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Abstract
We study the relation between the type of a double point of a plane curve and the curvilin-
ear 0-dimensional subschemes of the curve at the point. An Algorithm related to a classical
procedure for the study of double points via osculating curves is described and proved. Even-
tually we look for a way to create examples of rational plane curves with given singularities
As .
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1 Introduction

This note is dedicated to the study of double points of plane curves, either using their implicit
equation or, in the case of rational curves, their parameterization. This is quite a classical
subject in Algebraic Geometry; the aim of the present paper is to study the structure of a
double point of a plane curve via the curvilinear 0-dimensional subschemes of the curve
at the point, and to give, in the case of plane curves defined by their implicit equation, an
algorithm which, following a classical procedure, allows to describe the structure of a double
point. We work on the complex field.

We recall that a singularity of type As for a plane curve is a double point that can be
resolved via r blow ups if s = 2r − ε, ε = 0, 1 and the desingularization yields two points
if ε = 1 and only one if ε = 0. In the following, given a curve D smooth at a point Q,
with mQ, or, if needed, mQ|D , we denote the curvilinear 0-dimensional scheme of length m
supported at Q and contained in D.

If C ⊂ P
2 is a degree n integral rational curve, to give a parameterization means to see

C as the projection of a rational normal curve Cn ⊂ P
n (see Sect. 3 for details). In Theorem

4.3 of [1] we show that the point P of C is a double point of type A2r−ε if and only if
there is a 0-dimensional curvilinear scheme X ⊂ C of length r , projection of a certain
curvilinear scheme Y of length 2r on Cn (supported on two points if ε = 1, on one point
if ε = 0) and X is “maximal” with respect to this property. In Sect. 2 of the present paper
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we generalize the result to any integral plane curve (Theorem 2.1). In the same section we
study the intersection multiplicities of a plane curve C with a double point P with curves
smooth at P (Proposition 2.2; this will be useful in the last section) and we give another
characterization of As singularities through the possible length of the curvilinear schemes
supported at P and contained in C .

In Sect. 3 we describe an algorithm which classifies double points on any plane curve; this
algorithm is based on the classical method of studying the osculating curves (parabolas of
degree r ) to a curve at a double point. We give this algorithm in detail and also its justification
since, although classically known, we find its main references (e.g. see [2]) a bit cumbersome
in justifying the procedure.

In Sect. 4 we build an example illustrating the previous algorithm.
In Sect. 5 we give a brief summary of the techniques, introduced in [1], useful for studying

singular points on a rational plane curve when the parameterization is known.
In Sect. 6, with [3], we build an example which illustrates how to build a plane rational

curve with a double point of a chosen type using projection techniques, and how to use the
techniques of Sect. 5 to study the singularities of a rational curve, given its parameterization.

2 Double points and curvilinear schemes

The following theorem is a generalization of [1],Theorem 4.3; its proof is essentially the
same as in the rational case:

Theorem 2.1 Let C ⊂ P
2 be a curve with normalization π : C̃ → C and let P be a double

point for C. Then:

(1) P is an A2m−1 singularity if and only if

(a) π−1(P) = {Q1, Q2},
(b) π(mQ1|C̃ ∪ mQ2|C̃ ) = X, where X is a curvilinear scheme of length m contained

in C,
(c) m is the maximum integer for which (b) holds.

(2) P is an A2m singularity if and only if

(a) π−1(P) = {Q},
(b) π(2mQ|C̃ ) = X, where X is a curvilinear scheme of length m contained in C,
(c) m is the maximum integer for which (b) holds.

Proof It is known that a normal form for an As singularity is given by the curve �s ⊂ P
2 of

equation: y2zs−1 − xs+1 = 0 at the point P = [0, 0, 1] (e.g. see [4, 5]), i.e. if C has an As

singularity at P , then it is analytically isomorphic to �s at P , and has the same multiplicity
sequence as �s at P . Hence we will work on these curves first.
Case (1): Let (C, P) be an A2m−1 singularity. Hence �2m−1, in affine coordinates, is the
union of the two smooth curves �: {y − xm = 0} and �′: {y + xm = 0}, while p = (0, 0).
The normalization of � ∪ �′ is ψ : �̃ ∪ �̃′ → � ∪ �′, where � ∪ �′ is the union of two
disjoint lines and the inverse image of p is given by two points, q ∈ �̃ and q ′ ∈ �̃′ , so
(a) is true. Since ψ |�̃ :�̃ → � and ψ |

�̃′ :�̃′ → �′ are two isomorphisms, it is clear that
ψ(mq|�̃) = mp|� and ψ(mq ′|

�̃′) = mp|�′ .
Now let’s notice that � ∩ �′ is the curvilinear scheme Z whose ideal is (y, xm), hence

mp|� = mp|�′ = Z , and (b) is true. On the other hand, if we consider ψ((m + 1)q|�̃ ∪
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(m + 1)q ′|
�̃′), we get the scheme (m + 1)p|� ∪ (m + 1)p|�′ which corresponds to the ideal

(xm+1, xy, y2), and this scheme is not curvilinear, so (c) holds.
Case (2): Let (C, P) be an A2m singularity (hence (a) holds). We have that �2m , in affine
coordinates, is the irreducible curve y2 − x2m+1 = 0, hence a parameterization (which is
also a normalization) for it is φ : A1 → �2m , where φ(t) = (t2, t2m+1) and p = (0, 0) is
such that φ−1(p) = q . The ring map corresponding to φ is:

φ̃ : K [x, y]
(y2 − x2m+1)

→ K [t], x �→ t2, y �→ t2m+1.

The scheme 2mq|A1 corresponds to the ideal (t2m), and φ−1((t2m)) = (y, xm), hence (b)
is true.

On the other hand, the scheme 2(m + 1)q|A1 corresponds to the ideal (t2m+2), and
φ−1((t2m+2)) = (xm+1, xy, y2), hence (b) is true.
To check that the “ if ” part of statements (1) and (2) holds, just consider that (1)(a), respec-
tively (2)(a), determines if the singularity is of type A2h , respectively A2h−1, while (1)(b)
and (1)(c), respectively (2)(b) and (2)(c), force h to be equal to m.

Now let us notice that, being �s at p analytically isomorphic to C at P , when we consider
�s and C as analytic complex spaces, there exist open euclidean neighborhoods U of p and
V of P such that U ∩ �s and V ∩ C are biolomorphically equivalent. Since the statement is
of local nature, this is enough to conclude. 	

Wedenote the intersectionmultiplicity of two curvesC and D at a point P by i(C, D, P). The
Proposition below relates the type As of a double point P ∈ C with the value of i(C, D, P)

for a curve D smooth at P .

Proposition 2.2 Let C be a plane reduced curve and P ∈ C a double point of C. Let D be a
plane curve, smooth at P. Then:

(i) Assume P is an A2r−1 or an A2r singularity. If i(C, D, P) ≤ 2r , then it is an even
number.

(ii) If P is an A2r−1 singularity for C, there are curves D1 and D2 smooth at P such that
i(C, Dj , P) ≥ 2r + 1 for j = 1, 2 and i(D1, D2, P) = r .

(iii) If P is an A2r singularity for C, then i(C, D, P) ≤ 2r +1, and there exist curves smooth
at P which attain the equality. If D1, D2 are curves such that i(C, Dj , P) = 2r + 1 for
j = 1, 2, then i(D1, D2, P) > r .

(iv) Let O be an As singularity for C, with s = 2r − 1 or s = 2r , s ≥ 2, and suppose that
the tangent of C at O is not the y-axis. Then any curve D, smooth at O and such that
i(C, D, O) ≥ 2r + 1, has a local analytic equation of the form

y =
r−1∑

i=2

ci x
i + cr x

r +
∑

i≥r+1

ci x
i

where
∑

i≥r+1 ci x
i is convergent, and c2, . . . , cr are fixed if s = 2r , while c2, ..., cr−1

are fixed and there are only two (different) possibilities for cr if s = 2r − 1.

Proof The curve C at P is analytically isomorphic, at O , to the curve y2 − xs = 0, where
s = 2r if P is an A2r−1 singularity and s = 2r + 1 if P is an A2r singularity. Since the
intersection multiplicity of two curves is an analytic invariant, from now on we study the
multiplicity intersection at O of each of these curves with a curve D smooth at O .
(i) If C and D meet transversally, i(C, D, O) = 2 so we are done.
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If the tangent of D at O is y = 0, by the analytic implicit function Theorem (see for example
[6], theorem 2.1.2 p.24), the curve D is locally given by an analytic equation y = ∑

i≥2 ci x
i .

Denoting by ω(S) the order of a series S, the intersection multiplicity i(C, D, O) is

ω

⎛

⎜⎝

⎛

⎝
∑

i≥2

ci x
i

⎞

⎠
2

− xs

⎞

⎟⎠ (*)

Since ω((
∑

ci xi )2) = 2ω(
∑

ci xi ) is always even, if i(C, D, O) ≤ 2r we have that
ω((

∑
i≥2 ci x

i )2 − xs) is even in both cases s = 2r , 2r + 1, hence statement i) is proved. We
have

⎛

⎝
∑

i≤2

ci x
i

⎞

⎠
2

=
∑

k≥4

αk x
k where αk =

⎧
⎪⎪⎨

⎪⎪⎩

2
∑ k

2−1
j=2 c j ck− j + c2k

2
if k even

2
∑ k−1

2
j=2 c j ck− j if k odd

Since ω(
∑

k≥4 αk xk) is always even, we have α4 = · · · = α2m = 0 ⇒ α2m+1 = 0, and

α4 = · · · = α2m = α2m+1 = 0 ⇐⇒ c2 = · · · = cm = 0 (†)

(ii) Let O be an A2r−1 singularity, i.e. C : y2 − x2r = 0, and assume i(C, D, O) ≥ 2r + 1.
Since i(C, D, O) = ω(

∑
k≥4 αk xk − x2r ), we must have α4 = · · · = α2r−2 = 0, this

implying α2r−1 = 0, and α2r = 1, hence c2 = · · · = cr−1 = 0 and c2r = 1. Hence
there are two families of curves smooth at O and with intersection multiplicity ≥ 2r + 1
with C at O , namely, those with a local equation of the form y = xr + ∑

i≥r+1 ci x
i or

y = −xr + ∑
i≥r+1 ci x

i . If D1 is a curve of the first family and D2 of the second, we have
i(D1, D2, O) = r .
What we have seen implies that any two curves D1, D2 with i(C, Dj , P) ≥ 2r + 1 are such
that i(D1, D2, P) ≥ r .
(iii) Let O be an A2r singularity, i.e. C : y2 − x2r+1 = 0, and assume i(C, D, O) ≥ 2r + 1.
Since i(C, D, O) = ω(

∑
k≥4 αk xk − x2r+1), we must have α4 = · · · = α2r = 0 and this

implies α2r+1 = 0, hence the coefficient of x2r+1 in the series
∑

k≥4 αk xk − x2r+1 is always
−1, so that the order of the series has to be 2r + 1; in other words, i(C, D, O) = 2r + 1. In
this case (†) says that D has a local equation of the form y = ∑

i≥r+1 ci x
i . Hence, if D1, D2

are two such curves, we find i(D1, D2, O) > r .
(iv) Let O be a double point for the curve C , and suppose that the tangent of C at O is not
the y-axis. Let D1, D2 be any two curves smooth at O and such that i(C, Dj , O) ≥ 2r + 1,
j = 1, 2, and assume Dj is locally given by y = ∑

i≥2 ci j x
i , j = 1, 2.

If O is an A2r singularity for C , r ≥ 1, (i i i) gives i(D1, D2, O) > r , i.e., ci1 = ci2 for
i = 2, . . . , r .
If O is an A2r−1 singularity for C , r ≥ 2, the proof of (i i) gives i(D1, D2, O) ≥ r , with
i(D1, D2, O) > r if D1 and D2 belong to the same family between the two families found
in the proof, and i(D1, D2, O) = r otherwise. Hence ci1 = ci2 for i = 2, . . . , r in the first
case and ci1 = ci2 for i = 2, . . . , r − 1 in the second case. 	


The following Theorem 2.3 gives a description of a double point P of a plane curve in
terms of the curvilinear 0-dimensional subschemes of the curve supported at P .

Theorem 2.3 Let C be a plane reduced curve and P ∈ C a double point of C. Then P is an
A2r singularity if and only if no curvilinear scheme supported at P of length > 2r + 1 is
contained in C. More precisely,
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(i) P is an A2r−1 singularity for C if and only if for any 	 ≥ 1 there is a curvilinear scheme
supported at P of length 	 contained in C;

(ii) P is an A2r singularity if and only if for any 	 ≤ 2r + 1 there is a curvilinear scheme
supported at P of length 	 contained in C, and no curvilinear scheme supported at P of
length > 2r + 1 contained in C.

Proof The curve C at P is analytically isomorphic to the curve �s : y2 − xs = 0 at O , where
s = 2r if P is an A2r−1 singularity and s = 2r + 1 if P is an A2r singularity.

(i) If P is an A2r−1 singularity, let 	 ≥ 1, and consider the 0-dimensional curvilinear scheme
Z of ideal (y − xr , x	) supported at O; Z has length 	 and is contained in �2r , since
y2 − x2r ∈ (y − xr , x	).

(ii) If P is an A2r singularity, let 1 ≤ 	 ≤ 2r +1, and consider the 0-dimensional curvilinear
scheme Z of ideal (y, x	) supported at O; Z has length 	 and is contained in �2r+1, since
y2 − x2r+1 ∈ (y, x	).

Now assume that a 0-dimensional curvilinear scheme Y of length h ≥ 2r + 2 is contained
in �2r+1; Y being curvilinear, there is a curve D : g(x, y) = 0 smooth at O and such that
Y ⊂ D, so that IY = (g) + (x, y)h . Since Y ⊂ �2r+1, we have y2 − x2r+1 ∈ IY , hence
(y2 − x2r+1, g) + (x, y)h = (g) + (x, y)h ; by 2.2 i(�2r+1, D, O) ≤ 2r + 1, so that:

2r + 1 ≥ i(�2r+1, D, O) = dim
(
C[x, y]/(y2 − x2r+1, g)

)
(x,y) ≥

≥ dim
(
C[x, y]/(y2 − x2r+1, g) + (x, y)h

)

(x,y)
= dim

(
C[x, y]/(g) + (x, y)h

)

(x,y)
= h

Hence a 0-dimensional curvilinear scheme of length ≥ 2r + 2 cannot be contained in �2r+1.
	

Remark 2.4 Notice that not all the 0-dimensional subschemes ofC appearing in the statement
of 2.3 are cut on C by a curve smooth at P , for example by 2.2 if the length is ≤ 2r then any
such curve has an even intersection mutiplicity with C , while clearly there are subschemes
of odd length.

3 An algorithm for determining the type of a double point via implicit
equation

What we will expose here is an algorithm to determine the nature of a double point on a plane
curve C , given the implicit equation of C . The matter is classically known, but we prefer to
give it here since it can be a bit "forgotten", especially for younger mathematicians, and also
because our main reference ([2]) is a bit cumbersome when giving the justification of this
procedure: for this reason we prefer to describe it in a more algorithmic way and to give a
rather simple justification of it.

We work with a reduced algebraic curve C ⊂ P
2 = P

2
C
of degree n, given by a homoge-

neous polynomial F ∈ C[x0, x1, x2]n , and we suppose that the point O = [0 : 0 : 1] is a
double point for C . Let

F =
∑

i+ j+k=n

ai j x
i
0x

j
1 x

k
2 .

where each ai j ∈ C, i, j, k ∈ {0, ..., n} and k = n − i − j .
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Since what we want is to study the curve at O , we can work in the affine chart {x2 �= 0},
with affine coordinates x = x0

x2
, y = x1

x2
, so O = (0, 0) and the affine curve is defined by the

polynomial:

f (x, y) =
∑

ai j x
i y j

The point O being a double point for C , we have a00 = a10 = a01 = 0 and (a20, a11, a02) �=
(0, 0, 0):

f (x, y) = a20x
2 + a11xy + a02y

2 + a30x
3 + a21x

2y + a12xy
2 + a03y

3 + · · · .

We make use of auxiliary curves �t

 given by the equations :

�t

 : y = λ1x + λ2x

2 + · · · + λt x
t

where t ≥ 1, 
 := (λ1, . . . , λt ) ∈ C
t . We look among them for curves osculating the curve

C at O; notice that the curve �t

 is smooth at (0, 0) and its degree is ≤ t (some of the λi ’s

can be zero).
We denote with i(C, D, P) the intersection multiplicity of two curves C ,D at the point P ,
and we set

R(C, �t

) := f (x, λ1x + λ2x

2 + · · · + λt x
t ) ∈ C[x]

so that i(C, �t

, O) is the least degree assumed by x in R(C, �t


).
The aim of the procedure is to establish the type As of the double point O . Here we illustrate
how to get this result in several steps, before we give a formal algorithm to do that:
Step 1: Analysis via lines �1


. Since �1

 : y = λ1x we have

R(C, �1

) = (a20 + a11λ1 + a02λ

2
1)x

2 + (a30 + · · · + a03λ
3
1)x

3 + · · ·
The coefficient of x2 is zero when

a20 + a11λ1 + a02λ
2
1 = 0 (�)

There are two cases:
Step 1a: If a211−4a20a02 �= 0, then (�) has two distinct roots λ11, λ12, so there are exactly two
tangent lines �1

(λ11)
, �1

(λ12)
for which i(C, �1

(λ1 j )
, O) ≥ 3 ( j = 1, 2), O is a double point

A1 (an ordinary node) for C and the analysis ends here.
Step 1b: If a211 − 4a20a02 = 0, then (�) has one double root λ̄1, so there is only one tangent
line�1

(λ̄1)
for which i(C, �1

(λ̄1)
, O) ≥ 3, namely�1

(λ̄1)
y = − a11

2a02
x . Then O is a non-ordinary

singularity.
We perform a linear change of coordinates so that the tangent at the double point O to the
transformed curve, which we still call C , is y = 0, i.e. λ̄1 = 0; the equation of C then looks
like:

C : f (x, y) = y2 + a30x
3 + a21x

2y + a12xy
2 + a03y

3 + ... (*)

If we have i(C, �1
(λ̄1)

, O) = 3, i.e. if a30 �= 0, then O is an ordinary cusp A2, and the
analysis ends here. Otherwise we go to step 2.
Step 2: Analysis via conics �2


. We are assuming that C is given by (∗) with a30 = 0, that
is, i(C, �1

(λ̄1)
, O) ≥ 4. Consider the pencil of conics

�2

 : y = λ̄1x + λ2x

2, 
 = (λ̄1, λ2)
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all tangent to C at O; since λ̄1 = 0, we get

�2

 : y = λ2x

2, 
 = (0, λ2)

R(C, �2

) = (a40 + a21λ2 + λ22)x

4 + (a50 + a31λ2 + a12λ
2
2)x

5 + ...

The coefficient of x4 is zero when

a40 + a21λ2 + λ22 = 0 (��)

There are two cases:
Step 2a: If the discriminant a221 − 4a40 �= 0, then there are exactly two osculating conics
�2


1, �
2

2 for which i(C, �2


 j , O) ≥ 5 ( j = 1, 2), so O is a double point A3 (a tacnode),
since the two conics separate the two branches of C at O . And the analysis stops here.
Step 2b: If a221 −4a40 = 0, (��) has a unique root λ̄2 = − a21

2 , so there is only one osculating
conic �2


̄
with i(C, �2


̄
, O) ≥ 5, the one with 
̄ = (0, λ̄2).

If i(C, �2

̄
, O) = 5, i.e. a50 + a31λ̄2 + a12λ̄22 �= 0, then O is a cusp A4, and the analysis

ends here. Otherwise we go to step 3.
Step 3: Analysis via cubics �3


. We are assuming that C is given by (∗) with a30 = 0,
a221 − 4a40 = 0, 2λ̄2 + a21 = 0 and a50 + a31λ̄2 + a12λ̄22 = 0, that is, i(C, �2

λ̄2
, O) ≥ 6.

Consider the pencil of cubics

�3

 : y = λ̄2x

2 + λ3x
3, 
 = (0, λ̄2, λ3)

all having in common the tangent at O (i.e. the tangent y = 0 to C at O), and the osculating
conic at O (i.e. the osculating conic y = λ̄2x2 to C at O). We get:

R(C, �3

) = (a40 + a21λ̄2 + λ̄22)x

4 + (a50 + a31λ̄2 + a12λ̄
2
2 + 2λ̄2λ3 + a21λ3)x

5 + ...

since the coefficients of x4 and x5 are 0, we have i(C, �3

, O) ≥ 6.

The coefficient of x6 is zero when

λ23 + (2a12λ̄2 + a31)λ3 + a03λ̄
3
2 + a22λ̄

2
2 + a41λ̄2 + a60 = 0 (���)

We again have two cases:
Step 3a: If the discriminant (2a12λ̄2 + a31)2 − 4(a03λ̄32 + a22λ̄22 + a41λ̄2 + a60) �= 0, there
are exactly two osculating cubics �3


1, �3

2 for which i(C, �3


 j , O) ≥ 7 ( j = 1, 2), and
O is a singulari t y A5 (an oscnode).

Step 3b: If the discriminant (2a12λ̄2 + a31)2 − 4(a03λ̄32 + a22λ̄22 + a41λ̄2 + a06) = 0, (���)
has a unique root λ̄3, so there is only one osculating cubic �3


̃
with i(C, �3


̃
, O) ≥ 7, the

one with 
̃ = (0, λ̄2, λ̄3)
If i(C, �3


̃
, O) = 7, then O is an A6 cusp for C . Otherwise we go to Step 4 where we use

quartics
�3


 : y = λ̄2x
2 + λ̄3x

3 + λ4x
4, 
 = (0, λ̄2, λ̄3, λ4)

and we go on in the same way. This process will end at some point (see the justification of
the Algorithm: if O is an A2r−1 or an A2r we will stop at Step r) .
The procedure above is described in the following Algorithm 1. Notice that in the exposition
above when the point is not a node we imposed a02 �= 0, a20 = a11 = 0 to have that the
double tangent at O is y = 0 so to simplify computations. This is not necessary, hence in the
algorithm we just impose a02 �= 0.
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Algorithm 1 Study of the double points of a plane curve C : ∑
ai j xi0x

j
1 x

n−i− j
2 = 0

Input: F = ∑
ai j x

i
0x

j
1 x

n−i− j
2 ∈ C[x0, x1, x2]n , n > 0, P = [a, b, c], F(P) = 0.

Output: State if P is a double point for C and its type: Am .

1: STEP 0) Perform a linear change of coordinates so to have P = [0, 0, 1]; work in the affine
chart {x2 �= 0}, with f = ∑

ai j x
i y j , and a00 = 0.

If (a10, a01) �= (0, 0): P is a simple point for C , with tangent a10x + a01y = 0. STOP

If (a10, a01) = (0, 0) and (a20, a11, a02) = (0, 0, 0): P is a point of multiplicity ≥ 3 for
C . STOP.

If (a10, a01) = (0, 0) and (a20, a11, a02) �= (0, 0, 0): P is a double point for C : go to Step
1.

2: STEP 1) Perform a linear change of coordinates so to have a02 �= 0. Set 
 := (λ1) and
consider

R(C, �1

) := f (x, λ1x) = (a20 + a11λ1 + a02λ

2
1)x

2 + . . .

3: STEP 1-a) If 2
1(
) := a211 − 4a20a02 �= 0, then there exist λ11 �= λ12 with

i(C, �1
(λ11)

, P) ≥ 3, i(C, �1
(λ12)

, P) ≥ 3 and P is a double point forC of type A1 (ordinary
node). STOP.

4: STEP 1-b) If2
1(
) = a211−4a20a02 = 0, then there is a unique λ̄1 with i(C, �1

(λ̄1)
, P) ≥ 3.

Step 1-b1) If i(C, �1
(λ̄1),P)

= 3, then P is a double point for C of type A2 (ordinary cusp).

STOP. Step 1-b2) If i(C, �1
(λ̄1)

, P) ≥ 4: go to Step 2.

For r ≥ 2, let
5: STEP r) Let 
 = (λ̄1, λ̄2, ..., λ̄r−1, λr ) and

�r

 : y = λ̄1x + λ̄2x

2 + ... + λ̄r−1x
r−1 + λr x

r

where the values λ̄1, . . . , λ̄r−1 come from Steps 1 − b2, . . . , (r − 1) − b2. Let

R(C, �r

) := f (x, λ̄1x + λ̄2x

2 + ... + λ̄r−1x
r−1 + λr x

r )

We have i(C, �r

, P) ≥ 2r , so the least power of x appearing in R(C, �r


) is 2r . Let 2r
r

be the discriminant of the second degree equation in λr obtained by forcing the coefficient of
x2r to be zero. Then

6: STEP r-a) If2r
r �= 0, there exist λr1 �= λr2 such that, setting
 j = (λ̄1, λ̄2, ..., λ̄r−1, λr j ),

one has i(C, �r

 j , P) ≥ 2r + 1 for j = 1, 2, so P is a double point for C of type A2r−1.

STOP.

7: STEP r-b) If 2r
r = 0 there is a unique λ̄r such that, setting 
̄ = (λ̄1, λ̄2, ..., λ̄r−1, λ̄r ), one

has i(C, �r

̄

, P) ≥ 2r + 1. Step 1-b1) If i(C, �r



, P) = 2r + 1 then P is a double point for
C of type A2r . STOP.
Step 1-b2) If i(C, �r



, P) ≥ 2r + 2: go to Step r + 1.

Remark 3.1 In the algorithm, the curves�r


need not to have degree r : some of the λi ’s can be

zero, or even all of them. For example, if f (x, y) = y2−x5, then�1
(λ̄1)

= �2
(λ̄1,λ̄2)

= {y = 0};
since i(C, �2

(λ̄1,λ̄2)
, P) = 5 this gives a verdict of A4 singularity (actually this is the prototype

of an A4).

Remark 3.2 The curve C is assumed to be reduced, but it can be reducible, so it can happen
that i(C, �r


̄
, P) = ∞, when�r


̄
is a component ofC . For example, let f (x, y) = y2−yx2 =
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y(y − x2). The algorithm gives that �1
(λ̄1)

is given for λ̄1 = 0, and i(C, �1
(λ̄1)

, P) = ∞; then

in the next step, looking for �2

̄
, we find two possibilities: �2

(0,0) and �2
(0,1), both yielding

i(C, �2

̄
, P) = ∞, giving a verdict of A3 singularity (tacnode) for P .

Justification of Algorithm 1 procedure
The justification relies mainly on Proposition 2.2, as we will see.

Proposition 3.3 In the Hypotheses of Algorithm 1 the following hold:
Algorithm 1 stops at Step r-a if and only if P is an A2r−1 singularity for C;
Algorithm 1 stops at Step r-b if and only if P is an A2r singularity for C.

Proof If P is an As singularity, s ∈ {2r−1, 2r}, the statement follows directly by Proposition
2.2, iv).
If the algorithm stops at the step 1 − a, λ11, λ12 give the two distinct tangents of an A1

singularity (ordinary node). If the algorithm stops at the step 1 − b, λ̄1 gives the unique
tangent �1

λ̄1
with i(C, �1

λ̄1
, P) = 3 of an ordinary cusp A2.

So now suppose r ≥ 2.
If the algorithmstops at the step r−a the singularity cannot be an A2h−1 withh < r , because in
that case, by Proposition 2.2(iv), theAlgorithm should have given two different
1,
2 at step
h−a, nor it can be an A2h since in that case we should have i(C, �r


̄
, O) = 2h+1 < 2r +1

.
On the other hand, the singularity cannot be an As , s ≥ 2r , otherwise we should have
�r


1 = �r

2, by Proposition 2.2(iv). Hence P is an A2r−1 singularity.

If the algorithm stops at the step r − b, the singularity cannot be an A2h with h < r , because
in that case we should have i(C, �r



, P) ≤ 2h + 1 < 2r + 1, nor it can be an A2h−1, h ≤ r ,

since at step h − a we should have got two different curves �h

1,�

h

2.

On the other hand, the singularity cannot be an As , s > 2r , otherwise we should have that
i(C, �r



, P) is even by Proposition 2.2(i), and not 2r + 1. Hence P is an A2r singularity. 	


4 An example of the use of Algorithm 1

Let Cn ⊂ P
n be a rational normal curve projecting on a plane curve π : Cn → C and let

Or
Q(Cn) denote the r -dimensional osculating space to Cn at the point Q ∈ Cn ; recall that

Or
Q(Cn) is the linear span in P

n of the curvilinear scheme (r + 1)Q ⊂ Cn . In [1] we stated
the lemma below without any proof, since we considered it as “common knowledge":
([1], Lemma 4.2). Let P ∈ C ⊂ P

2 be a double point on a rational curve of degree n, then:

(1) The point P is an A2m−1, 2m − 1 < n if and only if the scheme π−1(P) is given by two
distinct points Q1, Q2 ∈ Cn and m is the maximum value for which π(Om−1

Q1
(Cn)) =

π(Om−1
Q2

(Cn)) �= P
2.

(2) The point P is an A2m , 2m − 1 < n, if and only if the scheme π−1(P) is given by the
divisor 2Q ∈ Cn and m is the maximum value for which π(O2m−1

Q (Cn)) �= P
2.

When m ≥ 2, we will have that the image π(Om−1
Q1

(Cn)) = π(Om−1
Q2

(Cn)), (respectively

π(O2m−1
Q (Cn))) is TP (C), the unique tangent line to C at P .

This lemma, which luckily enough is never used in [1], is actually wrong, but it sounded
quite convincing not only for us, since neither the referee of [1] (which otherwise made a
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quite thorough job), nor several colleagues with whom we talked about it during the making
of the paper realized that it does not hold.
Here is the rationale which explains why the Lemma does not hold: assume m > 1 and
that we are in case (1) (but analogous considerations may be done in case (2)); consider the
linear spans, giving the osculating spaces: 〈mQ1〉 = Om−1

Q1
(Cn), 〈mQ2〉 = Om−1

Q2
(Cn). The

Lemma states that the projection of these two osculating spaces to the curve Cn is not the
whole of P2, so it has to be the unique tangent line t to C at P; but if this were true, the
projection X of the two curvilinear schemes mQ1, mQ2 would be contained in a line (the
tangent t), and this is not true in general, as the next example, which makes use of Algorithm
1 of Sect. 5, shows.

Example 4.1 Consider the quartic curve C given by the affine equation y2 − 2x2y + x4 +
x2y2 = 0. If we run Algorithm 1 on it, we find a unique tangent y = 0 in Step 1, a unique
osculating conic � : y = x2 in Step 2, and two distinct osculating cubics in Step 3:

D1 : y = x2 − i x3, D2 : y = x2 + i x3

Hence Algorithm 1 gives that O is an oscnode for C (an A5 double point, so here m = 3),
and C , being a quartic with an oscnode, is rational, with two branches at O approximated by
D1 and D2. Let’s denote by C4 ⊂ P

4 a rational normal curve which projets onto C .
We have i(C, Dj , O) = 7 for j = 1, 2 and i(D1, D2, O) = 3, in accord with Proposi-

tion 2.2(ii), and the length 3 curvilinear scheme X of Theorem 4.3 in [1], or of Theorem
2.1 where we take C̃ = C4, is given by D1 ∩ D2, hence it is associated to the ideal
(y − x2 − i x3, y − x2 + i x3) = (y − x2, x3). Hence X is contained in the osculating
conic � and not contained in the tangent line; but, according to Theorem 2.1, X is the pro-
jection of the curvilinear length 3 schemes 3Q1 and 3Q2 of C4 ⊂ P

4; so we conclude that
3Q1 and 3Q2 are not projected inside the tangent y = 0. 	


5 Singular points on a rational plane curve via parameterization

In [1] we expose a way to determine the nature of a singularity on a rational plane curve
C , given a parameterization of C , without using its implicit equation or the syzygies of the
parameterization (e.g. as in [7]); in this section we recall a few results from [1].

Definition 5.1 Let C ⊂ P
2 be a rational curve of degree n ≥ 3, given by a map f =

( f0, f1, f2) : P1 → C , and assume that the parameterization ( f0, f1, f2) is proper, i.e. f is
generically 1:1 and the fi ’s do not have common zeroes. Let

f j = a j0s
n + a j1s

n−1t + · · · + a jnt
n, j = 0, 1, 2

Consider the (n − k + 4) × (n + 1) matrices:

Mk =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x0 x1 . . . xk 0 0 · · · 0
0 x0 x1 · · · xk 0 · · · 0

. . .

0 · · · 0 x0 x1 · · · · · · xk
a00 a01 a02 a03 · · · · · · a0n−1 a0n
a10 a11 a12 a13 · · · · · · a1n−1 a1n
a20 a21 a22 a23 · · · · · · a2n−1 a2n

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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For 2 ≤ k ≤ n − 1, we denote by Xk ⊂ P
k the scheme defined by the (n − k + 3)-minors

of Mk .

The following Proposition (see [1], Prop. 2.2) shows how the Xk’s are related to the k-uple
points of C :

Proposition 5.2 Let C ⊂ P
2 be a rational curve of degree n ≥ 3. The schemes Xk introduced

in Definition 5.1 are either 0-dimensional or empty. Moreover:

• ∀ k, 2 ≤ k ≤ n − 1, Xk is non-empty iff there is at least a singular point on C of
multiplicity ≥ k.

• Every singular point of C yields at least a simple point of X2 and

lengthX2 =
(
n − 1

2

)

(notice that X2 is never empty since n ≥ 3).

There are several properties of the singularities of C which are quite immediate to check
using the schemes Xk (see [1], Prop. 3.1 and Prop. 4.4); we report some of them in the
following Proposition 5.3, where, if P ∈ Sing(C), δP denotes the number δP = ∑

q

(mq
2

)

where q runs over all points infinitely near P , and C2 is the conic y2 − 4xz = 0.

Proposition 5.3 Let C ⊂ P
2 be a rational curve, given by a proper parameterization

( f0, f1, f2), with fi ∈ K [s, t]n. Let C2, X2 be as defined before. Then:

• C is cuspidal if and only if Supp(X2) ⊂ C2 (in this case, the number of singular points
of C is exactly the cardinality of Supp(X2)).

• C has only ordinary singularities if and only if the scheme X2 is reduced and X2∩C2 = ∅.
• Let C have only double points as singularities and let R ∈ X2 and P ∈ Sing(C) be the

point associated to R. Then lengthR(X2) = δP .

The algorithms given in [1] describe how to use the scheme X2 in order to study double
points; in the next section we show an example of how to construct a desired curve with a
double point of type Am .

6 An example of the use of techniques of section 5

In this section, with the program CoCoA (see [3]), we build an example which illustrates
how to build a plane rational curve with a double point of a chosen type using projection
techniques, and how to use the results of section 5 to study the singularities of a rational curve,
given its parameterization. This example also gives another counterexample to Lemma 4.2
in [1].

Example 6.1 In the first part of this example we construct a rational sextic C ⊂ P
2 with an

A5 singularity P (an oscnode), and we show that it is a counterexample to [1] 4.2. In the
second part we construct the scheme X2 relative to our curve and we complete the study of
the singular locus of the curve.
Part I We use Theorem 2.1 as a guide; hence, in order to obtain an A5 singularity, we want
to view our curve as the projection of a rational normal curve C6 ⊂ P

6, with center a linear
space � ∼= P

3, onto a plane H ⊂ P
6, in such a way that two points Q1 and Q2 on C6
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have the same image P , and moreover the two curvilinear schemes 3Q1, 3Q2 on C6 have a
curvilinear scheme X ⊂ C of length three as their projection, with X not contained in a line.
The idea is the following: let Q1 = [0, 0, 0, 0, 0, 0, 1], Q2 = [1, 0, 0, 0, 0, 0, 0], and let L
be the line through them. The ideal I 3L + IC6 in K [z0, . . . , z6] defines the required curvilinear
scheme 3Q1 + 3Q2. We want to project C6 from a 3-dimensional space � into a plane H ,
choosing � in such a way that the projection π : C6 → C is generically 1:1; � does not
intersect C6 and intersects L at one point, so that π(Q1) = π(Q2); it does not intersect the
two osculating spaces O2

Qi
(C6), so that π(O2

Q1
(C6)) = π(O2

Q2
(C6)) = H ; the image of

3Q1+3Q2 is a curvilinear scheme of length 3 contained inC ; π(4Q1+4Q2) is not a degree
4 curvilinear scheme on C .
If we manage to do so, the curve C = π(C6) ⊂ H will have an A5 singularity in P = π(Qi )

by Theorem 2.1. Moreover, the image π(O2
Qi

(C6)), i = 1, 2, will not be contained in a line,
contradicting Lemma 4.2 of [1].
In the following we describe the procedure by using the program CoCoA (see [3]):

Use R::= QQ[a, b, c, d, e, f , g];
This is the ring of coordinates of P6.
IL:= Ideal(b, c, d, e, f )3;

This is the ideal of the “triple line” L through the points A = [1, 0, 0, 0, 0, 0, 0] and B =
[0, 0, 0, 0, 0, 0, 1] in P

6.
IC6 = Ideal(ac−b2, ad −bc, ae−bd, bd − c2, be− cd, ce−d2, d f − e2, de− c f , ce−

b f , a f − be, ag − b f , bg − c f , cg − d f , dg − e f , eg − f 2);
IP:= IL+ IC6;

This is the ideal I 3L + IC6 of the curvilinear scheme 3A + 3B, supported on C6.
Now we consider the space � ∼= P

3 whose ideal is (a + g, 3 f − b − d, 9e + c − d); �

intersects L in a point and does not intersect the two osculating planes O2
A(C6) (whose ideal

is (d, e, f , g)) and O2
B(C6) (whose ideal is (a, b, c, d)). We want to project with center �

on the plane with coordinates u, v, w, where u = a + g, v = 3 f − b − d, w = 9e + c − d .
Use R::= QQ[a, b, c, d, e, f , g, u, v, w];
IS:= IP+Ideal(u − a − g, v − 3 f + b + d, w − 9e − c + d);
IIS:=Saturation(IS,Ideal(a, b, c, d, e, f , g));
Elim(a..g,IIS);
Ideal(w2, vw, v2 − uw)

The projection of 3A + 3B is a scheme whose ideal (w2, vw, v2 − uw) shows that it is
supported at P = [1, 0, 0], it has length 3 (it is generated by 3 independent conics), it is
curvilinear (it is contained in a smooth conic) and is not on a line, hence we have a good
candidate for an A5 at P .
Let us check that P is not an A7, we will go through the same steps starting with the ideal
I 4L :

IL4:= Ideal(b, c, d, e, f )4;
IP4:= IL+IC6;
IS4:= IP+Ideal(u − a − g, v − 3 f + b + d, w − 9e − c + d)

IIS4:=Saturation(IS,Ideal(a, b, c, d, e, f , g));
Elim(a..g,IIS4);
Ideal(w2, 9/28v2w, 9/28v3 − 9/28uvw)

The ideal we got is not the ideal of a curvilinear scheme, since the three curves defined by
w2, 9/28v2w and 9/28v3 − 9/28uvw are not smooth at P , and it can be checked that it has
lenght 5. Hence P is not an A7 by Theorem 2.1.
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We are left to check that the projection is generically 1:1; for this it is enough to find a
smooth point of the plane curve C which comes from only one point of C6 via π . Let us
consider the point R = [1, 1, 1, 1, 1, 1, 1] ∈ C6:

Use R::= QQ[a, b, c, d, e, f , g, u, v, w];
IR:= Ideal(a − b, b − c, c − d, d − e, e − f , f − g);
IR1:= I+ Ideal(u − a − g, v − 3 f + b + d, w − 9e − c + d);
IIR1:=Saturation(I1,Ideal(a, b, c, d, e, f , g));
Elim(a..g,II1);
Ideal(v − 1/9w, u − 2/9w)

This shows that R projects to the point [1, 2, 9] ∈ C . Now we consider the (4-dimensional)
cone on � with vertex [1, 2, 9] and we intersect it with C6.

Use R::= QQ[a, b, c, d, e, f , g];
ICONO:= Ideal(9e + c − d − 27 f + 9b + 9d, 18e + 2c − 2d − 9a − 9g);
IC6 := Ideal(ac−b2, ad−bc, ae−bd, bd−c2, be−cd, ce−d2, d f −e2, de−c f , ce−

b f , a f − be, ag − b f , bg − c f , cg − d f , dg − e f , eg − f 2);
I:= IC6+ICONO;
II:=Saturation(IP,Ideal(a, b, c, d, e, f , g));
Print II;
Ideal(a − g, b − g, c − g, d − g, e − g, f − g)

Hence the cone intersects C6 only in R (simply), and so π is generically 1:1.
Part II The singularity of C at P is now known; let us complete the study of the curve C by
checkingwhat the other singularities are. Since the ideal of� is (a+g, 3 f −b−d, 9e+c−d),
the parametric equations of C are:

u = s6 + t6 ; v = −s5t + 3st5 − s3t3 ; w = 9s2t4 + s4t2 − s3t3

We want to study the scheme X2 ⊂ P
2, defined by the 7 × 7 minors of M2:

Use R::= QQ[x, y, z];
M:=Mat([[x, y, z, 0, 0, 0, 0], [0, x, y, z, 0, 0, 0], [0, 0, x, y, z, 0, 0], [0, 0, 0, x, y, z, 0],
[0, 0, 0, 0, x, y, z], [1, 0, 0, 0, 0, 0, 1], [0,−1, 0,−1, 0, 3, 0], [0, 0, 1,−1, 9, 0, 0]]);
MM:=Minors(7,M);
IX2:=Ideal(MM);

This is the ideal of the scheme X2.
Hilbert(R/IX2);

H(0) = 1
H(1) = 3
H(2) = 6
H(t) = 10 for t ≥ 3

X2 has lenght 10, as expected (C is a rational sextic).
IZ2:=Radical(IX2);

Hilbert(R/IZ2);
H(0) = 1
H(1) = 3
H(2) = 6
H(t) = 8 for t ≥ 3

X2 has support at Z2 which is made of 8 points, hence SingC is made of our A5 supported
on P plus 7 double points of type A1 or A2; to decide if they are nodes or cusps, we proceed
as follows:
ICUSP:= IX2+Ideal(y2 − 4xz);

Hilbert(R/ICUSP);
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H(0) = 1
H(1) = 3
H(2) = 5
H(3) = 7
H(4) = 4
H(t) = 0 for t ≥ 5

X2 does not intersect the conic which is the locus of points parameterizing tangent lines of
C6, hence the seven simple points are all ordinary nodes A1.
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