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Abstract
We characterise when there exists a quasiisometric embedding between two solvable
Baumslag–Solitar groups. This extends the work of Farb and Mosher on quasiisometries
between the samegroups.More generally,we characterisewhen there can exist a quasiisomet-
ric embedding between two treebolic spaces. This allows us to determine when two treebolic
spaces are quasiisometric, confirming a conjecture of Woess. The question of whether there
exists a quasiisometric embedding between two treebolic spaces turns out to be equivalent to
the question of whether there exists a bilipschitz embedding between two symbolic Cantor
sets, which in turn is equivalent to the question of whether there exists a rough isometric
embedding between two regular rooted trees. Hence we answer all three of these questions
simultaneously. It turns out that the existence of such embeddings is completely determined
by the boundedness of an intriguing family of integer sequences.
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1 Introduction

In his speech to the ICM in 1983 [1], Gromov proposed the vast project of classifying finitely
generated groups up to quasiisometry. His line of thought leads to the question of whether
an algebraic property P of finitely generated groups can be characterised by some other
geometric (i.e. quasiisometry invariant) property. If this is the case then we say that the class
of groups satisfying P is quasiisometrically rigid. It suggests that the algebraic property P in
fact corresponds to some geometric feature of the groups. For example, Gromov [2] proved
that virtual nilpotency is invariant under quasiisometries and corresponds to the geometric
property of polynomial growth. In contrast, Erschler [3] proved that virtual solvability is not
geometric; there exist groups G and H where G is solvable and H is not virtually solvable
such that G and H have a common Cayley graph. Nevertheless, we can limit our focus
to subclasses of solvable groups. Farb and Mosher [4] proved that the solvable Baumslag–
Solitar groups BS(1,m) exhibit a fascinating rigidity; BS(1,m) is quasiisometric to BS(1, n)

if and only if m, n are powers of a common integer (which holds if and only if they are
commensurable). This paper generalises this result in twoways. First, the result is extended to
the treebolic spaces HT (p, q); in their paper, Farb andMosher utilise the fact that BS(1,m)

acts cocompactly and isometrically on HT (m,m). Treebolic spaces were introduced by
Bendikov, Saloff–Coste, Salvatori and Woess in [5] and they developed the theory further in
[6, 7]. We characterise when treebolic spaces are quasiisometric (Theorem 2), confirming a
conjecture ofWoess [8]. Second,we study a stronger notion of rigidity by providing necessary
and sufficient conditions for the existence of a quasiisometric embedding of one treebolic
space into another (Theorem 1). In particular, we prove that BS(1,m) quasiisometrically
embeds into BS(1, n) if and only if m, n are powers of a common integer.

1.1 Statement of results

Let p ∈ N�2 and let q > 1. We are primarily interested in three classes of metric space:
regular rooted trees R(p, q), symbolic Cantor sets Z(p, q) and treebolic spaces HT (p, q).
These can be described as follows.

• Let R(p, q) denote the rootedmetric tree with all edges of length log(q) andwith valency
p + 1 at every vertex apart from the basepoint which has valency p.

• Let Z(p, q) = {0, 1, . . . , p−1}N be the space of infinite sequences on p letters. Z(p, q)

admits a metric ρ making it a metric space of diameter 1. See Sect. 2.
• Let T (p, q) be the metric tree with all edges of length log(q) and with valency p + 1

at every vertex. Roughly speaking, the treebolic space HT (p, q) is formed by fixing
height functions on T (p, q) and on the hyperbolic plane H2 and then gluing horostrips
of H2 onto every edge of T (p, q) in a height-preserving manner. One can also think
of HT (p, q) as being composed of infinitely many copies of H2 glued together along
horoballs into the shape of a tree. See Sect. 2 for a rigorous definition.

We will be interested in three different types of embedding between these metric
spaces: rough isometric embeddings, bilipschitz embeddings and quasiisometric embed-
dings. Fix a pair of metric spaces X , Y and a pair of constants K � 1, C � 0. We
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define (K ,C)-quasiisometric embeddings and (K ,C)-quasiisometries in the usual manner.
A (K , 0)-quasiisometric embedding f : X → Y is a K -bilipschitz embedding. A (K , 0)-
quasiisometry f : X → Y is a K -bilipschitz homeomorphism. A (1,C)-quasiisometric
embedding f : X → Y is a C-rough isometric embedding. A (1,C)-quasiisometry
f : X → Y is a C-rough isometry.
We will simultaneously answer three closely connected questions: when does there exists

a rough isometric embedding R(p, q) → R(p′, q ′)? When does there exists a bilipschitz
embedding Z(p, q) → Z(p′, q ′)? And, finally, when does there exist a quasiisometric
embedding HT (p, q) → HT (p′, q ′)? Remarkably, the existence of these embeddings is
intimately related to the boundedness of a certain integral sequence X = X (p, q, p′, q ′)
which can be defined as follows.

• Consider the non-negative number line R�0 and imagine marking each non-negative
multiple of log(q) in blue and each non-negative multiple of log

(
q ′) in red. We begin

with a single pebble in our hand. We then imagine walking forwards along the number
line from 0 obeying the following rule as we go: each time we pass a blue, we multiply
the amount of pebbles in our possession by p; each time we pass a red, we divide our
pebbles evenly into p′ groups and keep only one of the larger groups (e.g. if p′ = 3
then we divide 8 pebbles into 3,3,2 and keep only 3 pebbles); if we pass a red and
a blue simultaneously then we first multiply our pebbles by p and only then do we
divide them by p′ and keep one of the larger groups as before. The changing quantity of
pebbles in our possession as we walk along the number line forms the integral sequence
X (p, q, p′, q ′). For a formal definition, see the definition of the more general class of
sequences X ((pn), (qn), (p′

n), (q
′
n)) in Sect. 3.

Consider the following pair of number theoretic conditions on p, q, p′, q ′.
(C1) log(p)/ log(q) < log

(
p′)/ log

(
q ′);

(C2) log(p)/ log(q) = log
(
p′)/ log

(
q ′) and p, p′ are powers of a common integer.

We prove the following series of equivalences.

Theorem 1 The following are equivalent.

(A1) Either (C1) or (C2) holds;
(A2) X (p, q, p′, q ′) is bounded;
(A3) There exists a rough isometric embedding R(p, q) → R(p′, q ′);
(A4) There exists a bilipschitz embedding Z(p, q) → Z(p′, q ′);
(A5) There exists a quasiisometric embedding HT (p, q) → HT (p′, q ′).

Without much added difficulty, we also obtain the following.

Theorem 2 The following are equivalent.

(B1) (C2) holds;
(B2) R(p, q) is rough isometric to R(p′, q ′);
(B3) Z(p, q) is bilipschitz homeomorphic to Z(p′, q ′);
(B4) HT (p, q) is quasiisometric to HT (p′, q ′).

Remark Some of the implications of Theorem 2 follow from Theorem 1. If R(p, q) is rough
isometric to R(p′, q ′) then there exist rough isometric embeddings R(p, q) → R(p′, q ′)
and R(p′, q ′) → R(p, q). Similar statements hold if Z(p, q) is bilipschitz homeomorphic
to Z(p′, q ′) or HT (p, q) is quasiisometric to HT (p′, q ′). Hence, it follows from Theorem 1
that (B2), (B3), (B4) all imply (B1).
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The equivalence of (B1) and (B4), i.e. the quasiisometric classification of treebolic spaces,
was conjectured by Woess (Question 2.15 [8]).

Corollary 3 HT (p, q) is quasiisometric to HT (p′, q ′) if and only if log(p)/ log(q) =
log

(
p′)/ log

(
q ′) and p, p′ are powers of a common integer.

The treebolic space HT (p, q) is an example of a horocyclic product (for a definition see
Sect. 2 of [8]). Other examples include the Diestel–Lieder graphs DL(p, q) (introduced in
[9]) and the Lie groups Sol(p, q). The quasiisometric classifications of the Diestel–Lieder
graphs and the Sol groups were provided by Eskin, Fisher and Whyte [10, 11].

Recall that, when m ∈ N�2, the treebolic space HT (m,m) is quasiisometric to the
solvable Baumslag-Solitar group BS(1,m) = 〈a, t |tat−1 = am〉 with some word metric
(see, for example, Sect. 3 of [4]). It follows from Corollary 3 that BS(1,m) is quasiisometric
to BS(1, n) if and only if m, n are powers of a common integer; this result was originally
proved by Farb and Mosher [4]. Indeed, the proof in this paper that (A5) implies (A4)
essentially follows from their work; the only meaningful change required is to the proof of
Lemma 5.1 of their paper. Theorem 1 gives us the following result, proving that the solvable
Baumslag–Solitar groups obey an even stronger rigidity.

Corollary 4 There exists a quasiisometric embedding BS(1,m) → BS(1, n) if and only if
m, n are powers of a common integer.

Remark The content of Theorem 1 and Theorem 2 intersects with the work of Deng, Wen,
Xiong and Xi [12]. Indeed, the metric space Z(p, q) is a self-similar set satisfying the strong
separation condition and is of Hausdorff dimension log(p)/ log(q). Theorem 1 of their paper
then immediately gives us that (C1) implies (A4). Further, Theorem 2 of their paper gives us
the following: if log(p)/ log(q) = log

(
p′)/ log

(
q ′) then (A4) holds if and only if (B3) holds.

Now, Cooper proves in the appendix of [4] that if Z(m,m) is bilipschitz homeomorphic to
Z(n, n) then m, n are powers of a common integer. Consequently, once we have proved that
(A5) implies (A4), Corollary 4 follows from [12] and [4].

Theorem 1 tells us that unboundedness of the sequenceX (p, q, p′, q ′) is an obstruction to
the existence of a rough isometric embedding R(p, q) → R(p′, q ′). It is possible to partially
generalise this result to a far larger class of trees.

• Suppose we have sequences (pn)n∈N, (qn)n∈N such that pn ∈ N�2 and qn ∈ R>1.
Suppose also that pn and qn are bounded sequences and that infn qn > 1. We can
construct a rooted metric tree R = R((pn), (qn)) as follows. We start with a basepoint
b. The basepoint b has p1 edges emanating from it of length log(q1). The terminal
vertices of these edges have p2 edges emanating from them of length log(q2). Then the
terminal vertices of those edges have p3 edges emanating from them of length log(q3).
Continuing in this way we will have constructed an infinite rooted tree R((pn), (qn)). We
call a rooted tree constructed in this manner spherically homogeneous. The regular rooted
tree R(p, q) is precisely the spherically homogeneous tree associated to the constant
sequences pn = p, qn = q .

Given sequences (pn), (qn), (p′
n), (q

′
n), one can define an integral sequence X =

X ((pn), (qn), (p′
n), (q

′
n)) analogous to the sequence X (p, q, p′, q ′) defined above (see

Sect. 3). In Sect. 3 we will also introduce a simple property, which we call (P), on inte-
ger sequences. We have the following.
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Theorem 5 Suppose we have a pair of spherically homogeneous trees R((pn), (qn)),
R((p′

n), (q
′
n)) such that (p

′
n) satisfies property (P). IfX ((pn), (qn), (p′

n), (q
′
n)) is unbounded

then there does not exist a rough isometric embedding R((pn), (qn)) → R((p′
n), (q

′
n)).

The set of bounded integer sequences taking values satisfying property (P) is a strict subset
of the set of all bounded integer sequences, but contains (and is strictly larger than) the set
of all periodic integer sequences. Hence,

Corollary 6 Suppose we have a pair of spherically homogeneous trees R((pn), (qn)),
R((p′

n), (q
′
n)) such that (p′

n) is periodic. If X ((pn), (qn), (p′
n), (q

′
n)) is unbounded then

there does not exist a rough isometric embedding R((pn), (qn)) → R((p′
n), (q

′
n)).

1.2 Structure of the paper

Section 2 provides relevant details on the metric spaces Z(p, q) and HT (p, q). Section 3
focusses on embedding spherically homogeneous trees; in itwewill proveTheorem5, thereby
proving that (A3) �⇒ (A2). In Sect. 4, by studying the sequence X (p, q, p′, q ′), we will
prove that (A2) �⇒ (A1). In Sect. 5 we find rough isometric embeddings between regular
rooted trees when either (C1) or (C2) hold; it covers the implications (A1) �⇒ (A3) and
(B1) �⇒ (B2). Finally, Sect. 6 considers how embeddings of regular rooted trees R(p, q),
symbolic Cantor sets Z(p, q) and treebolic spaces HT (p, q) all relate to each other; we will
prove (A5) �⇒ (A4) �⇒ (A3) �⇒ (A5), (B2) �⇒ (B3) and (B2) �⇒ (B4).

2 Preliminaries

2.1 Notation

Given a metric space X , a subset A ⊂ X and a constant r � 0, we use the notation Nr (A)

to denote the r -neighbourhood of A. That is,

Nr (A) = {x ∈ X : d(x, A) < r}
If we have another subset B ⊂ X , we use the notation dH (A, B) to denote the Hausdorff
distance between A and B. This is defined to be the (possibly infinite) quantity

dH (A, B) = max(sup
x∈A

d(x, B), sup
y∈B

d(y, A))

2.2 Symbolic Cantor sets

Let Z(p, q) = {0, 1, . . . , p− 1}N be the space of infinite sequences on p letters. We can put
a metric ρ on Z(p, q): given (an), (bn) ∈ Z(p, q) set ρ((an), (bn)) = q−N where an = bn
for n � N and aN+1 
= bN+1.

2.3 Treebolic spaces

Let T (p, q) be the metric tree with all edges of length log(q) and with valency p+1 at every
vertex. Let γ : [0,∞) → T (p, q) be some geodesic ray based at a vertex b of T (p, q). The
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ray γ induces a height function h : T (p, q) → R on T (p, q) via

h(x) = d(b, x) − 2 · length(γx ∩ γ )

where γx is the geodesic segment from b to x . Now consider the upper half plane model of

the hyperbolic plane:H2 = {(x, y) ∈ R×R>0} with the metric ds2 = dx2+dy2

y2
. We can put

a height function on this model of H2 via

h(x, y) = log(y)

Note that both these height functions coincide with the classical notion of a Busemann
function (see Definition 8.17 [13]). By a horostrip in H

2 we mean a subset of the form
{(x, y) ∈ H

2 : h(x, y) ∈ [a, b]} for some real interval [a, b]. The space HT (p, q) is
formed by gluing horostrips onto every edge of T (p, q) in a height-preserving manner. More
precisely, let HT (p, q) = T (p, q) × R as a set. Let e = [v,w] be some edge of T (p, q)

such that h(v) < h(w). We can put a metric on e × R by identifying it with the horostrip

{(x, y) ∈ H
2 : h(x, y) ∈ [h(v), h(w)]}

If we do this for every edge of T (p, q) then we will have produced a metric on the whole
of HT (p, q) by taking the shortest path metric. The key to understanding the geometry of
HT (p, q) is the following fact. Let π : HT (p, q) → T (p, q) be the projection. Let L :
(−∞,∞) → T (p, q) be a height-increasing bi-infinite geodesic in T (p, q). Thenπ−1(L) ⊂
HT (p, q) is an isometrically embedded copy ofH2. Hencewe use the following terminology.
A horocycle in HT (p, q) is a preimage π−1(x) where x ∈ T (p, q). A branching horocycle
in HT (p, q) is a preimage π−1(v) where v is a vertex of T (p, q). For more details on
treebolic spaces see Sect. 2B of [8].

3 Embeddings of spherically homogeneous trees

Let R be some spherically homogeneous tree with basepoint b. We can put a height function
h : R → R�0 on R via h(x) = d(b, x). We will also put an orientation on the edges of R:
we orient the edges such that the initial vertex is closer to b than the terminal vertex.

Definition Given some x ∈ R, we define its tree of descendants τ(x) to be the subset of R
that is the union of x and all points that can be reached from x by paths that are in agreement
with the orientation on R. Similarly, given a subset B ⊆ R, we can define

τ(B) =
⋃

x∈B
τ(x)

Some notation.

• V (R) denotes the vertex set of R.
• Given a subset B ⊆ R and some height h � 0 we use the notation B

∣∣
h to denote the set

of all points in B of height h; this is always a finite set.
• Suppose x, y ∈ R. Let x∧ y denote the point of {z ∈ R : x ∈ τ(z), y ∈ τ(z)} of maximal

height.

We now give a further series of definitions.

Definition Let A � 0.We say that amap f : R → R′ between two spherically homogeneous
trees is A-coarsely height-preserving if supx∈R |h(x) − h( f (x))| � A.
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Definition Let b, b′ denote the basepoints of R, R′ respectively. A map f : R → R′ is a
waterfall map if f (b) = b′ and f

∣
∣
γ
is an isometry for all geodesic rays γ based at b.

Definition We say that a map f : R → R′ between spherically homogeneous trees is
order-preserving if the following implication holds:

y ∈ τ(x) �⇒ f (y) ∈ τ( f (x))

That is, if y descends from x then f (y) descends from f (x).

Note that the following statements are equivalent: f : R → R is a waterfall map; f is
height-preserving and continuous; f is height-preserving and order-preserving.

Definition Given a vertex v ∈ V (R) we denote by C(v) the set of children of v. That is,
C(v) = {w1, . . . , wp} where w1, . . . , wp are the vertices connected by a single edge to v

such that h(wi ) > h(v).

A waterfall map f : R → R′ can be very far from any notion of injectivity. For example,
it could map every geodesic ray based at b onto one single geodesic ray based at b′. We will
say that a waterfall map is distributive if it makes as much effort as possible to be injective;
if it divides itself evenly at the vertices of R′.

Definition Suppose f : R → R′ is a waterfall map and suppose we have a vertexw ∈ V (R′)
such that f −1(w) is non-empty. Write f −1(w) = {x1, . . . , xm}. If the xi are vertices, then
set p = |C(xi )|, the number of edges emanating outwards from a single xi . If the xi are not
vertices, then set p = 1. Similarly, let p′ = |C(w)|, the number of edges emanating outwards
from the vertex w. Consider the subsets

Bε(w) = τ(w) ∩ {x ∈ R : d(w, x) � ε}
Bε(xi ) = τ(xi ) ∩ {x ∈ R′ : d(xi , x) � ε} (1 � i � m)

and choose ε small enough that Bε(w) is isometric to a star with p′ arms and Bε(xi ) is
isometric to a star with p arms. Let P = mp. Since f is a waterfall map, an arm emanating
from some xi is mapped isometrically onto one of the p′ arms emanating from w. Thus, we
get a map from a set of cardinality P (the set of arms emanating from the xi ) to a set of
cardinality p′ (the set of arms emanating from w). We say that f is distributive if at most
� P
p′ � arms emanating from the xi can be mapped to the same arm emanating from w.

One could say that f : R → R′ is distributive if it takes b �→ b′ and then lets R expand
like a gas within R′. The notion of a distributive waterfall map should generalise naturally
to the case of maps between R-trees. Further, applying the result of Kerr [14] which states
that quasi–trees are rough isometric to R-trees, there should be a well-defined notion of a
distributive waterfall map between quasi-trees (i.e. one that is conjugate to a distributive
waterfall map between two associated R-trees).

Definition Suppose we two spherically homogeneous trees R = R((pn), (qn)) and R′ =
R((p′

n), (q
′
n)). For the ease of the following definition, we also define q0 and q ′

0 to be 1.
Then, we have the sets of vertex heights

H(R) =
{

a∑

i=0

log(qi ) : a ∈ N0

}

H(R′) =
{

b∑

i=0

log
(
q ′
i

) : b ∈ N0

}
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Now letH = H(R)∪H(R′) andwriteH = {h0, h1, h2, . . .} such that hn < hn+1 for n ∈ N0.
We can nowdefine the infinite integral sequenceX = X ((pn), (qn), (p′

n), (q
′
n)) : N�0 → N.

Set X0 = 1. If Xn has already been defined then we set

Xn+1 =

⎧
⎪⎪⎨

⎪⎪⎩

pa+1Xn, if hn = ∑a
i=0 log(qi ) ∈ H(R) \ H(R′)

� Xn
p′
b+1

�, if hn = ∑b
i=0 log

(
q ′
i

) ∈ H(R′) \ H(R)

� pa+1Xn
p′
b+1

�, if hn = ∑a
i=0 log(qi ) = ∑b

i=0 log
(
q ′
i

) ∈ H(R) ∩ H(R′)

Note that in the case when the sequences have constant values pn = p, qn = q, p′
n =

p′, q ′
n = q ′ then we recover the sequence X (p, q, p′, q ′) described in the introduction.

This sequence is perhaps easier to understand geometrically. If we have a distributive
waterfallmap f : R → R′ between spherically homogeneous trees, the sequenceXn captures
the maximum cardinality of preimages of points x ∈ R′. More precisely, Xn takes the values
of the piecewise constant function

h �→ max
x∈R′ |h

| f −1(x)|

as h increases.

Remark Another definition of the sequenceXn can be found by observing that the progression
of the sequence Xn depends only on the order of the multiples of log(q) and log

(
q ′) within

the sequence (hn) rather than on the values themselves. Hence, we could replaceH with the
set

S = S(R) ∪ S(R′) =
{

a∏

i=0

qi : a ∈ N0

}

∪ {
b∏

i=0

q ′
i : b ∈ N0} = {s0, s1, s2, . . .}

where hn = log(sn) and Xn would not change.

A first step towards understanding these sequences would be to know the following.

Question Does the boundedness of the sequence X ((pn), (qn), (p′
n), (q

′
n)) depend upon its

initial value? In other words, if we changed X0 = 1 to X0 = x0 for some x0 ∈ N, could the
sequence move from being bounded to unbounded or vice-versa?

Definition Let (an)n∈N be an integer sequence.We say that (an) satisfies property (P) if there
exists a partition

N =
⊔

i∈N
Si

such that

(1) Si is “connected”: if x, y ∈ Si then so is every integer between x and y;
(2) There exists a fixed constant A ∈ Z such that

∏
n∈Si ai = A for all i .

In other words, a sequence has property (P) if it can be decomposed into connected subse-
quences that have the same product.

Clearly, periodic sequences satisfy (P).

Theorem 5 Suppose we have a pair of spherically homogeneous trees R((pn), (qn)),
R((p′

n), (q
′
n)) such that (p′

n) satisfies (P). If X ((pn), (qn), (p′
n), (q

′
n)) is unbounded then

there does not exist a rough isometric embedding R((pn), (qn)) → R((p′
n), (q

′
n)).
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It is clear that ifX is unbounded then a waterfall map R → R′ cannot be a rough isometric
embedding since points x ∈ R′ would have preimages of arbitrarily large cardinality and
of the same height as x . If we could show that an arbitrary rough isometric embedding
f : R → R′ is at bounded distance from a waterfall map then Theorem 5 would follow
immediately and we would no longer need the requirement that (p′

n) satisfies property (P).

Question Is every rough isometric embedding R → R′ between spherically homogeneous
trees at bounded distance from a waterfall map?

Recall that a waterfall map is a height-preserving and order-preserving map R → R′.
We will see that a rough isometric embedding R → R′ is at bounded distance from a
height-preserving map (Lemma 7) and at bounded distance from an order-preserving map
(Proposition 16 and Proposition 17). The curse is that this does not imply it is at bounded
distance from a height-preserving and order-preserving map R → R′. However, the idea of
the proof of Theorem 5 is to show that a rough isometric embedding R → R′ is at bounded
distance from a height-preserving and coarsely order-preserving map f : R → R′: f can’t
send a pair of siblings too far away from each other - the siblings will become k’th cousins
where k depends only on the rough isometry constant of f . This will do.

Lemma 7 A rough isometric embedding f : R → R′ between spherically homogeneous
trees is coarsely height-preserving and at bounded distance from a height-preserving rough
isometric embedding.

Proof Suppose f is an A-rough isometric embedding. Let x ∈ R. We have that

|h( f (x)) − h(x)| = |d(b′, f (x)) − d(b, x)| � d(b′, f (b)) + |d( f (b), f (x)) − d(b, x)| � B

where B = d(b′, f (b)) + A. So f is B-coarsely height-preserving.
We will now define a height-preserving map g : R → R′ at bounded distance from f .

We have three cases.

(1) If h( f (x)) = h(x) then set g(x) = f (x).
(2) If h( f (x)) > h(x) then let g(x) be the unique point of height h(x) such that f (x) ∈

τ(g(x)). Then d( f (x), g(x)) = h( f (x)) − h(x) � B.
(3) If h( f (x)) < h(x) then let g(x) be any element of τ( f (x)) (there could be many) of

height h(x). Then d( f (x), g(x)) = h(x) − h( f (x)) � B.

Thus we see that g is height-preserving and d( f , g) � B. Since g is at bounded distance
from a rough isometric embedding, g is itself a rough isometric embedding.

Proof of Theorem 5 We will first prove the result for when (p′
n) is a constant sequence. This

will constitute the majority of the proof. At the end, in Step 4, we will deduce the full result
for when (p′

n) satisfies (P).
So suppose (p′

n) has constant value p′ ∈ N�2. Write R = R((pn), (qn)) and R′ =
R((p′

n), (q
′
n)) and denote by b, b′ the basepoints of R, R′ respectively. Let P ∈ N�2 be

an upper bound for (pn) and let ε, M > 0 be such that log(qn) ∈ [ε, M]. Similarly, let
ε′, M ′ > 0 be such that log

(
q ′
n

) ∈ [ε′, M ′]. Suppose there exists an A-rough isometric
embedding f : R → R′ for some constant A � 0. By the lemma above, we can assume that
f is height-preserving.
Step 1: The plan.Let N ∈ N be chosen such that (N−1)ε′ � A. The plan is to inductively

define an infinite sequence of vertices wn ∈ V (R′) that induce an infinite sequence of nested
subtrees of R′

τ0 = τ(w0) ⊇ τ1 = τ(w1) ⊇ τ2 = τ(w2) ⊇ . . .

123



13 Page 10 of 26 Geometriae Dedicata (2023) 217 :13

such that

(T1) τn
∣
∣
hn

has cardinality at most (p′)N ;
(T2) If τn

∣
∣
hn

has cardinality less than (p′)N then wn = b′;
(T3) sumn := | f −1(τn

∣
∣
hn

)| � Xn .

Once we have defined a sequence of trees τn satisfying properties (T1) and (T3) then we
are done. The logic is this. By (T3), if Xn is unbounded then sumn must be unbounded too.
But, by (T1), sumn is the preimage under f of a set of cardinality at most (p′)N and so we
can conclude that preimages of single points under f can have arbitrarily large cardinality.
Since f is height-preserving, preimages of single points must all have the same height in
R, i.e. they are contained in some set R

∣
∣
h . Further, since f is an A-rough isometry, they

must all be contained in some ball of radius A. However, there is a fixed upper bound on the
cardinality of balls of radius A in a level set R

∣
∣
h . Hence if Xn is unbounded there cannot

exist a rough isometric embedding of R into R′.
The significance of property (T2) is given after the following crucial observation.

Claim Suppose we have some w ∈ V (R′) inducing a subtree τ(w) and a pair of heights
h < H such that τ(w)

∣
∣
h has cardinality at least (p′)N . Then

f −1(τ (w)

∣∣∣∣
H

) = τ( f −1(τ (w)

∣∣∣∣
h
))

∣∣∣∣
H

What is this saying? It says (assuming that w is more than N generations above points
of height h) that if a point x of height h is mapped into τ(w) then a descendant y will be
too, and that the converse also holds: if y is mapped into τ(w)

∣∣
H then it must descend from

some x that is mapped into τ(w)
∣∣
h . In other words, the points of R which map into τ(w)

∣∣
H

are precisely the descendants of those points of R which map into τ(w)
∣∣
h . The numerical

condition (N − 1)ε′ � A ensures that the distance from x to w is at least A.
Property (T2) combined with the above claim implies that we have the equality

f −1(τn

∣∣∣∣
hn+1

) = τ( f −1(τn

∣∣∣∣
hn

))

∣∣∣∣
hn+1

(1)

for each of the (yet to be defined) subtrees τn .
Step 2: The base case. Set w0 = b′. Then τ0 = τ(b′) = R′. We need to verify that (T1),

(T2) and (T3) hold. Since h0 = 0, τ0
∣∣
h0

has cardinality 1, which is evidently less than (p′)N .
Then (T1) and (T2) hold since w0 = b′. Finally note that

sum0 = 1 = X0

and so (T3) holds as well.
Step 3: The induction. Suppose τn has been defined. We will now define τn+1. We have

three cases to consider.

(1) Suppose hn ∈ H(R) \ H(R′). That is, hn is a vertex height for R but not R′. In this
case we set τn+1 = τn . Then τn+1

∣∣
hn+1

= τn
∣∣
hn+1

will have the same cardinality as

τn
∣∣
hn

since R′ has no vertices with height in the interval [hn, hn+1). So τn+1 satisfies
properties (T1) and (T2). Further, by (1) we have that

sumn+1 = pa+1sumn

where hn = ∑a
i=0 log(qi ). By induction, we can assume that sumn � Xn and so

sumn+1 = pa+1sumn � pa+1Xn = Xn+1
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(2) We divide into two subcases.

(a) Suppose hn ∈ H(R′) \ H(R) and τn
∣
∣
hn

has cardinality less than (p′)N (and so in

fact it has cardinality at most (p′)N−1). By induction, wn = b′. Note also that the
cardinality of τn

∣
∣
hn+1

is p′ times larger than the cardinality of τn
∣
∣
hn
. Set τn+1 = τn .

Then it is clear that (T1) and (T2) hold. Note that f −1(τn
∣
∣
hn+1

) = f −1(τn
∣
∣
hn

) since
R does not branch in the interval [hn, hn+1]. Hence

sumn+1 = sumn � Xn � �Xn

p′ � = Xn+1

and so (T3) holds.
(b) Suppose hn ∈ H(R′) \ H(R) and τn

∣
∣
hn

has cardinality (p′)N . In this case, τn
∣
∣
hn+1

has cardinality (p′)N+1. Let {v1, . . . , vp′ } = C(wn). τn
∣
∣
hn+1

can be partitioned into

p′ sets of cardinality (p′)N each:

τn

∣
∣
∣
∣
hn+1

=
p′

⊔

i=1

τ(vi )

∣
∣
∣
∣
hn+1

And so, using (1), we get a partition

τ( f −1(τn

∣∣∣∣
hn

))

∣∣∣∣
hn+1

= f −1(τn

∣∣∣∣
hn+1

) =
p′

⊔

i=1

f −1(τ (vi )

∣∣∣∣
hn+1

)

Again, since R does not branch in the interval [hn, hn+1], the cardinality of the above
set is precisely sumn and so there must exist some 1 � j � p′ such that

| f −1(τ (v j )

∣∣∣∣
hn+1

)| � � sumn

p′ �

Set wn+1 = v j . It is clear that (T1) and (T2) hold and

sumn+1 = | f −1(τ (v j )

∣∣∣∣
hn+1

)| � � sumn

p′ � � �Xn

p′ � = Xn+1

and so (T3) holds.

(3) Again, we divide into two subcases.

(a) Suppose hn ∈ H(R) ∩ H(R′) and τn
∣∣
hn

has cardinality less than (p′)N . As before
we set τn+1 = τn and (T1) and (T2) hold. We have that

sumn+1 = pa+1sumn � pa+1Xn � � pa+1Xn

p′ � = Xn+1

where hn = ∑a
i=0 log(qi ). So (T3) holds.

(b) Finally suppose that hn ∈ H(R)∩H(R′) and τn
∣∣
hn

has cardinality (p′)N . Again we
write {v1, . . . , vp′ } = C(wn) and we have

τ( f −1(τn

∣∣∣∣
hn

))

∣∣∣∣
hn+1

= f −1(τn

∣∣∣∣
hn+1

) =
p′

⊔

i=1

f −1(τ (vi )

∣∣∣∣
hn+1

)
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The cardinality of the above set is pa+1sumn where hn = ∑a
i=0 log(qi ). Hence,

there exists some 1 � j � p′ such that

| f −1(τ (v j )

∣
∣
∣
∣
hn+1

)| � � pa+1sumn

p′ �

and we set wn+1 = v j . (T1) and (T2) hold as before and

sumn+1 = | f −1(τ (v j )

∣
∣
∣
∣
hn+1

)| � � pa+1sumn

p′ � � � pa+1Xn

p′ � = Xn+1

and so (T3) holds as well.

This completes our proof of the result in the case when (p′
n) is constant.

Step 4: The general case. Suppose (p′
n) satisfies (P). Let N = ⊔

i∈N Si be the associated
partition and suppose that

∏
n∈Si p

′
n = p′ for some fixed constant p′. Consider the spherically

homogeneous tree R′′ = R((p′′
n ), (q

′′
n )) where

p′′
n = p′ and q ′′

n =
∏

n∈Si
q ′
n

We claim that R′ is rough isometric to R′′. Let Ṽ ⊂ R′ consist of all vertices in R′ of height∑
i�k

∑
n∈Si log

(
q ′
n

)
for k ∈ N0. We can define a rough isometry g : Ṽ → R′′ inductively.

Let b′ map to the basepoint of R′′. Let k ∈ N0 and suppose that g is already defined on
vertices of height h = ∑

i�k
∑

n∈Si log
(
q ′
n

)
. If x ∈ R′ has height h, then x has precisely p′

descendants of height H = h + ∑
n∈Sk+1

log
(
q ′
n

)
. Similarly, g(x) has precisely p′ children

with height H . We map x
∣∣
H bijectively onto g(x)

∣∣
H . The map constructed this way gives

a rough isometry g : Ṽ → R′′. Since Ṽ is coarsely dense within R′, precomposition of this
map with the nearest point projection R′ → Ṽ will give a rough isometry R′ → R′′.

Suppose now that X = X ((pn), (qn), (p′
n), (q

′
n)) is unbounded. We want to show that

X̃ = X ((pn), (qn), (p′′
n ), (q

′′
n )) is also unbounded. To see why this is the case, it is necessary

to come up with a more visual understanding of the sequence X . Imagine marking the non-
negative number line with a blue dash for each of the sums

∑a
i=0 log(qi ). Similarly, imagine

marking it with a red dash for each sum
∑b

i=0 log
(
q ′
i

)
. The sequenceX is formed by walking

forwards along the number line andmultiplying your previous value when you hit a blue dash
(i.e. multiplying by pa) and by applying a "ceiling-division" each time you hit a red dash
(i.e. applying the function x �→ � x

p′
b
�). If a blue dash and a red dash are placed at the same

point, then we can just think of this as a blue dash followed by a red dash. The sequence X̃ is
formed fromX by grouping together ceiling-divisions: for each i we gather all the red dashes
corresponding to the set Si together. Let Di denote the red dash corresponding to min Si . We
can break down the transformation of X into X̃ into two moves: (1) if b ∈ Si and b does not
correspond to Di then move the corresponding red dash such that it sits to the right of Di

but to the left of the first blue dash following Di (2) once all the red dashes corresponding to
Si have been gathered together, merge them into a single red dash positioned where Di was
and let the new dash correspond to the ceiling-division x �→ � x∏

n∈Si p
′
n
�. Now, both move

(1) and move (2) can be broken down into smaller submoves. Move (1) can be achieved by
repeatedly moving red dashes leftwards over either blue dashes or red dashes. Moving a red
dash leftwards over a blue dash corresponds to the numerical transformation

⌈ lx
k

⌉
�→ l

⌈ x

k

⌉
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where l is the multiplication value corresponding to the blue dash, k is the division value cor-
responding to the red dash, and x is the value of the sequence prior to these dashes. Similarly,
moving a red dash leftwards over another red dash corresponds to the transformation

⌈� x
k �
k′

⌉
�→

⌈� x
k′ �
k

⌉

where k is the division value corresponding to the first red dash and k′ is the division value
corresponding to the second red dash. Finally, move (2) can be broken down into the merging
of pairs of red dashes, i.e. the transformation

⌈� x
k �
k′

⌉
�→

⌈ x

kk′
⌉

Since � lxk � � l� x
k �,

⌈ � x
k �
k′

⌉
=

⌈ � x
k′ �
k

⌉
and

⌈ � x
k �
k′

⌉
= � x

kk′ �, these submoves never decrease the

value of the sequence that follows the dashes. Further, since both multiplication and ceiling-
division are non-decreasing functions, these submoves never decrease any of the sequence
values that follow the dashes in question.

Let K ∈ N be arbitrary and let Xn be some value of the sequence for which Xn � K .
Without loss of generality, we can assume that Xn is the value that the sequence takes just
before a red dash Di corresponding to some min Si . This is because, walking onwards from
Xn , there is a uniform upper bound on how many dashes the sequence can pass before
it reaches the first red dash corresponding to some min Si , and the sequence X can only
decrease by a factor of at most supn p′

n for each dash it passes. Given such an Xn , we can
transform it into a value of the sequence X̃ by applying moves (1) and (2) to all the dashes
to the left of D. This is a finite number of moves, none of which decrease the value of Xn . It
follows that X̃m � K for some m ∈ N and hence X̃ is unbounded.

Since X̃ is unbounded, it follows from our work above that there is no rough isometric
embedding R → R′′ and hence, since R′ is rough isometric to R′′, there is no rough isometric
embedding R → R′.

Naturally, one hopes that the requirement that (p′
n) satisfies property (P) is unnecessary.

Conjecture Suppose we have two spherically homogeneous trees R = R((pn), (qn)) and
R′ = R((p′

n), (q
′
n)). If X ((pn), (qn), (p′

n), (q
′
n)) is unbounded then there does not exist a

rough isometric embedding of R into R′.

One might suspect the converse holds: that if Xn is bounded then there exists a rough
isometric embedding of R into R′. This seems plausible since if Xn is bounded then a
distributive waterfall map from R into R′ would have bounded point preimages.

Question IfXn((pn), (qn), (p′
n), (q

′
n)) is bounded, does there exist a rough isometric embed-

ding R((pn), (qn)) → R((p′
n), (q

′
n))?

However, as the following example shows, we can find pairs of spherically homogeneous
trees for whichXn is bounded and for which none of the distributive waterfall maps are rough
isometric embeddings.

Example Let R = R((pn), (qn)) where p1 = 6, q1 = 2 and pn = 3, qn = 4 for n � 2. Let
R′ = R((p′

n), (q
′
n)) where p′

n = 3, q ′
n = 4 (equivalently R′ = R(3, 4)). Let b, b′ denote

the basepoints of R, R′ respectively. The associated sequence Xn((pn), (qn), (p′
n), (q

′
n)) is

bounded; indeed, Xn � 6. Suppose that f is a distributive waterfall map of R into R′. We
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will find two distinct geodesic rays, γB and γY , based at b which have the same image under
f . We first need to establish a combinatorial fact.
Suppose we have 6 objects such that 3 are coloured blue and 3 are coloured yellow. If

we want to partition the objects into 3 groups of size 2 then there must be a group which
contains a blue and a yellow.

6 arms emanate from b which are divided between the 3 arms emanating from b′. Thus,
pairs of arms emanating from b are crushed together by f . Consider a fixed pair of arms
emanating from b that are crushed together under f . We will say that descendants of the first
arm are blue and descendants of the second arm are yellow. Consider the terminal vertex
w1 ∈ R′ of the edge onto which the blue and yellow arm are crushed. The preimage of this
vertex consists of 6 points, 3 blue and 3 yellow. By the statement above, we know that a
blue arm and a yellow arm must be crushed onto the same edge emanating from w1. Let w2

be the terminal vertex of this edge. Again, we know that the preimage of w2 consists of 3
blue and 3 yellow points and we know that a blue arm and a yellow arm must be crushed
onto some edge emanating from w2. Continuing in this way, we get a sequence of vertices
b, w1, w2, w3, . . . such that if η is the geodesic which joins them all together then f −1(η)

contains a blue geodesic ray γB and a yellow geodesic ray γY . Points on γB and γY of the
same height have the same image under f even though they may be arbitrarily far away in
R. So f is not a rough isometric embedding.

Note, however, that there does nonetheless exist a rough isometric embedding R → R′; if
we crush {x ∈ R : h(x) � log(2)} to a point then we get 6 copies of R(3, 4) glued together;
if we crush {y ∈ R′ : h(y) � 2 log(4)} to a point then we get 9 copies of R(3, 4) glued
together.

4 The sequenceX (p,q,p′,q′)

The sequence X (2, 2, 3, 3) can be understood as follows. We start with the number lineR�1
(a long pebbly beach perhaps). We begin with a single pebble in our hand. We then imagine
walking along the number line playing the following game as we go: each time we pass a
power of 2, we multiply the amount of pebbles in our possession by 2; each time we pass
a power of 3, we divide our pebbles into 3 groups as evenly as possible and then keep only
one of the larger groups. See Fig. 1. The question is whether there exists some fixed upper
bound on the number of pebbles in our possession as we play this game.

In this section we prove that (A2) implies (A1). That is, we prove that if X (p, q, p′, q ′)
is bounded then either log(p)/ log(q) < log

(
p′)/ log

(
q ′) (this is condition (C1)) or

log(p)/ log(q) = log
(
p′)/ log

(
q ′) and p, p′ are powers of a common integer (condition

(C2)). We need the following lemma.

Lemma 8 Suppose that log
(
q ′)/ log(q) is irrational. Let a log(q) be a multiple of log(q) and

let b log
(
q ′) be the least multiple of log

(
q ′) that is greater than a log(q). Then there exists

a′ > a such that, if b′ log
(
q ′) is the least multiple of log

(
q ′) greater than a′ log(q), we have

b′ log
(
q ′) − a′ log(q) < b log

(
q ′) − a log(q)

Proof Write d = b log
(
q ′) − a log(q). Consider the metric space X = R/(log(q)Z). Let

θ : X → X be rotation by log
(
q ′)

[x] θ�−→ [x + log
(
q ′)]
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Fig. 1 The sequence X (2, 2, 3, 3). Plotted up to n = 1000

We can think of X as a circle with circumference log(q) such that as x increases, [x] moves
anticlockwise around the circle. We have a bilipschitz map

X = R/(log(q)Z)
η−→ R/Z

given by

[x] �→
[ x

log(q)

]

θ is conjugate under η to the map θ ′ = ηθη−1 : R/Z → R/Z

[x] θ ′�−→
[
x + log

(
q ′)

log(q)

]

which has dense orbits since
log(q ′)
log(q)

is irrational. Consequently, θ has dense orbits. In par-
ticular, we can find arbitrarily large b′ such that the anticlockwise distance from [0] to
θ(b′)([0]) = [b′ log

(
q ′)] is less than d . If we choose a′ such that a′ log(q) is the largest

multiple of log(q) less than b′ log
(
q ′), and if we choose b′ large enough that a′ > a, then a′

and b′ satisfy the desired properties.

Theorem 9 If X (p, q, p′, q ′) is bounded then either (C1) or (C2) holds.

Proof First, suppose that log(p)
log(q)

>
log(p′)
log(q ′) . Let β = log(q ′)

log(q)
. So pβ > p′. Consider the

sequence defined by Y0 = 1 and

Yn+1 =

⎧
⎪⎨

⎪⎩

pYn, if hn ∈ H(R) \ H(R′)
Yn
p′ , if hn ∈ H(R′) \ H(R)
pYn
p′ , if hn ∈ H(R) ∩ H(R′)

Suppose hn = a log(q). We have that

Yn+1 = pa+1
( 1

p′
)� a log(q)

log(q′) �+1
� pa+1

( 1

p′
) a log(q)

log(q′) +1 = p

p′
( pβ

p′
) a

β
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The right-hand side of the above goes to infinity as a goes to infinity and hence Yn is
unbounded. Thus Xn is also unbounded since Xn � Yn for all n ∈ N0.

Now suppose that log(p)
log(q)

= log(p′)
log(q ′) and p, p′ are not powers of a common integer. This

implies that log
(
q ′)/ log(q) is irrational. Let hl = a log(q) be some arbitrary element of

H(R). Let b log
(
q ′) be the least multiple of log

(
q ′) greater than a log(q). By Lemma 8 we

can find some a′ > a such that if b′ log
(
q ′) is the least multiple of log

(
q ′) greater a′ log(q)

then

b′ log
(
q ′) − a′ log(q) < b log

(
q ′) − a log(q)

which rearranges to

b′ − b < (a′ − a)
log(q)

log(q ′)
If hm = a′ log(q) ∈ H(R) then

Xm � pa
′−a

( 1

p′
)b′−b

Xl > pa
′−a

( 1

p′
)(a′−a)

log(q)

log(q′)Xl = Xl

SoXm > Xl . But bothXm andXl are integral and so in factXm � Xl +1.We have shown that
given l ∈ N0 such that hl ∈ H(R)we can findm > l such that hm ∈ H(R) andXm � Xl +1.
Repeating this process gives arbitrarily large values ofXn and so the sequence is unbounded.

5 Embeddings of regular rooted trees

Proposition 10 If (C2) holds then R(p, q) is rough isometric to R(p′, q ′).

Proof Write R = R(p, q) and R′ = R(p′, q ′). Let b, b′ denote the basepoints of R, R′
respectively. First, suppose that there exists some t ∈ N such that p′ = ps and q ′ = qs . In
this case, an identical argument to that given at the start of Step 4 of the proof of Theorem 5
shows that R is rough isometric to R′ (we choose Si = {(i − 1)s + 1, (i − 1)s + 2, . . . , is}).

In the general case, write p = rs , p′ = r t where r ∈ N�2. Then q ′ = q
t
s . By the

above, we know that R = R(p, q) is rough isometric to R(r , q
1
s ) which is rough isometric

to R(r t , q
t
s ) = R(p′, q ′) = R′. So R is rough isometric to R′.

Proposition 11 If (C1) holds then there exists a rough isometric embedding R(p, q) →
R(p′, q ′).

Proof We will first show that if p = p′ and q > q ′ then there exists a rough isometric
embedding f : R(p, q) → R(p′, q ′). We will first define f on the vertex set V of R(p, q).
Set f (b) = b′. If v ∈ V and f (v) is already defined then we define f on C(v) as follows.
Write C(v) = {v1, . . . , vp}. We know that τ( f (v))

∣∣
h(v)+log(q)

has cardinality pk for some

k ∈ N. Map C(v) into this set injectively. If we precompose this map V → R(p′, q ′)
with the nearest point projection R(p, q) → V then we get a rough isometric embedding
R(p, q) → R(p′, q ′).

Now suppose the general case holds, i.e. log(p)
log(q)

<
log(p′)
log(q ′) . Say

log(p′)
log(q ′) = (1 + ξ)

log(p)
log(q)

where ξ > 0. Evidently, we can find a, b ∈ N such that

log(p) � b

a
log

(
p′) < (1 + ξ) log(p) (2)
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Then

b log
(
p′)

a log(q)
< (1 + ξ)

log(p)

log(q)
= log

(
p′)

log(q ′)

and so a log(q) > b log
(
q ′), or, equivalently, qa > (q ′)b. By Theorem 10, we know that

R(p, q) is rough isometric to R(pa, qa). Further, it is clear there exists an isometric embed-
ding of R(pa, qa) into R((p′)b, qa) since, by (2), (p′)b � pa . Then, by ourwork above, there
exists a rough isometric embedding of R((p′)b, qa) into R((p′)b, (q ′)b) since qa > (q ′)b.
Finally, we know that R((p′)b), (q ′)b) is rough isometric to R(p′, q ′). So there exists a rough
isometric embedding of R(p, q) into R(p′, q ′).

6 Equivalence of the embeddings

6.1 Generalising Farb–Mosher

In this section we will prove that (A5) �⇒ (A4).

Definition Let Q(p, q) denote the set of bi-infinite sequences (an)n∈Z on the alphabet
{0, . . . , p − 1} such that an = 0 for all sufficiently small n. We can put a metric on Q(p, q)

by setting ρ((an), (bn)) = q−N where an = bn for n � N and aN+1 
= bN+1. A clone of
Q(p, q) is a subset consisting of all words beginning with some fixed word w. Every clone
in Q(p, q) is bilipschitz homeomorphic to Z(p, q).

Let ∂u HT (p, q) denote the set of hyperbolic planes in HT (p, q). Via the projection
map π : HT (p, q) → T (p, q), the set ∂u HT (p, q) is in bijection with the set of height-
increasing bi-infinite geodesics in T (p, q). This, in turn, can be seen to be in bijection with
Q(p, q). We can put a metric on ∂u HT (p, q) as follows. If Q1, Q2 ∈ ∂u HT (p, q) then set
d(Q1, Q2) = e−h(σ ) where σ is the horocycle ∂(Q1 ∩ Q2). With this metric ∂u HT (p, q)

is isometric to Q(p, q). Let m, n ∈ N�2 and suppose f : HT (m,m) → HT (n, n) is a
quasiisometry. In the paper of Farb and Mosher [4] (Proposition 4.1) they prove that if Q ∈
∂u HT (m,m) then there exists a unique Q′ ∈ ∂u HT (n, n) such that dH ( f (Q), Q′) < ∞ and
theywrite f u(Q) = Q′. They also prove that, with respect to themetrics on ∂u HT (m,m) and
∂u HT (n, n), f u is a bilipschitz homeomorphism (Theorem 6.1 of [4]). So a quasiisometry
f : HT (m,m) → HT (n, n) induces a bilipschitz homeomorphism f u : Q(m,m) →
Q(n, n). Let C ⊂ Q(m,m) be some clone. Since f u is a bilipschitz homeomorphism and
C has finite diameter, f u(C) also has finite diameter and hence is contained in some clone
C ′ ⊂ Q(n, n). Thus, since C is bilipschitz homeomorphic to Z(m,m) and C ′ is bilipschitz
homeomorphic to Z(n, n), we have an induced bilipschitz embedding Z(m,m) → Z(n, n).
In summary, Farb and Mosher prove that a quasiisometry HT (m,m) → HT (n, n) induces
a bilipschitz embedding Z(m,m) → Z(n, n).

We would like to generalise this result in two ways. First, we would like to show that
it holds if we no longer require f to be coarse surjective. That is, we assume only that f
is a quasiisometric embedding. Second, we would like to show that it holds if we replace
HT (m,m) with HT (p, q) and HT (n, n) with HT (p′, q ′). Put concisely: we would like
to prove that a quasiisometric embedding HT (p, q) → HT (p′, q ′) induces a bilipschitz
embedding Z(p, q) → Z(p′, q ′). Therefore, we need to analyse - up until the conclusion of
the proof of Theorem 6.1 - all the instances when Farb andMosher use the coarse surjectivity
of f and all the instances when they use the fact that p = q and p′ = q ′. One of these
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questions is easy to answer: the proof never once uses the fact that p = q and p′ = q ′
so we can replace HT (m,m) with HT (p, q) and HT (n, n) with HT (p′, q ′). The coarse
surjectivity of f is used once, in the proof of Lemma 5.1. Thus we will need to reprove this
lemma without ever using coarse surjectivity. This is the content of Lemma 12 below.

Remark It is important to note that Theorem 7.2 of the Farb–Mosher paper is not actually
proved as it is written. Theorem 7.2 says that if there is a bilipschitz embedding Z(m,m) →
Z(n, n) then m, n are powers of a common integer. However, in the paper Cooper actually
proves Corollary 10.11: that if there is a bilipschitz embedding Z(m,m) → Z(n, n) onto
a clopen then m, n are powers of a common integer. Indeed, the proof relies on the fact
that the image is a clopen set in Z(n, n). They can assume this extra condition since they
have proved that f u : Q(m,m) → Q(n, n) is a bilipschitz homeomorphism (which follows
from the coarse surjectivity of f ) and hence the image of C ⊂ Q(m,m) will be clopen
in C ′ ⊂ Q(n, n). In our case, when f is not coarse surjective, we know only that f u is a
bilipschitz embedding. However, it follows from the equivalence of (A4) and (A1) proved in
this paper that Theorem 7.2 is nonetheless true.

So suppose we have some (K ,C)-quasiisometric embedding f : HT (p, q) →
HT (p′, q ′). For simplicity of notation, write HT (p, q) = X , HT (p′, q ′) = X ′. A gen-
eralisation of Proposition 4.1 in Farb–Mosher implies that there exists a constant A � 0,
only depending on K and C , such that for all Q ∈ ∂u X there exists some unique Q′ ∈ ∂u X ′
such that dH ( f (Q), Q′) � A. We write f u(Q) = Q′. We can use the map f u to define a
map θ f : T (p, q) → T (p′, q ′) as follows (here we are identifying T (p, q) with the set of
horocycles in X = HT (p, q) and similarly for T (p′, q ′)). Suppose we have some horocycle
σ ⊂ HT (p, q). Let μ be the first branching horocycle above σ ; say μ = ∂(Q1 ∩ Q2) where
Q1, Q2 ∈ ∂u X . Let Q′

i ∈ ∂u X ′ have bounded Hausdorff distance from f (Qi ). Then we set
θ f (σ ) = ∂(Q′

1 ∩ Q′
2). The following lemma removes the coarse surjectivity requirement of

Lemma 5.1 of Farb–Mosher.

Lemma 12 Given K � 1, C � 0, there exists a constant λ � 0 such that if f : X → X ′ is a
(K ,C)-quasiisometric embedding, then for each horocycle σ ⊂ X we have

dH ( f (σ ), θ f (σ )) � λ

Proof In the proof of Lemma 5.1 of Farb–Mosher, they prove that there exists a constant
λ1 = λ1(K ,C) � 0 such that for each horocycle σ ⊂ X we have

f (σ ) ⊂ Nλ1(σ
′)

where σ ′ = θ f (σ ). In order to show that there exists some λ2 = λ2(K ,C) � 0 such that
σ ′ ⊂ Nλ2( f (σ )), Farb and Mosher use the coarse inverse of f which we no longer have.
However, we can apply an alternative argument.

Let z ∈ σ ′. Let μ be the branching horocycle above σ such that θ f (σ ) = θ f (μ). Let
Q1, Q2 ⊂ X be the two hyperbolic planes in X such thatμ = ∂(Q1∩Q2) and let Q′

1, Q
′
2 ⊂

X ′ be the two hyperbolic planes in X ′ such that σ ′ = ∂(Q′
1 ∩ Q′

2). Recall that for i = 1, 2
we have

dH ( f (Qi ), Q
′
i ) � A

where A only depends on K ,C . Let z1 be the unique point of Q′
1 \ Q′

2 satisfying d(z1, z) =
d(z1, σ ′) = d(z1, Q′

2) = 2A+1. Similarly, Let z2 be the unique point of Q′
2 \ Q′

1 satisfying
d(z2, z) = d(z2, σ ′) = d(z2, Q′

1) = 2A + 1. We know there exists some xi ∈ Qi such
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that d( f (xi ), zi ) � A. Thus, d( f (x1), Q′
2) � A + 1 and d( f (x2), Q′

1) � A + 1. Hence,
x1 ∈ Q1 \ Q2 and x2 ∈ Q2 \ Q1. Also,

d( f (x1), f (x2)) � 2(2A + 1) + 2A = 6A + 2

and so

d(x1, x2) � K (6A + 2) + C

which implies that

d(xi , μ) � K (6A + 2) + C

Let wi be the unique point of σ realising d(σ, xi ). Then d(wi , xi ) � d(xi , μ) + log(q). We
know that

d( f (wi ), f (xi )) � K (K (6A + 2) + C + log(q)) + C

and so

d( f (wi ), z) � K (K (6A + 2) + C + log(q)) + C + (3A + 1)

and so we are done.

The rest of Farb and Mosher’s argument goes through almost verbatim - one only has to
changem and n to p, q, p′, q ′ as appropriate. It follows that if f : HT (p, q) → HT (p′, q ′)
is a quasiisometric embedding then f u : Q(p, q) → Q(p′, q ′) is a bilipschitz embedding. Let
C ⊂ Q(p, q) be some clone. We know that f u(C) has finite diameter and hence is contained
in some clone C ′ ⊂ Q(p′, q ′). We know that C and C ′ are bilipschitz homeomorphic to
Z(p, q) and Z(p′, q ′) respectively. So we have proved the following.

Proposition 13 If there exists a quasiisometric embedding HT (p, q) → HT (p′, q ′) then
there exists a bilipschitz embedding Z(p, q) → Z(p′, q ′).

6.2 Functors

In this section we will prove that (A4) ⇐⇒ (A3) and (B3) ⇐⇒ (B2). Much of this section
is simply an application of the ideas contained in the paper of Bonk and Schramm [15] on the
functors ∂ and Con between Gromov-hyperbolic metric spaces and their boundary. However,
for the purposes of this paper, it is simpler to ‘start from scratch’ as opposed to translating
their more general work over to the needs of our specialised situation.

Suppose for every vertex v of R(p, q) we arbitrarily label the edges emanating from v

with the letters {0, . . . , p−1}. This edge labelling provides a natural identification ofZ(p, q)

with the set of geodesic rays based at the basepoint b of R(p, q). Throughout this section we
make this identification. We begin with definitions.

Definition Suppose we have a pair of maps f , g : R(p, q) → R(p′, q ′) between regular
rooted trees. We say that f and g are roughly equivalent if d( f , g) < ∞. We denote by [ f ]
the rough equivalence class of some map f between regular rooted trees.

Definition Let C be the category consisting of regular rooted trees R(p, q) and rough iso-
metric embeddings between them up to rough equivalence.

Definition LetD denote the category of symbolic Cantor setsZ(p, q) and bilipschitz embed-
dings between them.
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We have the following theorem whose proof will be the content of this section.

Theorem 14 There exists a category isomorphism ∂ : C → D with inverse functor � : D →
C.

Evidently, Theorem 14 implies that (A4) ⇐⇒ (A3) and (B3) ⇐⇒ (B2). We begin by
defining ∂ : C → D.

Definition We set ∂R(p, q) = Z(p, q). Let f : R(p, q) → R(p′, q ′) be a rough isometric
embedding. Let γ ∈ Z(p, q). It follows from the Morse Lemma that there exists some
γ ′ ∈ Z(p′, q ′) with dH ( f (γ ), γ ′) < ∞. Indeed, such a γ ′ must be unique since distinct
geodesic rays in R(p′, q ′) have infinite Hausdorff distance. We set ∂[ f ](γ ) = γ ′.

One needs to check that ∂[ f ] is well-defined: if f is roughly equivalent to g then
dH ( f (γ ), g(γ )) < ∞ and so γ ′ must be the same in both cases. It is also simple to check
that ∂ is functorial. Some notation.

• Suppose γ, η ∈ Z(p, q). Let γ ∧ η denote the point of γ ∩ η ⊂ R(p, q) of maximal
height.

Proposition 15 Let f : R(p, q) → R(p′, q ′) be a rough isometric embedding. Then ∂[ f ] :
Z(p, q) → Z(p′, q ′) is a bilipschitz embedding.

Proof Write g = ∂[ f ]. Let ρ denote the metric on Z(p, q) and let ρ′ denote the metric on
Z(p′, q ′). Let γ, η ∈ Z(p, q) and write γ ′ = g(γ ), η′ = g(η). By Lemma 7, we know that
f is D-coarsely height-preserving for some constant D � 0. We also know the following

ρ(γ, η) = q− h(γ∧η)
log(q) = e−h(γ∧η)

Similarly,

ρ′(γ ′, η′) = (q ′)−
h(γ ′∧η′)
log(q′) = e−h(γ ′∧η′)

So we just need to show that |h(γ ∧ η) − h(γ ′ ∧ η′)| � C where C is some constant
that does not depend on γ, η. We know that there exists some constant B � 0 such that
dH ( f (γ ), γ ′) � B and dH ( f (η), η′) � B. Let x ∈ γ , y ∈ η be such that d( f (x), γ ′ ∧η′) �
B and d( f (y), γ ′ ∧ η′) � B. Then d( f (x), f (y)) � 2B and so d(x, y) � 2B + A where
A is the rough isometry constant of f . Consequently, d(x, γ ∩ η) � 2B + A and so

h(γ ∧ η) � h(x) − (2B + A) � h( f (x)) − (2B + A + D) � h(γ ′ ∧ η′) − (3B + A + D)

Now let w ∈ γ ′, z ∈ η′ be such that d(w, f (γ ∧ η)) � B and d(z, f (γ ∧ η)) � B. Then
d(w, z) � 2B and so d(w, γ ′ ∩ η′) � 2B. Hence

h(γ ′ ∧ η′) � h(w) − 2B � h( f (γ ∧ η)) − 3B � h(γ ∧ η) − (3B + D)

and we are done.

Before defining � : D → C, we need some more terminology.

• By a clone in Z(p, q) we mean a subset C ⊆ Z(p, q) consisting of all words beginning
with some fixed word. Suppose we have some subset S ⊆ Z(p, q). The minimal clone
containing S is the clone containing S of minimal diameter.
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• Using an arbitrary edge labelling of R(p, q), we can identify a vertex v of R(p, q) with
a finite word u in the alphabet {0, . . . , p − 1}. Denote by C(v) the clone consisting of
all words beginning with u. In this manner, we have a bijection between the vertices of
R(p, q) and the clones of Z(p, q).

Definition We set �Z(p, q) = R(p, q). Suppose we have a bilipschitz embedding g :
Z(p, q) → Z(p′, q ′). Let v ∈ V (R) be some vertex of R(p, q). We have that gC(v) ⊆
Z(p′, q ′) is contained in some minimal clone C(w) ⊆ Z(p′, q ′) where w ∈ V (R′). We set
f (v) = w. Thus, we have constructed a map f : V (R) → R(p′, q ′). Precomposition with
the nearest point projection map gives us a map f : R(p, q) → R(p′, q ′). We set [ f ] = �g.

Proposition 16 Retaining the notation from the previous definition, f : V (R) → R(p′, q ′)
is an order-preserving rough isometric embedding.

Proof A preliminary observation: given a vertex v of R, we have that diam(gC(v)) =
diam(C( f (v))). This follows from the minimality of C( f (v)) ⊇ gC(v).

We now prove that f is order-preserving. Suppose v, v′ are vertices of R = R(p, q) such
that v′ descends from v.Wewant to show that f (v′) descends from f (v).Writew = f (v) and
w′ = f (v′). Since C(v′) ⊆ C(v) we have that gC(v′) ⊆ gC(v). Therefore gC(v′) ⊆ C(w).
Thus, by the minimality of C(w′), we have C(w′) ⊆ C(w). So w′ descends from w. Hence,
f is order-preserving.
We will now show that f is a rough isometric embedding. Let v, v′ ∈ V (R) and, as

before, write w = f (v), w′ = f (v′). We have three cases to consider: v′ descends from
v, v descends from v′ or neither descends from the other. The first two cases are evidently
symmetrical and so we only consider the first and the third. Suppose v′ descends from
v. Say, d(b, v) = k log(q) and d(b, v′) = l log(q) where k, l are non-negative integers
with k � l. Then d(v, v′) = (l − k) log(q). We also know that diam(C(v)) = q−k and
diam(C(v′)) = q−l . Thus

d(v, v′) = log

(
diam(C(v))

diam(C(v′))

)

Similarly, since w′ descends from w, we have that

d(w,w′) = log

(
diam(C(w))

diam(C(w′))

)

By the observation, we know that diam(C(w′)) = diam(gC(v′)) and diam(C(w)) =
diam(gC(v)). Therefore

d(w,w′) = log

(
diam(gC(v))

diam(gC(v′))

)
� log

(
λ2

diam(C(v))

diam(C(v′))

)
= d(v, v′) + 2 log(λ)

and similarly

d(w,w′) � log

(
1

λ2

diam(C(v))

diam(C(v′))

)
= d(v, v′) − 2 log(λ)

Here we have used the fact that g is λ-bilipschitz and so only changes diameters by factors
in the interval [λ−1, λ]. So we are done in the case when v′ descends from v. Now suppose
that neither descends from the other. Let W = f (v ∧ v′). We have that

diam(C(w ∧ w′)) = diam(g(C(v) ∪ C(v′)))
� λ diam(C(v) ∪ C(v′))
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= λ diam(C(v ∧ v′))
� λ2 diam(gC(v ∧ v′))
� λ2 diam(C(W ))

Similarly, diam(C(w∧w′)) � λ−2 diam(C(W )). Sincew∧w′ descends fromW this implies
that

d(w ∧ w′,W ) = log

(
diam(C(W ))

diam(C(w ∧ w′))

)
∈ [−2 log(λ), 2 log(λ)]

Also, note that our work on the case when v′ descends from v implies that d(w,W )−d(v, v∧
v′) and d(W , w′)−d(v∧v′, v′) are also both contained in the interval [−2 log(λ), 2 log(λ)].
Therefore

d(w,w′) = d(w,w ∧ w′) + d(w ∧ w′, w′)
� d(w,W ) + d(W , w′) + 4 log(λ)

� d(v, v ∧ v′) + d(v ∧ v′, v′) + 8 log(λ)

= d(v, v′) + 8 log(λ)

Similarly, d(w,w′) � d(v, v′)−8 log(λ). Therefore f is an 8 log(λ)-rough isometric embed-
ding.

The following proposition proves Theorem 14.

Proposition 17 ∂ : C → D and � : D → C are mutually inverse functors.

Proof Let g : Z(p, q) → Z(p′, q ′) be a bilipschitz embedding and let [ f ] = �g. Suppose
that f has rough isometry constant A. We will first show that ∂[ f ] = g. Let (an) ∈ Z(p, q),
let γ be the corresponding geodesic ray and suppose that (vn) is the sequence of vertices
traversed by γ . Write wn = f (vn). We know that (an) ∈ C(vn) and C(vn) ⊇ C(vn+1) for
all n. Hence g((an)) ∈ gC(vn) for all n. Further, gC(vn) ⊆ C(wn) and so g((an)) ∈ C(wn)

for all n. So we have

C(w1) ⊇ C(w2) ⊇ C(w3) ⊇ . . . � g((an))

where we have used the fact that f preserves order. We know that diam(C(vn)) → 0 and so
diam(C(wn)) = diam(gC(vn)) → 0 since g is a bilipschitz embedding. Therefore g((an))
is contained in a decreasing sequence of clones; there can only be one element contained
in all of them. Let γ ′ be the geodesic ray joining together the vertices wn . We claim that
dH ( f (γ ), γ ′) < ∞. It is clear that f (γ ) is contained in a finite neighbourhood of γ ′. To see
that γ ′ is contained in a finite neighbourhood of f (γ ), note that d(wn, wn+1) � log(q) + A
for all n. It follows that some y ∈ γ ′ is at distance at most max(log(q) + A, d(b′, w1)) from
an element of f (γ ). So ∂[ f ](γ ) = γ ′. But γ ′ ∈ C(wn) for all n and so γ ′ = g((an)). Hence
∂�g = g.

We will now prove that if we have an A-rough isometric embedding f : R(p, q) →
R(p′, q ′) then �∂[ f ] = [ f ]. By Lemma 7, we know that f is D-coarsely height-preserving
for some constant D � 0. Let v ∈ V (R). Suppose C(w) is the minimal clone such that
(∂[ f ])C(v) ⊆ C(w). Then �(∂[ f ])(v) = w. We want to show that w is at some uniformly
bounded distance from f (v). By the minimality of w, there must exist γ, η ∈ C(v) such that
γ ∧ η = v and γ ′ ∧ η′ = w where γ ′ = ∂[ f ](γ ), η′ = ∂[ f ](η). By the same argument as in
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Proposition 15, it follows that |h(v) − h(w)| is uniformly bounded. Let z ∈ γ ′ be such that
d(z, f (v)) � B. Then |h(z) − h(v)| � B + D. So

d( f (v), w) � d( f (v), z) + d(z, w) � B + |h(z) − h(w)| � 2B + D + |h(v) − h(w)|
which is uniformly bounded.

Finally, observe that � is a functor because ∂ is

�(g′ ◦ g) = �(∂�g′ ◦ ∂�g) = �∂(�g′ ◦ �g) = �g′ ◦ �g

6.3 From trees to treebolic spaces

In this section we will prove that (A3) �⇒ (A5) and (B2) �⇒ (B4). Recall that T (p, q)

is the infinite regular tree with vertex valency p + 1 and edge length log(q). We can view
T (p, q) as two copies of R(p, q) connected together at the basepoints by a line of length
log(q).With this inmind, write T (p, q) = R1�R2�L where R1, R2 are isometric to R(p, q)

and L is the open line of length log(q). We let b1 denote the basepoint of R1 and let b2 denote
the basepoint of R2. We can also write T (p′, q ′) = R′

1 � R′
2 � L ′ where R′

1, R
′
2, L

′, b′
1, b

′
2

are defined similarly.

Proposition 18 A rough isometric embedding R(p, q) → R(p′, q ′) induces a rough isomet-
ric embedding T (p, q) → T (p′, q ′). Further, if R(p, q) is rough isometric to R(p′, q ′) then
T (p, q) is rough isometric to T (p′, q ′).

Proof Suppose we have an A−rough isometric embedding f : R(p, q) → R(p′, q ′). Let
V (T ) be the vertex set of T (p, q), let V1 be the vertex set of R1, let V2 be the vertex set of R2

and let V be the vertex set of R(p, q). We define a map F : V (T ) → T (p′, q ′) as follows.
If v ∈ V1 then set F(v) = f (v) where we have identified V1 with V and R(p′, q ′) with R′

1.
If v ∈ V2 then set F(v) = f (v) where we have now identified V2 with V and R(p′, q ′) with
R′
2. We need to prove that F is a rough isometric embedding. If v,w ∈ V1 or v,w ∈ V2, then

F roughly preserves the distance between v and w since f does. Write κ = d(b′, f (b)). If
v ∈ V1 and w ∈ V2 then we have that

d(F(v), F(w)) = d(F(v), b′
1) + log

(
q ′) + d(b′

2, F(w))

= d( f (v), b′) + log
(
q ′) + d(b′, f (w))

� d( f (v), f (b)) + log
(
q ′) + d( f (b), f (w)) + 2κ

� d(v, b) + log(q) + d(b, w) + 2κ + 2A

= d(v,w) + 2κ + 2A

Similarly, d(F(v), F(w)) � d(v,w)−2κ −2A. So F is a rough isometric embedding. Note
that if f is a rough isometry then so is F .

Proposition 19 Suppose we have some fixed height functions on T (p, q) and T (p′, q ′) deter-
mined by the geodesic rays γ and γ ′ respectively. If there exists an A-rough isometric
embedding f : T (p, q) → T (p′, q ′) then there exists a coarsely height-preserving A-
rough isometric embedding g : T (p, q) → T (p′, q ′). Further, if f is a rough isometry then
so is g.
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Proof Suppose γ has basepoint b and γ ′ has basepoint b′. Let b′′ be the vertex of T (p′, q ′)
closest to f (b). By the Morse lemma, there exists a unique geodesic ray γ ′′ based at b′′ such
that dH (γ ′′, f (γ )) � B where B � 0. Let ψ : T (p′, q ′) → T (p′, q ′) be some isometry
taking γ ′′ to γ ′. We claim that g = ψ f is coarsely height-preserving. Let x ∈ T (p, q). We
have that

d(b, x) � d( f (b), f (x)) + A � d(b′′, f (x)) + A + log
(
q ′) = d(b′, g(x)) + A + log

(
q ′)

Similarly, d(b, x) � d(b′, g(x)) − A − log
(
q ′). Let η denote the geodesic segment from b

to x . Let ξ denote the geodesic segment from b′ to g(x). We have that dH (ξ, g(η)) � C for
some uniform constant C � 0 by the Morse Lemma. Let γ ∧ η denote the point of γ ∩ η of
furthest distance from b and let γ ′ ∧ ξ be defined similarly. Since g(γ ) is uniformly close to
γ ′ and g(η) is uniformly close to ξ , identical arguments to those in the proof of Proposition 15
show that the difference between d(b, γ ∧ η) and d(b′, γ ′ ∧ ξ) is uniformly bounded. Since

h(x) = d(b, x) − 2 · d(b, γ ∧ η)

and

h(g(x)) = d(b′, g(x)) − 2 · d(b′, γ ′ ∧ ξ)

it follows that g is coarsely height-preserving.

Recall that topologically HT (p, q) = T (p, q) × R. Let π : HT (p, q) → T (p, q) be
the projection onto the first factor and let ζ : HT (p, q) → R be the projection onto the
second factor. We choose a height function on HT (p, q) that agrees with the height function
on T (p, q): i.e. h(πx) = h(x) for all x ∈ HT (p, q).

Supposewe have a coarsely height-preserving rough isometric embedding f : T (p, q) →
T (p′, q ′). Let f̂ be the product map f × id : HT (p, q) → HT (p′, q ′). We call f̂ the
horocyclic extension of f . We want to show that f̂ is a quasiisometric embedding. Consider
the function

D : HT (p, q) × HT (p, q) → R�0

given by

D(x, y) = min{d(x, y′), d(y, x ′)}
where y′ = (πx, ζ y) and x ′ = (π y, ζ x). Two key observations are that for x, y ∈ HT (p, q)

• d(x, y) � d(πx, π y);
• d(x, y) � d(πx, π y) + D(x, y).

We can also claim that d(x, y) � D(x, y). Without loss of generality suppose that D(x, y) =
d(x, y′). This implies that h(x) � h(y). Let P be the map which collapses HT (p, q) onto a
hyperbolic plane containing x and y′ (see, for example, the map ρ j described at the start of
the proof of Theorem 6.1 in [4]). P preserves the length of paths and so it must be distance-
contracting. So d(x, y) � d(x,P(y)). Further, d(x,P(y)) � d(x, y′) since y,P(y) are
contained in the same hyperbolic plane and h(y′) � h(P(y)). Hence, d(x, y) � D(x, y).

Proposition 20 If f : T (p, q) → T (p′, q ′) is a B-coarsely height-preserving A-rough
isometric embedding then the horocyclic extension f̂ : HT (p, q) → HT (p′, q ′) is a (2, A+
2B)-quasiisometric embedding. Further, if f is a rough isometry then f̂ is a quasiisometry.
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Proof First observe that f̂ is also B-coarsely height-preserving:

|h( f̂ x) − h(x)| = |h(π f̂ x) − h(πx)| = |h( f πx) − h(πx)| � B

Claim D is coarsely preserved by f̂ . That is, |D(x, y) − D( f̂ x, f̂ y)| � 2B.

Proof of claim Let x, y ∈ T (p, q). Suppose |h(x) − h( f̂ x)| = δ � B. There exists a
quadrilateral in H

2 with vertices v1, v2, v3, v4 such that d(v1, v2) = d(x, y′), d(v3, v4) =
d( f̂ x, f̂ y′) and d(v2, v3) = d(v4, v1) = δ. Hence

|d(x, y′) − d( f̂ x, f̂ y′)| � 2B

Similarly,

|d(y, x ′) − d( f̂ y, f̂ x ′)| � 2B

and so |D(x, y) − D( f̂ x, f̂ y)| � 2B.

We have that

d(x, y) � d(πx, π y) + D(x, y)

� d( f πx, f π y) + A + D( f̂ x, f̂ y) + 2B

� d(π f̂ x, π f̂ y) + A + d( f̂ x, f̂ y) + 2B

� 2d( f̂ x, f̂ y) + A + 2B

and

d( f̂ x, f̂ y) � d(π f̂ x, π f̂ y) + D( f̂ x, f̂ y)

� d( f πx, f π y) + D(x, y) + 2B

� d(πx, π y) + A + d(x, y) + 2B

� 2d(x, y) + A + 2B

and so f̂ is a (2, A + 2B)-quasiisometric embedding. Suppose now that f is also A-coarse
surjective and let z ∈ HT (p′, q ′). Let x ∈ T (p, q) be such that d( f (x), π z) � A. Let
y ∈ HT (p, q) satisfy π y = x and ζ y = ζ z. Then d( f̂ (y), z) � A since f̂ (y) and z have
the same depth. So f̂ is also coarse-surjective.

The implications (A3) �⇒ (A5) and (B2) �⇒ (B4) follow from Proposition 18,
Proposition 19 and Proposition 20.
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