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Abstract
Let {Xi } be a sequence of compact n-dimensional Alexandrov spaces (e.g. Riemannian man-
ifolds) with curvature uniformly bounded below which converges in the Gromov–Hausdorff
sense to a compact Alexandrov space X . The paper (Alesker in Arnold Math J 4(1):1–17,
2018) outlined (without a proof) a construction of an integer-valued function on X ; this func-
tion carries additional geometric information on the sequence such as the limit of intrinsic
volumes of the Xi . In this paper we consider sequences of closed 2-surfaces and (1) prove
the existence of such a function in this situation; and (2) classify the functions which may
arise from the construction.
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1 Introduction

1.1 Background and general overview of main results

1 Muchwork has been done on the behavior of Riemannianmanifolds and, more generally,
Alexandrov spaces with respect to the Gromov–Hausdorff (GH) convergence when the
sectional curvature is uniformly bounded below, see e.g. [2, 6, 7] and references therein.
The first author formulated in [1] a few conjectures on the behavior of the intrinsic
volumes (or, in equivalent terminology, Lipschitz–Killing curvatures) on such spaces.
One of the new ingredients in terms of which the conjectures were formulated and which
is central for the current paper concerns the so-called constructible functions on the
limiting space. Let {Xn

i } be a sequence of such spaces of dimension n which converges
in the GH-sense to a compact Alexandrov space X . Then after choosing a subsequence
one can define an integer-valued function F : X −→ Z (see below). In some sense the
function F is unique up to the natural action of the group of isometries of X , see below
for the precise statement. In the no collapse case, i.e. dim X = n, F is equal to 1: first
Petrunin [26] mentioned that he possessed a proof, then V. Kapovitch supplied us with
a proof of this fact, see Theorem 6.13. The function F is constant on the strata of the
Perelman–Petrunin stratification [11].1 The latter notion was developed in [24].
The function F carries extra geometric information for collapsing sequences andwas used
in the formulation of conjectures in [1]; a very special case of this connection is discussed
in Subsection 6.8 below. The construction of F was motivated by the construction of a
nearby cycle known in algebraic geometry (see e.g. [9]; for its version in real analytic
geometry see [10], Theorem 3.7) although the current technical set up is very different.

2 The goals of this paper are
(1) to give a rigorous construction of F in the case of sequences of closed 2-surfaces with

1 Before Fujioka’s work [11], Petrunin [26] mentioned to the first author that he has a proof, although did not
publish it.
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metrics of curvature uniformly bounded below in the sense of Alexandrov (in particu-
lar for closed smooth surfaces of Gaussian curvature uniformly bounded from below).
Although the general case was very recently treated in [11], our treatment of the 2-
dimensional case is independent and more elementary.
(2) we classify the functions F arising on the limit space in the above situation. Actually
we do that in a more precise form discussed below.
As a direct consequence, we verify one of the general conjectured properties of F in the
above situation of sequences of closed 2-surfaces.

3 Before we state the main results, let us describe a version of the nearby cycle con-
struction.2 Let {Xn

i } be a sequence of compact n-dimensional Alexandrov spaces with
curvature uniformly bounded from below. Let it GH-converge to a compact Alexandrov
space X . Let {di } be anymetrics on the disjoint union Xi

∐
X extending the original met-

rics on Xi and X and such that the Hausdorff distance di,H (Xi , X) −→ 0 as i −→ ∞.
Let x ∈ X . For ε > 0 denote

Bi,x (ε) = {y ∈ Xi | di (y, x) < ε}. (1.1.1)

Then there exists a subsequence, denoted in the same way, with the following properties.
There exists ε0 > 0 such that for all 0 < δ1 < δ2 < ε0 there exists i0 ∈ N (depending
on x, di , ε0, δ1, δ2, and the subsequence) such that for any i > i0, any a ∈ Z≥0, and any
field F the image of the natural map in the ath cohomology

Ha(Bi,x (δ2);F) −→ Ha(Bi,x (δ1);F)

has dimension independent of i, δ1, δ2. Let us denote this dimension by ha(x). The
function x �→ ha(x) is unique up to isometries in the following sense. Let a similar
function h̃a be constructed using different metrics d̃i on Xi

∐
X and using a subsequence

of the subsequence leading to ha . Then there exists an isometry α of X such that h̃a =
ha ◦ α.
The function in question F : X −→ Z is defined by F(x) := ∑

a(−1)aha(x).
The functions ha are the main focus of the present paper when {Xi } are closed 2-surfaces
with Alexandrov metrics of curvature uniformly bounded below. We show, in particular,
that the described construction of ha is well defined in this case of surfaces. Furthermore
we classify in all cases the ha as functions on the limiting space.

4 Before describing the main results, let us recall a few well-known facts on the topology
and geometry of 2-surfaces.Any topological closed 2-surface is homeomorphic to exactly
one surface from the following list:
(1) the 2-sphere;
(2) the connected sum of g copies of the 2-torus where g ≥ 1.
(3) the connected sum of k copies of the real projective plane where k ≥ 1.
Surfaces of types (1) and (2) are orientable, while of type (3) are not orientable. It follows
that a surface is defined uniquely up to a homeomorphism by its Euler characteristic and
whether it is orientable or not.

5 Consider now surfaces with metrics of curvature bounded below in the sense of Alexan-
drov (see Definition 2.3 below). Such metrics include smooth Riemannian metrics with
a lower bound on the Gaussian curvature. It is well known that given a lower bound κ on
the curvature (or on the Gaussian curvature in the smooth case) and an upper bound D

2 This construction was first suggested as a conjecture by the first author. Then Petrunin (see the discussion
in [1]) mentioned that he has a proof. Very recently Fujioka [11] posted a proof on the arxiv.
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on the diameter, there exist only finitely many homeomorphism types of surfaces admit-
ting such metrics. Hence if a sequence of closed surfaces {Xi } of curvature uniformly
bounded from below GH-converges to a compact space X then in the sequence there are
only finitely many homeomorphism types. Thus after a choice of subsequence one can
assume that all Xi have a fixed homeomorphism type. This will be assumed throughout
the rest of text.

1.2 Themain results

1 Let us state the main results of the paper. Consider a sequence {Xi } of closed 2-surfaces
of given homeomorphism type and of curvature uniformly bounded below. Assume it
GH-converges to a compact metric space X . By Burago–Gromov–Perelman [7] (see also
[6]) X is an Alexandrov space of (integer) dimension at most 2. If dim X < 2 one says
that a collapse occurs. It is well known (see e.g. Proposition 6.4 below) that a collapse
may happen precisely for sequences of surfaces of non-negative Euler characteristic, i.e.
for spheres, real projective planes, tori, and Klein bottles.
Theorem 6.13 below says that in the no collapse case h0 ≡ 1 and ha ≡ 0 for a 	= 0, in
particular F ≡ 1; this is not only for surfaces but for any non-collapsing sequences of
compact n-dimensional Alexandrov spaces of curvature uniformly bounded from below.
This theorem is an easy consequence of the more general Theorem 6.14 below due to
Kapovitch [17].
Let us assume now that dim X = 0, i.e. X is a point. This case is trivial: by the definition
of ha one has ha = dim Ha(Xi ;F). Note that all four homeomorphism types of closed
2-surfaces admitting a collapse (i.e. sphere, torus, real projective plane, and Klein bottle)
may actually collapse to a point while the curvature is uniformly bounded from below.
Let us consider the case dim X = 1 which is the main one for this paper. Then it is well
known that X is isometric either to a circle or a closed segment. As we have mentioned,
by Proposition 6.4 the Xi must have non-negative Euler characteristic. Let us consider
them case by case.
(1) Let {Xi } be homeomorphic to the 2-sphere. Then we show (see Theorem 6.7(2))
that necessarily X is a segment rather than a circle.3 Furthermore Theorem 6.5 says that
h0 ≡ 1, ha ≡ 0 for a 	= 0, 1, and

h1(x) =
{
1 if x ∈ int(X),

0 if x ∈ ∂X .

(2) Let {Xi } be homeomorphic to the real projective plane. By Theorem 6.7(2) X is a
segment but not a circle. By Theorem 6.8 ha ≡ 0 for a 	= 0, 1, h0 ≡ 1. Furthermore
h1(x) = 0 if x ∈ int(X), and h1(x) = 0 for one of the boundary points of X , and
h1(x) = 1 for another boundary point.
(3) Let {Xi } be homeomorphic to the torus. Katz [15] and independently Zamora [35]
have shown that X must be a circle but not a segment. Theorem 6.7 says that in this case
ha ≡ 0 for a 	= 0, 1, and h0 = h1 ≡ 1.
(4) Let {Xi } be homeomorphic to the Klein bottle. In this case both options of segment
and circle for X are possible. In either case ha ≡ 0 for a 	= 0, 1, and h0 = h1 ≡ 1 by
Theorem 6.11.

3 It is likely that this result is folklore.

123



Geometriae Dedicata (2023) 217 :12 Page 5 of 44 12

2 As an application of this computation of ha , we verify the general conjectural property
of the function F := ∑

a(−1)aha : its integral over the limiting space X with respect to
the Euler characteristic is equal to the Euler characteristic of the Xi ’s (which are equal
to each other after a choice of subsequence), see Proposition 6.16.

Remark 1.1 This application was proven in a much greater generality in the recent preprint
by Fujioka [11].

3 The main tools in this paper are the Yamaguchi fibration theorem [34] and Alexandrov’s
realization theorems [3, 4]. While the former works for any dimension of {Xi }, the latter
is specific to dimension 2.

4 The motivation of this paper comes from conjectures [1] on the behavior of the intrinsic
volumes (also known as theLipschitz-Killing curvatures) onRiemannian andAlexandrov
spaces under the GH-convergence.

1.3 Organization of the paper

The paper is organized as follows. In Sect. 2 we review convexity in the hyperbolic space.
Most of the results of this section are either well known or folklore; we provide references
whenever possible and provide proofs otherwise. The material of this section will be used in
Sect. 6 in the study of the collapse of 2-spheres.

In Sect. 3we study the functions ha when theGH-convergence is replaced by theHausdorff
convergence of convex bodies in the hyperbolic space Hn . This will be used in Sect. 6 in the
study of the collapse of 2-spheres and real projective planes via Alexandrov’s realization
theorem.

In Sect. 4 we discuss mostly known or folklore facts on Riemannian submersions and the
Yamaguchi map between smooth Riemannian manifolds. This will be used in Sect. 6 in the
study of the collapse of tori and Klein bottles.

In Sect. 5 we introduce the notion of G-equivariant GH-convergence when G is a finite
group and prove a G-equivariant version of Gromov’s compactness theorem. Then a version
of G-equivariant Yamaguchi map is constructed in a very special situation sufficient for the
purposes of this paper; this is done essentially by repeating Yamaguchi’s construction [34].
We will use this material in Sect. 6 in the study of the collapse of real projective planes and
Klein bottles; only the group G = Z2 will be needed.

In Sect. 6 we prove the main results of this paper.

1.4 Relation to the work of Shioya andYamaguchi

Shioya and Yamaguchi [31] studied the properties of the Yamaguchi fibration and collapse
in the 3-dimensional case. In particular, they studied the homeomorphism types of the metric
balls inside collapsing 3-dimensional manifolds. Their techniques could be applied also in
the easier 2-dimensional case, and could be used to give an alternative proof of the results
of our paper. Note, however, that the methods of our paper are more elementary. Thus their
approach relies on deep (even in dimension 2) facts from the Alexandrov geometry such as
the generalized soul theorem and the parameterized stability theorem. The former is not used
in our paper, the latter is used only in the no-collapse case. In our study of collapse to the
segment we exploit the Alexandrov realization theorem, a totally different tool from those
used in [31].
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2 Convexity in hyperbolic space

In this sectionwe reviewa few facts on the geometry of convex subsets of the hyperbolic space,
CBB(−1) spaces, and Alexandrov’s results on isometric realization of CBB(−1) metrics on
the 2-sphere as boundaries of convex subsets in hyperbolic 3-space. The principal results of
this section are Proposition 2.5 and Theorem 2.10, but they seem to be folklore.

2.1 Busemann–Feller lemma

The following result due toMilka [20] is a hyperbolic version of the Busemann–Feller lemma
in Euclidean space.

Theorem 2.1 Let K ⊂ H
n be a closed convex subset of the hyperbolic space. Then

(1) for any point x ∈ H
n there exists a unique nearest point from K;

(2) the map Hn −→ K sending a point from H
n to its nearest point from K is a 1-Lipschitz

map.

The following corollary should be well known but we have no reference.

Corollary 2.2 Let K1 ⊂ K2 ⊂ H
2 be 2-dimensional convex compact subsets of the hyperbolic

plane. Then

length(∂K1) ≤ length(∂K2).

Proof Let r : ∂K2 −→ ∂K1 be the restriction to ∂K2 of the nearest point map to K1. By the
Busemann–Feller lemma it is 1-Lipschitz. It is easy to see that r is onto. The result follows.
Q.E .D.

2.2 Klein model of hyperbolic space

The Klein model of the n-dimensional hyperbolic space Hn is the open unit Euclidean ball
B
n = {x21 + · · · + x2n < 1} equipped with the Riemannian metric

ds2 =
∑n

i=1 dx
2
i

1 − |x |2 +
(∑n

i=1 xi dxi
)2

(1 − |x |2)2 ,

where |x |2 = ∑n
i=1 x

2
i is the square of the Euclidean norm.

The relevant property of this metric to be used later is that its geodesic lines are precisely
the intersections of affine lines in Rn with the open ball Bn .

2.3 CBB(−1) metrics

Let us recall a few definitions. Let S be a topological 2-dimensional manifold, i.e. a surface.
Let d be a complete intrinsic metric on S inducing the given topology on it. By intrinsic we
mean that the distance between each pair of points is equal to the infimum of lengths of all
rectifiable paths connecting them. Then this infimum is achieved: there exists a shortest path
between any two points. This is a corollary of the Arzela–Ascoli theorem, see [6], Theorem
2.5.23. Let ψ , χ be two shortest paths in (S, d) issuing from a common point x . Let y ∈ ψ

be the point at distance a from x and z ∈ χ be the point at distance b from x . Consider the
hyperbolic triangle with side lengths a, b and d(y, z) and let λ(a, b) be the angle opposite
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to the side of length d(y, z). The following definition was introduced in [7], Section 2.7, in
the multi-dimensional situation.

Definition 2.3 We say that d is aCBB(−1)metric on S if d is complete, intrinsic and for each
x ∈ S there exists a neighborhood U � x such that the function λ(a, b) is a nonincreasing
function of a and b for every ψ , χ issuing from x , in the range a ∈ [0; a0], b ∈ [0; b0] where
the respective points y, z belong to U .

Important examples of CBB(−1) surfaces are convex surfaces in the hyperbolic spaceH3

endowed with the induced intrinsic metric; in case they are C2-smooth the latter condition
is equivalent to have the Gaussian curvature at least −1.

Another example of a CBB(−1) surface is the double cover of a planar convex set ( [4],
Ch. I). Let K ⊂ H

2 be a convex compact set with non-empty interior. Let us consider the
surface DK equal to the union of two copies of K such that corresponding points of their
respective boundaries are identified. The surface DK is homeomorphic to the 2-sphere S2.
It is equipped with the unique intrinsic metric such that the two copies of K inside DK are
isometrically embedded. Then DK is CBB(−1).

2.4 From the Hausdorff convergence to the Gromov–Hausdorff convergence

We recall

Definition 2.4 Let X be a set. One says that a sequence of metrics {di } on X converges to a
metric d uniformly if

sup
x,y∈X

|di (x, y) − d(x, y)| −→ 0 as i −→ ∞.

The following result is well-known to experts, but we did not find an appropriate reference,
so we are giving our proof. Some parts of the argument are inspired by the classical treatment
of the 3-dimensional Euclidean case by Alexandrov in [4], although Alexandrov does not
consider the Gromov–Hausdorff convergence.

Proposition 2.5 Let {Ki } ⊂ H
n be a sequence of n-dimensional convex compact sets con-

verging in the Hausdorff sense to a convex compact set K . Consider the sequence of their
boundaries {∂Ki } equipped with the induced intrinsic metrics.

(1) If dim K = n, then ∂Ki
GH−→ ∂K where ∂K is equipped with the intrinsic metric.

(2) If dim K = n − 1, then ∂Ki GH-converges to the double cover DK of K .

(3) If dim K ≤ n − 2, then ∂Ki
GH−→ K where K is equipped with the metric induced from

H
n which is automatically intrinsic.

(4) Let us denote by Din
i the intrinsic distance on ∂Ki , and by dist the distance in H

n. If
dim K ≤ n − 2, then

lim
i−→∞ sup

x,y∈∂Ki

|Din
i (x, y) − dist(x, y)| = 0.

First let us prove a lemma.

Lemma 2.6 Let {Ki } ⊂ H
n be a sequence of n-dimensional convex compact sets converging

in the Hausdorff sense to a convex compact set K . If dim K ≤ n − 1 then {∂Ki } −→ K
in the Hausdorff sense when the boundaries {∂Ki } are equipped with the induced extrinsic
metrics from H

n.

123



12 Page 8 of 44 Geometriae Dedicata (2023) 217 :12

Proof Let ε > 0. It suffices to show that for large i

Ki ⊂ (∂Ki )ε. (2.4.1)

Let H be a hyperplane containing K . For large i one has Ki ⊂ Hε/2. Let x ∈ Ki . Let
y ∈ H be the point from H nearest to x and l be the geodesic line passing through x , y and
orthogonal to H (so l is unique when x 	= y). Then the intersection l ∩ Ki is non-empty
segment or a point, it is contained in Hε/2, and has length at most ε. The end points of it
belong to ∂Ki . But each of them is within distance ε from x . Thus (2.4.1) follows. Q.E .D.

Proof (1) For x, y ∈ ∂K by d(x, y) we denote the intrinsic distance of ∂K between them.
Let o ∈ int(K ). Then for all sufficiently large i we have o ∈ int(Ki ). Pull back Din

i and d to
the unit sphere S ⊂ ToHn via the radial map, and, abusing the notation, continue to denote
the obtained metrics by Din

i and d . We show the following claim which implies case (1).
Q.E .D.

Claim 2.7 Din
i converge uniformly to d.

For x ∈ S we denote by hi (x), h(x) the length of the geodesic from o to ∂Ki , ∂K
respectively in the direction of x . As ∂Ki converge to ∂K in the Hausdorff sense, hi converge
uniformly to h. We can choose two sequences t ′i and t ′′i of positive real numbers, converging
to zero, such that for the functions h′

i , h
′′
i on S, defined by the equations

tanh h′
i (x) := e−t ′i tanh hi (x),

tanh h′′
i (x) := et

′′
i tanh hi (x),

we have h′
i ≤ h and h ≤ h′′

i everywhere on S. Then the surfaces ∂K ′
i , ∂K

′′
i , defined by these

radius functions, converge to ∂K in the Hausdorff sense.
We show that ∂K ′

i , ∂K
′′
i are convex surfaces. Fix t ∈ R and consider a homeomorphism

H : Hn → H
n sending a point p ∈ H

n to the point H(p) so that H(p) belongs to the ray
op and

tanh(dist(o, H(p))) = e−t tanh(dist(o, p)).

Let L be a line inHn not passing through o and p be the closest point at L to o. From the sine
law it is easy to see that the line passing through H(p) orthogonal to the ray op, is the image
of L via H . Hence, H sends lines to lines, and, in particular, preserves convexity. Thus, ∂K ′

i ,
∂K ′′

i are convex.
Define

ζ ′
i := sup

x∈S
(
h(x) − h′

i (x)
)
,

ζ ′′
i := sup

x∈S
(
h′′
i (x) − h(x)

)
.

By d ′
i , d

′′
i denote the intrinsic metric of ∂K ′

i , ∂K
′′
i transferred to S. Due to the Busemann–

Feller lemma and the triangle inequality

d ′′
i ≤ d + 2ζ ′′

i , d ≤ d ′
i + 2ζ ′

i . (2.4.2)

Fix some positive real numbersm < M . Consider the space T of triangles (up to isometry)
oxy in H

2 such that the distance from the line xy to o is at least m and the lengths ox, oy
are at most M . This space can be parametrized by three numbers: the distance s1 from o to
the line xy, the length s2 of the largest side among ox and oy, and the length s3 of xy. The
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advantage of this parametrization is that all the angles of oxy extend continuously to the
closure of T in the parameter space, obtained by adding degenerate triangles with s3 = 0.

Let oxy be a triangle from T . Denote by a the length xy, by b the length oy, and by β the
angle oxy. Fix t ∈ R and let ox ′y′ be the triangle with the same angle between the sides ox ′,
oy′, and with

tanh(ox ′) = tanh(ox)e−t ,

tanh(oy′) = tanh(oy)e−t .

Denote by a′, b′ and β ′ the respective components of ox ′y′. Comparing the sine laws for the
triangles oxy and ox ′y′ (note that they have a common angle) we get

sinh a

sinh a′ = sin β ′ sinh b
sin β sinh b′ = sin β ′ cosh b tanh b

sin β cosh b′ tanh b′ = sin β ′ cosh b
sin β cosh b′ e

t .

Note that for fixed t and for oxy varying in T , the angles β, β ′ belong to a compact set
bounded away from 0 and π . Also the lengths b and b′ are bounded from above. Define

ξt := sup
T

( a

a′ − 1
)

,

(hence, ξt also depends on m, M , but we ignore it). Then ξt → 0 as t → 0.
Take m such that the ball B of radius m centred at o belongs to the interior of Ki for all

large i , and M such that all hi < M . Any rectifiable curve on ∂Ki can be approximated by
an inscribed polygonal curve γ that does not intersect B. Consider all its vertices, and map
them to ∂K ′

i via the radial projection from o. Let γ ′ be the polygonal curve passing through
these points, so it is inscribed in ∂K ′

i . Then

lengthH(γ ) ≤ lengthH(γ ′)(1 + ξt ′i ),

where ξt ′i is defined as above. By passing to the limit, we also get Din
i ≤ d ′

i (1 + ξt ′i ). From

what we have just proved, ξt ′i tend to zero as i grows. Similarly, d ′′
i ≤ Din

i (1 + ξt ′′i ) and ξt ′′i
also tend to zero as i grows. This and (2.4.2) imply that Din

i converge uniformly to d . This
finishes the proof of case (1).

For the next cases we need the following lemma:

Lemma 2.8 Let {Ki } ⊂ H
2 be a sequence of 2-dimensional convex compact sets converging

in the Hausdorff sense to a subset I which is either a compact segment or a point. Let
xi , yi ∈ ∂Ki be sequences of points converging to points x, y ∈ I . If both x, y ∈ relint(I ),
we additionally assume that for all sufficiently large i , there are outer normal rays to Ki

at xi , yi , which belong to the same half-space with respect to the line containing I . Then
Din
i (xi , yi ) → dist(x, y).

Here by an outer normal ray to Ki at xi ∈ ∂Ki we mean a ray starting at xi and making
both angles at least π/2 with any chord of Ki at xi .

Proof From the Busemann–Feller lemma one easily gets

lim inf Din
i (xi , yi ) ≥ dist(x, y).

Now we need a converse inequality. Let εi be twice the Hausdorff distance between Ki and
I , so Ki ⊂ Iεi , where Iεi is the εi -neighborhood of I . Draw outer normal rays to Ki at xi
and yi . If x, y ∈ relint(I ), then we assume that i is sufficiently large and the rays belong
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to the same halfspace with respect to the line containing I . Let these rays intersect ∂(Iεi )
in points x ′

i , y
′
i . By d ′

i (x
′
i , y

′
i ) denote the intrinsic distance between x ′

i and y′
i at ∂(Iεi ). The

nearest-point map to Ki sends x ′
i , y

′
i to x , y respectively. Hence, d ′

i (x
′
i , y

′
i ) ≥ Din

i (xi , yi ),
due to the Busemann–Feller lemma. As εi → 0, x ′

i and y′
i converge to x and y respectively.

We divide the boundary of Iεi into four closed arcs: arcs (i) and (iii) are half-circles centred at
endpoints of I ; arcs (ii) and (iv) are constant curvature arcs connecting arcs (i) and (iii). The
length of arcs (i) and (iii) tends to zero as εi → 0, and the lengths of arcs (ii) and (iv) tends to
the length of I . If x, y ∈ relint(I ), then the condition on inner normals imply that x ′

i , y
′
i can

not belong to two different arcs among the arcs (ii) and (iv). Then d ′
i (x

′
i , y

′
i ) → dist(x, y).

This implies

lim sup Din
i (xi , yi ) ≤ dist(x, y). Q.E .D.

Now we return to the proof of Proposition 2.5.
(2) Let � be the hyperplane containing K . Let K ′

i be the orthogonal projection of Ki to
�. It is evident that K ′

i converge to K in the Hausdorff sense and K ′
i are convex compact

sets.
Let o ∈ relint(K ). Then for all sufficiently large i we have o ∈ relint(K ′

i ). Let x
′ ∈ K ′

i ,
z′ be the intersection point of the ray ox ′ with ∂K ′

i and z be the intersection point of this ray
with ∂K . Consider a map fi : K ′

i → K sending x ′ to the point x at the ray ox ′ such that

dist(o, x)

dist(o, x ′)
= dist(o, z)

dist(o, z′)
.

The right side converges uniformly (for z ∈ ∂K ) to 1, hence also the left side. As K ′
i are

uniformly bounded, for every ε > 0 and sufficiently large i we get that

dist(x, x ′) = |dist(o, x) − dist(o, x ′)| < ε.

Take x ′, y′ ∈ K ′
i , denote their fi -images by x, y. Then we have

dist(x, y) ≤ dist(x ′, y′) + dist(x, x ′) + dist(y, y′),
dist(x ′, y′) ≤ dist(x, y) + dist(x, x ′) + dist(y, y′).

Hence,

|dist(x, y) − dist(x ′, y′)| ≤ dist(x, x ′) + dist(y, y′).

Thus, for every ε > 0 and all sufficiently large i we get |dist(x, y) − dist(x ′, y′)| < ε, so
fi is an ε-isometry. Clearly fi (∂K ′

i ) = ∂K . Then fi extends to a 2ε-isometry sending the
double cover of K ′

i to the double cover of K . By [6], Corollary 7.3.28, theGromov–Hausdorff
distance between DK ′

i and DK is at most 4ε.
By DK ′

i we denote the double cover of K ′
i and by d ′

i denote its intrinsic metric. Let
f ′
i : ∂Ki → DK ′

i be the map coming from the orthogonal projection of Ki to K ′
i . More

exactly, we call one copy of K ′
i in DK ′

i upper and the second copy lower. Orient� arbitrarily
and for x ′ ∈ relint(K ′

i ) consider the line L orthogonal to � oriented positively with respect
to the orientation of �. Then L intersects ∂K ′

i in two points. We map the first point (with
respect to the orientation of L) to the lower copy of x ′, and the second point to the upper
copy of x ′. All points of ∂Ki projecting to ∂K ′

i are mapped naturally to their images in DK ′
i .

By ∂K+
i , ∂K−

i denote the f ′
i -preimages of the upper and the lower copies of relint(K ′

i ).
Define the distortion of f ′

i :

si := {sup |Din
i (x, y) − d ′

i (x
′, y′)| : x, y ∈ ∂Ki , x

′ = f ′
i (x), y

′ = f ′
i (y)}.
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For every ε > 0 and sufficiently large i , the Hausdorff distance between Ki and K ′
i is less

than ε. Define

r+
i := sup

x,y∈∂K+
i

(
Din
i (x, y) − dist(x, y)

)
,

r−
i := sup

x,y∈∂K−
i

(
Din
i (x, y) − dist(x, y)

)
.

Note that the quantities at the right are clearly non-negative for all x, y. Suppose that r+
i does

not converge to zero. Then, up to passing to a subsequence, there exist sequences of points
xi , yi ∈ ∂Ki , xi 	= yi , converging to x, y ∈ K such that Din

i (xi , yi ) ≥ dist(x, y) + ε for
some ε > 0 (observe that dist(xi , yi ) converges to dist(x, y)).

By Pi denote the 2-plane passing through xi and yi and orthogonal to �, by x ′
i , y

′
i denote

the orthogonal projections of xi , yi to �. Up to passing to a subsequence, Pi converge to
a 2-plane P orthogonal to �. The intersection Pi ∩ Ki is a convex 2-dimensional set, and
Pi ∩ Ki converge to a subset I of P ∩ K in the Hausdorff sense. We have

dim(I ) ≤ dim(P ∩ K ) ≤ 1.

Map isometrically all Pi to H
2 so that all x ′

i are mapped to the same point x̃ ′ and rays x ′
i y

′
i

are mapped to the same ray �̃+ originating in x̃ ′. Denote the images of Pi ∩ Ki , xi , yi and y′
i

by K̃i , x̃i , ỹi and ỹ′
i respectively. By D̃in

i (x̃i , ỹi ) denote the intrinsic distance of ∂ K̃i between
x̃i and ỹi . Clearly, D̃in

i (x̃i , ỹi ) ≥ Din
i (xi , yi ).

Since y′
i converge to y, points ỹ′

i converge to a point ỹ. Since Pi ∩ Ki converge in the
Hausdorff sense to I , K̃i converge in the Hausdorff sense to a (possibly degenerate) segment
Ĩ , which is an isometric embedding of I , passing through x̃ and ỹ. As xi , yi ∈ ∂K+

i , outer
normals to K̃i at x̃i , ỹi are in the same halfspace with respect to the line �̃ containing the ray
�̃+. Then they satisfy the conditions of Lemma 2.8 and we get D̃in

i (x̃i , ỹi ) → dist(x̃, ỹ) =
dist(x, y), which is a contradiction.

We obtained that for any ε > 0 and all sufficiently large i , r+
i < ε. The same holds for

r−
i . Finally, for all sufficiently large i we have Ki ⊂ � ε

2
, where � ε

2
is the ε

2 -neighborhood

of �. This implies that if x, y ∈ ∂Ki are such that f ′
i (x) = f ′

i (y) ∈ ∂K ′
i , then Din(x, y) =

dist(x, y) < ε. Altogether this gives si < 3ε. Then theGromov–Hausdorff distance between
∂Ki and DK ′

i is less than 6ε, see [6], Theorem 7.3.25. As DK ′
i converges to DK in the

Gromov–Hausdorff sense, the same holds for ∂Ki .
(3) Let us show that (3) follows from (4). Indeed (4) implies that the uniform distance

and hence the GH-distance between (∂Ki , Din
i ) and (∂Ki , dist) tends to 0. By Lemma 2.6

(∂Ki , dist)
GH−→ (K , dist). This implies (4).

It remains to prove (4). We proceed similarly to the second half of the proof of case (2).
Define

ri := sup
x,y∈∂Ki

(
Din
i (x, y) − dist(x, y)

)
.

We show that ri → 0.
Indeed, otherwise, up to passing to a subsequence, we have two sequences of points

xi , yi ∈ ∂Ki , xi 	= yi , converging to points x, y ∈ K such that Din
i (xi , yi ) ≥ dist(x, y) + ε

for some ε > 0. We note that it means that for sufficiently large i the segments xi yi do not
entirely belong to ∂Ki . We first suppose that x 	= y.
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Let ni be an outer normal ray to Ki at xi . Note that as xi yi does not entirely belong to
∂K , ni is not orthogonal to xi yi . By Qi ⊂ H

n denote a geodesic subspace of dimension
n − 2 passing through xi and orthogonal to the line xi yi and ni . (Generically it is unique,
except the case when xi yi and ni are collinear.) Up to passing to a subsequence, Qi converge
to a geodesic subspace Q of dimension n − 2, containing x and orthogonal to xy. Since
dim(K ) ≤ n−2, Q contains a directionm orthogonal to the span of K . Consider a sequence
of directions mi ∈ Qi converging to m. By Pi denote the 2-plane spanned bymi and the line
xi yi . Up to passing to a subsequence, they converge to the 2-plane P containing m and xy.

The intersection Pi ∩ Ki is a convex 2-dimensional set, and Pi ∩ Ki converge to a subset
I of P ∩ K in the Hausdorff sense. We have

1 ≤ dim(I ) ≤ dim(P ∩ K ) ≤ 1.

Embed isometrically all Pi ∩Ki toH2 as convex sets K̃i such that all xi are mapped the same
point x̃ ∈ H

2 and rays xi yi are mapped to the same ray originating at x̃ . By ỹi we denote the
image of yi and by D̃in

i (x̃, ỹi ) denote the intrinsic distance between x̃ and ỹi in ∂ K̃i . Clearly,
D̃in
i (x̃, ỹi ) ≥ Din

i (xi , yi ).
Since yi converge to y, ỹi converge to a limit point ỹ. Since Pi ∩ Ki converge in the

Hausdorff sense to I , K̃i converge in the Hausdorff sense to a segment Ĩ , which is the
isometric embedding of I , passing through x̃ and ỹ. By the choice of Pi , the orthogonal
projection of ni to Pi is nonzero, is collinear to xi yi and is an outer normal ray to Pi ∩ Ki .
This implies that x̃ is an endpoint of Ĩ . Hence, x̃ and ỹi satisfy the conditions of Lemma 2.8.
Then D̃in

i (x̃, ỹi ) → dist(x̃, ỹ) = dist(x, y), which is a contradiction.
If x = y, then we just choose P to be a 2-plane orthogonal to the span of K at x ,

and as Pi we choose any sequence of 2-planes containing xi yi and converging to P . Then
doing everything as above, we see that I and Ĩ are just points, and Lemma 2.8 shows that
D̃in
i (x̃, ỹi ) → 0 = dist(x, y), so we get a contradiction again. Q.E.D.

2.5 Isometric imbedding of 2-sphere with antipodal involution

The following result is the Alexandrov imbedding theorem.

Theorem 2.9 (Alexandrov [4], Ch. XII, §2) Given the 2-sphere S2 with CBB(−1) metric d.
Then there exists a compact convex set K ⊂ H

3 of dimension either 3 or 2 such that (S2, d)

is isometric to ∂K in the former case, or it is isometric to the double cover DK in the latter
case.

In this section we are going to prove its following variation:

Theorem 2.10 Let d be a CBB(−1) metric on the 2-sphere S2 invariant with respect to the
antipodal involution ι : S

2 → S
2. Then there exists a compact convex set K ⊂ H

3 of
dimension either 3 or 2 such that (S2, d) is isometric to its boundary (in the former case), or
it is isometric to the double cover DK (in the latter case) and K is symmetric with respect
to a point so that this symmetry I : H3 → H

3 induces ι.

This result follows from the combination of Theorem 2.9 and Pogorelov’s rigidity theorem
inH3. The latter says that the realization is unique in a strong sense. For 3-dimensional convex
bodies in H

3 this means that every isometry of the boundaries is induced by an isometry of
H

3. We do not put further restrictions on the boundaries, so they may be neither smooth, nor
polyhedral. One needs to be more careful to include also the 2-dimensional cases, compare
with the polyhedral version below, Theorem 2.13. However, proofs of Pogorelov’s rigidity

123



Geometriae Dedicata (2023) 217 :12 Page 13 of 44 12

theorem are notoriously difficult even in the Euclidean space, see [28]. For the hyperbolic
case Pogorelov provided in [28] an intricate outline how to reduce it to the Euclidean case,
this outline was completed by Milka in [21].

We would like to point out that this seems to be slightly excessive for Theorem 2.10.
Its proof can be obtained from the classic approach of Alexandrov to Theorem 2.9, see [4,
Chapter VII], combined with the rigidity of convex polyhedra inH3, which seem to us much
more accessible rather than the rigidity of general convex surfaces inH3 (and the proofs do not
differ much between the Euclidean and hyperbolic cases). Hence, here we sketch a proof of
Theorem 2.10 using these tools. Some steps of Alexandrov’s approach to the approximation
of CBB metrics by cone-metrics were also verified in CBB(−1) case by Richard in [29,
Annex A].

Let us have a few preparations.

Definition 2.11 A hyperbolic cone-metric d on S2 is locally isometric to the metric of hyper-
bolic plane except finitely many points called conical points. At a conical point v the metric
d is locally isometric to the metric of a hyperbolic cone with angle λv 	= 2π . A hyperbolic
cone-metric is called convex if for every conical point v we have λv < 2π .

We will use the following results.

Theorem 2.12 (Alexandrov’s realization theorem) Let d be a convex hyperbolic cone-metric
on the 2-sphere S2. Then there exists a closed convex polyhedron K ⊂ H

3 of dimension either
3 or 2 such that (S2, d) is isometric to its boundary (in the former case), or it is isometric to
the double cover DK (in the latter case).

In the Euclidean case this is Theorem in [3, Section 4.3]. The proof works just the same
in the hyperbolic 3-space, as it is noted in [3, Section 5.3].

Theorem 2.13 (Alexandrov’s rigidity theorem) 1) Let K1, K2 be two 3-dimensional compact
convex polyhedra in H

3 and f : ∂K1 → ∂K2 be an isometry. Then there exists an isometry
F : H3 → H

3 inducing f .
2) Let K1, K2 be two 2-dimensional compact convex polyhedra in H

3 and f : DK1 →
DK2 be an isometry. By h1 : DK1 → K1 and h2 : DK2 → K2 we denote the natural
projections of DKi to Ki . Then there exists an isometry F : K1 → K2 such that F ◦ h1 =
h2 ◦ f , hence in particular each copy of K1 in DK1 is mapped isometrically onto a copy
K2 in DK2. The isometry f is uniquely determined by F and the image of (for example) the
first copy of K1 in DK1.

3) Let K1, K2 be two compact convex polyhedra inH3 such that K1 is 3-dimensional and
K2 is 2-dimensional. Then there exists no isometry between ∂K1 and DK2.

Again, in the Euclidean case this is the Theorem in [3, Section 3.3.2]. Similarly, the proof
holds for the hyperbolic 3-space without changes, see [3, Section 3.6.4].

Theorem 2.14 Let d be a CBB(−1) metric on S2 invariant with respect to ι. Then it admits a
triangulation that is invariant with respect to ι and consists of finitely many arbitrarily small
convex geodesic triangles.

This follows from [4, Chapter II.6] applied to the induced metric on the projective plane
ι\S2. Alternatively, one can also use [29, Lemma A.1.2].

Theorem 2.15 (Blaschke Selection Theorem) A sequence of convex compact sets Ki in H
3

of uniformly bounded diameters passing through the same point contains a subsequence
converging to a compact convex set K in the Hausdorff sense.
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This version follows easily from [6], Theorem 7.3.8.

Proof of Theorem 2.10 From Theorem 2.14 we consider a ι-invariant triangulation Ti of
(S2, d) sufficiently fine so that each angle of each triangle is not less than the angle of
the respective hyperbolic triangle. One can do this due to the compactness of S2. The sum of
the angles of all triangles at each vertex is at most 2π . See [29, Lemma A.2.1], which adapts
the proof of Theorem 2 in [4, Chapter VII.4] from the CBB(0) case. Thus, if we replace
each triangle of Ti by the respective hyperbolic comparison triangle, we obtain a ι-invariant
convex hyperbolic cone-metric di .

The metrics di converge to d uniformly. In the Euclidean case this is shown in [4, Chapter
VII.6]. In the CBB(−1) case this is done in [29, Annex A.2]. In particular, the diameters of
di are bounded.

Due to Theorem 2.12, there exists a polyhedron K ′
i ⊂ H

3 such that (S2, di ) is isometric
to its boundary (if the dimension of K ′

i is 3) or to DK ′
i (if the dimension is 2). In the former

case, due to Theorem 2.13, the action by ι is induced by an isometry Ii : H3 → H
3 of order

two fixing ∂K ′
i as a set, but having no fixed points in it. Due to the classification of isometries

ofH3, Ii is a symmetry ofH3 around a point. In the latter case, Theorem 2.13 implies that K ′
i

is a centrally-symmetric polygon. Then by Ii we consider the central symmetry ofH3 around
the center of the polygon. We compose each K ′

i with another isometry to obtain compact
convex polyhedra Ki symmetric with respect to the same isometry I , which is the central
symmetry around a point o ∈ H

3.
As the diameters of di are uniformly bounded, the diameters of Ki inH3 are also uniformly

bounded. Thus, by Theorem 2.15 there exists a subsequence converging in the Hausdorff
metric to a compact convex set K ⊂ H

3, which is I -invariant.
Due to Proposition 2.5(3), K is not a segment or a point. It remains to say that Theorem 4

in [5] shows that if dim(K ) = 3, then the induced metric on ∂K is d . If dim(K ) = 2, then
it says that the induced metric on DK is isometric to d . Q.E .D.

3 Collapse of n-dimensional convex bodies in hyperbolic n-space

The main results of this subsection are Propositions 3.3 and 3.5.
Let a sequence {Ki } ⊂ H

n of n-dimensional convex compact sets converge to a convex
compact set K with 1 ≤ dim K ≤ n − 2. We note that for our applications we need only
the case n = 3 and K be a non-degenerate segment, but parts of the proof remain the same
in a greater generality, so we consider it as an additional support for the validity of our
construction. By L we denote the geodesic subspace of Hn spanned by K , i.e., having the
same dimension and containing K , by q : Hn → L we denote the nearest-point map to L .

Let us fix a point x ∈ K . We denote by dist the distance on Hn . Set

Bi,x (δ) = {z ∈ ∂Ki | dist(z, x) < δ}.
Denote

Ai,x (δ) = {z ∈ ∂Ki | dist(q(z), x) < δ}.
Lemma 3.1 Let 0 < δ1 < δ2. Then there exists i0 ∈ N such that for any i > i0 and for any
x ∈ K one has

Ai,x

(
δ1

2

)

⊂ Bi,x (δ1) ⊂ Ai,x

(
δ1 + δ2

2

)

⊂ Bi,x (δ2) ⊂ Ai,x (2δ2).
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Proof If the points z, q(z) and x are pairwise distinct, the triangle formed by them has right
angle at q(z). Thus, dist(q(z), x) ≤ dist(z, x) (this is also clearly true if some of these
points coincide) and for any 0 < δ < δ′ we have Bi,x (δ) ⊂ Ai,x (δ

′). Next, for every ε > 0
there exists i0 ∈ N such that for all i > i0 we have Ki ⊂ Lε , where Lε is the ε-neighborhood
of L in H

n . For δ > 0 by B(x, δ) we denote the δ-ball in H
n centered at x , by A(x, δ) we

denote the set of points z ∈ H
n such that dist(q(z), x) < δ. For every 0 < δ < δ′ there

exists ε > 0 such that
(
A(x, δ) ∩ Lε

) ⊂ B(x, δ′).

Indeed, one can take ε to be the distance between L and any point from
(
∂A(x, δ)

) ∩(
∂B(x, δ′)

)
. Hence, it follows that for any 0 < δ < δ′ there exist ε > 0 and i0 ∈ N such that

for all i > i0 we have

Ai,x (δ) = (
A(x, δ) ∩ ∂Ki

) = (
A(x, δ) ∩ Lε ∩ ∂Ki

) ⊂ (
B(x, δ′) ∩ ∂Ki

) = Bi,x (δ
′).

Q.E .D.

Lemma 3.2 Let K ⊂ H
n be an n-dimensional convex compact subset of the hyperbolic n-

space, L ⊂ H
n be a totally geodesic subset of dimension k, 1 ≤ k ≤ n − 2, q : Hn → L be

the nearest-point map, and A := int(q(K )). Then the restriction of q to ∂K is a topological
fibre bundle over A with fiber homeomorphic to the sphere Sn−k .

Proof This could be easier to perceive in the Klein model. We note that if in the Klein model
L passes through the origin, then orthogonality to L is the same both in hyperbolic and in
Euclidean metrics.

Let R := maxx∈K dist(x, L) and LR be the closed R-neighborhood of L in H
n , hence

K ⊂ LR . Then ∂LR is homeomorphic to L × S
n−k so that the restriction of q to ∂LR is

the projection to the first component. For x ∈ ∂K ∩ q−1(A) by lx denote the line passing
through x orthogonal to L . Note that as lx ∩ L = q(x) ∈ A, lx does not belong to any
supporting hyperplane to K , hence lx intersects int(K ), thus it intersects ∂K exactly in two
points contained in the segment lx ∩ LR . The ray belonging to lx starting at x outwards K
intersects ∂LR in a unique point, which we denote f (x). The map f : ∂K ∩q−1(A) → ∂Lε

is injective and continuous. Therefore, it is a homeomorphism onto the image, which is
q−1(A) ∼= A × S

n−k . By construction, the composition of f with the projection to the first
component equals q . Now the lemma follows. Q.E .D.

Proposition 3.3 Let {Ki } ⊂ H
n be a sequence of n-dimensional convex compact sets con-

verging in the Hausdorff metric to a convex compact set K of dimension k, 1 ≤ k ≤ n − 2.
Let κ > 0 be a constant. Let 0 < δ1 < δ2 < κ

2 . Then there exists i0 ∈ N such that for any
i > i0, for any x ∈ int(K ) with dist(x, ∂K ) > κ and for an arbitrary commutative group
A one has

Im(Ha(Bi,x (δ2); A) −→ Ha(Bi,x (δ1); A)) �
{
A if a = 0, n − k
0 otherwise

.

Proof Consider the natural maps in cohomology induced by inclusions in Lemma 3.1

H∗
(

Ai,x

(
δ1

2

))
a1← H∗(Bi,x (δ1))

a2←

H∗
(

Ai,x

(
δ1 + δ2

2

))
a3← H∗(Bi,x (δ2))

a4← H∗(Ai,x (2δ2)). (3.0.1)
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Step 1. Let us show that the maps a1 ◦ a2 and a3 ◦ a4 are isomorphisms. For it suffices to
show that for any 0 < δ < κ the natural map

H∗(q−1(x) ∩ ∂Ki ) ← H∗(Ai,x (δ))

is an isomorphism for large i . But for large i the set {x ∈ K | dist(x, ∂K ) > κ} belongs to
the interior of the image q(Ki ). Thus, for large i the restriction q|∂Ki is a topological fiber
bundle over this set with fiber homeomorphic to the sphere Sn−k by Lemma 3.2.

Step 2. It follows fromStep 1 and the diagram (3.0.1) that the image Im(Ha(Bi,x (δ2)) −→
Ha(Bi,x (δ1))) is isomorphic to Ha

(
Ai,x

(
δ1
2

))
� Ha(q−1(x) ∩ ∂Ki ) = Ha(Sn−k). The

result follows. Q.E .D.

Now we need to study points at ∂K . Here for simplicity we consider only the case when
K is a non-degenerate segment I . Let x ∈ ∂ I be a point and 0 < δ < length(I ) be a real
number. The boundary of the set Ai,x (δ) are two totally geodesic hyperplanes at distance δ

from x orthogonal to the line L . We denote them by Hδ and Gδ such that Hδ intersects I .

Lemma 3.4 Let x ∈ ∂ I and 0 < δ < length(I ). Then for large i the set Ai,x (δ) is homeo-
morphic to a disk. In particular for any commutative group A one has

Ha(Ai,x (δ); A) �
{
A if a = 0
0 otherwise

Proof In the Klein model Hδ is the usual Euclidean hyperplane intersected with the unit
Euclidean ball. For large i the hyperplane Hδ intersects the interior of Ki since both open
halfspaces bounded by Hδ must contain points of Ki . Also for large i the hyperplane Gδ

does not intersect Ki . LetH+
δ be the open halfspace bounded byHδ and containing x . Then

for large i we have Ai,x (δ) = H+
δ ∩ ∂Ki , which is an open cap homeomorphic to a disc.

Q.E .D.

Proposition 3.5 Let {Ki } ⊂ H
n be a sequence of n-dimensional convex bodies converging

in the Hausdorff metric to a (non-degenerate) segment I . Let 0 < δ1 < δ2 <
length(I )

2 . Let
x ∈ ∂ I . Then there exists i0 such that for any i > i0 and any commutative group A one has

Im(Ha(Bi,x (δ2); A) −→ Ha(Bi,x (δ1); A)) �
{
A if a = 0
0 otherwise

.

Proof By Lemma 3.1 for large i the inclusions hold

Ai,a

(
δ1

2

)

⊂ Bi,a(δ1) ⊂ Ai,a

(
δ1 + δ2

2

)

⊂ Bi,a(δ2) ⊂ Ai,a(2δ2). (3.0.2)

Let us consider the sequence in cohomology induced by inclusions (3.0.2)

H∗
(

Ai,x

(
δ1

2

))
a1← H∗(Bi,x (δ1))

a2←

H∗
(

Ai,x

(
δ1 + δ2

2

))
a3← H∗(Bi,x (δ2))

a4← H∗(Ai,x (2δ2)).

It follows from Lemma 3.4 that a1 ◦ a2 and a3 ◦ a4 are isomorphisms. Then it follows
from the above diagram that

Im(H∗(Bi,x (δ2)) −→ H∗(Bi,x (δ1)))

is isomorphic to, say, H∗
(
Ai,x

(
δ1
2

))
. Then proposition follows. Q.E .D.
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4 Riemannian submersions and the Yamaguchi map

4.1 Riemannian submersions

Let us review a few facts on Riemannian submersions. Let M, N be smooth complete Rie-
mannian manifolds. Let π : M −→ N be a Riemannian submersion. At any point of M the
tangent space of it splits into the direct sum of the vertical subspace, i.e. the tangent space
to the fiber of π , and the horizontal subspace, i.e. the orthogonal complement to the vertical
subspace.

Let C : [a, b] −→ N be a smooth curve. Fix c ∈ [a, b] and c̃ ∈ π−1(c). Then there exists
a unique smooth curve C̃ : [a, b] −→ M , called a horizontal lift of C , such that

C = π ◦ C̃,

d
dt C̃(t) is horizontal for any t ∈ [a, b], and C̃(c) = c̃.

Lemma 4.1 ([8], Proposition 3.31) In the above notation C is a geodesic if and only if its
horizontal lift C̃ is.

Lemma 4.2 ([19], Corollary 26.12) Let π : M −→ N be a Riemannian submersion. Let γ be
a geodesic in M. Assume γ is orthogonal to a fiber of π at some point. Then γ is orthogonal
to each fiber it intersects.

A geodesic in M orthogonal to all fibers it intersects will be called horizontal geodesics.
It follows from Lemmas 4.1, 4.2 that a geodesic in M is horizontal if and only if it is a
horizontal lift of its image under π . It is easy to see that the length of any horizontal geodesic
and of its image under π are equal.

Below in j(N ) denotes the injectivity radius of N .

Lemma 4.3 Letπ : M −→ N be aRiemannian submersion. Let x ∈ N. Let 0 < δ < in j(N ).
Let Nδ denote the δ-neighborhood of zero section of the normal bundle of the fiber π−1(x).

(1) For any x ∈ N , p ∈ M one has

dist(p, π−1(x)) = dist(π(p), x).

(2) For any point from π−1(B(x, δ)) there is exactly one path minimizing the distance from
this point to the fiber π−1(x). This path is necessarily a horizontal geodesic.

(3) For any vector v ∈ Nδ one has

dist(exp(v), π−1(x)) = |v|.
(4) If π is proper then the exponential map exp : Nδ −→ M is a homeomorphism onto

π−1(B(x, δ)).

Proof (1) First since π is 1-Lipschitz one has

dist(p, π−1(x)) ≥ dist(π(p), x).

To prove the opposite inequality let γ be a geodesic in N minimizing the distance between
π(p) and x . Let γ̃ be its horizontal lift started at p. γ̃ ends necessarily on π−1(x). γ and γ̃

have equal length. Hence the opposite inequality follows.
(2) Let now p ∈ π−1(B(x, δ)). Let us assume that there exist two geodesics γ1, γ2

connecting p to π−1(x) and having length dist(p, π−1(x)). By minimality both have to be
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orthogonal to the fiber π−1(x). Hence they are horizontal and by Lemma 4.1 their images

π ◦ γ1, π ◦ γ2 are geodesics in N ; they have the same length dist(p, π−1(x))
part (1)=

dist(π(p), x) < δ. Since δ < in j(N ) the two geodesics must coincide π ◦ γ1 = π ◦ γ2.
Since γi is the horizontal lift of π ◦ γi , i = 1, 2, with the common end point p it follows that
γ1 = γ2.

(3) Let v ∈ Nδ . Let γ (t) := exp(tv), t ∈ [0, 1]. Then γ is a horizontal geodesic since it
is orthogonal to the fiber π−1(x). When t ∈ [0, 1] its length is equal to the length of π ◦ γ

on the one hand, and equals to |v| on the other hand. Clearly length(γ ) = |v| < δ. Hence
γ ⊂ π−1(B(x, δ)). There is a path γ0 minimizing the distance between exp(v) and π−1(x);
it is necessarily a horizontal geodesic by part (2). Then the images π ◦ γ and π ◦ γ0 are
geodesics contained in B(x, δ) with equal endpoint x and π(exp(v)). Since δ < in j(N ) it
follows π ◦ γ = π ◦ γ0. Hence their horizontal lifts are equal: γ = γ0. Part (3) follows.

(4) Since π is 1-Lipschitz, exp(Nδ) ⊂ π−1(B(x, δ)).
Let us show the opposite inclusion. Let p ∈ π−1(B(x, δ)). Let γ be a normal geodesic

starting at p andminimizing distance from p toπ−1(x). By part (3) γ is a horizontal geodesic.
Let us denote its end point by z ∈ π−1(x). By part (1)

l := length(γ ) = dist(p, z) = dist(p, π−1(x)) = dist(π(p), x) < δ.

Then v := dγ
dt

∣
∣
z belongs to the unit normal bundle toπ−1(x). Then γ (t) = exp(tv), t ∈ [0, l].

In particular p = exp(lv). Since l < δ the converse inclusion follows and hence

exp(Nδ) = π−1(B(x, δ)).

Let us prove the injectivity of exp on Nδ . Otherwise there exist p ∈ π−1(B(x, δ)) and
two horizontal geodesics γ1, γ2 starting on π−1(x), ending at p, contained in π−1(B(x, δ)).
Then their images π ◦ γ1 and π ◦ γ2 are geodesics contained in B(x, δ), both start at x and
end at π(p). Since δ < in j(N ), π ◦ γ1 = π ◦ γ2. Hence γ1 = γ2.

Let us show that the inverse map of exp is continuous. Let pi −→ p be a sequence in
π−1(B(x, δ)). Set

(zi , vi ) := exp−1(pi ) ∈ Nδ,

(z, v) := exp−1(p) ∈ Nδ,

where zi , z ∈ π−1(x) and vi ∈ Nδ|zi , v ∈ Nδ|z . Since π is proper after a choice of
subsequence we may assume that (zi , vi ) −→ (y, w) ∈ Nδ . Then by continuity of exp one
has

expy(w) = expz(v).

Since exp is bijective on Nδ it follows that (y, w) = (z, v). Q.E .D.

Corollary 4.4 Let π : M −→ N be a proper smooth Riemannian submersion. Let δ <

in j(N ). For any point x ∈ N the natural imbedding

π−1(x) ↪→ π−1(B(x, δ))

is a homotopy retraction.

Proof The following diagram is commutative

�[π−1(x)‘π−1(x)‘Nδ‘π
−1(B(x, δ)); id“‘ exp]
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where the horizontal arrow are homeomorphisms by Lemma 4.3(4) and the vertical ones
are closed imbeddings. Since the left arrow is a homotopy retraction, so is the right one.
Q.E .D.

Proposition 4.5 Let (M, g), (N , h) be smooth Riemannian manifolds. Let π : M −→ N
be a smooth proper submersion. Let 0 < δ1 < δ2 < 1

10 min{in j(N ), 1}. Let 0 < ε <
min{δ1,δ2−δ1}

100(1+diam(N ))
. Let us assume that π is ε-almost Riemannian submersion, i.e.

e−ε <
|dπ(v)|

|v| < eε

for any non-zero tangent to M vector v which is horizonal, i.e. orthogonal to the correspond-
ing fiber of π .

Let d be a metric on M
⊔

N extending the original metrics on M and N and such that

dH (M, N ) < ε. (4.1.1)

Assume finally that

d(p, π(p)) < ε for any p ∈ M . (4.1.2)

For x ∈ N consider the set Bx (δ) := {p ∈ M | d(p, x) < δ}.
Then (evidently)

π−1(x) ⊂ Bx (δ1) ⊂ Bx (δ2)

and the obvious map

Im[H∗(Bx (δ2)) −→ H∗(Bx (δ1))] −→ H∗(π−1(x))

is an isomorphism, where the cohomology has coefficients in an arbitrary commutative group.

Proof Let us define the newRiemannianmetric g̃ onM which coincideswith g on the vertical
subspaces, has the same as g horizontal subspaces, and on these horizontal subspaces it is
the pull-back of the metric h. Thus

π : (M, g̃) −→ (N , h)

is a Riemannian submersion. It is easy to see that for any tangent vector v to M one has

e−ε <
|v|g̃
|v|g < eε.

Consequently the lengths of any curve c on M with respect to the metrics g and g̃ satisfy

e−ε <
lengthg̃(c)

lengthg(c)
< eε.

Let us denote by dg and dg̃ the intrinsic metrics on (M, g) and (M, g̃) respectively. Then it
follows that

e−ε <
dg̃(x, y)

dg(x, y)
< eε for any x, y ∈ M .

By (4.1.1) one has diam(M, g) ≤ diam(N , h) + 2ε < diam(N , h) + 1. Hence

|dg̃(x, y) − dg(x, y)| ≤ (eε − 1)diam(M, g) ≤ 2εdiam(M, g) < 2ε(diam(N , h) + 1)

<
min{δ1, δ2 − δ1}

50
.
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By Lemma 4.3(1) for 0 < δ < in j(N , h) one has

π−1(B(x, δ)) = {p ∈ M | dg̃(p, π−1(x)) < δ}.
Then it follows that

π−1(B(x,
δ1

2
)) ⊂ Bx (δ1) ⊂ π−1(B(x,

δ1 + δ2

2
)) ⊂ Bx (δ2) ⊂ π−1(B(x, 2δ1)).(4.1.3)

Also all these 5 spaces contain the fiber π−1(x). Then we get the maps on cohomology

H∗(π−1(B(x,
δ1

2
))) ← H∗(Bx (δ2))

← H∗(π−1(B(x,
δ1 + δ2

2
))) ← H∗(Bx (δ1)) ← H∗(π−1(B(x, 2δ1)))

which all naturally map to H∗(π−1(x)). For the first, third, and the fifth spaces the latter
map is an isomorphism by Corollary 4.4. A simple diagram chase implies the proposition.
Q.E .D.

4.2 The Yamaguchi map

Yamaguchi [34] has proven the following result.

Theorem 4.6 (Yamaguchi) Fix m ∈ N and μ > 0. There exist εm(μ) > 0 depending on
m, μ only with the following properties. Let M, N be smooth closed Riemannian manifolds,
dim M = m. Let sec(M) ≥ −1, |sec(N )| ≤ 1, and the injectivity radius in j(N ) > μ.
Assume there exists a metric d on M

⊔
N extending the original metrics on M and N and

such that dH (M, N ) < ε, where 0 < ε < εm(μ) is any number. Then there exists a smooth
map f : M −→ N such that

(1) f is a τ(ε)-almost Riemannian submersion, i.e.

e−τ(ε) <
|d f (ξ)|

|ξ | < eτ(ε),

where ξ is any non-zero tangent to M vector orthogonal to the fibers of f , and τ(ε) is a
positive number depending on m, μ, ε and such that limε−→+0 τ(ε) = 0;

(2) d(z, f (z)) < τ(ε) for any z ∈ M4;
(3) the fibers of f are connected.

Corollary 4.7 Let {Mm
i } be a sequence of smooth closed m-dimensional Riemannian mani-

folds with uniformly bounded below sectional curvature which GH-converges to a smooth
closed Riemannian manifold N. Let di be a metric on Mi

⊔
N extending the original metrics

on Mi and N and such that

di,H (Mi , N ) −→ 0.

Let 0 < δ1 < δ2 < 1
100 min{in j(N ), 1}.

Let fi : Mi −→ N be the Yamaguchi maps from Theorem 4.6 where for ε one takes
εi := dGH (Mi , N ) + 1/i . Then there exists i0 such that for all i > i0 the following is
satisfied: for any x ∈ N the natural map

Im[H∗(Bi,x (δ2)) −→ H∗(Bi,x (δ1))] −→ H∗(π−1
i (x))

4 This is equation (2.5) in [34]; see references therein.
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is an isomorphism, where by definition Bi,x (δ) := {p ∈ Mi | di (p, x) < δ}, and the coho-
mology is taken with coefficients in an arbitrary commutative group.

Proof This follows from Theorem 4.6 and Proposition 4.5. Q.E .D.

5 GH-convergence of spaces acted on by a finite group

Most probably the results of this section are folklore. The main result of this section is
Theorem 5.7 below. Let us state a consequence of it:

Let a sequence {Xi } of compact metric spaces GH-converge to a compact metric space
X . Let each Xi be given an action of a finite group G by isometries. Then there is an action
of G on X by isometries such that for a subsequence of Xi one has G\Xi −→ G\X in the
GH-sense.

5.1 Equivariant GH-distance

Let us fix throughout this subsection a finite group G.

Definition 5.1 Let (X , dX ) and (Y , dY ) be semi-metric spaces such that the induced quotient
metric spaces are compact. Let us given actions of G on X and Y by isometries. Define the
G-equivariant GH-distance between them as

dGGH (X , Y ) := inf
d
dH (X , Y ),

where the infimum is taken over all G-invariant semi-metrics on the disjoint union X
⊔

Y
extending the original semi-metrics on X and Y and such that d(x, y) > 0 for any x ∈ X , y ∈
Y .5

Remark 5.2 If (X , d) is a semi-metric space acted by G by isometries then the canonical
quotient metric space (X̄ , d̄) carries the induced action ofG by isometries and dGGH (X , X̄) =
0.

Lemma 5.3 Let G, (X , dX ), and (Y , dY ) be as in Definition 5.1.

(1) Then dGH (X , Y ) ≤ dGGH (X , Y ) < ∞.
(2) dGGH is a semi-metric on the class of semi-metric spaces with an isometric G-action as

in Definition 5.1.
(3) Assume in addition that (X , dX ) and (Y , dY ) are metric (rather than semi-metric) spaces.

Then dGGH (X , Y ) = 0 if and only if there exists a G-equivariant isometry X ˜−→Y .

Proof (1) The first inequality is obvious. For the second one, fix a constant L >

max{diam(X), diam(Y )}. Define the semi-metric d on X
⊔

Y , extending the original met-
rics on X and Y , by

d(x, y) := L for any x ∈ X , y ∈ Y .

It is clear that d is G-invariant and satisfies all the other conditions from the Definition 5.1.
(2) The symmetry of dGGH is obvious. Let us prove the triangle inequality:

dGGH (X1, X3) ≤ dGGH (X1, X2) + dGGH (X2, X3).

5 The only difference between this definition and the original GH-distance is that d has to be G-invariant.
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Given ε > 0 and two semi-metrics d12 and d23 on X1
⊔

X2 and X2
⊔

X3 respectively as
in Definition 5.1, let us define a new semi-metric d13 on X1

⊔
X3 using the following well

known construction (see e.g. [6]):

d13(x1, x3) = inf
x2∈X2

{d12(x1, x2) + d23(x2, x3)} + ε

for any x1 ∈ X1, x3 ∈ X3, and define d13 on X1 and on X3 to coincide with the original
metrics on those spaces. It is easy to see thatd13 is a semi-metric satisfying all the requirements
in Definition 5.1. Moreover it is easy to see that the Hausdorff distance satisfies

dH (X1, X3) ≤ dH (X1, X2) + dH (X2, X3) + ε.

Taking inf over d12, d23, and ε > 0 we get the triangle inequality for dGGH .
(3) The ’if’ part is trivial. For the ’only if’ part, let (X , dX ) and (Y , dY ) be compact metric

spaces with G-actions by isometries. Let us assume that dGGH (X , Y ) = 0. Then there exists
a sequence {di } of G-invariant metrics on X

⊔
Y extending the original metrics on X and Y

such that the Hausdorff distances with respect to di satisfy di,H (X , Y ) −→ 0 as i −→ ∞.
We are going to construct a G-equivariant isometry σ : X −→ Y .

Let us fix an ultra-filter λ on N. Let x ∈ X . There exist yi ∈ Y such that di (x, yi ) −→ 0.
Define

σ(x) := lim
λ

yi .

Let us check that σ(x) is well defined, i.e. is independent of yi . Indeed if y′
i ∈ Y is another

sequence such that di (x, y′
i ) −→ 0 then clearly dY (yi , y′

i ) −→ 0. Hence limλ y′
i = limλ yi

as required.
Let us show that σ preserves distances:

dY (σ (x), σ (x̃)) = dX (x, x̃) (5.1.1)

for any x, x̃ ∈ X . For let us chose yi , ỹi ∈ Y such that

di (x, yi ) −→ 0, di (x̃, ỹi ) −→ 0.

By the triangle inequality

|dY (yi , ỹi ) − dX (x, x̃)| ≤ di (x, yi ) + di (x̃, ỹi ) −→ 0.

This immediately implies (5.1.1).
Let us show that σ is an isometry, i.e. onto. Similarly there exists a distance preserving

transformation τ : Y −→ X . Thus σ ◦ τ : Y −→ Y preserves distances in Y . By Lemma 1.2
in [25] σ ◦ τ is onto. Hence σ is onto.

Let us show that σ isG-equivariant. Let g ∈ G, x ∈ X . Let yi ∈ Y satisfy di (x, yi ) −→ 0.
Since di are G-invariant di (g(x), g(yi )) −→ 0. Then we have

σ(g(x)) = lim
λ

g(yi ) = g(lim
λ

yi ) = g(σ (x)).

Q.E .D.

Let (X , dGH ) be the space of isometry classes of compact metric spaces equipped with
the GH-distance. Let (XG , dGGH ) denote the space of equivalence classes of compact metric
space equipped with G-action by isometries with the metric dGGH (two such spaces are called
equivalent if there exists a G-equivariant isometry between them).
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One has the canonical map

� : XG −→ X

forgetting the action of G. By Lemma 5.3(1) � is 1-Lipschitz.

Proposition 5.4 Let Xi −→ X in XG. Then G\Xi −→ G\X in X .

Proof There exist G-invariant metrics di on X
⊔

Xi extending the original metrics on X and
Xi such that di,H (X , Xi ) −→ 0. Let

πi : X
⊔

Xi −→ (G\X)
⊔

(G\Xi )

be the obvious quotient map. πi is 1-Lipschitz when the source is equipped with di and the
target with the quotient metric d̄i . We claim that for the Hausdorff distances one has

dGH (G\X ,G\Xi ) ≤ d̄i,H (G\X ,G\Xi ) ≤ di,H (X , Xi ) −→ 0.

The first inequality is obvious by the definition of dGH . The second inequality follows from
the following general simple fact: Let F : Z1 −→ Z2 be a 1-Lipschitz map of metric spaces.
Let A, B ⊂ Z1 be compact subsets. Then

dH (F(A), F(B)) ≤ dH (A, B).

A proof is left to the reader. Q.E .D.

Proposition 5.5 The canonical map � : XG −→ X is proper.

Proof Let {Xi } ⊂ XG be a sequence such that �(Xi ) has a limit in X . It follows (see e.g.
Proposition 7.4.12 in [6]) that for any k ∈ N there exists N (k) ∈ N and an 1/k-net6 S(k)

i ⊂ Xi

with at most N (k) elements. We may and will assume that S(k)
i is G-invariant; indeed it

suffices to replace it with G · S(k)
i and replace N (k) with |G| · N (k). We may and will assume

that for any i

S(1)
i ⊂ S(2)

i ⊂ S(3)
i ⊂ · · · ⊂ Xi .

Furthermore after a choice of subsequence one may assume that for any k the number of
elements in S(k)

i is independent of i . This number will be denoted by N (k) again. Let I :=
{x1, x2, x3, . . . } be either finite or countable set whose cardinality equals the (independent
of i) cardinality of Si := ∪∞

k=1S
(k)
i . Let I (k) := {x p}p≤N (k) . For any i there is a bijection

ιi : I ˜−→Si such that

ιi (I
(k)) = S(k)

i .

Since S(k)
i is acted by G, the bijection ιi induces an action of G on I (k) which possibly may

depend on i . Since a finite group may have only finitely many actions on a given finite set,
after a choice of a subsequence we may and will assume that all these actions ofG on I (k) are
the same for any k. Clearly this action of G on I (k+1) restricts to the corresponding action on
I (k). Hence there exists a unique action on I = ∪∞

k=1 I
(k) which restricts to the corresponding

actions on I (k) for any k and such that the bijections ιi : I −→ Si are G-equivariant.
Let us define on I a sequence of metrics {Di } by

Di (x
p, xq) := dXi (ιi (x

p), ιi (x
q)).

6 Recall that a subset S ⊂ X is called ε-net if its ε-neighborhood equals X : X = Sε .

123



12 Page 24 of 44 Geometriae Dedicata (2023) 217 :12

Since I is at most countable we may choose a subsequence such that for any p, q ∈ I

Di (x
p, xq) −→ D(x p, xq),

where D is a semi-metric on I . Then G preserves D since G preserves Di for any i .
Let us construct a limit of {Xi } in XG . Let ( Ī , D̄) be the metric space corresponding to

the semi-metric space (I , D). The former is obtained from the latter by quotient modulo the
equivalence relation on I : x ∼ y if and only if D(x, y) = 0 (see Proposition 1.1.5 in [6] for
details).

Since G preserves D, this action of G preserves the above equivalence classes and hence
induces an action of G on ( Ī , D̄) by isometries.

The metric space ( Ī , D̄) is pre-compact. Indeed denote by Ī (k) the image of I (k) in Ī . It
is easy to see that Ī (k) is 1/k-net in ( Ī , D̄) for any k.

Let (X , dX ) be the completion of ( Ī , D̄). It is necessarily compact. The action of G on Ī
extends uniquely to an action by isometries on X .

It remains to show that Xi −→ X in XG . By the triangle inequality for dGGH we have

dGGH ((Xi , dXi ), (X , dX )) ≤ dGGH ((Xi , dXi ), (S
(k)
i , dXi )) +

dGGH ((S(k)
i , dXi ), (I

(k), Di )) +
dGGH ((I (k), Di ), (I

(k), D)) +
dGGH ((I (k), D), ( Ī (k), D̄)) +
dGGH (( Ī (k), D̄), (X , dX )).

The following estimates are clear

dGGH ((Xi , dXi ), (S
(k)
i , dXi )) ≤ dH (S(k)

i , Xi ) ≤ 1/k, (5.1.2)

dGGH (( Ī (k), D̄), (X , dX )) ≤ dH ( Ī (k), X) ≤ 1/k, (5.1.3)

dGGH ((I (k), D), ( Ī (k), D̄)) = 0, (5.1.4)

dGGH ((S(k)
i , dXi ), (I

(k), Di )) = 0. (5.1.5)

Substituting these inequalities into the previous one we get for any k

dGGH ((Xi , dXi ), (X , dX )) ≤ 2/k + dGGH ((I (k), Di ), (I
(k), D)). (5.1.6)

We claim that dGGH ((I (k), Di ), (I (k), D)) −→ 0 as i −→ ∞; that will imply Proposition
5.5. This follows from the following more general lemma (compare Example 7.4.4 in [6]).
Q.E .D.

Lemma 5.6 Let X be a set acted by a finite group G. Let {di } be a sequence of G-invariant
semi-metrics on X which uniformly converges to a semi-metric d, i.e. di −→ d uniformly on
X × X. Then dGGH ((X , di ), (X , d)) −→ 0 as i −→ ∞.

To finish the proof of Proposition 5.5 it remains to prove this lemma. Let us define a G-
invariant semi-metrics d̂i on the disjoint union of two copies of X , X

⊔
X , such that d̂i

extends d on the first copy of X and di on the second one, and for x and x ′ from the first and
the second copies of X respectively set

d̂i (x, x
′) := inf

z∈X{d(x, z) + εi + di (z, x
′)},
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where εi := supa,b∈X {|d(a, b) − di (a, b)|} + 1
i . It is easy to see that d̂i is a G-invariant

semi-metric, and the Hausdorff distance between the two copies of X with respect to it is at
most εi −→ 0. Q.E.D.

Propositions 5.5 and 5.4 imply immediately the main result of this section:

Theorem 5.7 Let G be a finite group acting by isometries on compact metric spaces {Xi }.
Let Xi −→ X in the GH-sense, i.e. in X , disregarding the action. Then

(1) there exists an action of G on X by isometries and a subsequence of {Xi }which converges
to X in the G-equivariant sense, i.e. in XG;

(2) For this subsequence G\Xi −→ G\X in GH-sense.

5.2 A simple lemma on finite-group quotients

Let a finite group G act on a metric space (Z , dZ ) by isometries. Let

π : Z −→ G\Z
be the canonical quotient map; it is a 1-Lipschitz map when the target is equipped with the
quotient metric d̄Z .

Let z̄ ∈ G\Z . Let
π−1(z̄) = {z1, . . . , zk}.

Let Ā ⊂ G\Z be a subset such that

α := sup
ā∈ Ā

dist(z̄, ā) <
1

10
min
i 	= j

dZ (zi , z j ). (5.2.1)

Let

Ap := π−1( Ā) ∩ {x ∈ Z | d(z p, x) ≤ α}.

Lemma 5.8 In the above notation we have

(1) Ap ∩ Aq = ∅ for p 	= q.
(2) For any 1 ≤ p ≤ k and any g ∈ G there exists 1 ≤ q ≤ k such that g(Ap) = Aq.
(3) π−1( Ā) = ⊔k

p=1 Ap.

(4) π(Ap) = Ā for any p = 1, . . . , k.
(5) The natural map

Stab(xp)\Ap −→ Ā

is an isometry for any p = 1, . . . , k.

Proof (1) Let z ∈ Ap ∩ Aq , p 	= q . Then dZ (z p, zq) ≤ 2α
(5.2.1)

< dZ (z p, zq); this is a
contradiction.

(2) Let q be such that g(z p) = zq . Let x ∈ Ap . Then dZ (g(x), zq) = dZ (x, z p) ≤ α. Hence
g(Ap) ⊂ Aq . By the symmetry the opposite inclusion also holds.

(3) Let x ∈ π−1( Ā). By the definition of d̄Z we have

min
i

dZ (x, zi ) = d̄Z (π(x), z̄) ≤ α.

Hence there exists p such that dZ (x, z p) ≤ α, i.e. x ∈ Ap .
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(4) Let x̄ ∈ A. Let π(x) = x̄ . By (2) there exists q such that x ∈ Aq . There exists g ∈ G
such that g(zq) = z p . By part (3) g(Aq) = Ap . Hence g(x) ∈ Ap and π(g(x)) = x̄ .
Hence π(Ap) = Ā.

(5) Let x, y ∈ Ap and π(x) = π(y). Then there exists g ∈ G such that y = g(x). Due to
disjointness of different Ai ’s, one has g(Ap) = Ap . Hence g ∈ Stab(z p). Hence the
map Stab(z p)\Ap −→ Ā is injective and due to part (4) it is bijective. It remains to
show that this map preserves distances.
Let x, y ∈ Ap be arbitrary points. Let g ∈ G. Assume that g(Ap) = Aq with q 	= p.

Then

dZ (x, g(y)) ≥
dZ (z p, zq) − dZ (x, z p) − dZ (g(y), zq) ≥ dZ (z p, zq) − dZ (x, z p) − dZ (y, z p) >

> 8α.

On the other hand if g(Ap) = Ap , or equivalently g(z p) = z p ,

dZ (x, g(y)) ≤ dZ (x, z p) + dZ (g(y), z p) ≤ 2α.

Consequently

d̄Z (π(x), π(y)) = min
g∈G dZ (x, g(y)) = min

g∈Stab(z p)
dZ (x, g(y)).

Part (5) follows. Q.E .D.

5.3 G-equivariant Yamaguchi map

Let G be a finite group. We would like to have a G-equivariant version of the Yamaguchi
theorem 4.6 which we prove here only in a very special case needed below, namely when
G = Z2 and the target manifold N is a circle. Let us formulate the general question.

Question 5.9 Let a sequence {Mm
i } of closed smooth Riemannian manifolds with uniformly

bounded below sectional curvature and equipped with a G-action by isometries, converge
in XG to a smooth closed Riemannian manifold N acted by G by isometries. Let di be
G-invariant metrics on Mi

⊔
N extending the original metrics on Mi and N and such that

di,H (Mi , N ) −→ 0.
The question is whether there exist positive numbers εi −→ 0 and smooth maps

fi : Mi −→ N such that for large i

(1) fi is εi -almost Riemannian submersions;
(2) fi is G-equivariant;
(3) di (x, fi (x)) < εi for any x ∈ Mi ;
(4) the fibers of fi are connected.

Remark 5.10 One can show that (4) follows from (1)–(3).

We are going to show that this question has positive answer in a very special situation
sufficient for applications in this paper:

Proposition 5.11 In the notation of Question 5.9 let us assume that N is a circle (imbedded
standardly to a the plane), the group G = Z2 acts on N by reflection with respect to a line
passing through the center of the circle N. Then Question 5.9 has positive answer, i.e. there
exist Z2-equivariant maps fi : Mi −→ N satisfying (1)–(4) there.
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The proof of this proposition will be reduced to the proof of Yamaguchi’s Theorem 4.6.
Let us recall the main construction used in the proof of the latter theorem.

LetM, N be, as in Theorem 4.6, smooth closed Riemannianmanifolds such that dim M =
m ≥ dim N . Let sec(M) ≥ −1, |sec(N )| ≤ 1, and the injectivity radius in j(N ) > μ, where
μ > 0 is a fixed number. Let 0 < ε � σ � 1

2 min{μ, π/2}. Let d be a metric on M
⊔

N
extending the original metrics on M and N and such that dH (M, N ) < ε.

One can show (see [34] and references therein) that there exists a finite set (of indices) I
and two maps m : I −→ M, n : I −→ N such that

M ⊂ (Im(m))5ε, N ⊂ (Im(n))5ε (5.3.1)

d(m(i),m( j)) > ε, d(n(i), n( j)) > ε for all i 	= j ∈ I (5.3.2)

d(m(i), n(i)) < ε. (5.3.3)

In addition to these subsets let us fix a C∞-smooth function h : R −→ [0, 1] such that
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

h(0) = 1
h(t) = 0 if t ≥ σ

− 4
σ

< h′(t) < − 3
σ

if 3σ
8 < t < 5σ

8
− 4

σ
h′(t) < 0 if 2σ

8 < t < 3σ
8 or 5σ

8 < t < 6σ
8−σ < h′(t) < 0 if 0 < t < 2σ

8 or 6σ
8 < t < σ

|h′′(t)| < 50
σ

for all t .

Define the map �N : N −→ R
I by

�N (x) = [i �→ h(d(x, n(i)))].
In was shown in [14] that if σ and ε/σ are smaller than a constant depending onm = dim M
and μ then �N satisfies the following properties:

(i) �N is a smooth imbedding;
(ii) Let us denote by N the normal bundle of �N (N ) in R

I , and put

K := sup
x∈N

{�{i ∈ I| d(x, n(i))} < σ }},

i.e. K is the maximal number of points of Im(n) in balls of radius σ in N . Denote by
NC (N ) ⊂ N the subset of normal vectors of Euclidean norm at most C . The claim is
that the restriction to NC1K 1/2 of the normal exponential map is a diffeomorphism onto
its image which we denote by U , where C1 > 0 is a number depending on m, μ, σ . We
denote by

P : U −→ �N (N )

be the projection along the fibers of the normal bundle.

Let us define a C1-smooth map �M : M −→ R
I . For each i ∈ I and each x ∈ M put

φi (x) = 1

vol(BM (m(i), ε))

∫

y∈BM (m(i),ε)
d(y, x)dy.

Then φi is C1-smooth. Define �(x) := [i �→ h(φi (x))].
It is not hard to check that �M (M) is contained in U . Finally define f : M −→ N by

f = �−1
N ◦ P ◦ �M .
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The claim is that this f satisfies all the conclusions of the Yamaguchi Theorem 4.6 except
f is only C1-smooth rather than C∞. It can be smoothened further to get a C∞-map as it is
shown below in Lemma 5.13.

Let us now discuss how the construction of the map f could be generalized into G-
equivariant situation where G is a finite group. The following Lemma is obvious.

Lemma 5.12 Let us assume that there exist a finite set I with a (left) action of G and maps
m : I −→ M, n : I −→ N as above which are in addition G-equivariant. Then the maps
�N , P,�M and hence f = �−1

N ◦ P ◦ �M are G-equivariant.

Proof of Proposition 5.11 Let N = C be a circle of length L . We consider it as the standard
circle of length L on the plane (x, y) centered at the origin. Let the group G = Z2 act by
reflection with respect to the axis x . The injectivity radius of C is L/2. By our choice of
ε � in j(C) there exists a natural number N in the interval

N ∈
(

0.4
L

ε
, 0.45

L

ε

)

.

Let us define I to be the set of all points on the circle C of the form

I :=
{

L

2π

(

cos

(
πk

N

)

, sin

(
πk

N

))

| 0 ≤ k ≤ 2N − 1, k 	= 0, N

}

.

Observe that we have omitted the two points on the axis x . I is invariant under the reflection
with respect to the axis x ; that defines an action ofZ2 on I. The identical imbedding n : I −→
N = C is the desired one, it is obviously Z2-equivariant.

It follows that n(I) = I is 1.1ε-separated and 3ε-net, i.e. (I)3ε = C .
Let us assume that dH (M,C) < 0.01ε. We are going to define Z2-equivariant map

m : I −→ M satisfying the properties (5.3.1)–(5.3.3). Let us denote by I+ the subset of
I contained in the upper half plane. Then I = I+ ⊔

a(I+) where a ∈ Z2 is the non-zero
element corresponding to the reflection. For any i ∈ I+ there exists xi ∈ M such that
d(xi , n(i)) < 0.01ε. Let us define the map m : I −→ M as follows: for any i ∈ I+ set

m(i) := xi ,

m(a(i)) := a(xi ),

where a(i) means the reflection of i ∈ C with respect to the x-axis, and a(xi ) means the
given action of a ∈ Z2 on M .

Clearly m is Z2-equivariant. It is easy to see that d(m(i),m( j)) > ε for i 	= j ∈ I
and (Im(m))4ε = M . Then the assumptions of Lemma 5.12 are satisfied, and we obtain
a C1-smooth Z2-equivariant τ(ε)-almost Riemannian submersion f : M −→ C such that
d(x, f (x)) < τ(ε). In order to make f to be C∞-smooth we will use the following well
known lemma which is also proven for the sake of completeness. Q.E .D.

Lemma 5.13 Let G be a compact Lie group (in particular a finite group) acting smoothly
on smooth closed Riemannian manifolds M, N. Let f : M −→ N be a G-equivariant C1-
smooth map. The for any δ > 0 there exists a C∞-smooth G-equivariant map fδ : M −→ N
such that

|| f − fδ||C1 < δ.

Proof By [22] there exists a smooth G-equivariant imbedding of N into a finite dimensional
Euclidean space equipped with a linear orthogonal action of the group G:

ι : N ↪→ V .
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Let NN be the normal bundle of ι(N ). There exists an open neighborhood O ⊂ NN of the
zero section such that

exp : O −→ V

has an open image O′ and is a diffeomorphism onto it. The composition q : O′ −→ N of
exp−1 with the natural projectionNN −→ N is the nearest point map fromO′ to N . Clearly q
is C∞-smooth and G-equivariant. By reducingO we may assume that there exists a constant
C such that

||q||C1 < C . (5.3.4)

Fix ε > 0 such that the ε-neighborhood of N in contained inO′. There exists aC∞-smooth
map h1 : M −→ V such that

||ι ◦ f − h1||C1 < ε.

By averaging it over the group G define h2 : M −→ V as

h2(x) =
∫

G
g(h1(g

−1(x)))dg,

where dg in the probability Haar measure on G. It is easy to see that h2 is C∞-smooth,
G-equivariant and

||h2 − ι ◦ f ||C1 < ε. (5.3.5)

Define h := q ◦ h2 : M −→ N . Clearly h is C∞-smooth and G-equivariant. Let us show
that h is C1-close to f . First we have (below || · || denotes the Euclidean norm)

||(ι ◦ h)(x) − (ι ◦ f )(x)|| = ||ι(q(h2(x))) − ι( f (x))|| ≤
||h2(x) − (ι( f ))(x)|| + ||ι(q(h2(x))) − h2(x)|| ≤
2||h2(x) − ι( f (x))|| < 2ε,

where the second inequality is due to the fact that q is the nearest point map to N .
For the first derivatives we have

||∂i [h(x) − f (x)]|| = ||∂i [q(h2(x)) − q((ι ◦ f )(x))] ||
= ||

∑

j

∂ j q(∂i (h2) j (x) − ∂i (ι ◦ f ) j (x))|| ≤

C ′ ∑

j

|∂i (h2) j (x) − ∂i (ι ◦ f ) j (x)|
(5.3.5)≤ C ′′ε.

The result follows. Q.E .D.

6 Convergence of closed surfaces

6.1 Reduction between sequences of metrics

The goal of this subsection is to prove a technical lemma, which allows to reduce the study
of the nearby cycle construction from a sequence of metrics to a sequence of metrics with
more feasible behavior.
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Let us introduce notation. Let {Xi } be a sequence of sets equipped with two sequences of
metrics {dXi } and {d ′

Xi
} each of them making Xi a compact space. Let us assume that

sup
x,y∈Xi

|dXi (x, y) − d ′
Xi

(x, y)| −→ 0. (6.1.1)

Further assume that {(Xi , dXi )} GH-converges to a compact metric space X . This and the
condition (6.1.1) imply that {(Xi , d ′

Xi
)}GH-converges to X . Let di (resp. d ′

i ) be a semi-metric
on Xi

∐
X extending the original metric on X and the metric dXi (resp. d

′
Xi
) on Xi . Assume

that

di,H (Xi , X) −→ 0 and d ′
i,H (Xi , X) −→ 0. (6.1.2)

Fix a subset Z ⊂ X , and x ∈ Z .
Denote

Bi,x (ε) := {y ∈ Xi | di (x, y) < ε}, (6.1.3)

B′
i,x (ε) := {y ∈ Xi | d ′

i (x, y) < ε}. (6.1.4)

In the next lemma the cohomology is taken with coefficients in a field.

Lemma 6.1 Assume the properties (6.1.2).Let κ > 0. Let a be a non-negative integer. Assume
that for any 0 < ε1 < ε2 < κ and any x ∈ Z there exists i0 = i0(ε1, ε2, x) such that for any
i > i0 the dimension

dim Im[Ha(B′
i,x (ε2)) −→ Ha(B′

i,x (ε1))]
is independent of i, ε1, ε2 (but may depend on x ∈ Z).

Then any 0 < ε1 < ε2 < κ and any x ∈ Z there exists i1 = i1(ε1, ε2, x) ≥ i0 such that
for all i > i1 we have

dim Im[Ha(Bi,x (ε2)) −→ Ha(Bi,x (ε1))] = dim Im[Ha(B′
i,x (ε2)) −→ Ha(B′

i,x (ε1))].
In particular, the former dimension is independent of i, ε1, ε2.

Proof Clearly (6.1.1) implies that there exists i0 ≥ i ′0 such that for all i > i0, all x ∈ Z , and
all 0 < ε1 < δ1 < δ2 < ε2 < κ

2 one has

B′
i,x (ε1/2) ⊂ Bi,x (ε1) ⊂ B′

i,x (δ1) ⊂ B′
i,x (δ2) ⊂ Bi,x (ε2) ⊂ B′

i,x (2ε2).

Then in cohomology we have the linear maps

Ha(B′
i,x (2ε2)) −→ Ha(Bi,x (ε2)) −→ Ha(B′

i,x (δ2))

−→ Ha(B′
i,x (δ1)) −→ Ha(Bi,x (ε1)) −→ Ha

(
B′
i,x

(ε1

2

))
.

It is easy to see that for a sequence of linear maps

A −→ X −→ Y −→ B

one has dim Im[X −→ Y ] ≥ dim Im[A −→ B]. Hence
dim Im

[
Ha(B′

i,x (2ε2)) −→ Ha
(
B′
i,x

(ε1

2

))]

≤ dim Im[Ha(Bi,x (ε2)) −→ Ha(Bi,x (ε1))]
≤ dim Im[Ha(B′

i,x (δ2)) −→ Ha(B′
i,x (δ1))].

But the first and the third dimensions are equal to each other by the initial assumption. Hence
the result follows. Q.E .D.
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6.2 Which surfaces may collapse

The main result of this subsection is Proposition 6.4 which seems to be well known. For
the lack of reference and for the sake of completeness we present a proof. We will need a
few preparations which will also play a role later. The following result is a combination of
Lemmas 1.13 and 1.14 in [32].

Lemma 6.2 (Slutskiy, [32]) Let S be a closed 2-dimensional surface with a metric with
curvature at least -1 in the sense of Alexandrov. Then there exists a sequence of C∞-smooth
metrics on S with the Gaussian curvature ar least -1 which converges uniformly to the given
metric.

Lemma 6.3 Given a C∞-smooth metric on the sphere S2 with Gaussian curvature at least
−1. Then its isometric imbedding into H

3 cannot be a double cover of a convex set.

Proof Assume the opposite. Then the Gaussian curvature K = −1 everywhere: indeed, this
is clearly the case outside of the boundary, and since the boundary has measure 0 the same
is true on the boundary by the C∞-smoothness. By the Gauss–Bonnet formula we have

4π = 2πχ(S2) =
∫

S2
KdA = −area(S2) < 0.

This is a contradiction. Q.E .D.

Proposition 6.4 Let {Xi } be a sequence of closed 2-surfaces of a given homeomorphism type
with CBB(−1) metrics which GH-converges to a compact metric space of dimension less
than 2. Then Xi are homeomorphic to one of the following surfaces: sphere, real projective
plane, torus, Klein bottle.

Proof By Lemma 6.2 we may assume that the metrics on Xi are C∞-smooth. By the Gauss–
Bonnet formula

χ(Xi ) = 1

2π

∫

Xi

Kd A ≥ −area(Xi ).

Since {Xi } collapses, area(Xi ) −→ 0 by [7], Theorem 10.8. Hence χ(Xi ) ≥ 0. In the
orientable case that means that Xi are homeomorphic either to the 2-sphere or 2-torus. In the
non-orientable case Xi is homeomorphic to a connected sum of k copies of RP2. The Euler
characteristic of it is 2 − k ≥ 0. Thus either k = 1, i.e. Xi is RP2, or k = 2, i.e. Xi is the
Klein bottle. Q.E .D.

6.3 Spheres collapsing to a segment

The main result of this subsection is the following theorem. Below the cohomology is taken
with coefficients in a field.

Theorem 6.5 Let {Xi } be a sequence of 2-spheres with metrics having the curvature at least
−1 in the sense of Alexandrov. Assume it GH-converges to a (non-degenerate) segment I .
Let {di } be a sequence of metrics on I

⊔
Xi extending the original metrics on I and Xi and

such that

di,H (I , Xi ) −→ 0 as i −→ ∞.
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(1) Let κ > 0. Let 0 < ε1 < ε2 < κ
100 . Then there exists i0 such that for any i > i0 and any

x ∈ I wit dist(x, ∂ I ) > κ one has (below Bi,x (ε) is defined (6.1.3))

dim Im
[
Ha(Bi,x (ε2)) −→ Ha(Bi,x (ε1))

] �
{
1 if a = 0, 1
0 otherwise

(2) Let x ∈ ∂ I . Let 0 < ε1 < ε2 < 1
100 length(I ). Then for large i one has

dim Im
[
Ha(Bi,x (ε2)) −→ Ha(Bi,x (ε1))

] �
{
1 if a = 0
0 otherwise

Proof of Theorem 6.5 Assume first that the metrics dXi are C
∞-smooth. By the Alexandrov

imbedding theorem 2.9 (Xi , dXi ) admits an isometric realization in H
3. By Lemma 6.3 the

isometric realizations are boundaries of 3-dimensional convex bodies. We may assume that
{Ki } are contained in a bounded region. By the Blaschke selection theorem 2.15 we may
choose a subsequence denoted as the original sequence converging to a convex compact set

K in the Hausdorff metric: Ki −→ K . Since Xi
GH−→ I , Proposition 2.5 implies that K is a

segment isometric to I . Let us consider semi-metrics d ′
i on I

⊔
Xi induced by the restriction

of the metric dist of H3 to ∂Ki and K . Define

B′
i,x (ε) := {y ∈ Xi | d ′

i (x, y) < ε}.
Then Propositions 3.3 and 3.5 imply that the dimensions

dim Im[Ha(B′
i,x (ε2)) −→ Ha(B′

i,x (ε1))]
stabilize to the claimed ones under two conditions: (1) for 0 < ε1 < ε2 < κ

2 and d ′
i (x, ∂ I ) >

κ; (2) for 0 < ε1 < ε2 <
length(I )

2 and x ∈ ∂ I . On the other hand, by Proposition 2.5(4) we
have

sup
x,y∈Xi

|dXi (x, y) − d ′
Xi

(x, y)| −→ 0.

Hence, we can apply Lemma 6.1 and get the desired result.
Let us consider the general case. By Slutskiy’s lemma 6.2 there exists aC∞-smoothmetric

d ′
Xi

on Xi with the Gaussian curvature at least -1 such that

sup
x,y∈Xi

|dXi (x, y) − d ′
Xi

(x, y)| < 1/i .

Now the result again follows from Lemma 6.1. Q.E .D.

We will also need the following result.

Proposition 6.6 Let {X̃i } be a sequence of 2-spheres with CBB(−1) metrics invariant with
respect to the antipodal involution (i.e. Z2-invariant). Assume it converges to a non-
degenerate segment Ĩ in XZ2 when Z2 acts on Ĩ by reflection with respect to the middle
point. Let {d̃i } be a sequence of metrics on Ĩ

⊔
X̃i extending the original metrics on Ĩ and

X̃i and such that

d̃i,H ( Ĩ , X̃i ) −→ 0 as i −→ ∞.

Let 0 < δ1 < δ2 < 1
100 length( Ĩ ). Let x̃0 ∈ Ĩ be the middle point. Set

B̃i,x̃0(δ) = {y ∈ X̃i |d̃i (x̃0, y) < δ}.

123



Geometriae Dedicata (2023) 217 :12 Page 33 of 44 12

Then for large i one has

dim Im
[
Ha(Z2\B̃i,x̃0(δ2)) −→ Ha(Z2\B̃i,x̃0(δ1))

] �
{
1 if a = 0, 1
0 otherwise

,

where the cohomology is taken with coefficients in an arbitrary field.

Proof Let us assume first that the metrics on X̃i are C∞-smooth. By Theorem 2.10 and
Lemma 6.3 X̃i can be realized isometrically as the boundary of a 3-dimensional convex set
Ki ⊂ H

3 such that the antipodal involution is induced by a reflection with respect to a point
o ∈ H

3 which might be assumed independent of i . After a choice of a subsequence one
may assume that {Ki } converges in the Hausdorff metric to a convex compact set J which is
necessarily invariant with respect to the reflection s. By Proposition 2.5 one has dim J = 1,
i.e. J is a segment. By Lemma 2.6 {∂Ki } converges to J in the Hausdorff metric. Hence

(∂Ki , dist)
d
Z2
GH−→ (J , dist). Then Proposition 2.5(4) implies that (∂Ki , Din

i )
d
Z2
GH−→ (J , dist).

Hence Ĩ = J in XZ2 .
Let q be the nearest point map from H

3 to the line passing through J . Denote

Ai,x̃0(δ) = {z ∈ ∂Ki |dist(q(z), x̃0) < δ},
B′
i,x̃0

(δ) = {z ∈ ∂Ki |dist(z, x̃0) < δ}.

For 0 < δ <
length(I )

100 Lemma 3.2 implies that Ai,x̃0(δ) is Z2-equivariantly homeomorphic
to (−δ, δ) × S1 when the involution acts on the latter space as

(t, x) �→ (−t,−x).

Then the quotient space Z2\Ai,x̃0(δ) is homeomorphic to the Möbius band. Moreover for
0 < δ < δ′ the inclusion

Z2\Ai,x̃0(δ) ⊂ Z2\Ai,x̃0(δ
′)

is a homotopy equivalence.
By Lemma 3.1 for large i one has inclusions

Ai,x̃0

(
δ1

2

)

⊂ B′
i,x̃0

(δ1) ⊂ Ai,x̃0

(
δ1 + δ2

2

)

⊂ B′
i,x̃0

(δ2) ⊂ Ai,x̃0(2δ2).

Then we have the induced maps in cohomology

H∗
(

Z2\Ai,x̃0

(
δ1

2

))
a1← H∗(Z2\B′

i,x̃0
(δ1))

a2← H∗
(

Z2\Ai,x̃0

(
δ1 + δ2

2

))
a3←

a3← H∗(Z2\B′
i,x̃0

(δ2))
a4← H∗(Z2\Ai,x̃0(2δ2)).

Themaps a1◦a2 and a3◦a4 are isomorphisms. Since theMöbiusmap is homotopy equivalent
to the circle, the dimensions

dim Im[Ha(Z2\B′
i,x (ε2)) −→ Ha(Z2\B′

i,x (ε1))]
stabilize to the claimed ones. Then the combination of Proposition 2.5(4) and Lemma 6.1
imply the result.

Let us consider the case of a general CBB(−1) metric on X̃i . For any i the convex body Ki

can be approximated in the Hausdorff metric arbitrarily close by C∞-smooth o-symmetric
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convex body K ′
i . Claim 2.7 implies that for the given metric dX̃i

on X̃i there exists a C∞-
smooth CBB(−1) metric d ′

X̃i
which is invariant under the antipodal involution and

sup
x,y∈X̃i

|dX̃i
(x, y) − d ′

X̃i
(x, y)| < 1/i .

Let us denote by d̄X̃i
and d̄ ′

X̃i
the corresponding quotient metrics on Z2\X̃i . Then clearly

sup
x,y∈X̃i

|d̄X̃i
(x, y) − d̄ ′

X̃i
(x, y)| < 1/i .

Lemma 6.1 implies the proposition. Q.E .D.

6.4 Collapse to the circle

Theorem 6.7 Let {Xi } be sequence of closed 2-surfaces with CBB(−1) metrics. Assume that
it GH-converges to a circle C. Let {di } be a sequence of metrics on C

⊔
Xi extending the

original metrics on C and Xi and such that

di,H (C, Xi ) −→ 0 as i −→ ∞.

Let 0 < ε1 < ε2 < 1
100 length(C).

(1) Then there exists i0 such that for any i > i0 one has for any x ∈ C

dim Im
[
Ha(Bi,x (ε2)) −→ Ha(Bi,x (ε1))

] =
{
1 if a = 0, 1
0 otherwise

,

where the cohomology is taken with coefficients in an arbitrary field, and Bi,x (ε) is
defined by (6.1.3).

(2) Let Xi have a fixed homeomorphism type. Then χ(Xi ) = 0. In particular sphere and
real projective planes cannot collapse to circle.

Proof By Slutskiy’s lemma 6.2 and Lemma 6.1 we may assume that the metrics di on Xi

are C∞-smooth. In the latter case the result is a special case of Corollary 4.7. Indeed the
fibers of the Yamaguchi map Xi −→ C are 1-dimensional and connected, hence circles. By
multiplicativity of the Euler characteristic for fibrations we get χ(Xi ) = 0. Q.E .D.

6.5 Collapse ofRP2

In the next theorem the cohomology is taken with coefficients in an arbitrary field.

Theorem 6.8 Let {Xi } be a sequence of RP2 with CBB(−1) metrics. Let us assume that is
collapses to a 1-dimensional space I .

(1) Then I is a segment.
(2) Furthermore let di be metrics on I

⊔
Xi extending the original metrics on I and Xi and

such that

di,H (I , Xi ) −→ 0 as i −→ 0.
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(a) Let 0 < κ <
length(I )

100 . Let 0 < ε1 < ε2 < κ . Then there exists i0 such that for i > i0
and for all x ∈ I with dist(x, ∂ I ) > κ one has

dim Im
[
Ha(Bi,x (ε2)) −→ Ha(Bi,x (ε1))

] =
{
1 if a = 0, 1
0 otherwise

,

where Bi,x (ε) is defined by (6.1.3).
(b) Let x ∈ ∂ I . Then for large i one has

dim Im
[
Ha(Bi,x (ε2)) −→ Ha(Bi,x (ε1))

] =
{
1 if a = 0
0 a 	= 0, 1

while for a = 1 for one of the end points of I one has for large i after a choice of a
subsequence

dim Im
[
H1(Bi,x (ε2)) −→ H1(Bi,x (ε1))

] = 0,

and for the other end point one has

dim Im
[
H1(Bi,x (ε2)) −→ H1(Bi,x (ε1))

] = 1.

First we will need two lemmas.

Lemma 6.9 Let M be a closed Riemannian manifold. Let M̃ be m-fold cover with the lifted
metric. Then

diam(M̃) ≤ m · diam(M).

This was proved by Sergei Ivanov [13] in his answer on MO to Petrunin’s question: Petrunin
himself claimed in that post a weaker estimate diam(M̃) ≤ 2(m − 1)diam(M) although he
does not present an argument. This would suffice for our purposes.

The next lemma was proved by Petrunin [27] on MO; we reproduce below his argument.

Lemma 6.10 Let g be a smooth Riemannian metric on 2-sphere S
2 invariant under the

antipodal involution x �→ −x. Then there exists point a such that

dist(a,−a) >
diam(S2, g)

100
.

Proof Let h be the induced Riemannian metric on RP
2 = Z2\S2. Let D := diam(S2, g).

By Lemma 6.9

diam(RP2, h) ≥ D

2
. (6.5.1)

Let γ be the shortest non-contractible geodesic on (RP2, h). Denote its length (systole) by l.
Let γ̃ be the preimage of γ in S2. γ̃ is a connected closed geodesic of length 2l; it is invariant
under the antipodal involution. By the Jordan theorem the complement of γ̃ is a union of two
disjoint disks whose closures we denote by � and �′. Let us show that

diam(�) ≥ D

2
. (6.5.2)

First observe that the antipodal involution is a homeomorphism � ˜−→�′. Indeed otherwise
the antipodal involution would be a homeomorphism � −→ � and had no fixed points; this
is impossible by the Brouwer fixed point theorem.
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By (6.5.1) there exist two points x, y ∈ RP
2 such that the h-distance disth(x, y) ≥ D

2 .
Let x̃, ỹ ∈ � be their respective lifts, and let ỹ′ ∈ �′ be the antipodal image of ỹ. Then we
have

diam(�) ≥ dist(x̃, ỹ) ≥ min{dist(x̃, ỹ), dist(x̃, ỹ′)} = dist(x, y) ≥ D

2
.

Thus (6.5.2) is proved.
For any z̃ ∈ γ̃

dist(z̃,−z̃) = l/2

since l is a systole. Hence in the case l ≥ D
20 lemma follows.

Let us assume that l < D
20 . This and the inequality (6.5.2) imply that there is a point w̃ ∈ �

such that

dist(w̃, ∂�) ≥ D/5,

where ∂� = γ̃ . Since −w̃ ∈ �′ it follows that

dist(w̃,−w̃) ≥ D/5.

Q.E .D.

Proof of Theorem 6.8 By Slutskiy’s lemma 6.2 and Lemma 6.1 we may assume that the met-
rics di on Xi are C∞-smooth. Let X̃i denote the universal 2-sheeted cover of Xi with the
lifted metrics. X̃i can be considered as a sphere (S2, gi ) where gi is a smooth Riemannian
metric invariant under the antipodal involution.

By Lemma 6.9 diam(X̃i ) ≤ 2diam(Xi ) although a weaker estimate would be sufficient.
The group Z2 of deck transformations acts by isometries on each X̃i . Since the Gaussian cur-
vature of X̃i is uniformly bounded below, the Gromov compactness theorem and Proposition
5.5 imply that one may choose a subsequence such that X̃i −→ X̃ in XZ2 . By Proposition
5.4

Xi −→ Z2\X̃ in X .

Since in our situation dimZ2\X̃ = 1 it follows that dim X̃ = 1. Since by Theorem 6.7(2)
spheres cannot collapse to a circle it follows that X̃ is a segment.

Any isometry of a segment is either identity or the reflection with respect to the origin.
Let us show that the action of Z2 on X̃ is the latter one. There exist Z2-invariant metrics di
on X̃

⊔
X̃i extending the original metrics on X̃ and X̃i and such that

di,H (X̃ , X̃i ) −→ 0.

Let us denote by s ∈ Z2 the non-zero element; it acts as the antipodal involution on X̃i . By
Lemma 6.10 there exists x̃i ∈ X̃i such that for large i

di (x̃i , s(x̃i )) >
diam(X̃i )

100
>

diam(X̃)

200
.

One may choose a subsequence such that

di (x̃i , x̃) −→ 0 for some x̃ ∈ X̃ .

Since s preserves di it follows that

dX̃ (x̃, s(x̃)) ≥ diam(X̃)

200
> 0.
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Hence the action of s on X̃ is non-trivial, so it is the reflection with respect to the middle
point.

Let π : X̃ −→ Z2\X̃ = I be the canonical map. Let x̃ ∈ X̃ , x := π(x̃) ∈ I . Let
Bi (x, ε) ⊂ I

⊔
Xi be the ε-ball with respect to the metric d̄i which is the Z2-quotient

metric of di . Let ε > 0 be less than 1/10 times the diameter of the Z2-orbit of x in case it
consists of two distinct elements, and with no other restriction otherwise. Lemma 5.8 implies
that π−1(Bi (x, ε)) is a disjoint union of ε-balls with respect to the metric di centered at all
different points of the Z2-orbit of x , and the obvious map

Stab(x̃)\B̃i (x̃, ε) −→ Bi (x, ε)

is an isometry, where B̃i (x̃, ε) is the ε-ball in X̃
⊔

X̃i centered at x̃ . It follows that the obvious
map

Stab(x̃)\(B̃i (x̃, ε) ∩ X̃i ) −→ Bi (x, ε) ∩ Xi (6.5.3)

is an isometry.
Case 1. Assume that x̃ is not the middle point of the segment X . Then Stab(x) = {id}.

Then the isometry (6.5.3) means that

B̃i (x̃, ε) ∩ X̃i −→ Bi (x, ε) ∩ Xi

is an isometry. Then the theorem follows in this case from Theorem 6.5.
Case 2. Assume that x̃ is the middle point of the segment X . Then Stab(x̃) = Z2.
The subset B̃i (x̃, ε) ∩ X̃i is an open subset of X̃i � S

2 invariant under the antipodal
involution and the obvious map

Z2\(B̃i (x̃, ε) ∩ X̃i ) −→ Bi (x, ε) ∩ Xi

is an isometry. Now the result follows from Proposition 6.6. Q.E .D.

6.6 Collapse of Klein bottles

Theorem 6.11 Let {Xi } be a sequence of Klein bottles with CBB(−1) metrics. Let us assume
that it GH-converges to a 1-dimensional limit C. Furthermore let di be metrics on C

⊔
Xi

extending the original metrics on C and Xi and such that

di,H (C, Xi ) −→ 0 as i −→ 0.

Let z ∈ C. Let us choose 0 < ε1 < ε2 < 1
100 length(C), and if C is a segment and z ∈ int(C)

we require in addition that ε2 < 1
100dist(z, ∂C).

Then for large i one has

dim Im
[
Ha(Bi,z(ε2)) −→ Ha(Bi,z(ε1))

] =
{
1 if a = 0, 1
0 otherwise

,

where Bi,z(ε) is defined by (6.1.3).

Proof By Slutskiy’s lemma 6.2 and Lemma 6.1 we may assume that the metrics on Xi are
C∞-smooth. Q.E .D.

Case 1. Let us assume that C is a circle. Then by Theorem 4.6 there is Yamaguchi smooth
εi -almost Riemannian submersion fi : Xi −→ C with connected fibers, where εi −→ 0. Its
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fibers are connected and 1-dimensional, hence circles. Proposition 4.5 implies the result in
the case of circle.

Case 2. Let us assume that C is a segment. Every Xi has a 2-sheeted oriented cover X̃i ;
it will be equipped with the pull-back of the metric on Xi . By Lemma 6.9 diam(X̃i ) ≤
2diam(Xi ) although a weaker estimate would be sufficient. The group Z2 of deck trans-
formations acts by isometries on each X̃i . Since the Gaussian curvature of X̃i is uniformly
bounded below, the Gromov compactness theorem and Proposition 5.5 imply that one may
choose a subsequence such that X̃i −→ X̃ in XZ2 . By Proposition 5.4

Xi −→ Z2\X̃ = C in X .

It follows that X̃ is 1-dimensional and hence is either a segment or a circle. By [15, 35]
tori cannot collapse to a segment. Hence X̃ is a circle. The group Z2 can act on a circle by
isometries only in three possible ways: identical action; symmetry with respect to the center
of the circle (i.e. rotation by π ); reflection with respect to a line. If the quotient by this action
is a segment then the first two options are impossible, andZ2 acts on the circle X̃ by reflection
with respect to a line.

Let πi : X̃ ⊔
X̃i −→ C

⊔
Xi be the quotient map by Z2. Let us fix x ∈ C .

Case 2a. Let us assume that x belongs to the interior of the segmentC . Then x has exactly
two different preimages: π−1

i (x) = {x̃1, x̃2}. Then distX̃ (x̃1, x̃2) = 2distX (x, ∂C). Let
0 < ε1 < ε2 < 1

100distX (x, ∂C). Consider the open balls Bi (x, ε1) ⊂ Bi (x, ε2) ⊂ C
⊔

Xi .
By Lemma 5.8

π−1
i (Bi (x, ε1,2) ∩ Xi ) = (B̃i (x̃1, ε1,2) ∩ X̃i )

⊔
(B̃i (x̃2, ε1,2) ∩ X̃i ),

where B̃i (x̃1,2, ε1,2) are open balls in X̃
⊔

X̃i . The natural map

Stab(x̃1)\(B̃i (x̃1, ε1,2) ∩ X̃i ) −→ Bi (x, ε1,2) ∩ Xi

is an isometry. Since Stab(x̃1) = {id} we get that the natural map

B̃i (x̃1, ε1,2) ∩ X̃i −→ Bi (x, ε1,2) ∩ Xi (6.6.1)

is an isometry.
For large i there exist Yamaguchi maps X̃i −→ X̃ . Its fibers are circles. Hence by

Proposition 4.5 one has

dim Im
[
Ha(B̃i (x̃1, ε2) ∩ X̃i ) −→ Ha(B̃i (x̃1, ε1) ∩ X̃i )

]
=

{
1 if a = 0, 1
0 otherwise

Since the isometries (6.6.1) commute with the imbeddings of ε1,2-balls into each other
the result follows in the case x ∈ int(C).

Case 2b. Let us assume that x ∈ ∂C . Then it has exactly one preimage: π−1
i (x) = {x̃}.

Let 0 < ε1 < ε2 < 1
100 length(C). By Lemma 5.8

π−1
i (Bi (x, ε1,2)) = B̃i (x̃, ε1,2),

and the natural map

Z2\(B̃i (x̃, ε1,2) ∩ X̃i ) −→ Bi (x, ε1,2) ∩ Xi (6.6.2)

is an isometry. Let

fi : X̃i −→ X̃
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be the Z2-equivariant Yamaguchi maps which exist by Proposition 5.11.
Let us denote by B̃(x̃, ε) ⊂ X̃ the ε-ball in X̃ centered at x̃ . Then by (4.1.3) (with the

current notation) we have inclusions for large i

f −1
i

(
B̃

(
x̃,

ε1

2

))
⊂ B̃i (x̃, ε1) ∩ X̃i ⊂ f −1

i

(

B̃

(

x̃,
ε1 + ε2

2

))

⊂ B̃i (x̃, ε2) ∩ X̃i ⊂ f −1
i

(
B̃ (x̃, 2ε2)

)
.

Since all 5 sets in this sequence are Z2-invariant, similar inclusions hold for their quotients
by Z2 and hence induce the maps in cohomology

H∗ (
Z2\ f −1

i

(
B̃

(
x̃,

ε1

2

)))
a1←

H∗ (
Z2\

(
B̃i (x̃, ε1) ∩ X̃i

))
a2← H∗

(

Z2\ f −1
i

(

B̃

(

x̃,
ε1 + ε2

2

)))
a3←

a3← H∗ (
Z2\

(
B̃i (x̃, ε2) ∩ X̃i

))
a4← H∗ (

Z2\ f −1
i

(
B̃ (x̃, 2ε2)

))
.

We claim that the maps a1 ◦a2 and a3 ◦a4 are isomorphisms. This follows from the following
more precise statement.

Claim 6.12 Let 0 < δ1 < δ2 < 1
100 length(C). Then the natural map

H∗(Z2\ f −1
i (B̃(x̃, δ1))) ← H∗(Z2\ f −1

i (B̃(x̃, δ2)))

is an isomorphism, and each set Z2\ f −1
i (B̃(x̃, δ1,2)) is homeomorphic to the Möbius band.

Let us postpone the proof of this claim. The diagram chase implies that

Im[H∗(Z2\(B̃i (x̃, ε1) ∩ X̃i ))
a2◦a3← H∗(Z2\(B̃i (x̃, ε2) ∩ X̃i ))]

is isomorphic to the cohomology of the Möbius band, and hence that would imply Theorem
6.11.

It remains to prove Claim 6.12. Let us equip X̃i with the new metric g̃i coinciding with
the original metric on X̃i on the vertical subspaces, having the same horizontal subspaces
as the latter metric, and coinciding on the horizontal subspaces with the pull back via fi of
the metric on X̃ . Thus fi is the Riemannian submersion when X̃i is equipped with g̃i . Let
Nδ denote the δ neighborhood of the zero section of the normal bundle N of f −1

i (x̃) with
respect to the metric g̃i . By Lemma 4.3

exp : Nδ1 −→ f −1
i (B̃(x̃, δ1)), exp : Nδ2 −→ f −1

i (B̃(x̃, δ2))

are homeomorphisms.
The fiber f −1

i (x̃) is Z2-invariant. Hence Z2 acts naturally on the total space of the normal
bundleN . It is easy to see that exp : N −→ X̃i commutes with the action of Z2. After taking
Z2-quotient we have the diagram:

� < −1‘1‘1‘ − 1; 1300‘700 > [H∗(Z2\ f −1
i (B̃(x̃, δ1)))

‘H∗(Z2\ f −1
i (B̃(x̃, δ2)))‘H

∗(Z2\Nδ1)‘H
∗(Z2\Nδ2); ‘ exp∗ ‘ exp∗ ‘]

where the vertical lines are isomorphisms. Nδ1 ⊂ Nδ2 is a Z2-equivariant retract; the
retraction is given by multiplication by t ∈ [ δ1

δ2
, 1]. Hence the bottom line is an isomorphism.
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Furthermore Nδa , a = 1, 2, is Z2-equivariantly homeomorphic to S1 × (−δa, δa) when
the Z2-action is given by

(θ, τ ) �→ (−θ,−τ) for any θ ∈ S1, τ ∈ (−δa, δa).

(Indeed theZ2-action on f −1
i (x̃) � S1 has no fixed point and hence is equivalent to antipodal

involution on S1.) The quotient of S1 × (−δa, δa) by this action is homeomorphic to the
Möbius band. Q.E.D.

6.7 The no collapse case

The main result of this subsection is

Theorem 6.13 Let {Xn
i } be a sequence of compact n-dimensional Alexandrov spaces with

curvature uniformly bounded from below which GH-converges to a compact Alexandrov
space Xn of dimension n. Let di be metrics on X

∐
Xi extending the original metrics on

X and Xi and such that the Hausdorff distance di,H (Xi , X) −→ 0. For ε > 0 and x ∈ X
denote as in (1.1.1)

Bi,x (ε) := {y ∈ Xi | di (y, x) < ε}.
Then for any x ∈ X there exist ε0 > 0, i0 ∈ N (depending on x, di ) such that for any
0 < δ1 < δ2 < ε0, any i > i0, any a ∈ Z, and any field F the image of the natural map in
the ath cohomology satisfies

ha(x) := dim Im[Ha(Bi,x (δ2);F) −→ Ha(Bi,x (δ1);F)] =
{
1 if a = 0
0 if a 	= 0.

In particular F := ∑
a(−1)aha ≡ 1.

The proof will be an easy consequence of the following more general result due to
Kapovitch [17] who also supplied us with a proof below.

Theorem 6.14 Let (Xn
i , pi ) −→ (X , p) be a sequence of n-dimensional Alexandrov spaces

with curvature uniformly bounded from below which GH-converges (as pointed spaces) to
an n-dimensional Alexandrov space X.

Then there exists r0 = r0(p) > 0 such that the following holds

1. For any 0 < r ≤ r0 we have that sphere Sr (p) ⊂ X is homeomorphic to the space of
directions �p X and the closed ball B̄r (p) ⊂ X is homeomorphic to the unit closed ball
B̄1(0) in TpX with the spheres Sr (p) mapping to the unit sphere S1(0) ⊂ TpX which is
isometric to �p X.

2. For any 0 < r ≤ r0 for all large i the closed ball B̄r (pi ) ⊂ Xi is homeomorphic to the
closed ball B̄r (p) ⊂ X by a homeomorphism sending Sr (pi ) to Sr (p)

Let us postpone a proof of this theorem and prove Theorem 6.13.

Proof of Theorem 6.13 Fix x ∈ X . Let us choose sequence of points xi ∈ Xi such that
di (xi , x) −→ 0. Denote

Bi (ε) := {y ∈ Xi | di (y, xi ) < ε}
to be the open ε-ball in Xi centered at xi . Let r0 > 0 be as in Theorem 6.14. For 0 < δ1 <

δ2 < r0/2 and large i one has inclusions

Bi

(
δ1

2

)

⊂ Bi,x (δ1) ⊂ Bi

(
δ1 + δ2

2

)

⊂ Bi,x (δ2) ⊂ Bi (2δ2),
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and the first, the third, and the fifth spaces are homeomorphic to an open ball B1(0) ⊂ Tx X by
Theorem 6.14. This ball in contractible and hence has cohomology of a point. In cohomology
with coefficients in an arbitrary field we have maps

H∗
(

Bi

(
δ1

2

))
a1← H∗(Bi,x (δ1))

a2← H∗
(

Bi

(
δ1 + δ2

2

))
a3← H∗(Bi,x (δ2))

a4← H∗(Bi (2δ2)).

The maps a1 ◦ a2 and a3 ◦ a4 are isomorphisms since they are maps of cohomology of con-
tractible spaces. Hence by linear algebra it follows that Im[Ha(Bi,x (δ2)) −→ Ha(Bi,x (δ1))]
is isomorphic to the ath cohomology of a point. Q.E .D.

Proof of Theorem 6.14 Since (λX , p) −→ (Tpx, 0) = (C�p, 0) as λ −→ ∞ we have that
for small r any point x with d(p, x) = r is o(r) close to the midpoint of a geodesic [p, q]
of length 2r . Hence the comparison angle ∠̃qxp ≥ π − o(r) and by Toponogov comparison
the same holds for the actual angle ∠qxp for any shortest geodesics [xp], [xq]. Therefore if
r0 > 0 is small enough it holds that f = d(·, p) has no critical points in B2r0(p) \ {p}.

Moreover, this also shows that for any fixed 0 < r < r0 for all large i the function fi =
dpi (·) has no critical points in the annulus A(r/2, 2r , pi ) = {y ∈ Xi | r/2 ≤ d(x, pi ) ≤ 2r}.

By the Perelman’s Parameterized Stability Theorem [16], Theorem 7.8, or [23], Theorem
4.3, for all large i there exists a homeomorphism φi : B̄r (pi ) −→ B̄r (p) which commutes
with the distance to the center outside of the r/2 balls.

That is f ◦ φi = fi on A(r/2, r , pi ). In particular it sends metric spheres around pi of
radii between r/2 and r to the corresponding metric spheres around p. This proves item (2).

Applying the same argument to the convergence (λX , p) −→
λ−→∞ (Tpx, 0) = (C�p, 0)

gives part (1). This finished the proof of Theorem 6.14. Q.E .D.

6.8 An application to integration with respect to the Euler characteristic

As an application of our main results on closed surfaces let us prove Proposition 6.16 below.
This is a very special case of what was conjectured in [1]. Let us mention however that after
the first version of this paper was uploaded to the arxiv, Fujioka [11] uploaded to the arxiv a
much more general result: a generalization of our Proposition 6.16 to sequences of arbitrary
(compact finite dimensional) Alexandrov spaces.

First we need to briefly recall the notion of integration of a ’constructible’ function with
respect to the Euler characteristic. The technical definition of constructibility depends on the
context and will not be specified here. However in the application in this subsection this will
not lead to misunderstanding due to simplicity of the situation. Let X be a ’nice’ topological
space, e.g. it might be a real analytic manifold. For the general conjectures in [1] X should
be a compact finite dimensional Alexandrov space. In this subsection it suffices to consider
the case of closed topological surfaces, segments, and points.

Let F : X −→ C be a compactly supported function with finitely many values and ’nice’
level sets. Under broad assumptions satisfied in the relevant to us case, F can be written as
a finite linear combination

F =
∑

i

ci1lZi (6.8.1)

where ci ∈ C and Zi are compact sets which are ’nice’ enough to have a well defined Euler
characteristic (thus e.g. the Cantor set is excluded). One defines the integral of F with respect
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to the Euler characteristic by
∫

Fdχ :=
∑

i

ciχ(Zi ).

In a number of technical setups one can show that this integral is well defined, i.e. is inde-
pendent of the presentation (6.8.1).

Remark 6.15 (1) The fact that the integral is well defined was proved by Groemer [12] for the
class of functions on X = R

n such that the level sets are finite unions of convex compact sets.
When X is a complex analytic manifold and the level sets of functions are complex analytic
subvarieties this fact is due to Viro [33]. For a real analytic manifold X and functions with
level sets being subanalytic this fact was proven by Schapira [30], while a more special
situation was previously considered by Khovanskii and Pukhlikov [18].

(2) For the purposes of general conjectures [1] the relevant class of constructible functions
consists of functions on a compact Alexandrov space X which are constant on the strata of
the Perelman-Petrunin stratification. In the present paper a more elementary situation will
be sufficient: constant functions on topological surfaces and functions on a closed segment
which are constant in its interior. In the former case the integral with respect to the Euler
characteristic is trivially well defined once we consider only constant functions. The latter
case is a special case either of theKhovanskii-Pukhlikov [18] or the Schapira [30] approaches,
although it can be treated directly by elementary methods.

Proposition 6.16 Let {Xi } be a sequence of closed topological 2-surfaces of a fixed home-
omorphism type with CBB(−1) metrics. Let us denote their Euler characteristic by α.
Assume that the sequence GH-converges to a compact Alexandrov space X. Let F(x) :=∑

a(−1)aha(x) be the corresponding function on X which is necessarily well defined. Then
∫

X
Fdχ = α.

Proof Case 1. Let X be a point. Then by construction ha(X) = dim Ha(Xi ;F). Hence
F = α, and

∫
X Fdχ = α.

Case 2. Let dim X = 2. By the Perelman stability theorem [23] (see also [16]) all Xi are
homeomorphic to X . By Theorem 6.13 one has F ≡ 1. Hence

∫
X Fdχ = χ(X) = α.

Case 3. Let dim X = 1.
Subcase 3a. Assume that {Xi } are homeomorphic to the 2-sphere S2. By Theorem 6.7(2)

X is a segment. By Theorem 6.5 one has F = 1l∂X . Clearly
∫

X
Fdχ = 2 = χ(S2)

as necessary.
Subcase 3b. Assume that {Xi } are homeomorphic to the real projective plane RP

2. By
Theorem 6.7(2) X is a segment. By Theorem 6.8 the function F vanishes everywhere on X
but one point. Hence

∫

X
Fdχ = 1 = χ(RP2)

as required.
Subcase 3c. Assume that {Xi } are homeomorphic to the 2-torus T2. Since by [15] and

[35] torus cannot collapse to a segment, X is a circle. By Theorem 6.7(1) one has F ≡ 0.
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Then
∫

X
Fdχ = 0 = χ(T2).

Subcase 3d. Assume that {Xi } are homeomorphic to the Klein bottleK. Then X could be
both circle and segment. If X is a circle then by Theorem 6.7(1) F ≡ 0, and if X is a segment
then by Theorem 6.11 one has F = 0 again. Hence in either case

∫

X
Fdχ = 0 = χ(K).

Q.E .D.
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