Consequently we also have
H0(Ex ) ∼= H

1(L1; E)/T �p2(S)
H

1(L1; E), and so H0(Ex ) must be �p2(S)-torsion free.

4.3 Singular strata in singular strata

In this case we consider the necessity of the conditions of Definition 3.1 for a singular stratum
S of X contained in singular stratum S of X. As noted above, these conditions won’t always
be necessary in the strictest sense since weaker conditions might suffice depending on the
local cohomology computations resulting from specific choices of spaces, perversities, and
coefficient systems. Instead, we show the conditions to be “necessary in general,” meaning
that we will demonstrate the existence of examples where P∗ is not quasi-isomorphic to P

∗
because the conditions fail. Accordingly, we can choose to work in relatively simple settings.

We first discuss necessity in the codimension 0 setting, followed by the codimension > 0
case. For simplicity, we assume that our ts-perversities are efficient; see Remark 3.5. This
allows us to focus on the degree ranges where the conditions of Definition 3.1may be relevant
rather than cases that are degenerate due to extreme degree values.

6 In fact, since H1(Ex ) is torsion, we can treat it as a module over R/Ann(H1(Ex )). If H1(Ex ) �= 0 then
Ann(H1(Ex )) �= 0, and this is an Artinian ring since R is a PID. If H1(Ex ) = 0, it is clearly Artinian.
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4.3.1 Codimension 0

Suppose that S ⊂ S and dim(S) = dim(S). In this case, a point x ∈ Smay have distinguished
neighborhoods in X and X that are filtered homeomorphic and so have the same link L . If
P∗ ∼= P

∗ then in particularHi (L;P∗) ∼= H
i (L;P∗). It is then clear from Lemma 4.2 that we

will need to have �p(S) = �p(S) in order to have H∗(P∗
x )

∼= H∗(P∗
x ) unless there are further

restrictions on Hi (L;P∗).

4.3.2 Codimension > 0

For simplicity, let us take L to be a trivially-stratified n − k − 2 manifold, in which case
we can assume that Hi (L; E) is nontrivial in any dimension we like or has ℘-torsion in any
dimension 0 to n − k − 2 by manipulating L and E . We then consider X = R

k+1 × cL for
k ≥ 0. Topologically, Rk+1 × cL ∼= cSk × cL ∼= c(Sk ∗ L). If we instead stratify this space
as the cone on Sk ∗ L , using the stratification of Sk ∗ L described just before Corollary 4.6
we obtain a refinement X of X. In fact, X differs from X only by the addition of a single
zero-dimensional stratum, namely the vertex V of c(Sk ∗ L), which we can identify with
(0, v) ∈ R

k+1 × cL if v is the cone vertex of cL .
By such a construction, we obtain an X andX such that X has a singular stratum S = {V }

contained in the singular stratum S = R
k+1×{v} ofX and such that codim(S)−codim(S) =

k + 1. The actual values of codim(S) and codim(S) will of course depend on dim(L). If we
want examples with higher dimensional strata we can consider insteadRm × X andRm ×X,
though Lemma 4.1 shows that the cohomology computations will be the same. We will tend
to use V when referring to the point and S when thinking of the stratum S = {V }.

We suppose that the ts-Deligne sheavesP∗ andP∗ are quasi-isomorphic when restricted to
the complement of V and consider what would be necessary for them to be quasi-isomorphic
at V .

Based on Lemma 4.2, and our assumption that P∗ ∼= P
∗ off of V , we have

Hi (P∗
V ) ∼=

⎧⎪⎨
⎪⎩
0, i > �p1(S) + 1,

T �p2(S)
H

i (L;P∗|L), i = �p1(S) + 1,

H
i (L;P∗|L), i ≤ �p1(S)

and

Hi (P∗
V ) ∼=

⎧⎪⎨
⎪⎩
0, i > �p1(S) + 1,

T �p2(S)
H

i (Sk ∗ L;P∗|Sk∗L), i = �p1(S) + 1,

H
i (Sk ∗ L;P∗|Sk∗L ), i ≤ �p1(S).

We can compute Hi (Sk ∗ L;P∗|Sk∗L ) in terms of H∗(L;P∗|L) using Corollary 4.6:

H
i (Sk ∗ L;P∗|Sk∗L ) ∼=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

H
i−k−1(L;P∗), i > �p1(S) + k + 2,

H
�p 1(S)+1(L;P∗)/T �p2(S)

H
�p1(S)+1(L;P∗), i = �p1(S) + k + 2,

0, �p1(S) + 1 < i < �p1(S) + k + 2,

T �p 2(S)
H

�p 1(S)+1(L;P∗), i = �p1(S) + 1,

H
i (L;P∗), i ≤ �p1(S).

(2)

From these equations, we can see what constraints are necessary in this case and why: In
order to have Hi (P∗

V ) ∼= Hi (PV ) we must truncate Hi (Sk ∗ L;P∗|Sk∗L) in such a way that
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the result agrees with Hi (P∗
V ). If �p1(S) < �p1(S) then in general we will be forcing Hi (P∗

V )

to be 0 in some degrees≤ �p1(S)+1 in which Hi (P∗
V )will not generally be 0 without further

vanishing assumptions. Furthermore, even if �p1(S) = �p1(S) we must have �p2(S) ⊃ �p2(S)

in order to make sure we get all of T �p2(S)
H

i (L;P∗|L) in degree �p1(S) + 1. Similarly, if
�p1(S) ≥ �p1(S) + k + 2, i.e. if �p1(S) > �p1(S) + codim(S) − codim(S), then the term
H

�p1(S)+1(L;P∗)/T �p2(S)
H

�p1(S)+1(L;P∗) (as well as possibly some of those above it in (2))
will appear in H∗(P∗

V ) even though it does not appear in Hi (P∗
V ), but these are not necessarily

trivial. If �p1(S) = �p1(S)+k+1, i.e. if �p1(S) = �p1(S)+codim(S)−codim(S), the only prob-
lematic degree is H �p1(S)+k+2(P∗

V ) ∼= T �p2(S)
(
H

�p1(S)+1(L;P∗)/T �p2(S)
H

�p1(S)+1(L;P∗)
)
.

For this to vanish in general we need �p2(S) ⊂ �p2(S).

5 Dimension axioms

In addition to the original Ax1 axioms of [14, Section 3.3] (and the slight modification
Ax1’), the Deligne sheaves of Goresky–MacPherson can also be characterized by a very
different set of axioms that were used in the original proofs of topological invariance of
intersection homology in [14, Section 4]. Called Ax2, these are phrased in terms of the
support and “cosupport” dimensions of the Deligne sheaves, i.e. the dimensions of the sets on
which Hi (Px ) and Hi ( f !

xP∗) are non-zero for the various i . This perspective has historically
been very useful, to the extent that these axioms are sometimes used to define intersection
homology, e.g. see [16]. In this section we formulate a version of these axioms for ts-Deligne
sheaves and show that they are equivalent to the TAx1 axioms discussed above.We culminate
with Theorem 5.10, which is another formulation of our topological invariance results more
attuned to this context.
Some algebra notation Starting in Sect. 5.2 we will need some notation generalizing T℘ .
Recall that if A is a finitely-generated module over the PID R then A ∼= Rm0 ⊕ ⊕

R/〈pmi
i 〉,

where the pi are primes (not necessarily unique),m0 ≥ 0, andmi ≥ 1 for i �= 0.Alternatively,
as R ∼= R/〈0m〉 for anym > 0, we can also write more consistently A ∼= ⊕

R/〈pmi
i 〉, where

each pi is a prime or 0 and each mi > 0. Our previous construction T℘ A isolates the
summands of A for which pi ∈ ℘. The following construction is analogous but allowing the
possibility pi = 0.

Definition 5.1 Let P+(R) = P(R)∪{0}, where P(R) is the set of primes of R (up to unit). If
A ∼= ⊕

R/〈pmi
i 〉 is a finitely-generated R-module and℘ ⊂ P+(R), define the℘-component

of A to be the summand C℘ A = ⊕
pi∈℘ R/〈pmi

i 〉. If p ∈ P(R) is a single element, we abuse

notation and write CpA instead of C {p}A.

For example, if R = Z and A ∼= Z
3 ⊕ Z8 ⊕ Z25, then C {5,7}A = Z25, C {0,2,7} =

Z
3 ⊕Z8, and C0A = Z

3. Note that C℘ A is not precisely a submodule of A in general, as the
isomorphisms A ∼= ⊕

R/〈pmi
i 〉 are not canonical, but this construction will be sufficient for

our purposes as we will be interested primarily in whether or not C℘ A = 0 or, equivalently,
whether or not A has certain kinds of torsion and/or a nontrivial torsion-free quotient.

123



Geometriae Dedicata (2023) 217 :105 Page 31 of 43 105

5.1 Perversity and coefficient constraints

Unfortunately, support and cosupport axioms can only characterize ts-Deligne sheaves if we
limit ourselves to constrained ts-perversities. In this subsection we will see why that is. The
basic issue is that we know our ts-Deligne sheaves are characterized by the axioms TAx1’ and
so would like to see when it is possible to recover the information content of those axioms
from support and cosupport information. We will further assume below that our constrained
ts-perversities satisfy �p1(2) = 0, i.e. that they are strongly constrained. While not strictly
necessary, this stronger condition allows us to avoid dealing with a plethora of case analyses
and strong restrictions on ts-coefficients.

We first note that knowing that some property holds on some k-dimensional union of
strata is not enough by itself to tell us whether or not that property holds on all k-dimensional
strata. So in order to convert (co)support information into information about behavior on all
strata of a given dimension, all strata of the same dimension need to be treated equivalently,
i.e. we need to consider ts-perversities that are functions of codimension alone.

To see why �p1 must be nondecreasing, let us simplify and consider field coefficients, in
which case our ts-Deligne sheaves are simply the usual Deligne sheaves. The axioms TAx1’
tell us that the key information in this case for characterizing Deligne sheaves is knowing
for each stratum S the degrees for which Hi (P∗

x ) and Hi ( f !
xP∗) are 0 for x ∈ S. Note that

constructibility assumptions will tell us that these modules vanish for some x ∈ S if and
only if they vanish for all x ∈ S. Let us focus on Hi (P∗

x ) and consider how TAx1’ translates
into support information. The diagram (3) below serves as a good model (though focus only
on the * entries for now) with codimension k increasing to the right, degree i increasing
upward, the heights of the columns given by the values of �p1(k), and so each ∗ representing
a (possibly) non-zero Hi (P∗

x ), x ∈ Xn−k .
Suppose now that for a specific i we know that the dimension of the support of Hi (P∗

x )

is n − k. This tells us that Hi (P∗
x ) = 0 for x in strata of codimensions < k, corresponding

in the diagram to no ∗ entries at height i for columns left of k. It also tells us that �p1(k)
must be ≥ i . Now if �p1 is nondecreasing then as k increases the columns get taller and as
i increases the support dimensions of the Hi (P∗

x ) get smaller. Suppose, however, that we
allow �p1 to decrease at some point; e.g. suppose we change the �p shown in the diagram so
that �p1(9) = 0. Since the diagram suggests that the support dimension of H1(P∗

x ) is n − 5,
dropping �p1(9) to force H1(P∗

x ) = 0 on a set of dimension n − 9 does not alter the overall
support dimension of H1(P∗

x ). Conversely, if our only information is support dimensions and
we are trying to recover values of �p1(k), the vanishing of H1(P∗

x ) on an n − 9 dimensional
subspace of an n−5 dimensional support will not be detectable, and so would not be enough
to determine the true value of �p1(9). Roughly said: if �p1 is nondecreasing, then a diagram
such as (3) allows us to recover the column heights from the row depths and vice versa; this
is essentially the content of the support axiom. However, if �p1 is allowed to decrease, this is
no longer possible.

A similar consideration implies that we need the dual perversity D �p to be nondecreasing
in its first component (recall Definition 2.2). To see this, let D denote Verdier duality; then
[10, Theorem 4.19] says that DP∗

�p[−n] ∼= P∗
D �p , where P∗

D �p is also taken with respect to the
dual coefficient system DE . The key observation for our purposes is that

f !
xP∗

�p ∼= f !
xDDP∗

�p ∼= D f ∗
x DP∗

�p ∼= D f ∗
x P∗

D �p[n].
So continuing to assume field coefficients and letting X be a pseudomanifold for simplic-
ity, we have Hi ( f !

xP∗
�p) ∼= Hn−i ( f ∗

x P∗
D �p), using the Universal Coefficient Theorem for

Verdier duality [2, Section V.7.7] and the finite generation implied by the constructibility of
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the sheaves [10, Theorem 4.10]. Consequently, information about Hi ( f !
xP∗

�p) is equivalent
to information about Hn−i ( f ∗

x P∗
D �p), and so the same argument above applies to say that

obtaining full TAx1’ information from cosupport dimensions relies on the presupposition
that D �p1 is nondecreasing.

Since �p1(k) + D �p1(k) = k − 2, we can only have �p1 and D �p1 both nondecreasing if �p1
satisfies the Goresky–MacPherson condition �p1(k) ≤ �p1(k + 1) ≤ �p1(k) + 1. Furthermore,
if we want to allow the full range of possible ts-coefficients so that Hi (Ex ) may be nonzero
for both i = 0, 1 then we should treat P∗ as if it is also truncated over the regular strata
using �p1(0) ≥ 0. The nondecreasing requirements on �p1 and D �p1 then imply that we must
have both �p1(k) and D �p1(k) always ≥ 0. This is only possible if there are no codimension
one strata and �p1(2) = 0. Thus we see that �p must be constrained with �p1(2) = 0, and
codimension one strata must be disallowed.

Remark 5.2 This last choice of �p1(2) = 0 is a bit artificial. If we allow either H1(E) = 0
or H0(E) = 0 then we could again consider any constrained ts-perversity �p with E ∈
�p(2)D♥(Dom(E)). As noted above, however, we will leave these more general cases to the
interested reader.

Similar considerations imply that if �p1(k) stays constant over some range of k, the sets
�p2(k)must be nondecreasing. The same restriction on D �p implies that in a rangewhere �p1(k)
is strictly increasing, the sets �p2(k) must be nonincreasing. Altogether, we have now argued
that we should limit ourselves to strongly constrained ts-perversities (or at least constrained
ones).

Lastly, there is one other way in which we must constrain our data. Returning to PID coef-
ficients, suppose that T pH1(Ex ) �= 0 for some p ∈ P(R). Then dim{supp(T pH1(P∗

x ))} = n,
and analogously to the above arguments, support information would be insufficient to tell
us about T pH1(P∗

x ) on higher codimension strata. To remedy this, we must assume that
if T pH1(Ex ) �= 0 then p ∈ �p2(k) for all k such that �p1(k) = 0, so that p torsion is
always allowed in degree 1. In particular, we must have that H1(Ex ) is �p2(2)-torsion. Anal-
ogously, using that �p1(2) = 0, TAx1’ also says that we will need ts-Deligne sheaves to have
T �p2(2)Hn( f !

xP∗) = 0. But on the manifoldU2, we have Hn( f !
xP∗) ∼= Hn( f !

xE) ∼= H0(Ex ),
so we will not be able to detect T �p2(2)Hn( f !

xP∗) = 0 on Xn−2 if T �p2(2)H0(Ex ) is ever
non-zero, as this would imply dim{x | T �p2(2)H0(Ex ) �= 0} = n. So if T pH0(Ex ) �= 0
for some x then we need to have p /∈ �p2(2). Alternatively, if p ∈ �p2(2), then we
must have T �p2(2)H0(Ex ) = 0 for all x . But together these conditions are equivalent to
E ∈ �p(2)D♥(Dom(E)).

Therefore, we limit ourselves in this section primarily to the case where �p is a strongly
constrained ts-perversities (Definition 3.16) with E ∈ �p(2)D♥(Dom(E)), though we will see
in Sect. 5.4 that we can also consider weakly constrained ts-perversities if we allow ourselves
some additional information.

5.2 More about constrained perversities

Classically, one can visual perversities satisfying the Goresky–MacPherson condition as
“sub-step” functions. Similarly, strongly constrained ts-perversities can be visualized in dia-
grams such as the following in which the ground ring is Z:
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4 {5} {2, 5, 7} ∗
3 {5} ∗ ∗ ∗
2 {2, 5} ∗ ∗ ∗ ∗
1 {2} {2, 3} ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
2 3 4 5 6 7 8 9 10 11

(3)

Here the column labels along the bottom indicate codimension parameters and the row labels
on the left indicate degrees. The asterisks display the height of �p1(k)while the sets of primes
give �p2(k). The diagram is meant to evoke the cut-off degrees for the truncations determined
by �p with the primes in each �p2(k) surviving for an extra degree. In particular, the displayed
ts-perversity is given by

�p(2) = (0,∅) �p(3) = (0, {2}) �p(4) = (0, {2, 3})
�p(5) = (1,∅) �p(6) = (1,∅) �p(7) = (1, {2, 5})
�p(8) = (2, {5}) �p(9) = (3, {5}) �p(10) = (3, {2, 5, 7})

�p(11) = (4,∅)

Note that �p1 satisfies the Goresky–MacPherson conditions while �p2 grows in each row but
shrinks with each step up.

Now let �p be a strongly constrained ts-perversity, let m ∈ Z≥0, and let p ∈ P+(R). If
m > �p1(n)+1 or ifm = �p1(n) and p /∈ �p2(n), set �p−1(m, p) = ∞. Otherwise, generalizing
the definition in [14, Section 4.1], we define

�p−1(m, p) =
{
min{c ≥ 2 | �p1(c) = m − 1, p ∈ �p2(c)}, if such a c exists,

min{c ≥ 2 | �p1(c) = m}, otherwise.

In terms of our diagram above, �p−1(m, p) is the column number of the leftmost entry in
the mth row containing p. If p is not listed explicitly in the mth row, then this is the column
of the leftmost ∗. In our example above, �p−1(1, 2) = 3 while �p−1(1, 5) = 5. Note that since
�p1(c) �= −1 for any c, we have �p−1(0, p) = 2 for any p. Also, if p = 0 then p ∈ �p2(c) is
impossible and so �p−1(m, 0) = min{c ≥ 2 | �p1(c) = m} as in [14].

Remark 5.3 If �p2(k) = ∅ for all k ≥ 2, then �p−1 reduces to the �p−1
1 of [14, Section 4.1]

(in [2, Section V.4.6], Borel writes ≥ instead of = in the definition, but under the Goresky–
MacPherson perversity restriction, min{c | �p1(c) = m} = min{c | �p1(c) ≥ m} since �p1
must take all values between 0 and �p1(n)).

On the other hand, if �p2(k) = P(R) for all k ≥ 2 then �p−1(m, p) = min{c ≥ 2 | �p1(c) =
m − 1} = �p−1(m − 1, 0) for all p ∈ P(R) and all m > 0.

Remark 5.4 Thinking in terms of diagrams as above and using that �p is strongly constrained,
we see that for a fixed p ∈ P+(R) we have k ≥ �p−1(m, p) if and only if either

1. �p1(k) ≥ m or
2. �p1(k) = m − 1 and p ∈ �p2(k).
In particular if p = 0 then k ≥ �p−1(m, 0) if and only �p1(k) ≥ m. If m = 0 this says that
k ≥ �p−1(0, p) = 2 if and only if �p1(k) ≥ 0, though this is tautological as both statements
are always true.
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This observation does not require the last property of constrained ts-perversities, only the
first four. However, below we will need these statements for both �p and its dual D �p. The last
property is needed for the dual to also be strongly constrained.

Lemma 5.5 �p is a strongly constrained ts-perversity if and only if its dual D �p is also strongly
constrained.

Proof For ease of notation, let �q = D �p. As DD �p = �p, it suffices to show that if �p is strongly
constrained then so is �q . Clearly �p is a function of codimension if and only if �q is. The growth
condition only concerns �p1 and �q1 and is true of classical Goresky–MacPherson perversities;
it follows from �p1(k) + �q1(k) = k − 2. Similarly �p1(2) = 0 if and only if �q1(2) = 0. Next,
note that �p1(k+1) = �p1(k)+1 if and only if �q1(k+1) = �q1(k) and �p1(k+1) = �p1(k) if and
only if �q1(k + 1) = �q1(k) + 1. Further, �p2(k) and �q2(k) are complementary sets of primes.
So if �p2(k + 1) ⊃ �p2(k) whenever �p1(k + 1) = �p1(k) then �q2(k + 1) ⊂ �q2(k) whenever
�q1(k + 1) = �q1(k) + 1. Similarly if �p2(k + 1) ⊂ �p2(k) whenever �p1(k + 1) = �p1(k) + 1
then �q2(k + 1) ⊃ �q2(k) whenever �q1(k + 1) = �q1(k). ��

5.3 Support and cosupport axioms for strongly constrained ts-Deligne sheaves

We can now formulate a version of the Goresky–MacPherson axioms Ax2. We follow more
closely the exposition in [2, Section V.4], which is more detailed than [14]. In the following
definition we assume X to be a CS set of dimension n with no codimension one strata, that
�p is a strongly constrained ts-perversity, that �q = D �p, that X is adapted to the ts-coefficient
system E , and that E ∈ �p(2)D♥(Dom(E)).

Definition 5.6 We say the sheaf complex S ∗ satisfies the Axioms TAx2(X , �p, E) if

a. S ∗ is X -clc and it is quasi-isomorphic to a complex that is bounded and that is 0 in
negative degrees;

b. S ∗|U2
∼= E|U2 ;

c. (a) If j > 1 then dim{x ∈ X | CpH j (S ∗
x ) �= 0} ≤ n − �p−1( j, p) for all p ∈ P+(R).

(b) dim{x ∈ X | CpH1(S ∗
x ) �= 0} ≤ n − �p−1(1, p) for all p ∈ P+(R) such that

p /∈ �p2(2).
d. (a) If j < n then dim{x ∈ X | CpH j ( f !

xS
∗) �= 0} ≤ n − �q−1(n − j + 1, p) for all

p ∈ P(R) and dim{x ∈ X | C0H j ( f !
xS

∗) �= 0} ≤ n − �q−1(n − j, 0).
(b) dim{x ∈ X | CpHn( f !

xS
∗) �= 0} ≤ n − �q−1(1, p) for all p ∈ �p2(2).

Note that in axiom (c) we may have p = 0, but in axiom (d) the only appearance of 0 as
an element of P+(R) is explicit as 0 is not in �p2(2) nor P(R). If �p2(k) = ∅ for all k then
these axioms reduce to those of Borel [2, Section 4.7].

Proposition 5.7 The sheaf complex S ∗ satisfies TAx1’(X , �p, E) if and only it satisfies
TAx2(X , �p, E).

Proof The proof emulates that of [2, Proposition V.4.9], though it is a bit more complicated
since we must consider the torsion effects and also take more care with some special cases
when the degree j is near 0 or n. We label codimension by k and assume 2 ≤ k ≤ n
throughout, since X has no codimension one strata by assumption. The first two axioms of
TAx1’ and TAx2 agree, so we will show that the two third axioms and the two fourth axioms
are equivalent given the hypotheses.
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(1′c ⇒ 2c). First suppose S ∗ satisfies TAx1’c. We first observe that it is possible to have
dim{x ∈ X | CpH j (S ∗

x ) �= 0} = n if j = 0 or if j = 1 and p ∈ �p2(2) since S ∗|U2
∼= E

and these properties are true of E . However, also thanks to the properties of E , these are the
only cases for which dim{x ∈ X | CpH j (S ∗

x ) �= 0} = n. In all other cases, CpH j (S ∗
x )

is supported in Xn−2. So consider these other cases, i.e. either j = 1 and p /∈ �p2(2) or
j > 1. If x ∈ Xn−k for k ≥ 2 and CpH j (S ∗

x ) �= 0 then by TAx1’c either j ≤ �p1(k) or
we have j = �p1(k) + 1 and p ∈ �p2(k). By Remark 5.4, this implies k ≥ �p−1( j, p). Then
dim Xn−k ≤ n − k ≤ n − p−1( j, p). This yields TAx2c.

(1′c ⇐ 2c). Conversely, suppose TAx2c holds. Now fix k ≥ 2 and x ∈ Xn−k . We must show
that CpH j (S ∗

x ) = 0 if j > �p1(k)+ 1 or if we have j = �p1(k)+ 1 and p ∈ P+(R)− �p2(k).
So first suppose j ≥ �p1(k) + 2 ≥ 2, the last inequality by the assumptions on �p. Then
�p−1( j, p) > k using Remark 5.4. Similarly Remark 5.4 implies that if j = �p1(k) + 1 ≥ 1
and p /∈ �p2(k) then �p−1( j, p) > k. We also note that since �p2(2) ⊂ �p2(k) for all k such that
�p1(k) = 0, if �p1(k) = 0 and p /∈ �p2(k), then p /∈ �p2(2). So if j ≥ �p1(k) + 2 or if we have
j = �p1(k) + 1 ≥ 1 and p /∈ �p2(k) then either j ≥ 2 or j = 1 with p /∈ �p2(2). In either
case the assumptions say that dim{x ∈ X | CpH j (S ∗

x ) �= 0} ≤ n − �p−1( j, p) < n − k.
Since S ∗ is X -clc, if CpH j (S ∗

x ) �= 0 then also CpH j (S ∗
y ) �= 0 for all y in the n − k

dimensional stratum containing x . Hence we must have in these cases CpH j (S ∗
x ) = 0. This

implies TAx1’c.

(1′d ⇒ 2d). Next suppose S ∗ satisfies TAx1’d. Since S ∗|U2
∼= E and since f !

x = f ∗[−n]
on U2, we have for x ∈ U2 that CpH j ( f !

xS
∗) �= 0 only for j = n, n + 1 and furthermore

thatCpHn( f !
xS

∗) = 0 if p ∈ �p2(2). So for j < n or for j = n and p ∈ �p2(2), the dimension
dim{x ∈ X | CpH j ( f !

xS
∗) �= 0} is determined entirely by points in Xn−2.

So suppose x ∈ Xn−k for k ≥ 2 and that j < n or that j = n and p ∈ �p2(2). If
CpH j ( f !

xS
∗) �= 0 then by assumption either

1. j ≥ �p1(k) + n − k + 3 = n − �q1(k) + 1, or
2. j = �p1(k) + n − k + 2 = n − �q1(k) and p ∈ �q2(k) ∪ {0}.
In the first scenario we can conclude by Remark 5.4 that k ≥ �q−1(n − j + 1, p) while the
second scenario gives us k ≥ �q−1(n− j +1, p) if p ∈ �q2(k) and k ≥ �q−1(n− j, 0) if p = 0.
Note that in either case7 if p �= 0 then we conclude k ≥ �q−1(n − j + 1, p), though of course
the value of q−1(n − j + 1, p) can depend on p. So if p �= 0, then dim(Xn−k) ≤ n − k ≤
n − �q−1(n − j + 1, p) and so dim{x ∈ X | CpH j ( f !

xS
∗) �= 0} ≤ n − �q−1(n − j + 1, p).

Similarly, if p = 0 we obtain dim{x ∈ X | C0H j ( f !
xS

∗) �= 0} ≤ n − �q−1(n − j, 0). So we
have TAx2d.

(1′d ⇐ 2d). Finally, suppose TAx2c holds. If n ≤ j ≤ �p1(k)+n−k+1, then k−1 ≤ �p1(k),
which is impossible. So in considering the first condition of TAx1’d we may assume j < n.
Similarly, n ≤ j = �p1(k) + n − k + 2 implies k − 2 ≤ �p1(k), which is possible only when
we have equalities and so j = n. Thus for the second condition of TAx1’d we may consider
only j ≤ n.

First suppose j < n. Since S ∗ is X -clc (by either set of axioms), j !kS ∗ is clc by [21,
Proposition 4.0.2.3], so if CpH j ( f !

xS
∗) �= 0 for some x ∈ Xn−k then the same is true

for all other points Xn−k . Thus for p ∈ P(R), if x ∈ Xn−k and CpH j ( f !
xS

∗) �= 0 then
n − k ≤ n − �q−1(n − j + 1, p), so k ≥ �q−1(n − j + 1, p). Thus by Remark 5.4 either

7 We remark that if �p2(k) = ∅ for all k, which corresponds toS ∗ satisfying the originalGoresky–MacPherson
axioms, then �q2(k) = P(R) for all k. In this case q−1(n − j + 1, p) = q−1(n − j, 0) by Remark 5.3, which
is again consistent with the expectation from the classical case.
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�q1(k) ≥ n − j + 1 or �q1(k) = n − j and p ∈ �q2(k). This translates to j ≥ �p1(k)+ n − k + 3
or j = �p1(k) + n − k + 2 and p /∈ �p2(k). Similarly, if p = 0, the assumptions imply
n − k ≤ n − �q−1(n − j, 0) or k ≥ �q−1(n − j, 0), which means that �q1(k) ≥ n − j .
This translates to j ≥ �p1(k) + n − k + 2. So, altogether, if CpH j ( f !

xS
∗) �= 0 then

j ≥ �p1(k) + n − k + 2 and if j = �p1(k) + n − k + 2 then p /∈ �p2(k). This is TAx1’d.
Now suppose x ∈ Xn−k , j = n = �p1(k) + n − k + 2, and p ∈ �p2(k). We must show

that CpHn( f !
xS∗) = 0. In this case �p1(k) = k − 2 which is possible only if �p1(k) = k − 2

up through codimension k. So �q1 must be 0̄ up through k. In this case the hypotheses on
constrained ts-perversities imply that �p2(k) ⊂ �p2(c) ⊂ �p2(2) for all 2 ≤ c ≤ k, so in
particular we may use the second condition of TAx2d. Further, since p ∈ �p2(c) for all 2 ≤
c ≤ k then p /∈ �q2(c) for all 2 ≤ c ≤ k and our hypotheses imply n− j+1 = 1. Consequently,
�q−1(n− j+1, p) = �q−1(1, p) > k. So TAx2d implies that dim{CpHn( f !

xS∗) �= 0} < n−k.
So CpHn( f !

xS∗) = 0 as needed.
Altogether this shows TAx1d. ��

Corollary 5.8 Suppose �p is a strongly constrained ts-perversity, X is a CS set without codi-
mension one strata, X is adapted to the ts-coefficient system E , and E ∈ �p(2)D♥(Dom(E)).
Then S ∗ satisfies TAx1(X , �p, E) if and only if it satisfies TAx1’(X , �p, E) if and only if it
satisfies TAx2(X , �p, E). Any of these axioms characterize S ∗ uniquely up to isomorphism
as the ts-Deligne sheaf P∗

X , �p,E .

Proof This follows directly from the preceding proposition, Theorem 2.7 and [10, Theo-
rem 4.8]. ��
Definition 5.9 Let |X | be a space, let E be a maximal ts-coefficient system on |X |, and let
�p be a strongly constrained perversity with E ∈ �p(2)D♥(Dom(E)). We say S ∗ satisfies the
Axioms TAx2’( �p, E) if

a. S ∗ is quasi-isomorphic to a complex that is bounded and that is 0 in negative degrees;
b. S ∗ is X -clc for some CS set stratification X of |X | without codimension one strata that

is adapted to E , and S ∗|U2
∼= E|U2 ;

c. (a) If j > 1 then dim{x ∈ |X | | CpH j (S ∗
x ) �= 0} ≤ n − �p−1( j, p) for all p ∈ P+(R).

(b) dim{x ∈ |X | | CpH1(S ∗
x ) �= 0} ≤ n − �p−1(1, p) for all p ∈ P+(R) such that

p /∈ �p2(2).
d. (a) If j < n then dim{x ∈ |X | | CpH j ( f !

xS
∗) �= 0} ≤ n − �q−1(n − j + 1, p) for all

p ∈ P(R) and dim{x ∈ |X | | C0H j ( f !
xS

∗) �= 0} ≤ n − �q−1(n − j, 0).
(b) dim{x ∈ |X | | CpHn( f !

xS
∗) �= 0} ≤ n − �q−1(1, p) for all p ∈ �p2(2).

Our Axioms TAx2’( �p, E) are slightly different from the Axioms (Ax2)E of [2, Sec-
tion 4.13] even beyond the incorporation of torsion information and the generalization to
CS sets. As observed in [2, Remark V.4.14.b], the axioms there do not assume any relation
between the stratification of X and the coefficient system E as we have done in the second
axiom. However, it is also observed in this remark that (in that setting), a sheaf complex
satisfies (Ax2)E if and only if it satisfies (Ax2)X ,E for some stratification (in Borel’s case
a pseudomanifold stratification) adapted to E . Our Axioms TAx2’( �p, E) are therefore a bit
less general than Borel’s Axioms (Ax2)E in this sense, though as in Sect. 2.4 we can adapt
Borel’s remark if each E i is a local system and E i = 0 for sufficiently large |i |. In this case
we need not assume X adapted to E in the second axiom.

In either case, the upshot is the same: a sheaf complex satisfies our TAx2’( �p, E) if and
only if it satisfies TAx2(X , �p, E) for some stratification X of |X | (adapted to E); furthermore

123



Geometriae Dedicata (2023) 217 :105 Page 37 of 43 105

the axioms TAx2’( �p, E) are stratification independent. Putting this together with our prior
results we obtain a torsion sensitive analogue of [2, Theorem V.4.15]:

Theorem 5.10 Suppose E is a maximal ts-coefficient system with domain UE on a space |X |,
that �p is a strongly constrained perversity, and that E ∈ �p(2)D♥(UE ). Suppose X has a
CS set stratification with no codimension one strata that is fully adapted to E . Then there
is a sheaf complex P∗ satisfying TAx2’( �p, E) with P∗|UE

∼= E and such that P∗ satisfies
TAx2(X , �p, E) for every CS set stratification X of |X | without codimension one strata that
is fully adapted to E .

Proof As X has a CS set stratification with no codimension one strata that is fully adapted
to E , there is an intrinsic stratification X fully adapted to E by Proposition 6.4. Let P∗ be
the ts-Deligne sheaf with respect to X. Then P∗|UE

∼= E since X − Xn−2 = X − Xn−1 =
UE by Proposition 6.4. Proposition 3.20 implies P∗ is quasi-isomorphic to the ts-Deligne
sheaves coming from any of the other stratifications, and we know these satisfy the axioms
by Corollary 5.8. ��

5.4 Support and cosupport axioms for weakly constrained ts-Deligne sheaves

Analogously to the Goresky–MacPherson axioms Ax2, our Axioms TAx2 depend only very
weakly on the stratification: TAx2 only mentions a particular stratification to specify that it is
adapted to the coefficients, that P∗ is X -clc, and that P∗ ∼= E over the regular strata. TAx2’
only asks for this with respect to some stratification. Consequently we obtain our version of
topological invariance in Theorem 5.10.

In Sect. 5.1 we argued that in order for the support and cosupport axioms to imply our ear-
lier TAx1’ axioms it is necessary to use constrained perversities with E ∈ �p(2)D♥(Dom(E))

and to forbid codimension one strata. However, it is possible to avoid all of these constraints
except for the Goresky–MacPherson growth condition at the expense of modifying the TAx2
axioms to depend more heavily on the stratification. In fact, we can obtain Theorem 5.14,
below,which generalizes themain theoremof [6]. The proofs are all analogous to those above,
though in fact simpler since special care no longer needs to be taken in extreme degrees.

For the following, we let �p be a weakly constrained perversity with domain Z≥1. We can
then extend �p−1 to be a function Z × P+(R) → Z≥1 by declaring that if m < �p1(1) then
�p−1(m, p) = 1.

Definition 5.11 Let X be a CS set (possibly with codimension one strata) adapted to a ts-
coefficient system E . Let �p be a weakly constrained ts-perversity. We say the sheaf complex
S ∗ satisfies the Axioms TAx2(X , �p, E, Xn−1) if

a. S ∗ is X -clc and it is quasi-isomorphic to a complex that is bounded and that is 0 in
negative degrees;

b. S ∗|U1
∼= E|U1 ;

c. dim{x ∈ Xn−1 | CpH j (S ∗
x ) �= 0} ≤ n − �p−1( j, p) for all p ∈ P+(R).

d. dim{x ∈ Xn−1 | CpH j ( f !
xS

∗) �= 0} ≤ n − �q−1(n − j + 1, p) for all p ∈ P(R) and
dim{x ∈ Xn−1 | C0H j ( f !

xS
∗) �= 0} ≤ n − �q−1(n − j, 0).

Proposition 5.12 Let �p be a weakly constrained perversity, and suppose X is a CS set,
possibly with codimension one strata, adapted to the ts-coefficient system E . Then the sheaf
complex S ∗ satisfies TAx1’(X , �p, E) if and only it satisfies TAx2(X , �p, E, Xn−1).
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Definition 5.13 Let |X | be a space, � a closed subspace, �p a weakly constrained perver-
sity, and E any maximal ts-coefficient system on |X |. We say S ∗ satisfies the Axioms
TAx2’( �p, E, �) if

a. S ∗ is quasi-isomorphic to a complex that is bounded and that is 0 in negative degrees;
b. S ∗ is X -clc for some CS set stratification X of |X | (possibly with codimension one

strata) such that Xn−1 = � and X that is adapted to E , and S ∗|U1
∼= E|U1 ;

c. dim{x ∈ � | CpH j (S ∗
x ) �= 0} ≤ n − �p−1( j, p) for all p ∈ P+(R).

d. dim{x ∈ � | CpH j ( f !
xS

∗) �= 0} ≤ n − �q−1(n − j + 1, p) for all p ∈ P(R) and
dim{x ∈ � | C0H j ( f !

xS
∗) �= 0} ≤ n − �q−1(n − j, 0).

Theorem 5.14 Suppose �p is a weakly constrained perversity and that E is a maximal ts-
coefficient system with domain UE on a space |X | with closed subspace �. Suppose |X | has
a CS set stratification X that is fully adapted to E and such that Xn−1 = �. Then there
is a sheaf complex P∗ satisfying TAx2’( �p, E, �) with P∗|UE−�

∼= E|UE−� and such that
P∗ satisfies TAx2(X , �p, E, �) for every CS set stratification X with Xn−1 = � that is fully
adapted to E .

6 Intrinsic stratifications

In this section we consider common coarsenings of CS sets. In particular, each CS set pos-
sesses an intrinsic stratification as a CS set that coarsens all others; this is due to King and
Sullivan [18] and a thorough discussion can be found in [11, Section 2.10]. This generalizes
the classical situation for PL spaces, which is treated in [11, Section 2.10.1]. Since not all
stratifications are adapted to a given coefficient system, it will be necessary to refine the
construction of a coarsest stratification to take the coefficients into account.8 Furthermore,
we have seen in Sect. 3 that we may wish to only consider coarsenings that preserve some
subspace, without letting strata in the subspace “merge” with other strata not in the subspace.
So this is a further ingredient we will consider for our common coarsenings.

Many of the basic ideas are the same as in the above references, but in order to account for
the additional ingredients we provide most of the details. No doubt some of our arguments
would simplify if we were to consider only piecewise linear spaces, but there would still be
intricacies in accounting for the coefficient systems and the fixed subspaces. Consequently,
we choose tomake theminor additional effort toworkwithCS sets in the topological category
and so capture the greater generality. For example, working with not-necessarily-PL spaces
allows us to apply these results when E is a local system defined only on the complement of
a codimension-two locally flat submanifold of a topological manifold. Such a setting occurs,
for example, in the study of topological locally flat knots Sn−2 ↪→ S2. Another minor feature
of working with CS sets is that all of our constructions in this section will be essentially “by
hand,” without the need to invoke any major theorems of PL topology.

We recall that the usual intrinsic stratification of aCS set X is determined by an equivalence
relation so that x0, x1 ∈ X are equivalent, denoted x0 ∼ x1, if they possess neighborhoods
U0,U1 such that (U0, x0) ∼= (U1, x1) as topological space pairs (i.e. ignoring the filtrations)
[11, Definition 2.10.3]. If x0, x1 are both in the same stratum of X , then x0 ∼ x1 [11,
Lemma 2.10.4]. Furthermore, if we let Xi be the union of the equivalence classes that only
contain strata of X of dimension ≤ i , then the Xi filter X as a CS set that does not depend

8 A version of such a construction for fairly general sheaf complexes can be found in Habegger–Saper [16,
Section 3].
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on the initial filtration of X as a CS set and that coarsens all other CS set stratifications [11,
Proposition 2.10.5]. This provides an intrinsic coarsest CS set stratification of X .

To account for subspaces, the Frontier Condition [11, Definition 2.2.16, Lemma 2.3.7]
implies that if we have a stratum S that we don’t wish to merge with some other stratum T of
lower codimension then points in the closure of S also cannot merge with T . Consequently,
it makes sense for our fixed subspaces to be closed unions of strata. We therefore make the
following definition. The assumption that X be fully adapted to a maximal ts-coefficient
system E will be critical in the following arguments; see Sect. 2.4 for those definitions.

Definition 6.1 Let X be a CS set fully adapted to the maximal ts-coefficient system E with
domain the open n-manifoldUE , and let C be a closed union of strata of X . We say x ∼E,C y
for points x, y ∈ X if there is a homeomorphism of space pairs (ignoring the stratifications)
h : (Ux , x) → (Uy, y) so that

1. h(Ux ∩ C) = Uy ∩ C ,
2. h(Ux ∩UE ) = Uy ∩UE , and
3. h∗(E|Uy∩UE ) is quasi-isomorphic to E|Ux∩UE , i.e. h

∗(E|Uy∩UE ) ∼= E|Ux∩UE in the derived
category.

For the rest of our discussion we fix E and C and so simply write ∼ for our relation.

Lemma 6.2 1. ∼ is an equivalence relation.
2. If x, y ∈ X are in the same stratum of X then x ∼ y.

Proof The relation is clearly reflexive. For symmetry and transitivity, the only parts that
are not obvious are the behavior of E . Suppose x ∼ y and y ∼ z with homeomorphisms
h : Ux → Uy and g : Uy → Uz . Then h∗E|Uy∩UE

∼= E|Ux∩UE and g∗E|Uz∩UE
∼= E|Uy∩UE , so

(gh)∗E|Uz∩UE
∼= h∗g∗E|Uz∩UE

∼= h∗E|Uy∩UE
∼= E|Ux∩UE demonstrating transitivity. Simi-

larly, if x ∼ y then (h−1)∗E|Ux∩UE
∼= (h−1)∗h∗E|Uy∩UE

∼= (hh−1)∗E|Uy∩UE
∼= E|Uy∩UE .

So ∼ is an equivalence relation.
Now suppose Ux is a distinguished neighborhood of x by the filtered homeomorphism

g : Rk × cL → Ux . Let y ∈ Ux be contained in the same stratum as x , in which case Ux

is also a distinguished neighborhood of y. Then g−1(x), g−1(y) ⊂ R
k × {v} = R

k , where
v is the cone point. Let f be a homeomorphism of Rk that takes g−1(x) to g−1(y), and let
h = f × id on R

k × cL . Then ghg−1 is a homeomorphism Ux → Uy = Ux that takes
x to y. Since ghg−1 preserves strata and since X is fully adapted to E and C is a union of
strata, the map ghg−1 restricts to a homeomorphism from Ux ∩ UE to itself and also from
Ux ∩ C to itself. Furthermore, since E is clc on its domain of definition and since X is fully
adapted to E , g∗E will be clc on g−1(Ux ∩UE ), which will be a set of the form R

k × V . Let
π : Rk × cL → cL be the projection. By [17, Proposition 2.7.8], g∗E ∼= π∗Rπ∗g∗E on its
domain. So since πh = π we have

(ghg−1)∗E ∼= (g−1)∗h∗g∗E ∼= (g−1)∗h∗π∗Rπ∗g∗E ∼= (g−1)∗π∗Rπ∗g∗E
∼= (g−1)∗g∗E ∼= E

on its domain. So x ∼ y.
Now suppose x is in the stratum S of x and let W be the set of points in S equivalent to

x . By the above argument, W is an open subset of S. On the other hand, if y ∈ S is in the
closure of W , then any distinguished neighborhood of y must intersect W , so y ∈ W by the
above. Thus W is closed. Since strata are connected, W must be all of S. ��
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By the lemma, the equivalence classes under ∼ are unions of strata of X . Let Xi
E,C be the

union of the equivalence classes made up only of strata of dimension ≤ i , and let XE,C be
the stratification of |X | with these skeleta.

Definition 6.3 We call XE,C the intrinsic stratification of X rel (E,C).

The following proposition contains the properties of XE,C , including that this is a CS set
and that it provides a common coarsening of all CS set stratifications of |X | that are fully
adapted to E and for which C is a closed union of strata (Property 7). We will only need
the case k = 1 of the last statement, Property 8, which concerns the closure of the union of
strata of codimension one. However, the proof is equivalent for any k so we provide the more
general version.

Proposition 6.4 Let X be an n-dimensional CS set fully adapted to the maximal ts-coefficient
system E with domain the open n-manifold UE , and let C be a closed union of strata of X of
codimension ≥ 1. Then:

1. The sets Xi
E,C filter |X | as a CS set.

2. If x and y are in the same stratum of XE,C then x ∼ y.
3. C is a union of strata of XE,C .
4. X − Xn−1 = UE − C.
5. XE,C is fully adapted to E .
6. Suppose Y is another CS set stratification of |X | that is fully adapted to E and such that

C is also a closed union of strata of Y . Then starting with Y results in the same Xi
E,C ,

i.e. the intrinsic stratification of Y rel (E,C) is also XE,C .
7. Suppose Y is another CS set stratification of |X | that is fully adapted to E and such that

C is also a closed union of strata of Y . Then Y refines XE,C , i.e. each stratum of XE,C is
a union of strata of Y . Hence, XE,C is a common coarsening of all such stratifications.

8. Suppose Ck is the closure of the union of strata of X of codimension k. Then Ck is also
the closure of the union of strata of XE,Ck of codimension k.

Proof We write simply X rather than XE,C . We take each statement in turn.
1. The proof that the sets Xi filter |X | as a CS set is essentially identically to the classical
case [11, Proposition 2.10.5], using Lemma 6.2. We sketch the argument as we will use some
of the details below.

First observe that if x ∼ y by the homeomorphism h : Ux → Uy and if z ∈ Ux then
z ∼ h(z) lettingUz = Ux andUh(z) = Uy . Now suppose x ∈ |X |−Xi so that x is equivalent
to a point y in a stratum of X of dimension > i . By restricting to a smaller Ux if necessary,
we can assume h(Ux ) is contained in a distinguished neighborhood of y in X . Then h(Ux )

intersects only strata of dimension > i and so each point of Ux is equivalent to a point in a
stratum of dimension > i . So Ux ∈ |X | −Xi . Thus |X | −Xi is open so Xi is closed and the
Xi provide a closed filtration of X , as clearly Xi ⊂ Xi+1.

Next suppose x ∈ Xi ∩Xi . Then x has a distinguished neighborhood N ∼= R
i × cL in X .

It is shown in the proof of [11, Proposition 2.10.5] that if we think of L as embedded as the
image of {0} × {1/2} × L and refilter |L| by � j−i−1 = |L| ∩ X j then the image of Ri × c�
becomes a distinguished neighborhood of x in X. If z ∈ Xi −Xi ∩ Xi then z is equivalent to
some point x ∈ Xi ∩Xi , and we obtain a distinguished neighborhood for z inX as the filtered
homeomorphic image of a distinguished neighborhood of x in X under the homeomorphism
of the equivalence. See [11] for details.
2. It follows from Lemma 6.2 and the construction of distinguished neighborhoods in the
proof of Property 1 that each point x has a distinguished neighborhood R

i × cL in X such
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that the points ofRi ×{v}, i.e. all the points in the neighborhood that are in the same stratum
ofX as x , are equivalent. Property 2 now follows from the same sort of open/closed argument
as in the proof of Lemma 6.2.
3. By the preceding property, all points in any fixed stratum of X are equivalent. From the
definition of the equivalence relation, thiswould not be possible if any stratumofX intersected
both C and its complement. Hence any stratum intersecting C is contained in C , and C is a
union of strata.
4. Suppose x ∈ Xn −Xn−1. Then by definition x is equivalent to a point z in Xn − Xn−1. But
since X is adapted to E , the point z has aEuclidean neighborhood onwhichE is defined.Hence
so does x . ThusX−Xn−1 ⊂ UE . Furthermore, by construction of∼ and the assumption that
C is the closure of a union of strata of codimension ≥ 1, no point in C can be equivalent to
a point in X − Xn−1, so X − Xn−1 ⊂ UE − C .

Next suppose x ∈ UE −C . Then x has a Euclidean neighborhood in |X |−C on which E is
defined. By the argument in the proof of Lemma 6.2, x will be equivalent to every other point
in this neighborhood. In particular x is equivalent to a point in an n-dimensional stratum of
X and so x ∈ Xn − Xn−1.
5.We have already seen thatX−Xn−1 = UE −C , so in particularX−Xn−1 ⊂ UE . It remains
to show that UE ∩ C is a union of strata of X. Let S ⊂ Xi , i ≤ n − 1, be any stratum of X.
Then UE ∩ S is open in S since UE is an open set. Thus it suffices to show that UE ∩ S is
also closed inS. Let x be in the closure ofUE ∩S so that every neighborhood of x intersects
UE ∩S. By the proof of Property 1, x is equivalent to a point z ∈ Xi and the homeomorphism
h : Uz → Ux induces (possibly after restriction to a subspace) a filtered homeomorphism
from a distinguished neighborhood of z in X to a distinguished neighborhood of x in X. In
particular, h takes a neighborhood B of z in Xi to a neighborhood of x inXi . Since X is fully
adapted to E , either B ⊂ UE or B ∩ UE = ∅. But since h(B) is a neighborhood of x in S,
there is some y ∈ h(B) ∩UE , and hence h−1(y) ∈ B ∩UE by definition of ∼. Thus z ∈ UE
and so is x .
6. Here wemodify the proof of [11, Proposition 2.10.5]. Let X andY be two CS set stratifica-
tions of |X | fully adapted to E and such thatC is a closed union of strata ofY . LetX andY be
the resulting coarsenings. The equivalence relation ∼ does not depend on the stratifications,
and so the equivalence relations used to define X and Y are the same and we will use the
same symbol for both. However, the definitions of the skeleta Xi andYi do a priori depend
on the stratifications, so this is what we must consider.

Clearly Xn = |X | = Yn , and by our preceding arguments X − Xn−1 = UE − C =
Y − Yn−1 so that Xn−1 = Yn−1. Now let x ∈ Xi for some i < n − 1. Then x cannot be
equivalent to any point in X j with j > i by definition. Suppose x ∈ Y j for some j > i , and
let S be the stratum of Y j containing x . By Property 2, the points of S are all equivalent
to x . But now dimension considerations show that there must be points arbitrarily close to
x that are equivalent to x but not contained in Xi , and in particular there is therefore some
stratum of X of dimension > i containing points equivalent to x , a contradiction. So x is
not in any Y j with j > i and so x ∈ Yi . Thus Xi ⊂ Yi , and the same argument shows the
converse. So Xi = Yi for all i .
7. The statement follows from the preceding one and Lemma 6.2.
8. Let Ck denote the closure of the strata of X of codimension k. By the Frontier Condition,
Ck ⊂ Xn−k . So if x ∈ Xn−k then x cannot be equivalent to any point in X − Xn−k as such
points have neighborhoods that do not intersect Ck . So x ∈ Xn−k . But also x clearly cannot
be equivalent to a point that is only equivalent to points in strata of X of dimension < n − k,
so x ∈ Xn−k −Xn−k−1. Thus Xn−k −Xn−k−1 ⊂ Xn−k −Xn−k−1. Taking closures,Ck ⊂ Ck .
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Next, suppose x ∈ Xn−k −Xn−k−1. By definition x is equivalent to a point in a stratum of
X of dimension n− k. If x /∈ Ck then x has a neighborhood that does not intersect Ck and so
x is not equivalent to a point in Ck , a contradiction. So x ∈ Ck . Thus Xn−k −Xn−k−1 ⊂ Ck ,
so, taking closures, Ck ⊂ Ck . ��

Data availability Data sharing not applicable to this article as no datasets were generated or analyzed during
the current study.
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