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Abstract
We characterize the Lie groups with finitely many connected components that are O(u)-
bilipschitz equivalent (almost quasiisometric in the sense that the sublinear functionu replaces
the additive bounds of quasiisometry) to the real hyperbolic space, or to the complex hyper-
bolic plane. The characterizations are expressed in terms of deformations of Lie algebras and
in terms of pinching of sectional curvature of left-invariant Riemannian metrics in the real
case. We also compare sublinear bilipschitz equivalence and coarse equivalence, and prove
that every coarse equivalence between the logarithmic coarse structures of geodesic spaces
is a O(log)-bilipschitz equivalence. The Lie groups characterized are exactly those whose
logarithmic coarse structure is equivalent to that of a real hyperbolic space or the complex
hyperbolic plane. Finally we point out that a conjecture made by Tyson about the conformal
dimensions of the boundaries of certain hyperbolic buildings holds conditionally to the four
exponentials conjecture.
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1 Introduction

1.1 Background

Let X and Y be metric spaces. A map φ : X → Y is a quasiisometry if there exists λ ≥ 1
and c ≥ 0 such that λ−1d(x, x ′) − c ≤ d(φ(x), φ(x ′)) ≤ λd(x, x ′) + c and for every y in
Y , d(y, φ(X)) ≤ c. Let a locally compact, compactly generated group G act continuously
co-compactly properly by isometries on a locally compact geodesic space X ; we call X a
geometric model of G. Every such G has a geometric model (e.g. Cayley graphs if it is
finitely generated, Riemannian metrics if it is connected Lie), and two geometric models of a
given G will always be equivariantly quasiisometric. Thus one can speak of quasiisometries
between compactly generated locally compact groups.

Quasiisometries arose from the interpretation by Margulis of the work of Mostow on the
rigidity of locally symmetric spaces [56]. Specifically,Margulis conjectured that a quasiisom-
etry of a higher rank symmetric space X should lie at bounded distance from an isometry,
implying Mostow rigidity for the co-compact lattices in X , but also the fact that any finitely
generated group G quasiisometric to X must surject with finite kernel onto such a uniform
lattice. This was first proved by Kleiner and Leeb using asymptotic cones, a tool formerly
introduced by Gromov, in the form recast by van den Dries and Wilkie [48]. The interplay
of quasiisometries and asymptotic cones can actually be expressed in the following way:
between geodesic metric spaces, a map is a quasiisometry if and only if it goes through any
asymptotic cone (with possibly moving observation centers); see Sect. 2.3 for a precise state-
ment. Kleiner and Leeb’s theorem is part of a more general principle which, in contrast with
Mostow rigidity, makes sense (and is stated below) for locally compact compactly generated
groups.

Theorem 1 (Many authors, see [75, Theorem 19.25] and the references there) Let G be a
compactly generated locally compact group and let X be a Riemannian symmetric space of
non-compact type. The following are equivalent:

(1) G is quasiisometric to X.
(2) X is a Riemannian geometric model for G.

Moreover, if G is a Lie group isomorphic to a closed subgroup of upper triangular real
matrices (call such groups completely solvable), then the former are equivalent to:

(3) G is isomorphic to a maximal completely solvable1 subgroup of Isom(X).

The case G finitely generated and X = H
n
R, n ≥ 3 is up to formulation due to Tukia [70]

and was among the early results motivating the first formulation of quasiisometric rigidity
by Gromov [59]. Gromov almost simultaneously proposed a vast programme of classifying
finitely generated groups and isometrically homogeneous spaces up to quasiisometry [58].
For nonsemisimple connected or nonarchimedean Lie groups and their lattices, this is far
from being achieved today.

1 Beware that the maximal solvable subgroups of Isom(X) (which is a real Lie group) are not always com-
pletely solvable; they only have a co-compactly embedded such subgroup.
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Between geodesic metric spaces, quasiisometries are exactly the coarse equivalences, that
is, they respect the bounded coarse structure described as the family of entourages

EO(1) =
{
E ⊆ X × X : ∃D > 0, sup

(x,x ′)∈E
dX (x, x ′) ≤ D

}
.

A broad interpretation of Gromov’s programme is the following: classify the coarse struc-
tures generated by compactly generated groups, and characterize those that are generated by
particular geometric models, especially the Riemannian symmetric or homogeneous spaces.
Recently, certain extensions of Gromov’s questions have been addressed where coarse sur-
jectivity is relaxed. These are the study of the rigidity of quasiisometric embeddings (see
[69] and [28] for symmetric spaces) and of the (non)-existence of coarse embeddings (see
[44] for connected Lie groups).

1.2 Main results

In this paper, we are interested in maps more general than quasiisometries. In contrast with
quasiisometries, these can still be characterized as going through asymptotic cones, though
not through asymptotic cones for any sequence of basepoints (we elaborate on [16] for
this; see Sect. 2.3 for a precise statement). The coarse surjectivity assumption is not exactly
relaxed, but adapted accordingly.

For the needs of the next definition, say that a function u : [0,+∞) → (0,+∞) is
admissible if lim supr→+∞ u(r)/r = 0 (that is, u is sublinear) and for every A ≥ 1 there
exists B < +∞ such that for all sequences (rn, sn) with 1/A ≤ inf sn/rn ≤ sup sn/rn ≤ A,
sup u(sn)/u(rn) ≤ B. Examples of admissible function include u(r) = rα logβ(r) for r ≥ 2
(and u(r) = 1 otherwise) when α ∈ (−∞, 1) and β ∈ (−∞,+∞).

Definition 1 (After2 [19]) Let u be an admissible function. A map φ : (X , oX ) → (Y , oY )

between pointed metric spaces realizes a (large-scale) O(u)-bilipschitz equivalence if there
are κ ≥ 1 and c ≥ 0 such that, for all x, x ′ ∈ X and y ∈ Y ,

−cu(|x | ∨ |x ′|) + dX (x, x ′)
κ

≤ dY (φ(x), φ(x ′)) ≤ κdX (x, x ′) + cu(|x | ∨ |x ′|) (1)

dY (y, φ(X)) ≤ cu(|y|), (2)

where |x | denotes dX (oX , x), and “∨” denotes max.

We also call o(r)-bilipschitz equivalence, or sublinear bilipschitz equivalence (abbreviated
SBE in some places), a φ such that (1) and (2) hold with some unspecified strictly sublinear
function in lieu of cu.

Quasiisometries correspond to u ≡ 1. Of particular importance in this paper is u = log.
Given an admissible function u, we consider the coarse structure on metric spaces with the
following entourages:

EO(u) =
{
E ⊆ X × X : lim sup

r→+∞
sup

(x,x ′)∈E, sup(d(oX ,x),d(oX ,x ′))≥r

dX (x, x ′)
u(|x |) < +∞

}
.

2 This is [19, Definition 2.1] with a mild difference in the definition of the class of admissible functions that
we make in order to include functions with limit 0 at ∞ (see Sect. 2 for why).
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These are quantitative refinements of the coarse structure introduced in [24]. O(u)-bilipschitz
equivalences are alwaysEO(u)-coarse equivalences.Weprove that the converse holds between
geodesic spaces when u = log:

Theorem A Assume that X and Y are geodesic. Then φ : X → Y is O(log)-bilipschitz if
and only if it is a coarse equivalence of EO(log).

This is a variant of the well-known fact that coarse equivalences between geodesic spaces
are quasiisometries, however the proof is significantly more involved.

Keeping quasiisometric rigidity and classification in mind, it is natural to ask:

Question 2 (Rigidity) Let u be as above, u ≥ 1. Which compactly generated locally compact
groups G are O(u)-bilipschitz equivalent to a given symmetric space X?

Question 3 (Classification) Given u as above, u ≥ 1, classify isometrically homogeneous
spaces up to O(u)-bilipschitz equivalence.

The following theorem was stated in the introduction of the author’s thesis. While
essentially following from the combination of [24, 38] and the coarse interpretation of o(r)-
bilipschitz equivalences, it was not extracted at first sight from the literature, so we provide
a proof here (relying on the above cited works). Recall for the statement that all the maximal
compact subgroups of a connected Lie groups are conjuguated [2].

Theorem B (After [24] and [38]) Let G and H be connected Lie groups. If there exists a
o(r)-bilipschitz equivalence φ : G → H, then

geodim(G) = geodim(H), (3)

where geomdim(G) denotes dimG/K if K is any maximal compact subgroup of G. Espe-
cially, if G and H are solvable and simply connected, then dimG = dim H.

The theorem actually holds for every o(r)-coarse equivalencesφ, see Sect. 2.5. IfG and H are
nilpotent, then geodim is the covering dimension of their asymptotic cones and Theorem B
also follows from [63].

Next, building on [16, 20] and [62] (which was already concerned with Question 3) we
formulate belowapartial answer toQuestion 2 for connectedLie groupsG and real hyperbolic
space X . While this is not made apparent in the statement, all the groups obtained are either
of Heintze or rank-one type, in the typology of [20] and [9].

Theorem C Let G be a Lie group with finitely many connected components and n ≥ 2 an
integer. The following are equivalent:

(C.1) G is O(u)-bilipschitz equivalent to H
n
R, for some sublinear admissible u.

(C.2) G is O(log)-bilipschitz equivalent to H
n
R.

(C.3) For every ε > 0, G has an n-dimensional Riemannian model with−1 ≤ K ≤ −1+ε.

Moreover, if G is completely solvable with Lie algebra g, the former conditions are equivalent
to:

(C.4) g degenerates to the (isomorphism class of a) maximal completely solvable subalgebra
g∞ of o(n, 1).

(C.5) The Lie algebra g decomposes as [g, g] ⊕ RA, where [g, g] is abelian and adA is
unipotent on [g, g].
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Here saying that g degenerates to g∞ means that the Zariski closure of the orbit of g in
the variety of Lie algebra laws contains g∞, which occurs especially if there is a continuous
(ϕt )t∈[0,+∞) in GL(g) and a linear isomorphism ψ : g → g∞ such that for every X , Y ∈ g,

lim
t→+∞ ϕ−1

t [ϕt X , ϕt Y ]g = ψ−1[ψX , ψY ]g∞ .

Theorem C combines known results. That (C.1) implies (C.3) rests on [20] and [62],
the equivalence of the last two conditions (C.4) and (C.5) is [51, Theorem 6.2] with minor
enhancement, the implication from (C.3) to (C.5) uses [64], while the fact that (C.5) implies
(C.2) is a consequence of [16]. When n = 2, Theorem C reduces to a weak form of [19,
Corollary 1.10(2)]. The statement is simpler when n = 2, since 2-dimensional homogeneous
metrics have constant curvature. It holds with the mere assumption that G be compactly
generated locally compact, and the techniques are specific, relying essentially on [11, 30].

For general connected Lie groups, the process of going from g to a less complicated g∞ so
that the simply connected G and G∞ remain O(u)-bilipschitz equivalent has an alternative
description given in [16] (recalled here in Theorem 11) which does not require degenerations.
Our formulation using degeneration is half-successful in this generality. While it also applies
well when g is nilpotent (in this case it is due to Pansu [63]), we do not know whether g∞ is
a degeneration of g in general. This will be discussed in Sect. 5.1.

The appearance of the sectional curvature pinching in characterization (C.3) might appeal
to some comments. The sphere theoremofBerger andKlingenberg implies that on a positively
curved Riemannian manifold, a pinching sufficiently close to 1 determines the homotopy
type of the (finite) universal cover. Namely, the latter must be a sphere. As demonstrated by
Gromov and Thurston, there is no counterpart for this in negative curvature as one constructs
sequences of closedmanifolds supporting negatively curvedmetrics, arbitrarily pinched close
to −1, albeit with vanishing first cohomology, hence not homotopy equivalent to any locally
symmetric space of constant negative curvature [35].

This is not even repaired if one replaces homotopy equivalence with quasiisometry, as one
constructs isometrically homogeneous manifolds with pinching > −1/4 or even arbitrarily
close to −1 (characterized in [26], see Sect. 3.1), that are not quasiisometric to H

n
R [73].

Theorem C implies the following as far as Lie groups are concerned.

Corollary D (of TheoremC) If a connectedLie groupG hasRiemannianmodelswith pinching
arbitrarily close to −1, then its sublinear Higson corona νLG is homeomorphic to that of a
real hyperbolic space.

(We recall the definition of the sublinear Higson corona in Sect. 2.5.)
Finally, we also characterize the Lie groups O(u)-bilipschitz equivalent toH

2
C. Following

[17], say that the locally compact G and H are commable if there exists a finite sequence
of homomorphisms with compact kernels and co-compact images (both directions allowed)
between G and H .

Theorem E Let G be a Lie group with finitely many connected components. The following
are equivalent:

(E.1) G is O(u)-bilipschitz equivalent to H
2
C

(E.2) G is O(log)-bilipschitz equivalent to H
2
C

(E.3) G is commable either to the semisimple SU(2, 1) or to the solvable S′ = H3 � R,
where H3 is the 3-dimensional Heisenberg group and t ∈ R acts by

t . exp(x, y, z) = exp(et x + tet y, et y, e2t z)

in a basis of infinitesimal generators X , Y , Z such that [X , Y ] = Z.
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Moreover, if G is completely solvable, the former conditions are equivalent to:

(E.4) g degenerates to the maximal completely solvable subalgebra of u(2, 1)

where g denotes the Lie algebra of G.

The restriction that G be a connected Lie group makes Theorems C and E very special
compared to the QI rigidity recalled above, and we benefit from some constraints of the
structure theory of Lie groups. Unlike Theorems C and E requires some additional technical
work, done in Sect. 4.

1.3 Other spaces

We know little even about Question 3 for higher rank symmetric spaces and other settings,
even when quasiisometric rigidity is known to hold. In the end of this paper, we summarize
the current situation for symmetric space of higher rank and Fuchsian buildings; especially
we explain why their classification is still open at the time of writing.

1.4 Organization of the paper

Section 2 is a general discussion on the theoretical status of SBE (especially, as compared to
QI). It is not concerned with Lie groups and can be read independently. Sect. 2.1 provides
some preliminaries for Sect. 2. Sections 3 and 4 establish the characterizations of Lie groups
O(u)-bilipschitz equivalent to real, resp. complex hyperbolic space, and follow a similar
scheme, so we advise to read Sect. 3 first. Most of the technical input in this paper serve
the proofs of Theorems A and E and is concentrated in Sects. 2.4 and 4.1 respectively. SBE
appears to be quite a new notion and some of the contents of this paper are rather expository
in nature, including especially Sect. 2.5 on Theorem B, Sects. 3.1 and 3.2 preparing the
proof of Theorem C, and Sect. 5.1 on general connected Lie groups. Sections 5.2 and 5.3
gather a collection of independent remarks. Finally, a certain amount of actual Lie algebra
cohomology computations (for trivial and adjoint modules) are required in particular in
Lemma 6 and Example 5; we summarize these in Appendix A.

Convention, notation

When G, H , . . . are simply connected Lie groups, then g, h, . . . denote their Lie algebra. We
often consider semi-direct products of the form N � R or n ⊕ R; we then write N �α R or
n �α R meaning that the Lie algebra representation ρ : R → Der(n) (and not the Lie group
representation) is determined by 1 
→ α. If V is a module and n a nonnegative integer, we
denote by ΛnV its n-fold exterior product and by ΛnV ∗ the n-fold exterior product of its
dual. If g is a Lie (sub)algebra, Vect(g) will denote its underlying vector (sub)space. (This
is useful to avoid confusions because we may sometimes consider several Lie brackets on a
given space.)

2 Coarse geometry and Theorems A and B

This §motivates sublinear bilipschitz equivalence (defined in Sect. 1) by comparing it to
the more standard notions of quasiisometry and coarse equivalence. This comparison will
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be made through the relations that sublinear bilipschitz equivalence enjoys with asymptotic
cones and certain coarse structures. The relation to asymptotic cones is the reason why they
were introduced by Cornulier in the first place, in [15] and then more explicitly3 in [16, 19]
(See Sect. 2.3.1 for precisely why). In the end of this section, we show that the geometric
dimension of connected Lie groups is a SBE invariant.

2.1 Preliminaries

Definition 2 (Coarse equivalence and quasiisometry) Let X and Y be two metric spaces. A
map φ : X → Y is a (uniform) coarse embedding if there exists two proper functions ρ− and
ρ+ : [0,+∞) → [0,+∞) such that for every x, x ′ ∈ X

ρ−(dX (x, x ′)) ≤ dY (φ(x), φ(x ′)) ≤ ρ+(dX (x, x ′)). (4)

The map φ is a coarse equivalence if moreover, there exists a coarse embedding ψ : Y → X
and a constant R ≥ 0 such that for all x ∈ X , dX (ψ ◦φ(x), x) ≤ R and for all y ∈ Y , dY (φ ◦
ψ(y), y) ≤ R; we call g a coarse inverse. φ is a (κ, c)-quasiisometric embedding if ρ− and
ρ+ can be taken affine in (4), namely ρ±(r) = κ±1r±c. If in addition φ a coarse equivalence,
φ is called a quasiisometry and any coarse inverse g is also a quasiisometry ; equivalently a
quasiisometry is a quasiisometric embedding φ such that supy∈Y dY (y, φ(X)) < +∞. We

may define a quasiisometry only on a net, that is, a closed subspace X (0) ⊆ X such that
supx∈X d(x, X (0)) < +∞.

Proposition 1 (See e.g. [57, 3.B.9]) If X and Y are two geodesic metric spaces, then any
coarse equivalence φ : X → Y is a quasiisometry.

Proposition 2 Let G be a compactly generated locally compact group. Then

(1) If G acts continuously, properly cocompactly by isometries on the locally compact
geodesic spaces X and Y , then there exists a quasiisometry φ : X → Y such that

sup
(g,x)∈G×X

dY (φ(g.x), g.φ(x)) < +∞.

(2) There exists X locally compact geodesic metric space and an isometric proper co-
compact continuous action by isometries of G on X.

(1) is a consequence of [57, Theorem 4.C.5]. For (2), see [9, Proposition 2.1]. In this
paper we call X and Y as in the previous Proposition geometric models for G.

2.2 Admissible sublinear functions

Definition 3 Call u : [0,+∞) → (0,+∞) admissible if lim supr→+∞ u(r)/r = 0 and for
every A ≥ 1 there exists B < +∞ (only depending on A) such that for all sequences (rn, sn)
with rn → +∞ and 1/A < inf sn/rn ≤ sup sn/rn < A, one has

1/B ≤ lim inf
u(sn)

u(rn)
≤ lim sup

u(sn)

u(rn)
≤ B. (5)

3 We shouldwarn the reader about terminology: theywere called “cone bilipschitz” in [16] and “asymptotically
bilipschitz” in [14].
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Lemma 1 Let u : [0,+∞) → (0,+∞) be a sublinear function. If u is nondecreasing and
lim sup u(2r)/u(r) < +∞, resp. if u is nonincreasing and lim inf u(2r)/u(r) > 0, then u is
admissible.

Proof Let us consider only the case where u is nondecreasing, the proof going the same
way. Let A > 1 and (rn, sn) be such that rn → +∞ and {sn/rn} ∈ [1/A, A]. Set β =
lim sup u(2r)/u(r). Since u(sn)/u(rn) ≤ 1 when sn ≤ rn , one has

lim sup
u(sn)

u(rn)
= sup

(
1, lim sup

n:sn≥rn

u(sn)

u(rn)

)
≤ β�log2 A�.

This is the inequality on the right in (5) with B = β�log2 A�. The left inequality is obtained
by reversing rn and sn . ��

The usefulness of Lemma 1 may not be obvious. Let us give two motivations. The first
is that it ensures that the functions u considered in [19, Definition 2.4] are admissible in
our sense. The second is that, while Definition 3 allows a unified treatment for sublinear
functions u with u(r) → +∞ or u(r) → 0 and is sufficient for our purposes in Sects. 2.3
and 2.4, it appears that it is often easier to argue and prove the main statement of this section
with monotonic functions u.

The above notion of admissible function resembles the much-studied class of (not nec-
essarily sublinear) regularly varying function in real analysis, but we found no implication
between the two without further assumptions.

2.3 Going through cones

Let (σn) be a sequence of positive real numbers. For (xn), (x ′
n) ∈ XN, denote (xn) ∼σn (x ′

n)

if sup d(xn, x ′
n)/σn < +∞ and (xn) ≈σn (x ′

n) if

lim sup d(xn, x
′
n)/σn = 0.

Let Precone(X , xn, σn) denote the ∼σn equivalence class of (xn).

Definition 4 (Cone and pointed cone) Let X , (xn) and (σn) be as above. Given a nonprincipal
ultrafilter ω on N, define Coneω(X , xn, σn) as follows: for any pair of sequences (x ′

n) and
(x ′′

n ) in Precone(X , xn, σn), define d̂ω((x ′
n), (x

′′
n )) = limn→ω d(x ′

n, x
′′
n )/σn . If d̂ω((x ′

n), (x
′′
n ))

is zero, identify (x ′
n) and (x ′′

n ), and for any sequence (x ′′′
n ) in Precone(X , xn, σn), denote by

[x ′′′
n ] the equivalence class of (x ′′′

n ). Equip the quotient space Coneω(X , xn, σn) with the
function dω by setting dω([x ′

n], [x ′′
n ]) = d̂ω((x ′

n), (x
′′
n )); this is a distance function (see e.g.

[53]).
Further, if σn → +∞, denote by Cone•

ω(X , σn) the metric space obtained by fixing a
basepoint and taking xn equal to the basepoint for all n in the previous definition. This does
not depend on the basepoint.

Remark 1 When σn → 0 and (xn) is a constant sequence, the space

Coneω(X , xn, σn).

is more commonly referred to as a metric tangent. However because our emphasis is on
large-scale geometry and moving basepoints, and because the distinction would be artificial
here, we denote both by the same name.
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Fig. 1 Sketch view of the four Riemannian planes of Example 4 with U(1) symmetry

Table 1 Various cones on the Riemannian planes Pi from Example 4. We provide the cones as pointed
metric spaces (on the second line they do not depend on σn as soon as it goes to +∞). Here C denotes
{z ∈ C : �z ≥ 0}/(x ∼ −x) with the distance induced from the absolute value

Coneω(P1) Coneω(P2) Coneω(P3) Coneω(P4)

bounded xn , σn ≡ 1 (P1, xω) (P2, xω) (P3, xω) (P4, xω)

bounded xn , σn → +∞ R≥0 R≥0 R≥0 (C, 0)

bounded xn , σn → 0 E2 E2 E2 E2

|xn | = n, σn = 1/n S1 × R E2 E2 E2

|xn | = n, σn = 1 R S1 × R E2 E2

|xn | = n, σn = n R≥−1 R≥−1 R≥−1 (C, i)

|xn | = en , σn = 1/n R E2 E2 E2

|xn | = en , σn = 1 R S1 × R E2 E2

|xn | = en , σn = n R R S1 × R E2

|xn | = en , σn = n2 R R R E2

Though ourmain interest is in homogeneous spaces, it is useful towork out some examples
of asymptotic cones of nonhomogeneous spaces in order to appreciate the difference between
quasiisometry and O(u)-bilipschitz equivalence.

Examples 4 For i ∈ {1, . . . , 4} let Pi be a Riemannian plane with metric ds2 = dr2 +
Ai (r)2dθ2, where A1(r) = 1/r , A2(r) = 1, A3(r) = log r and A4(r) = r/2 for r large
enough. See some sketches of Pi on Fig. 1, and various cones on Table 1.

Proposition 3 (Characterizing quasiisometries I) Let X and Y be geodesic metric spaces,
and let φ : X → Y . Then, φ is a quasiisometry if and only if for every (σn) such that
limn σn = +∞, it holds:

∀(xn) ∈ XN,∀(x ′
n) ∈ XN, (xn) ∼σn (x ′

n) �⇒ φ(xn) ∼σn φ(x ′
n) (Iσ )

∀(xn) ∈ XN,∀(x ′
n) ∈ XN, φ(xn) ≈σ φ(x ′

n) �⇒ (xn) ≈σ (x ′
n) (IIσ )

∀(yn) ∈ YN ∃(xn) ∈ XN : φ(xn) ∼σn yn (IIIσ )
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and then, given any such σn, for all pair (xn) ∈ XN and (yn) ∈ YN, either
φ(Precone(X , xn, σn)) ∩ Precone(Y , yn, σn) is empty or for every ω ∈ βN \N, φ induces a
bilipschitz homeomorphism

Coneω(φ, xn, yn, σn) : Coneω(X , xn, σn) → Coneω(Y , yn, σn) (Cone)

whose bilipschitz constant only depends on φ.

Proof Assume that φ is not a quasiisometry. Especially it is not a coarse equivalence, which
means that there exists a sequence of positive numbers (ρn) where ρn → +∞ as n → +∞,
such that at least one of the following is true:

1. φ is not a coarse embedding: there exists an integer M ≥ 0 and sequences of points
(xn, x ′

n) in X such that

a. either d(xn, x ′
n) ≤ M and d(φ(xn), φ(x ′

n)) ≥ ρn
b. or d(xn, x ′

n) ≥ ρn and d(φ(xn), φ(x ′
n)) ≤ M ,

or
2. φ is not coarsely surjective: there exists a sequence of points (yn) in YN such that

d(yn, φ(X)) ≥ ρn .

In case 1a, (xn) ∼
ρ
1/2
n

(x ′
n) whereas (φ(xn)) �

ρ
1/2
n

(φ(x ′
n)), contradicting (Iσ ) for σn =

ρ
1/2
n . In case 1b, note that φ(xn) ≈ρn φ(x ′

n), while xn ∼ρn x ′
n does not hold, contradicting

(IIσ ) with σ = ρ. If 2 holds, then (IIIσ ) does not hold with σn = ρ
1/2
n .

Conversely, assume that φ is a (κ, c)-quasiisometry. Then xn ∼σn yn means that
dX (xn, yn) ≤ Cσn for some C ≥ 0, so that dY (φ(xn), φ(yn)) ≤ κCσn + c ≤ (κC + 1)σn
for n > sup{m : σm ≤ c}. This proves (Iσ ); the proof of (IIσ ) goes the same way using the
left inequality in (4) with ρ−(r) = κ−1r − c.

Finally, if φ is a quasiisometry, then for every parameters (xn), (yn), (σn) as above with
σn → +∞, φ (Precone(X , xn, σn)) ∩ Precone(Y , yn, σn) is equal to{

∅ if yn � φ(xn)

Precone(Y , yn, σn) if yn ∼ φ(xn)

and in the latter case, for every ω ∈ βN \ N, Coneω(φ, xn, σn) is a bilipschitz homeomor-
phism, with bilipschitz constant κ independent of ω. ��
Proposition 4 (Characterizing quasiisometries, II) Let X and Y be geodesic metric spaces
and φ : X → Y . If for all (xn, yn) ∈ XN ×YN and (σn) a sequence of positive numbers with
limit +∞, either

φ(Precone(X , xn, σn)) ∩ Precone(Y , yn, σn) = ∅
or Coneω(φ) is well-defined and a bilipschitz homeomorphism for all ω, then φ is a quasi-
isometry.

Proof The first hypothesis implies, for every σ , the conditions (Iσ ) and (IIσ ) of Proposition 3
for φ (where the injectivity of the coned map implies (IIσ )). Similarly, the second hypothesis
implies, for every σ , (Iσ ), (IIσ ) and (IIIσ ). ��

The characterization given by Proposition 4 may be summarized as follows: a quasi-
isometry is a map between metric spaces which, when photographed between any pair of
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asymptotic cones with equal scaling factors, is either completely undefined or induces a
bilipschitz homeomorphism.

As mentionned in the introduction, o(r)-bilipschitz equivalences are the maps inducing
bilipschitz homeomorphisms between asymptotic cones with fixed basepoints. This is less
demanding than the previous characterization. We recall Cornulier’s characterization below.

Proposition 5 (Cornulier) Let X and Y be pointed metric spaces. Denote by | · | the distance
to the basepoint in X and in Y . Let φ : X → Y . The following are equivalent:

(5.1) φ is o(r)-bilipschitz, i.e. There exists κ ≥ 1 and v : R≥0 → R≥0 with limr+∞ v(r)/r =
0 and for every (x, x ′) ∈ X and y ∈ Y ,

−v(|x | ∨ |x ′|) + 1

κ
dX (x, x ′) ≤ dY (φ(x), φ(x ′))

≤ κdX (x, x ′) + v(|x | ∨ |x ′|)
dY (y, φ(x)) ≤ v(|y|),

(5.2) For every sequence (σn) of positive real numbers with σn → +∞, there is a well-
defined, bilipschitz homeomorphism

Cone•
ω(φ, σn) : Cone•

ω(X , σn) → Cone•
ω(Y , σn) (Cone•)

where we recall thatCone• denotes the asymptotic cone with observation centers fixed
at basepoint according to Definition 4.

Proof This results from the combination of [16, Propositions 2.4, 2.5, 2.9, 2.12 and 2.13].
There is no sequence σn in Cornulier’s statement, however the formulations are easily seen
to be equivalent to ours. ��

In this way, the groupoids of quasiisometries and o(r)-bilipschitz equivalences respec-
tively are the largest groupoids over metric spaces so that the parametrized family of functors
Cone and Cone• respectively are well defined to the groupoid of metric spaces with bilips-
chitz homeomorphism. Note that when characterizing quasiisometries in Proposition 3, we
only assumed that φ has to be well defined at the level of asymptotic cones, and then the
bilipschitzness of every Cone(φ) came for free, with a common bilipschitz constant.

On the other hand, it is explicitely required in Proposition 5 that the map be bilipschitz
through asymptotic cones. There is indeed a strictly larger groupoid, that of isomorphisms
in the category of cone-defined maps in Cornulier’s terminology, whose pictures through
Cone• only have nonzero and finite local lipschitz and expansion constant at basepoint; see
[16, Sect. 2.2] for characterizations of this category.

Let us state a refinement of (5.1) �⇒ (5.2) in the last Proposition.

Proposition 6 Let X and Y be metric spaces. Let φ : X → Y and assume that (5.1) holds
for some κ and v, where v is admissible (Definition 3). Then for every sequence (σn) of
positive real numbers and for every (xn) ∈ XN such that lim sup v(|xn |)/σn = 0, φ induces
a bilipschitz homeomorphism

Coneω(φ, xn, σn) : Coneω(X , xn, σn) → Coneω(Y , φ(xn), σn) (Cone)

Proof This conveniently follows from [53], by setting for any ρ > 0, Xn = B(xn, ρσn),
tn = v((1 + ρ)|xn |) and φn = φ|Xn . Since t/σ is infinitesimal, by [53, Lemma 1.16] the
sequence φn defines φω between the ultralimits of the spaces Xn/σn , namely, the ball of radii
ρ in the asymptotic cones. ��
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In Proposition 6 the assumption that v be admissible is necessary. Otherwise tn may not be
negligible when compared to σn , which is necessary assumption so that the sequence tn/σn
defines an infinitesimal number in the real field

∏
ω R for every ultrafilter ω.

As an application, we can now distinguish the nonhomogeneous spaces from Examples 4:

– None of P1, P2, P3 is o(r)-bilipschitz to P4 since dim Cone•
ω(Pi ) is 1 for i = 1, 2, 3 and

2 for i = 4.
– P2 and P3 are O(log)-bilipschitz through the identity map in polar coordinates, but they

are not O(log1−ε)-bilipschitz equivalent for any ε > 0, since dim Coneω(P2, xn, n) = 1
and dim Coneω(P3, xn, n) = 2 if |xn | = en (See Table 1) and log(en)1−ε � n.

– P1 and P2 are quasiisometric; however they are not O(u)-bilipschitz equivalent for u →
0.

2.3.1 On cone dimension

Wehave seen that the covering dimension of (moving) cones is an efficient tool to discriminate
between the Examples 4 up to quasiisometry or O(u)-bilipschitz equivalence. When X is co-
boundedly actedupon, however (which is one case of interest for geometric group theorists) all
its asymptotic cones are isometric once the ultrafilter is fixed. Hence, computing dim Coneω

for fixed ω will provide the same information with respect to QI or SBE.
Beyond geometric models of polynomially growing groups G, it should not be expected

that different ultrafilters will yield isometric or even just homeomorphic asymptotic cones;
an extensive litterature and even the notion of lacunary hyperbolic group on its own have
been built over this distinction ([31, 50, 68]). If G is a simply connected, completely solvable
Lie group with a completely solvable g, nevertheless, then for every geometric model X ,
ω ∈ βN \ N and σn with limσn = +∞,

dim Cone•
ω(X , σn) = dimGnil (conedim)

where Gnil is the largest nilpotent quotient of G [15]. Following Cornulier we denote this
integer conedim. This is the first, and perhaps the most natural numerical SBE invariant.

In the special case when G is nilpotent, (conedim) follows from the earlier construction
of Pansu, which can be formulated in terms of Gromov-Hausdorff convergence with no
reference to a ultrafilter [63]. Beware that this limit is not functorial, however.

When no homogeneity assumption is made, the dimension of the asymptotic cone (even
with fixed basepoint) depends not only on the ultrafilter but also on the scaling sequence.
One encounters four-dimensional complete Riemannian spaces with positive Ricci curvature
and SU(2) symmetry, for which the covering dimension of the asymptotic cones can be 2 or
4 depending on how one chooses the scaling factors [42]. These cones are genuine rescaled
Gromov-Hausdorff limits, obtained without passing to a subsequence and thus do not depend
on the ultrafilter.

2.4 Coarse structures

In the 1930s, Weil abstracted the notion of a uniform structure from the topology of locally
compact groups. Coarse structures are large-scale counterparts of uniform structures; they
were introduced by Roe in the 1990s. We recall below the definition of a coarse space.

Let X be a set. The square X × X is a groupoid for the composition law (x0, x1) ◦
(x1, x2) = (x0, x2) and (x0, x1)−1 = (x1, x0) for x0, x1, x2 ∈ X . For E, F ⊆ X × X , define
E ◦ F = {e ◦ f : e ∈ E, f ∈ F} and E−1 = {e−1 : e ∈ E}.
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Definition 5 ([66, Definition 2.3]) A collection E ⊆ P(X × X) is called a coarse structure if
it contains the diagonal ΔX×X , is stable by composition, inverse, taking subsets, and taking
finite unions; the subsets E ∈ E are called entourages.

A coarse structure E is called monogenic if it is generated by a single entourage, that is
if there exists E ∈ E such that E is smallest among all coarse structures containing E . Note
that this notion has no analog among uniform structures.

Definition 6 (Coarse equivalence) Given two coarse spaces (X , EX ) and (Y , EY ) and a map
φ : X → Y , we say that φ is coarse if

(6.a) for all B ⊆ Y , B × B ∈ EY �⇒ φ−1(B) × φ−1(B) ∈ EX and
(6.b) for all E ∈ EX , (φ × φ)(E) ∈ EY , where φ × φ(x, y) = (φ(x), φ(y)).

A pair of coarse maps {φ : X → Y , ψ : Y → X} realizes a coarse equivalence if the graphs
of φ ◦ ψ and ψ ◦ φ are both contained in entourages of the coarse structures.

Proposition 7 (O(u)-coarse structure, o(v)-coarse structure) Let u : [0,+∞) → (0,+∞)

be a an admissible function, let v be either an admissible function or v(r) = r , and let
(X , dX ) be a metric space. Given some o ∈ X, define

EO(u) =
{
E ⊆ X × X : ∃M, lim sup

(x,x ′)∈E
dX (x, x ′)
u(|x |) ≤ M

}
(6)

Eo(v) =
{
E ⊆ X × X : lim sup

(x,x ′)∈E
dX (x, x ′)

v(|x |) = 0

}
(7)

where |x | = dX (o, x) and lim sup are taken as (x, x ′) evades every bounded set fixed in
advance (for the sup distance in X × X). EO(u) and Eo(v) define coarse structures on X.

The bounded coarse structure is EO(1)
X , and the coarse equivalences between metric spaces

equippedwith EO(1)
X are the coarse equivalences as defined in (4).Wright’s c0 coarse structure

is Eo(1) [71, Definition 1.1]. Dranishnikov and Smith’s sublinear coarse structure is Eo(r) (See
Sect. 2.5) [24] (Fig. 2).

Proof We need to check Roe’s axioms. In view of (6) and (7) it is clear that EO(u)
X and Eo(v)

X
are closed under finite union and taking subsets. Possibly left nonobvious is the stability
when taking inverses and composing.

Inverses. Fix a basepoint o and take a sequence xn, x ′
n such that sup(|xn |, |x ′

n |) → +∞,
with dX (xn, x ′

n) ≤ Ku(|xn |) for some K ≥ 0 when n is large enough, resp. dX (xn, x ′
n) ≤

Fig. 2 Some entourages of the O(u)-coarse structure on the half real line X = [0, +∞), with u(r) =√
r , u(r) = 1 and u(r) = 1/r
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knv(|xn |) where kn → 0. We need to prove that dX (xn, x ′
n) ≤ Lu(|x ′

n|) for some L ≥ 0,
resp. dX (xn, x ′

n) ≤ �nv(|x ′
n |) for some L ≥ 0 when n is large enough.

We claim that

0 < lim inf
|x ′

n |
|xn | ≤ lim sup

|x ′
n |

|xn | < +∞. (8)

Indeed, if it were not the case there would be a sequence Rn such that for arbitrarily large
values of D, either for arbitrarily large n, |xn | ≤ Rn ≤ DRn ≤ |x ′

n | or for arbitrarily large n,
|x ′

n | ≤ Rn ≤ DRn ≤ |xn |. In the first case, along a sub-sequence, by the triangle inequality
|x ′

n | ≤ Rn + Ku(Rn) (where we may replace u by v and K by some kn0 if necessary)
contradicting the hypothesis that |x ′

n | ≥ DRn for n large enough (observe that |x ′
n | → +∞

along that sub-sequence). In the second case, again by the triangle inequality one would have
Rn ≥ |xn |−Ku(|xn|) (or |xn |−kn0 |xn | if necessary); but the right-hand side can be assumed
greater than |xn |/2 for n large enough if D is set large enough; this is a contradiction. Now
from (8) and the property that u, resp. v is admissible, we obtain that also

0 < lim inf
|u(x ′

n)|
|u(xn)| ≤ lim sup

|u(x ′
n)|

|u(xn)| < +∞
(resp. the same with v replacing u), which provides the requested constant L (resp. �n) as
a function of K (resp. of kn) and u, resp. v. At this point it is useful to record that we can
rewrite E in a more symmetric way:

EO(u)
X ={E ⊆ X × X :

∃r > 0, sup
(x,x ′)∈E\Br (o)×Br (o)

dX (x, x ′)/(u(|x |) + u(|x ′|)) < +∞
}

.

Composition. Start assuming u is nondecreasing; we will explain how to adapt the proof
in case it is not the case in the end (this philosophy was alluded to after Lemma 1). For every
K , r ≥ 0, introduce

Er
K (X , o) = {(x, x ′) : inf(|x |, |x ′|) ≥ r , dX (x, x ′) ≤ K (u(|x | + |x ′|))} .

We need to prove that for every K , L there are r , s, t and η(K , L) such that

Es
L ◦ Er

K ⊆ Et
η(K ,L). (9)

Let (x, x ′′) ∈ EL ◦ EK . By definition, there exists x ′ ∈ X such that dX (x, x ′) ≤ K (u(|x |) +
u(|x ′|)) and dX (x ′, x ′′) ≤ L(u(|x ′|) + u(|x ′′|)).
Set a radius R = sup {r ≥ 0 : u(r) > r/(2K + 1)}. We claim that

u(|x ′|) ≤ sup(u(3R), u(3|x |)). (10)

To prove (10) we proceed by exhausting all the case arising from the comparison of |x | and
|x ′| with R.

First, note that either |x ′| ≤ R, or |x ′| > R and then u(|x ′|) ≤ |x ′|
2K+1 . In the second case,

by the triangle inequality

|x ′| ≤ |x | + Ku(|x |) + Ku(|x ′|) ≤ |x | + Ku(|x |) + |x ′|
2

,

so that |x ′| ≤ 2|x | + 2Ku(|x |). So we always have |x ′| ≤ sup(R, 2|x | + 2Ku(|x |)). Since u
has been assumed nondecreasing,

u(|x ′|) ≤ sup(u(R), u(2|x | + 2Ku(|x |))).
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Now, either |x | ≤ R, in which case u(|x ′|) ≤ sup(u(R), u(3|x |) and (10) holds, or |x | > R
and then 2Ku(|x |) ≤ |x |, so u(|x ′|) ≤ K sup(u(3R), u(3|x |)): (10) holds as well. We can
now finish the proof using the claim. By the triangle inequality,

dX (x, x ′′) ≤ Ku(|x |) + (K + L)u(|x ′|) + Lu(|x ′′|)
≤ (K + L)

[
u(|x |) + sup(u(3R), u(3|x |) + u(|x ′′|)]

so we may set η(K , L) = 2(K + L) lim supr→+∞ u(3r)/u(r); then for r large enough and
arbitrary s, (9) holds.

We now return to the general case when u is not assumed non-decreasing. If |x ′| ≤ R
then there is a uniform bound on |x |. If |x ′| > R then by the triangle inequality,

|x ′| ≥ |x | − Ku(|x |) − Ku(|x ′|) ≥ |x | − |x ′|
2

− Ku(|x |),
so that |x ′| ≥ 2|x |/3− 2Ku(|x |)/3. As soon as |x | ≥ R, |x ′| ≥ |x |/3. Using the assumption
that u is admissible, then, u(|x ′|) ≤ Bu(|x |) for some B ≥ 1. Using the same line of
reasonning as before, this implies (9) with η(K , L) = B(K + L). ��
Proposition 8 Let X and Y be metric spaces. The following statements hold:

(1) Let u : [0,+∞) → (0,+∞) be an admissible function. Let φ : X → Y be a
O(u)-bilipschitz equivalence. Then φ induces a coarse equivalence (X , dX , EO(u)) →
(Y , dY , EO(u)).

(2) Let φ : X → Y be a o(r)-bilipschitz equivalence. Then φ induces a coarse equivalence
(X , dX , Eo(r)) → (Y , dY , Eo(r)).

Proof Let us prove (1) first. Let (xn, x ′
n) be sequences of points with d(xn, x ′

n) ≤ Mu(|xn |)
and |xn | → +∞. Then, for n large enough, |x ′

n | ≤ 2|xn |. Hence
d(φ(xn), φ(x ′

n)) ≤ κMu(|xn |) + cu(|xn | ∨ |x ′
n |) ≤ C(κM + c)u(|xn |)

for some C ≥ 1. But also, for n large enough,

|φ(xn)| ≥ |xn |/(2κ). (11)

So there exists a constant C ′ so that d(φ(xn), φ(x ′
n)) ≤ C ′u(|φ(xn)|). On the other hand, φ

has axiom (6.a) by (11). This proves that φ is a coarse map. φ has a coarse inverse φ̃ such
that d(φ̃ ◦ φ(x), x) ≤ c′u(|x |) + c′ for all and x ∈ X and d(φ ◦ φ̃(y), y) ≤ c′u(|y|) + c′
for all y ∈ Y [19, Proposition 2.4]. So φ is a coarse equivalence from (X , dX , EO(u)) to
(Y , dY , EO(u)).

Now let us turn to (2). Let φ : X → Y be a o(r)-bilipschitz equivalence; this means that
there exists a function v and a constant κ ≥ 1 such that v(r) = o(r) and

−v(|x | ∨ |x ′|) + d(x, x ′)
κ

≤ d(φ(x), φ(x ′)) ≤ κd(x, x ′) + v(|x | ∨ |x ′|)
and d(y, φ(X)) ≤ v(|y|) for all x, x ′ ∈ X and y ∈ Y . Let (xn), (x ′

n) be such that |xn | → +∞
and d(xn, x ′

n)/|xn | → 0 as n → +∞. Fix ε ∈ (0, 1). For n large enough, v(2|xn |) ≤ ε
2κ |xn |,

d(xn, x ′
n) ≤ ε|xn |

2κ2
, and |φ(xn)| ≥ |xn |/2κ (as in (11) in the previous case) so that

d(φ(xn), φ(x ′
n)) ≤ κd(xn, x

′
n) + v(2|xn |)

≤ ε

2κ
|xn | + ε

2κ
|xn | ≤ 2ε|φ(xn)|.
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Hence, φ is a coarse map. Again, by [19, Proposition 2.4] there is φ̃ : Y → X and a positive
constant c′ such that d(φ̃ ◦ φ(x), x) ≤ v(|x |) + c′ and d(φ ◦ φ̃(y), y) ≤ v(|y|) + c′ for all
x ∈ X and y ∈ Y . So φ is a coarse equivalence from (X , dX , Eo(r)) to (Y , dY , Eo(r)). ��
Lemma 2 Assume that (X , dX ) is a geodesic metric space. Let u be admissible and
unbounded. Then Eu = {

(x, x ′) ∈ X × X : dX (x, x ′) ≤ 1 + u(|x | + |x ′|)} is a symmetric
entourage generating EO(u) on X. Define d̂X on X such that

d̂(x, x ′) = inf
{
n : (x, x ′) ∈ En

u

}
.

Then, the identity map
(
X , dX , EO(u)

)→ (
X , d̂X , EO(1)

)
is a coarse equivalence.

Proof Let us check first that Eu generates E . Take E ∈ EO(u); then by definition

sup
(x,x ′)∈E

dX (x, x ′)
1 + u(|x |) + u(|x ′|) = M < +∞.

For all (x, x ′), and for every segment γ : [0, dX (x, x ′)] → X and set x1 = γ (1 +
u(|x |)), x2 = γ (2 + u(|x |) + u(|x1|)), . . .. Let

Nγ (x, x ′) = inf
{
n : n + u(|x |) + · · · + u(|xn |) > dX (x, x ′)

}
.

We claim that sup(x,x ′)∈E infγ N < +∞. Indeed, if x and x ′ are far enough there exists some
constant μ > 0 such that u(|xk |) ≥ μu(|x |) as long as |xk | ≥ |x |/2, especially as long as
k+u(|x |)+· · ·+u(|xk |) ≤ |x |/2. So either N (x, x ′) ≤ �M/μ�or N+u(|x |)+· · ·+u(|xN |) >

|x |/2. But in the latter case,

M(1 + u(|x |) + u(|x ′|)) ≥ dX (x, x ′) >
|x |
2

− 1 − u(|xN |) (12)

where we used the definition of N on the right. To reach a contradiction, note that again
by the definition of N , d(xN , x ′) < 1 + u(|xN |), so there exists L such that d(xN , x ′) ≤
1 + Lu(|x ′|), reproducing the reasoning in the “Inverse” part of the proof of Proposition 7.
Hence, there exists some constant M ′ such that if x ′ is far enough, u(|xN |) ≤ M ′u(|x ′|).
Plugging this in (12) yields an inequality of the form u(|x ′|)+u(|x |) ≥ ρ|x | for some ρ > 0,
which can only occur if |x | is close to the origin. We conclude that E ⊆ ENmax

u , where
Nmax = sup(x,x ′)∈E infγ N is a finite integer.

This proves that (X , dX , EO(u)) → (X , d̂X , EO(1)) has the axiom (6.b) of a coarse map.
In order to check (6.a) we must prove that if B × B is in EO(u) then B is bounded; fixing
x ∈ B, by (6), for any sequence x ′

n that escape to infinity x ′
n cannot stay in any entourage

of EO(u) fixed in advance. Conversely, if B is bounded then B × B is in EO(u), while axiom
(6.b) holds for (X , d̂X , EO(1)) → (X , dX , EO(u)) by definition of d̂. ��

The new distance d̂X may be made geodesic as well, by adding metric edges between
pairs of point at distance 1. Note however that one may lose properness in this process.

If (X , d) has an isometric group action, this group action will not be an isometric group
action for (X , d̂X ). In fact the main interest of d̂X is theoretical, and appears in the next
Proposition.

Say that a map φ : X → Y between pointed metric spaces is radial if there exists κ ≥ 1
and R, R′ ≥ 0 such that for all x ∈ X ,

1

2κ
sup(R, |x |) ≤ sup(R′, |φ(x)|)| ≤ 2κ sup(R, |x |). (13)
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Also, call discrete geodesic between x and x ′ at distance n in X a finite sequence of points
xi with x = x0, xn = x ′ and d(xi , xi+1) = 1.

Proposition 9 Let X and Y be geodesicmetric spaces, and letφ : X → Y be a O(log)-coarse
equivalence. Then

(1) φ is radial.
(2) φ is a O(log)-bilipschitz equivalence.

We need a preliminary Lemma.

Lemma 3 Let t and s be positive real numbers. Then for every M > 0, there exists R ≥ 1
and M ′ > 0 such that {

t
log t ≤ M s

log s

inf(s, t) ≥ R
�⇒ t ≤ M ′s

Proof We will prove first a weaker inequality and then self-improve it. Taking logarithms on
both sides we get log t − log log t ≤ logM + log s− log log s, so for every ε > 0 one has, for
s and t large enough, (1 − ε/2) log t ≤ (1 + ε/2) log s, and then t ≤ s1+ε. Now, assume by
contradiction that there is a sequence (sn, tn) with tn/ log tn ≤ Msn/ log sn , but qn = tn/sn
going to infinity. Then tn/ log tn = tn/(log sn + log qn); but we know that log qn ≤ ε log sn ;
so tn/ log sn ≤ M ′sn/ log sn for some M ′, reaching the desired inequality. ��
Proof (Proof of the Proposition 9) Consider the metrics d̂X and d̂Y provided by Lemma 2 on
X and Y . Then φ : (X , d̂X ) → (Y , d̂Y ) becomes a O(1)-coarse equivalence. Since d̂X and
d̂Y are geodesic, φ is a d̂-quasiisometry, especially it is d̂-radial.

Now, we need to compare d̂ and d . Start with (1); for this we need to compare |x | and
d̂(0, x) for all x ∈ X . Let (xn) be a discrete d̂-geodesic segment from o (we do not specify
an endpoint yet). We claim that |xn | ≤ 2n log n + 2n for n > 0. Let us proceed by induction
on n. This holds for n = 1. Assume it holds for some n > 0. Then,

|xn+1| = |xn | + d(xn, xn+1)

≤ |xn | + 1 + log(|xn |)
≤ 2n + 2n log n + 1 + log 2 + log n + log(1 + log n)

≤ 2n + 2n log n + 2 + 2 log n

= (2n + 2) + (2n + 2) log n ≤ (2n + 2) + (2n + 2) log(n + 1)

where we used log 2 < 1 and log n ≤ n − 1. Using this inequality, we deduce

d̂X (o, x) ≥ inf {n : 2n(1 + log n) ≥ |x |} ≥ |x |
1 + 3 log |x | (14)

Conversely, repeating a construction made in the proof Lemma 2, consider a geodesic
segment γ : [0, |x |] → X , and a sequence

x0 = o, x1 = γ (2), x2 = γ (1 + log |x1|), . . . xi+1 = γ (|xi | + log |xi |)
and define N such that xN is the farthest element from o before reaching x ; in this way,
d̂X (o, x) ≤ N + 1. By induction on n, we can prove that |xn | ≥ n log n for all n. So

d̂X (o, x) ≤ 1 + inf {n : n log n ≥ |x |} ≤ 1 + |x |
1 + log |x | . (15)
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We are now ready to prove (1). We know that φ is (d̂X , d̂Y )-radial ; so there exists κ0 such
that

|φ(x)|
1 + 3 log |φ(x)| ≤ d̂Y (o, φ(x)) ≤ 2κ0

(
1 + |x |

1 + log |x |
)

(16)

Combining both inequality, |φ(x)| and |x | satisfy the hypotheses of t and s in Lemma 3. We
conclude from the Lemma that φ is radial.

The proof of (2) will now rely on (1) together with an estimate akin to (14) and (15), but
where we replace o with x ′ ∈ X . Let x, x ′ ∈ X ; assume 2 ≤ |x | ≤ |x ′|, and let γ be a
geodesic segment from x to x ′. Define x0 = x , xi+1 = γ (d(x0, xi ) + 1+ log |xi |) as long as
it makes sense (let n be the largest one, so that xn is the closest to x ′ among all xi ’s). By the
triangle inequality, for all i such that 0 ≤ i ≤ n,

|xi | ≤ |x | + d(x, xi ) ≤ |x | + d(x, x ′) ≤ 2|x ′| + |x | ≤ 3|x ′|.
From this inequality, we deduce that

d̂X (x, x ′) ≥ d(x, x ′)
2 log(3|x ′|) ≥ d(x, x ′)

4 log |x ′| .

Conversely, if inf t |γ (t)| ≤ |x ′|/2, then d(x, x ′) ≥ |x ′|/2. So

d̂X (x, x ′) ≤ d̂X (x, o) + d̂X (o, x ′) ≤ 2 + 2|x ′|
1 + log |x ′| ≤ 2 + 4d(x, x ′)

1 + log |x ′| .

Otherwise, inf t |γ (t)| > |x ′|/2, and then d̂X (x, x ′) ≤ d(x,x ′)
log(|x ′|/2) . Combining the previous

inequalities, we get that for every pair x, x ′ with sup(|x |, |x ′|) large enough,
1

λX

dX (x, x ′)
log(sup(|x |, |x ′|) ≤ d̂X (x, x ′) ≤ λX

dX (x, x ′)
log(sup(|x |, |x ′|) (17)

for some λX > 1. A similar inequality holds for pairs of points in Y , with a multiplicative
factor λY . We are ready to finish the proof. Assume that φ is a (κ0, c0) quasiisometry with
respect to d̂X and d̂Y . Then

−c0 + 1

κ0
d̂X (x, x ′) ≤ d̂(φ(x), φ(x ′)) ≤ κ0d̂X (x, x ′) + c0

for all x, x ′. ing λ = sup(λX , λY ) and using (17) and its counterpart in Y ,

−c1 + 1

λ2κ0

dX (x, x ′)
log sup(|x |, |x ′|) ≤ dY (φ(x), φ(x ′))

log(sup(|φ(x)|, |φ(x ′)))| ≤ λ2κ0
dX (x, x ′)

log sup(|x |, |x ′|) + c1

for some c1 ≥ 0. Using that φ is radial, we know that |φ(x)| and |φ(x ′)| are within linear
control from |x | and |x ′|. So we may rewrite the previous estimate as

−c2 + 1

κ1

dX (x, x ′)
log sup(|x |, |x ′|) ≤ dY (φ(x), φ(x ′))

log(sup(|x |, |x ′|) ≤ κ1
dX (x, x ′)

log sup(|x |, |x ′|) + c2

where κ1 ≥ 1 and c2 ≥ 0. Multiplying by log sup(|x |, |x ′|) on both sides yields the required
(1). ��
Remark 2 The assumption u = log made in Proposition 9 is possibly too strong. On the
other hand, it is not true that every coarse equivalence between o(r)-coarse structure is a
o(r)-bilipschitz equivalence: consider φ : Rn → Rn such that φ(x) = ‖x‖x . A notable
distinction between EO(log) and Eo(r) is that the former is monogenic whereas the latter is
not. Also, observe that Lemma 3 breaks down for u(t) = te, e > 0.
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Fig. 3 Coronae and Gromov
boundary for hyperbolic X

2.5 Invariance of the geometric dimension for connected Lie groups

Definition 7 (sublinearHigson function)Let X be a propermetric space. Define the �-algebra
ChL (X) of sublinear Higson functions on X as{

f ∈ Cb(X ,C) : ∀E ∈ Eo(r), lim
r→+∞ sup

(x,x ′)∈E,inf(|x |,|x ′|)≥r
|d f (x, x ′)| = 0

}

where f ∈ Cb means that f is continuous, sup | f | < +∞ and d f (x, x ′) = f (x) − f (x ′).

Remark 3 (Compare Fukaya [29], 3.1) f is Higson sublinear if and only if there exists
C f < +∞ such that for all x, x ′ in X and R > 0 large enough, if inf(|x |, |x ′|) ≥ R and

dX (x, x ′) ≤ R/2, then | f (x) − f (x ′)| ≤ C f
R .

The closure ChL (X) is a unital C�-algebra; the sublinear Higson corona νL X of X is the
spectrum ofChL (X)modded out by the ideal of functions vanishing at infinity [66, Definition
2.37].

Remark 4 (See Fig. 3) If X is a proper, geodesic, Gromov-hyperbolic space with basepoint
o, say that f : X → C is a Gromov function if it is continuous, bounded, and for every ε > 0
there exists K > 0 such that (x | x ′)o > K �⇒ | f (x)− f (x ′)| < ε. The Gromov functions
on X are Higson sublinear, and the Higson sublinear functions are Higson functions in the
classical sense. It follows that the sublinear Higson corona sits in between the Higson corona
νX and the Gromov boundary ∂∞X seen in the topological category.

The following is a generalization of [24, Proposition 2.1].

Proposition 10 Let X and Y be metric spaces. Let νL X and νLY be their sublinear Higson
coronae. Then, any o(r)-bilispchitz equivalence f : X → Y induces a homeomorphism
νL f : νL X → νLY .

Proof By Proposition 8, a o(r)-bilipschitz equivalence X → Y represents a coarse equiv-
alence (X , dX , Eo(r)) → (Y , dY , Eo(r)), and then induces a homeomorphism between the
sublinear Higson coronae [66, Corollary 2.42]. ��

Theorem 5 ([24, Theorem 3.10 and Corollary 3.11]; see also [12]) Let X be a proper
connected metric space. Assume that Isom(X) is co-compact on X, and that asdimAN(X) <

+∞. Then

dim νL X = asdimAN(X). (18)
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Theorem 6 ([38, Theorem 7.9]) Let G be a connected Lie group, and let X be any geometric
model of G. Then

asdimAN(X) = dimG − dim K . (19)

where K is any maximal compact subgroup of G.

Theorem B from the introduction now follows by combining Proposition 10 with Theo-
rems 5 and 6 .

To the best of the author’s knowledge, the only connected Lie group for which some
description of the sublinear Higson corona is currently available is Rn : Fukaya proved that
νLRn � Sn−1 ×νLR [29]. These spaces are “big” and not metrizable, so it seems not easy to
extract fine topological invariants from them as one would do for, say, the Gromov boundary.

Question 7 Let X be a proper metric space. Is the Čech cohomology group Ȟ1(νL X ,Z)

finitely generated?

The answer is known to be negative for the Higson coronae associated to bounded coarse
structures [46]; nevertheless Fukaya proves that νLφ is homotopic to the identity whenever
φ ∈ GL(n,R) has positive determinant.

3 Real hyperbolic spaces and Theorem C

In this section we prove Theorem C on Lie groups O(u)-bilipschitz equivalent to real hyper-
bolic spaces. Section 3.1 gathers preliminary results on pinching and conformal dimension,
and Sect. 3.2 sets the terminology of degenerations and deformations. The equivalences of
Theorem C are proved in Sect. 3.3.

3.1 Heintze groups, conformal dimension and pinching

In 1955, Jacobson proved that all real Lie algebras who possess a derivation with no purely
imaginary eigenvalue are nilpotent [40]. Later Heintze characterized the semidirect products
of nilpotent Lie algebra by derivations whose spectrum has positive real part, as the Lie
algebras of Lie groups that possess at least one negatively curved left-invariant metric (note
that these are centerless) [37]. Most importantly, Heintze showed that the negatively curved
metrics on these groups exhaust all the isometrically homogeneous negatively curved man-
ifolds, shedding light on the earlier result of Kobayashi that these spaces had to be simply
connected [49].

Definition 8 ([20]) Let G be a Lie group with finitely many components. Then G is of
Heintze type if there exists a simply connected nilpotent N , a derivation α ∈ Der(n) with
inf {!λ : λ ∈ Sp(α)} > 0 and a compact group K with a representation ρ : K → Aut(N )

such that

G = (K × R) � N , (20)

where (k, t).n = ρ(k)(n)eαt n (the actions of K and R do commute). A Heintze group is a
group of Heintze type with K = 1.
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By normalized Jordan form of a derivation α as in Definition 8, we mean the Jordan form
of the unique positive multiple [α] of α such that

inf {!λ : λ ∈ Spec([α])} = 1. (21)

Note that N �α R � N �[α] R (Compare Example 2.) The following useful fact is proved
in E. Sequeira’s thesis using a highest weight argument [21, Proposition 5.2.2]4.

Proposition 11 Let N be a simply connected nilpotent Lie group. If the Heintze groups
Gα = N �α R and Gβ = N �β R are isomorphic, then α and β have the same normalized
Jordan form.

Definition 9 (after [26, Sect. 4]) Given twoHeintze groupsG = N�αR andG ′ = N ′
�α′ R

and λ > 0, we writeG � (G ′)λ = (N ×N ′)�Rwhere t .n = (eαt , eλα′t )with the convention
that both α and α′ are normalized as in (21), and call this group Heintze amalgam of G and
G ′. Denote the Lie algebra of Lie(G � (G ′)λ) by g � λg′.

A Heintze group is purely real if it is completely solvable, i.e. if Sp(α) ⊆ R; every group
of Heintze type has a Riemannian model in common with a purely real Heintze group, that
we call its shadow (See [45] and Sect. 5.1). If G, N , α are as in Definition 8 with K = 1 and
if n = Liespan(ker([α] − 1)), then we say that G, resp. g is a Carnot-type Heintze group,
resp. algebra. In this case isomorphism type of G does not depend on α, so we abbreviate
G = N �Carnot R [18, Proposition 3.5]. Carnot-type Heintze groups are purely real.

Example 1 Let K be a division algebra over R and n a positive integer, n = 2 if K = Ca.
b(n,K) is the solvable Lie algebra over the vector space V = Kn−1 ⊕ �K ⊕ R (where
�K = 0 if K = R) with Lie bracket

[
(zi , τ, s), (z

′
i , τ

′, s′)
] =

[
sz′i − s′zi , 2sτ ′ − 2s′τ +

n−1∑
i=1

�(zi z′i ), 0
]

.

b(n,K) forK = R,C,H is the maximal completely solvable subalgebra of o(n, 1), u(n, 1),
sp(n, 1) respectively.

The Heintze groups with Lie algebra b(n,K) are exactly those who carry (rank one)
symmetric metrics [37] (for K = R, all the left-invariant metrics are symmetric, see e.g.
[51]).

The topological dimension Topdim ∂∞ and conformal dimension Cdim ∂∞ are quasisom-
etry invariant of Gromov-hyperbolic locally compact compactly generated groups ([9, 54]).
For a group of Heintze type G = (K × R) �α N ,

Topdim ∂∞G = dimG − dim K − 1 = geodimG − 1; (22)

Cdim ∂∞G = Tr[α] (23)

where Tr denotes the trace. Though not explicitly stated there, the following is a direct
consequence of [64, Sect. 5].

Theorem 8 (After Pansu) Let (M, g) be a complete, simply connected Riemannian manifold
of dimension n ≥ 2. Let b ≥ 1. Assume that M is −1/b2-pinched, i.e. (up to normalization
of g) −b2 ≤ Kg ≤ −1. Then

Cdim ∂∞M ≤ (n − 1)b. (24)

4 [21] has the assumption that Gα and Gβ are purely real, but the general proof goes along the same lines.
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Proof It follows from the lower bound on sectional curvature that Ric ≥ (n − 1)b2g. Then,
by the Bishop-Gromov inequality

vol(B(x, r)) ≤ cst.
∫ r

0
sinhn−1(bt)dt,

so that the volume-theoretic entropy h = lim supr→+∞ r−1 log vol(B(x, r)) is bounded
above by (n−1)b. Pansu proves Cdim ∂∞S ≤ h [64, Lemme 5.2]. Combining these inequal-
ities yields the desired (24). ��
Corollary 1 Let G be a group of Heintze type; then every Riemannian model of G has a
pinching of at least

−
(
geodimG − 1

Tr[α]
)2

. (25)

The bound (25) is not optimal. Building on a theorem of Belegradek and Kapovitch and
curvature computations, Healy determined the exact optimal pinching (which is attained)
when G is Carnot-type and N has a lattice (equivalently, when n has a Q-form) and found
an optimal pinching of −1/s2, where s is the nilpotency step of N [27, Theorem 4.3]. Note
that for Carnot type groups, s is the spectral radius of [α] so Tr[α] ≤ s(Topdim ∂∞G) =
s(geodimG − 1).

Corollary 2 Let G be a group of Heintze type. Assume that G has Riemannian models with
pinching arbitrarily close to −1. Then α has all its eigenvalues with the same real part, and
N is abelian.

Proof Order the eigenvalues of α as σ1 ≤ · · · ≤ σr . In view of the formula (23) and the
assumption on the pinching of G, Pansu’s theorem forces the equality to occur in

σ1 dim n ≤
∑
λ

!λ = Tr(α).

So one may set σ = σ1 = · · · = σr , where σ is a positive real number. Denoting by nλ

the generalized eigenspace of α with eigenvalue λ, observe that [nλ, nμ] ⊆ nλ+μ for any
complex numbers λ and μ. Since ⊕τ∈Rnσ+iτ = n, one has [n, n] ⊆ ⊕τ∈Rn2σ+iτ = {0},
and N is abelian. ��
Remark 5 The conclusion that N is abelian remains if a single left-invariant metric on S is
assumed to be strictly more than quarter-pinched, a theorem by Eberlein and Heber, who also
characterized the Heintze groups with a quarter-pinched Riemannian metric [26].

We note that the converse of Corollary 2 also holds.

Proposition 12 Let S = Rn−1
�α R, where sp(α) ⊆ {1 + iτ : τ ∈ R}. Then, S has

left invariant Riemannian metrics with pinching arbitrarily close to −1. Moreover, if K is
a compact group of automorphisms of S, then one can assume that those metrics are all
K -invariant.

Proof Let ε > 0 be a parameter. We consider (e1, . . . , en−1), a basis of Rn−1 in which α

appears in real Jordan normal form in a definite order that we proceed to describe now. Group
the generalized eigenspaces as follows: first the generalized eigenspaces corresponding to
Jordan blocks of dimension strictly more than two with a non-real eigenvalue, then the
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generalized eigenspaces corresponding to Jordan blocks of dimension strictly more than one
with a real eigenvalue, then the remaining eigenspaces. There are nonnegative integersm and
p such that in the basis

Fε =(e1, e2, εe3, εe4, . . . , ε
m−1e2m−1, ε

m−1e2m, e2m+1,

εe2m+2 . . . , ε p−1e2m+p, e2m+p+1, . . . , en−1), (26)

α has a block upper triangular form with blocks of the form

J ′
2d(1 + iτ) =

⎡
⎢⎣
Aτ ε I

. . . ε I
Aτ

⎤
⎥⎦ where Aτ =

(
1 τ

−τ 1

)

and

Jd(1) =
⎡
⎢⎣
1 ε

. . . ε

1

⎤
⎥⎦

where d ≥ 1 denotes the size of the block (the blocks with d = 1 being in the end). Consider
the left invariant metric 〈·, ·〉ε such that Fε is orthonormal and T ⊥ [s, s], 〈T , T 〉 = 1 for
some T such that α = ad(T ). Decompose ad(T ) = Dε + Sε, where Dε is symmetric and
Sε is skew-symmetric in Fε. To express the Riemann curvature tensor, following Heintze,
Eberlein and Heber it is convenient to introduce5 Nε = D2

ε + [Dε, Sε]. For all X , Y , Z in s,

RX ,Y Z = − 〈DεY , Z〉DεX + 〈DεX , Z〉DεY

− 〈Z , 〈X , T 〉NεY − 〈Y , T 〉NεX
〉
T

+ 〈Z , T 〉(〈X , T 〉NεY − 〈Y , T 〉NεX),

where X , Y and Z are the orthogonal projections of X , Y , Z to [s, s]. (This is differently
expressed as in, but still in agreement with, [26] who performed a more general computation
where [s, s] is not assumed abelian and provided RX ,Y Z for X , Y , Z ∈ [s, s] and the sectional
curvature of all planes.) Any 2-plane π in s can be generated by u, v ∈ s such that v ∈ [s, s],
so that v = v. Observe that as ε → 0, Dε → I and Nε → I so that, denoting by secε the
sectional curvature with respect to 〈·, ·〉ε ,

secε(π) = 〈Rε(u, v)v, u〉
〈u, u〉〈v, v〉 − 〈u, v〉2

= 〈−Dεu, u〉〈Dεv, v〉 + 〈Dεu, v〉2 − 〈u, T 〉2〈v, Nεv〉
〈u, u〉〈v, v〉 − 〈u, v〉2

−→ε→0
−〈u, u〉〈v, v〉 + 〈u, v〉2 − 〈u, T 〉2〈v, v〉

〈u, u〉〈v, v〉 − 〈u, v〉2 = −1,

using that 〈u, u〉 = 〈u, u〉+〈u, T 〉2 and 〈u, v〉 = 〈u, v〉. Finally, the pointwise convergence of
a rational function on a Grassmanian implies its uniform convergence, so sup secε − inf secε

goes to zero and sup secε/ inf secε goes to 1 as ε → 0.
Let us now prove the “moreover” part. Start assuming for simplicity that K is connected.

Every block B of α of type Jd(s) or J ′
2d(s) for d > 1 and s ∈ C determines a linear subspace

of Rn−1 of the form span(ek, . . . , ek+d) or span(ek, . . . , ek+2d) together with a non-trivial

5 They are denoted D0, S0 in [37] and D0, S0, N0 in [26].
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flag of subspaces {B%
i }0≤i≤d−1 (in increasing order for inclusion) stabilized by α. Let {ϕt }t∈R

be a one-parameter subgroup of K0; once restricted to B%
d−1, {ϕt } being a connected group

of automorphisms of s, must stabilize the flag, hence (remembering that K0 is compact) it
must act trivially on B%

d−1 if B is of type Jd or within a diagonal torus if B is of type J ′
d .

Consequently, there are integers r and � such that

K < T� × K0 × Kτ1 × · · · × Kτr (27)

where K0 is a compact group stablilizing the direct sum of blocks of type J1(1), Kτi stabilizes
the direct sum of blocks of type J2(τi ) for all 1 ≤ i ≤ r , and the remaining torusT� stabilizes
the higher sized blocks of type J ′. Then letting μ be the normalized Haar measure on K ,
replace 〈·, ·〉ε with 〈X , Y 〉Kε = ∫

K 〈ϕX , ϕY 〉εdμ(ϕ). If F ′
1 = (e′

1, . . . , e
′
n−1) denotes an

orthonormal basis for 〈·, ·〉1 that respects the ordered block decomposition of α (we know
there is such a basis thanks to (27)), then F ′

ε obtained from F ′
1 by rescaling the vectors as in

(26) will be orthonormal for 〈·, ·〉Kε , and one can now apply the previous argument estimating
the sectional curvature verbatim.

Finally, K may not be connected, and in this last case, one needs to change slightly the
rescaling procedure of the basis to account for the fact that K can now exchange the higher
sized blocks. One should reorganize the powers of ε so that higher sized blocks of the same
type are scaled by the same powers of ε. Specifically, with the notation as above, B%

i must be
spanned by the vectors εi ek in the new basis. In doing so, we preserve the matrices Dε and
Nε as they were before, hence the bounds on the sectional curvature. ��
Remark 6 Using Eberlein and Heber’s amalgams (Definition 9) and curvature estimates
would simplify the proof of the first part of Proposition 12 (yet not drastically so) by reducing
it to the case where α has a single Jordan block as Jordan normal form. See also Remark 7.

Question 9 Let G = N � (K × R) be a group of Heintze type. Is it true that among all
negatively curved Riemannian models of G, an optimal pinching is attained if and only if α
is diagonalizable over C?

Note that the (Ahlfors-regular) conformal dimension of ∂∞[Rn−1
�α R] is attained if and

only if α is diagonalizable over C [3].

3.2 Degenerations and deformations

We provide more information here than is strictly needed for Theorem C. That will be useful
to us in the discussion in Sect. 5.1.

3.2.1 Setting

Let Ln(R) ⊆ (Λ2Rn)∗ ⊗ Rn be the subset of Lie algebra laws on Rn . Note that μ ∈
Λ2(Rn)∗ ⊗Rn is in Ln(R) if and only if the Jacobi identity holds in μ, that is, if and only if

μ2(X1 ∧ X2 ∧ X3) =
∑
σ

μ
(
μ(Xσ(1) ∧ Xσ(2)) ∧ Xσ(3)

) = 0 (28)

for every X1, X2, X3 ∈ Rn , the sum being taken over the three positive permutations σ over
{1, 2, 3}. Ln(R) has two topologies: the Zariski topology, and the topology it inherits as a
subspace of Λ2(Rn)∗ ⊗ Rn with the operator norm, that we will call the metric topology. It
follows from Engel’s theorem that the nilpotent laws form a Zariski closed subset Nn(R).
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Let λ ∈ Ln(R). R, resp. λ, is a λ-module for the trivial, resp. the adjoint representation of
λ. Following Chevalley and Eilenberg [13, Theorem 10.1] there are differential complexes
Kλ and K ′

λ on Λ•(Rn)∗ and Λ•(Rn)∗ ⊗Rn with the following exterior derivatives dλ, resp.
d ′
λ on degree q-forms, resp. on λ-valued degree q-forms ω:

dλω(x1, . . . , xq+1) =
∑
k<�

(−1)k+�ω(λ(xk, x�), x1, . . . , x̂k, . . . , x̂�, . . . , xq+1) (29)

d ′
λω(x1, . . . , xq+1) =

∑
k<�

(−1)k+�ω(λ(xk, x�), x1, . . . , x̂k, . . . , x̂�, . . . , xq+1)

+
∑
k

(−1)k+1λ(xk, ω(x1, . . . , x̂k, . . . , xq+1)). (30)

The group GL(n,R) acts on Ln(R) by restricting its natural action on Λ2(Rn)∗ ⊗ Rn .
We denote the orbit of λ by O(λ) or Og if g is a Lie algebra isomorphic to λ; it is a smooth
submanifold ofΛ2(Rn)∗⊗Rn of dimension n2−dimDer(g), embedded inLn(R).Moreover,
TλOg = B2(λ, λ), as is most conveniently seen by differentiating the action of GL(n,R) at
λ: for every η ∈ gl(Rn),

eηλ(e−ηX , e−ηY ) − λ(X ∧ Y ) = d ′
λη(X ∧ Y ) + O(‖η‖2). (31)

Example 2 Let g = aff be the 2-dimensional affine Lie algebra with basis {X , T } such that
[T , X ] = X and dual basis {dx, dt}. Then X ⊗ dx ∧ dt ∈ B2(g, g); in the language of
Sect. 3.1, R�1+ε � R �1 R � g.

Definition 10 Let g and h be Lie algebras of dimension n over R. We say that g degenerates
to h, denoted g →deg h, if Oh � Og where the closure is taken for the Zariski topology.

Note that it is equivalent to require a single μ ∈ Oh such that μ ∈ Og. Since the metric
topology is finer than the Zariski topology, a sufficient condition to have g →deg h is that
there is a sequence λ0, . . . , λr such that{

λ0 ∈ Og, λr ∈ Oh

∀X ∈ Λ2(Rn), lim
t→+∞(ϕt,i .λi )(X) = λi+1(X) i = 0, . . . , r − 1.

(32)

where ϕt ∈ GL(n,R) is continuous with respect to t .

When r = 1, (32) amounts to μ ∈ O(λ)
met

and is called a contraction (especially, by the
physicists). The author does not know whether the existence of a sequence of contractions
as in (32) is a necessary condition for g →deg h to hold.

Example 3 (Nilpotent Lie algebras) Let n be a nilpotent Lie algebra. Let n = ⊕i Vi be a
linear splitting such that Vi ⊕Ci+1n = Cin for all i . For t > 0, let (ϕt ) be the one parameter
subgroup of GL(n) such that

ϕt (X) = t i X , X ∈ Vi . (33)

Then, the Vi becomes a Lie algebra grading on ϕt .n in the limit when t → +∞: n degenerates
metrically to the graded Lie algebra gr(n) associated to the central filtration of n, supporting
the asymptotic cone of the simply connected N by [63]. In particular, n →deg gr(n). (This
description of the law in gr(n) as a limit is the one given in [8, Sect. 2.1], who prove a
generalization of [63].)
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For λ ∈ Λ2(Rn)∗ ⊗R (R[[1/t]])n , we denote (λ, t) 
→ λ(t) provided that t is in the
convergence domain of every coefficient of λ, and λ[1/td ] the monomial of degree d . (The
choice ofR[[1/t]] overR[[t]] is just a peculiarity for our convenience.)We also denote λ(∞)

the constant term of λ. If λ(t) ∈ Ln(R) for all t ≥ 1, λ is called a formal deformation.
Differentiating (28) to express that λ is a formal deformation with λ(∞) = μ yields an

infinite system of equations, the first of which after (28) being

d ′
μλ[1/t] = 0, (34)

that is, λ[1/t] ∈ Z2(μ,μ).

Definition 11 Let g be a Lie algebra overR. Letμ ∈ Ln(R) represent g, and letω ∈ H2(g, g)

be nonzero. We say that the formal deformation λ integrates the infinitesimal deformation
ω at μ if λ(∞) = μ, λ is convergent on C \ {0} and λ[1/t] ∈ Z2(μ,μ) represents ω.
We say that ω is integrable, resp. linearly expandable (as the authors in [1] do) if a formal
deformation λ integrates ω, resp. if λ is a formal deformation of ω and λ = λ(∞)+ λ1/t for
some λ1 ∈ Λ2Rn ⊗ Rn .

In the last Definition, we insisted more on the cohomology class than on the particular
cocycle λ[1/t] for the following reason. Two formal deformations λ, λ′ of μ are called
equivalent if λ(t) = ϕ(t).λ′(t) for some ϕ ∈ GL(R[[t]]) with ϕ(∞) = 1. If λ and λ′
are equivalent then λ[1/t] − λ′[1/t] ∈ B2(μ,μ); this is a better version of (31), see e.g.
Proposition just before §2.5 in [1]. In view of (31), (34) and this, H2(g, g) encodes the degree
to which g can be deformed; one should nevertheless beware that infinitesimal deformations
are not always integrable (See Remark 8).

3.2.2 Degenerations to b(n, R)

Let b(n,R) denote themaximal completely solvable subalgebra of o(n, 1), namely b(n,R) =
Rn−1

�1 R, where the adjoint action of 1 ∈ R on Rn−1 is by the identity. The situation of
b(n,R) with respect to degenerations and deformations is favorable:

Theorem 10 (After Lauret) Let g be a completely solvable Lie algebra and n ≥ 2 an integer.
The following are equivalent:

(10.1) g contracts to b(n,R).
(10.2) g →deg b(n,R).
(10.3) g decomposes as Rn−1

�ν R where ν is unipotent.

Moreover, under the former conditions there exists ω ∈ H2(b(n,R), b(n,R)) linearly
expandable into a formal deformation λ such that λ(1) ∈ Og and λ(∞) ∈ Ob(n,R).

Lauret proved (10.1) ⇐⇒ (10.3) [51, Theorem 6.2] with no a priori assumption on g.
The core of the proof below uses the same idea. ([51] additionaly used bounds on pinching
and [26] that give constraints a priori on g).

We need a Lemma which is well-known, however we could only find proofs for the metric
topology in the literature.

Lemma 4 Let n be a positive integer and 0 ≤ i ≤ n. Then, the following are upper semi-
continuous with respect to the Zariski topology on Ln(R):

(a) The Betti number bp(λ) = dim H p(λ,R), for all p ≥ 0.
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(b) The dimension of the outer derivations H1(λ, λ) = Der(λ)/ InnDer(λ).
(c) The dimension of the center dim Z(λ).

Proof Note that Z(λ) = H0(λ, λ), so to prove (a), (b) and (c) it is actually sufficient to prove
that λ 
→ bp(λ) and λ 
→ dim H p(λ, λ) are upper semicontinuous on Ln(R). We will prove
this by a change of basis argument. Denote by xki j the coordinate functions onΛ2(Rn)∗ ⊗Rn ,

and let I be the ideal ofR[xki j ] generated by the relation (28). Let A = R[xki j ]/I. Then A is a
Noetherian ring by Hilbert’s basis theorem, and Ln(R) with the Zariski topology is a closed
subspace of Spec(A) with the Zariski topology; all the points in Ln(R) are maximal ideals.
Consider the graded A-modules

K = Λ•(An)∗

K ′ = Λ•(An)∗ ⊗A An .

(Here, (An)∗ denotes Hom(An, A).) For every pair y1, y2 in R[xki j ]n , there is a polynomial

z such that λ(y1(λ), y2(λ)) = z(λ) for every λ in Λ2(Rn)∗ ⊗ Rn . The class of z modulo I
only depends on the classes of y1 and y2 modulo I. Hence, there is a well defined application
An × An → An , A-linear in both arguments, that we denote by the bracket. In this way [·, ·]
defines an element of Λ2(An)∗ ⊗ An . The differentials on K and K ′ are defined as in (29)
and (30) defining the differentials on Kλ and K ′

λ respectively.
In this way Kλ = K ⊗A A/λ and K ′

λ = K ′ ⊗A A/λ, where A/λ is the residual field of
A at the maximal ideal λ. K and K ′ are flat A-modules, because being flat is preserved by
taking exterior and tensor products over the base ring [52, Proposition 2.3]. We may now
conclude by applying the following [36, Théorème 7.6.9(i)]: if A is Noetherian and K is a
differential complex of finitely generated flat modules, then for every p ≥ 0, the function
y 
→ dim H p(K ⊗A k(y)) is upper semi-continuous on Spec(A), where k(y) denotes the
residual field at y. In particular, it is upper semi-continuous on the closed subspace Ln(R).

��
Proof (Proof of Theorem 10) (1) �⇒ (2) is clear.

Assume (2). By Lemma 4, b1(g) ≤ 1. If it is zero, then g is perfect, especially it is not
solvable; hence b1 = 1, and g splits as a semidirect product

[g, g] ⊕ RA (35)

where the restriction of adA to [g, g] is nonsingular in view of the fact that Z(g) = 0, again
by Lemma 4. Choosing an adequate representative λ0 in Og and an adequate basis we may
as well assume that [λ0, λ0] = Rn−1 and A = (0n−1, 1).

The coefficients of the characteristic polynomial Pμ,X of adX : Y 
→ μ(X , Y ) are polyno-
mial functions on Ln(R), and for every λ1 ∈ O(λ) the spectrum of Pλ1,X is either a nonzero
multiple of Sp(Pλ0,A), or 0 with multiplicity n, the latter case occurring X ∈ [λ1, λ1]. So,
for μ ∈ O(λ0) this holds as well. But for μ ∈ Ob(n,R), this spectrum is always concentrated
at one point. So adA cannot have two distinct eigenvalues, and then [g, g] is abelian, which
proves (3).

Assume (3). Then ν − 1 is nilpotent; let X1, . . . , Xn−1 be a basis of [g, g] in which it
appears in lower-triangular Jordan form, ν − 1 = ∑

i δi X
∗
i ⊗ Xi+1 where δi ∈ {0, 1}. One

computes that d(A∗∧X∗
i ⊗Xi+1) = 0 (Lemma 9; beware that S replaces A there) and that no

nonzero linear combination of those is a coboundary (Lemma 8). Settingμ the law of b(n,R)

in the basis (X1, . . . Xn−1, A) and ω = A∗ ∧∑i δi X
∗
i ⊗ Xi+1 we find that λ0 = μ + ω.

Then μ is the degeneration of λ through (ϕt ), where ϕt A = A and ϕt Xi = t−i Xi for all t . ��
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Remark 7 A contraction to (a deformation of) b(n,R) was already used in the proof of
Proposition 12; in accordance with [51], contractions can be considered as limit points in the
space of left-invariant Riemannian metrics over a given group.

Remark 8 We can additionally check that H3(b, b) = 0 when b = b(2,R), though it is
unnecessary. This vanishing ensures that the deformation system can be solved and every
infinitesimal deformation of b is integrable into a formal deformation [61, p.98]. For nilpotent
Lie algebras n that will be discussed more in detail in Sect. 5.1; on the other hand, one must
beware that H3(n, n) is large, for instance dim H3(n, n) ≥ 8 for all the 6-dimensional
nilpotent n [34, Table 11].

3.3 GroupsO(u)-bilipschitz equivalent toH
n
R

We prove here Theorem C. Let us first recall some terminology from [20] and [9].

Definition 12 Let G be a Lie group with finitely many components. G is of rank-one type if
it has a maximal normal compact subgroup W such that G/W is isomorphic to a simple Lie
group GR of real rank one, with Z(GR) = 1.

Let us proceed to prove the following chains of implications:

(C.1)

(C.2) (C.3) (C.4)

(C.5).
G completely solvable

(C.1) implies (C.3): Let G be a Lie group with finitely many connected components.
Assume that G is O(u)-sublinear bilipschitz equivalent to H

n
R for some n. Then all

asymptotic cones of G being R-trees, G is Gromov-hyperbolic. By Cornulier and
Tessera’s theorem [20], G is either of Heintze or rank-one Lie type. First assume that
G is of Heintze type, write G = (K × R) � N and call H the co-compact nor-
mal subgroup R � N so that G/K is simply transitively acted upon by H . By [62],
CdimO(u) ∂∞H = CdimO(u) ∂∞H

n
R = n − 1. By [19], Topdim ∂∞H = n − 1. So H

is metabelian and every eigenvalue of α has real part 1. By Proposition 12, (C.3) holds,
while by [16, Theorem 1.2], (C.2) holds. If G is of rank-one type, then it acts properly
co-compactly by isometries on a rank one symmetric space, which can only be H

n
R in

view of the equality of conformal dimension and topological dimension of the boundary;
especially, (C.2) and (C.3) hold as well.
(C.3) implies (C.2): Since it acts geometrically on Gromov-hyperbolic spaces, G is
Gromov-hyperbolic. Again by [20], it is of Heintze type or rank-one type. If it is rank-
one type, then it is quasiisometric to a rank one symmetric space X ; by Pansu’sTheorem8,
Cdim(∂∞G) = Topdim(∂∞G), so X = H

n
R. If it is Heintze-type, then it is quasiisometric

to a purely real Heintze group of the form N �αR. Arguing as in the proof of Corollary 2,
every eigenvalue of the [α] is equal to 1. By [16], (C.2) holds.
(C.2) implies (C.1): u = log is an admissible function.
If G is completely solvable then (C.3) implies (C.5): By [20], it is of Heintze type. and
by Corollary 2, N is abelian and all the eigenvalues of α have real part 1.
(C.4) and (C.5) are equivalent: This is our version of Lauret’s theorem, Theorem 10.
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(C.4) implies (C.3) This is a special case of Proposition 12 where all the eigenvalues of
adA are real.

3.4 Proof of Corollary D

Corollary D follows by applying (C.3) �⇒ (C.1) together with Proposition 8.

4 Proof of Theorem E

4.1 Pointed sphere

Wewill prove the implication (E.1) �⇒ (E.3) in Theorem E by establishing a baby case of a
variant of Cornulier’s pointed sphere conjecture [75, Conjecture 19.104]. Precisely we estab-
lish a special case of the conjecture in the setting of sublinear bilipschitz equivalences rather
than quasiisometries for which it is usually formulated. We denote by SBEO(u)(X) the group
of self O(u)-bilipschitz equivalences of the metric space X (modulo the relation of O(u)-
closeness). Let us first recall that sublinear bilipschitz equivalences induce homeomorphisms
of the compact boundary sphere ∂∞X when X is Gromov-hyperbolic [19].

Lemma 5 Let u be an admissible function. Let S be a purely real Heintze group such that
[S, S] is abelian, and let Ω be the unique closed orbit of SBEO(u)(S) acting by homeomor-
phisms on ∂∞S. The following are equivalent:

(1) α has at least two distinct eigenvalues
(2) Ω is reduced to a single point.

Proof The reasoning is inspired by [64, 6.9 Corollaire]. Let ω be the endpoint of a section
of the group R = S/[S, S] in S, so that ∂∞S \ {ω} is simply transitively acted upon by
[S, S]. Assume (1) and let F be the foliation on ∂∞S \ {ω} determined by the cosets of
ker(α − λ), where λ is the minimal eigenvalue of α (since [S, S] is abelian, we may identify
it with its Lie algebra). Then by [62, Lemma 3.9], for all sublinear bilispchitz equivalence
f : S → S, the boundary map ∂∞ f preserves F . Now let F be any leaf of F . Then, {ω} can
be written as F \ F or (∂∞ f )F \ (∂∞ f )F , so that ∂∞ f ω = ω. Conversely, if α only has a
single eigenvalue, then S is sublinearly bilipschitz equivalent to real hyperbolic space. Since
Isom(Hn

R) is transitive on ∂∞H
n
R, SBE

O(u)(S) is transitive on ∂∞S. ��
Proposition 13 Let u be an admissible function. Let S be a Heintze group. Assume that S is
O(u)-bilipschitz equivalent to H

2
C. Then the shadow of S is isomorphic to Heis�α R where

Heis is the three-dimensional Heisenberg group and

α =
⎛
⎝1 0 0
0 1 0
0 0 2

⎞
⎠ or α =

⎛
⎝1 1 0
0 1 0
0 0 2

⎞
⎠

in a basis (X , Y , Z) of heis such that [X , Y ] = Z.

Proof Let S0 = N �αR be a semidirect product decomposition of the shadow S0 of S, where
N is three-dimensional and α is normalized so that its lowest eigenvalue is 1. The group S
has been assumed O(u)-bilipschitz equivalent to H

2
C; there are two ways to prove that S and

S0 have geometric dimension 3.
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Table 2 Purely real Heintze groups of dimension 3 or 4, with parameters 1 < λ < μ. The plain horizontal
lines denote the separations between O(log)-bilipschitz equivalence classes that can be deduced from [62] and
Theorem E. The dash line remains unknown when μ = 1+ λ. The isomorphism type of N �α R is generally
not determined by N and Jordan(α) alone; see the 6-dimensional example after Theorem 1.3 in [10]

Nilradical Jordan(α) H
n
K

R2 diag(1, λ)
R2 diag(1, 1) H

3
R

R2 J2(λ)
R3 diag(1, λ, λ)
R3 diag(1, J2(λ))
R3 diag(1, 1, λ)
R3 diag(J2(1), λ)

Nilradical Jordan(α) H
n
K

R3 diag(1, 1, 1) H
4
R

R3 diag(1, J2(1))
R3 J3(1)
R3 diag(1, λ, μ)

Heis3 diag(1, λ, 1 + λ)
Heis3 diag(1, 1, 2) H

2
C

Heis3 diag(J2(1), 2)

The first is to observe that the Gromov boundary is a topological SBE invariant. Hence
Topdim ∂∞S = Topdim ∂∞H

3
C, and this is also the dimension of N as a Lie group. The

second (less direct) is to apply Theorem B, dim N = asdimAN H
2
C −conedimH

2
C = 3. So N

is isomorphic either to R3 or to the 3-dimensional Heisenberg group. In the first case, since
Tr(α) = CdimO(u)(S) = 4 > 3, α has at least two distinct eigenvalues, and by Lemma 5, the
unique closed orbit of SBEO(u)(S0) acting on ∂∞S0 has only one element (namely, ω from
the proof of 5). This contradicts the fact that SBEO(u)(H2

C) is transitive on ∂∞H
2
C, so this

cannot be. Consequently, N is isomorphic to the the three-dimensional Heisenberg group.
Let 1, λ, μ be the eigenvalues of α, where μ corresponds to the eigenvector generating the
center of Heis, and 1 ≤ λ ≤ μ. Necessarily, 1 + λ = μ and 1 + λ + μ = 4, so 2 + 2λ = 4,
and then λ = 1. We deduce from there that α can only be one of the two derivations in the
conclusion. ��
Proof (Proof of (E.1) �⇒ (E.3)) Let G be as in the statement of Theorem E, namely G
is a connected Lie group sublinear bilipschitz equivalent to H

2
C. Then G is commable to a

completely solvable group G0 [15, Lemma 6.7]. Since G0 is Gromov-hyperbolic, by [20] it
is a purely real Heintze group [20]. We may then apply Proposition 13 to G0. In the first case
where α is diagonalisable, G0 (hence G) will be commable to SU(2, 1), in the second case
it will be commable to S′. ��

Let us mention an application to the quasiisometry classification of Heintze groups. The
result below also follows from [47, Theorem A] which appeared during the writing of this
paper.

Corollary 3 The groups S′ and S′′ = R3
�α R where

α = diag(J2(1), 2) =
⎛
⎝1 1 0
0 1 0
0 0 2

⎞
⎠

are not quasiisometric.

Indeed, if S and S′ were quasiisometric, they would be O(log)-bilipschitz equivalent. But
S′ is O(log)-bilipschitz equivalent to H

2
C, whereas S

′′ is not.
See Table 2 for the Heintze groups of dimension at most 4 and the current knowledge

on their O(log)-bilispchitz classification (their quasiisometry classification is known and
reduces to isomorphism, see [47, Theorem C]).
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Remark 9 We can start the same reasoning with X = H
n
C, n > 2. By conformal dimension,

any purely real Heintze group S that is O(u)-bilipschitz equivalent to X has [S, S] isomorphic
to Heis2k+1 × R2(n−k) for some k ∈ {0, . . . k − 1}, where Heis2k−1 denotes the 2k − 1-
dimensional Heisenberg group for k ≥ 2 and H1 = R. Otherwise said, using the amalgam
notation (Definition 9)

s = b(k,C) � b(2(n − k) + 1,R),

where we recall that b(k,C) is the maximal completely solvable subalgebra of u(k, 1). But
we are only able to prove the pointed sphere conjecture for S when k = 1: for k ≥ 2 the
invariant foliation in ∂∞S provided by [62, Lemma 3.9] becomes a single leaf. The same
reasoning also falls short to characterize the triangulable groups S that are O(u)-bilipschitz
equivalent to X = H

2
H, for it leaves the possibility that the Lie algebra of their shadow is

s0 ∈ {b(5,R) � 2b(4,R), b(2,C) � b(2,R) � 2b(3,R), b(3,C) � 2b(2,R),

n6 �Carnot R � 2b(2,R), n7 �Carnot R, b(4,R) � l4,3 �Carnot R, b(2,H)
}

where l4,3 denotes the 4-dimensional filiform algebra, n6 is among l6,8, l6,22(−1) and l6,22(0)
(See [23] for structure constants), n7 is one among the real forms of the 4 complex nilpotent
algebras denoted g7,3.12 (2 real forms), g7,3.24, g7,4.1 (2 real forms) or g7,4.2 in [55]. Using
[62] one can only deduce the pointed sphere conjecture (Lemma 5) for the first 6 out of these
14 Lie algebras, while it is expected that it holds for all but the last one.

4.2 Degenerations to b(2, C)

We prove here a variant of Lauret’s theorem 10.

Lemma 6 Let g be a completely solvable Lie algebra of dimension 4. The following are
equivalent:

(6.1) g contracts to b(2,C)

(6.2) g −→deg b(2,C)

(6.3) g decomposes as [g, g]⊕RA, where [g, g] = heis and adA is unipotent on [g, g]/D3g.

Proof As in the proof of Theorem 10, the core of the proof is that (6.2) implies (6.3), so let
us focus on this part. Assume that g −→deg b(2,C). Then b1(g) = 1 by Lemma 4. The ideal
n = [g, g] is nilpotent by Lie’s theorem, and g = n �β R for some nonsingular β ∈ ad(n).
Without loss of generality we can assume that Sp(β) = {1, 2}, and that 2 has multiplicity 1.
So the nilpotency class of n is at most 2, and codim[n, n] = 1; thus n is either R3 or heis,
and g is among the four algebras

b(2,C), b(3,R) � 2b(2,R), s′, s′′,

where we recall that s′ = heisα � R with α = diag(J2(1), 2) in the basis (X , Y , Z) and s′′
is the Lie algebra of S′′ defined in Corollary 3. Observe that

dim H1(g, g) =
{
2 g = b(2,C) by Proposition 19

4 g = s′′ by Proposition 20

Note that s′′ degenerates to b(3,R) � 2b(2,R). Hence by Lemma 4, dim H1(g, g) ≥ 4 for
g = b(3,R) � 2b(2,R), which, again byLemma4, forbids a degeneration of the latter algebra
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to b(2,C). This establishes (6.2) �⇒ (6.3). Finally let us prove that s′ −→deg b(2,C).
Take

ϕt X = X ϕt Y = e−t Y ϕt Z = e−t Z ϕt A = A.

Then s′ contracts6 to b(2,C) through (ϕt ). This establishes (6.3) �⇒ (6.1). ��
The author expects that Lemma 6 should hold replacing b(2,C) with b(n,C) and heis

with heis2n−1 in (6.3), though generalizing Proposition 20 to higher dimensional algebras
comprises some computational hurdles. The greatest theoretical difficulty in generalizing
Theorem E (if it holds) from H

2
C to H

n
C with n > 2 seems to lie on the analytical side, cf.

Remark 9 above.

5 Some remarks on spaces other than H
n
R and H

n
C

5.1 Connected Lie groups

In the attemps to relate the large-scale geometry of pairs of connected Lie groups, several
sufficient criteria have been found (e.g. for quasiisometry in [6, 16], for sharing simply
transitive Riemannian models in [74], and for O(u)-bilipschitz equivalence in [16]). These
criteria consist for a large part7 in going back to the Lie algebra and simplifying its structure.
These criteria can sometimes be formulated using deformations and degenerations of Lie
algebras.

– Pansu’s theorem on asymptotic cones: those are degenerations.
– Cornulier’s theorem on asymptotic cones: when the exponential radical is abelian, those

are degenerations. (This is the case for the Heintze groups considered in Sect. 3.)
– Twistings (or normal modifications) introduced by [45] and [32] and studied in relation

to large-scale geometry in [74]: those are deformations.

5.1.1 Cornulier’s Theorem

A reference for the facts used in this section can be found in [4, Chapter VII]. Let g be
a completely solvable Lie algebra. Let h be a Cartan subalgebra (maximal nilpotent self-
normalizing in g), and let r = lim inf i Cig be the limit of the descending central series of g.
Decompose the adjoint representation of h in r into primary components [4],

r =
⊕

ω∈Hom(h,R)

rω =
⊕

ω∈Hom(h,R)

lim sup
i→+∞

ker(α − ω)i

where α is the structural morphism h → Der(r). Note that since h is nilpotent, its ideal
w = h ∩ r lies within r0. So the semisimple part δ of α factors through π : h → h/w, and
the resulting h/w-module decomposes as

r = r0 ⊕
⊕

ω∈Hom(h/w,R), ω )=0

rω = r0 ⊕
⊕
ω )=0

ker(δ − ω) (36)

6 This was recorded by Burde and Steinhoff in their list of degenerations between 4-dimensional complex Lie
algebras: s′ ⊗C is g(1/64, 5/16) in [7] and s′ ⊗C −→deg b(4,R) ⊗C is the case γ = 2 in Table IV p. 736
op cit.
7 Additional subtelty comes from the “medium-scale” topology of the groups when it is non trivial.
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where δ = δ ◦ π and ω = ω ◦ π . There is a Lie algebra homomorphism δ∞ : gr(h/w) →
Der(r) and the following diagram:

h h/w

h/[h, h] Der(r).

gr(h) gr(h/w)

π

δ

δ

δ∞

Theorem 11 (Cornulier [16]) Let g be a completely solvable Lie algebra. With notation as
above, define g1 = r�δ (h/w) and g∞ as r�δ∞ gr(h/w). Let G, G1, G∞ be simply connected
with Lie algebras g, g1, g∞ respectively. Then

(a) G and G1 are O(log)-bilipschitz equivalent.
(b) If Cs+1h = 0, then G1 and G∞ are O(r1−1/s)-bilispchitz equivalent.

Proposition 14 Let g be a completely solvable Lie algebra. Assume that r = lim inf Cig is
abelian. Let g1, g∞ be as in Theorem 11. Then

g −→deg g1 −→deg g∞. (37)

We already encountered examples of this:

– When g is nilpotent, the right degeneration in (37) is Example 3. Note that r = 0 in this
case.

– When g = [g, g]⊕RA and adA is unipotent, the left degeneration in (37) is the contraction
occuring in Theorem 10 (10.2). r is abelian and has codimension 1 in this case.

Proof Start with the decomposition (36). Decompose further r into r0 and a direct sum of
subspaces Ui such that ⊕

j≥i

Ui =
⊕
ω )=0

ker(α − ω) j . (38)

Since h is nilpotent, we have that w = r ∩ h ⊆ r0. Decompose Vect(g) into a direct sum

g =
⊕
i≥1

Ui ⊕ r0 ⊕ H (39)

whereH is a linear subspace of Vect(g) representing h/w. Denote by μ, resp. μ1, resp. μ∞
the brackets of the three laws on Vect(g). For t > 0, set

ϕt (u) =
{
t i u u ∈ Ui

u u ∈ r0 ⊕ H
Then for all h ∈ H and u ∈ Ui ∩ rω,

ϕt .μ(h, u) = ϕ−1
t μ(h, t i u) = ϕ−1

t t i (ω(h)u + v) where v ∈ Ui−1

= ω(h)u + t−1−i t iv

= ω(h)u + O(t−1),

so μ contracts to μ1 through ϕ. ��
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Remark 10 We do not know whether Proposition 14 holds in general. This is because the
contraction we used in the proof perturbs in general the brackets in r. We know no obstruction
of the kind expressed in Lemma 4 for a degeneration from g to g1.

A question we would like to raise, in view of Remark 10 in particular, is whether the
group R = exp(r) is a large-scale invariant (if the completely solvable G and G ′ are O(u)-
equivalent, does it hold that lim inf CiG � lim inf CiG ′?). This appears quite difficult to
determine in general, because this subgroup is exponentially distorted and gets totally discon-
nected in the asymptotic cones [60]. Nevertheless, it holds by Cornulier’s formula (conedim)
and Theorem B that the dimension loss

dim R = geodim(G) − conedim(G) (40)

is indeed a o(r)-bilipschitz invariant. When G is of Heintze type, the o(r)-bilipschitz invari-
ance of (40) is materialized into the Gromov boundary; note also that the quasiisometry class
of R is a quasiisometry invariant of G [47, Theorem A]; but we have no asymptotic invariant
in general. We also note that the nonnegativity asdimAN(X) − conedim X ≥ 0 holds more
generally, a result of Dydak and Higes [25].

5.1.2 Shadows and deformations

Let g0 be a completely solvable algebra. We call torus an abelian algebra of semisimple
derivations of g0. A torus t is compactly embedded if every T ∈ t has purely imaginary
spectrum. Maximal tori are conjugated.

Definition 13 (Special case of [32, 2.2]) Let t be a maximal compactly embedded torus. A
modification8 of g0 is a Lie subalgebra g of g0 � t that is transverse to t. We call g0 the
shadow of g.

The modification g is the graph of a linear map τ : g0 → t, called the modification map:
for X ∈ g0, τ(X) is the only T ∈ t such that X+T ∈ g. Note that t being abelian, [g, g] ⊂ g0.

Definition 14 Let g, g0 and τ be as above. We say that g is a twisting (and τ a twisting map)
if in addition [g, τ (g0)] ⊆ g.

If g0 is nilpotent, all its modifications are twistings [32].
Earlyworks onmodifications ([32, 45])were concernedby the problemoffinding adequate

data for the classification of solvmanifolds. Modification have attracted the attention more
recently because if g is a modification of g0, then G, G0 and G0 �T (where T is the compact
torus of Aut(G0)with Lie algebra t) share a common Riemannian model, especially they are
quasiisometric ([15, 74]).

Proposition 15 Let g0, t, g and τ be as above. Assume that g is a twisting. Defineωτ (X∧Y ) =
[τ(X), Y ] + [X , τ (Y )] for X , Y ∈ g0. Then,

(1) ωτ ∈ Z2(g0, g0), where g0 acts in g0 through the adjoint representation.
(2) [ωτ ] is a linearly expandable infinitesimal deformation of g0. The associated formal

deformation goes through Og.

8 Modification is a more general notion, we only consider modifications of completely solvable Lie algebras
for our purposes in the present paper.
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Proof (1) By definition,

dωτ (X ∧ Y ∧ Z) = [X , [τ(Y ), Z ] + [Y , τ (Z)]] − [Y , [τ(X), Z ] + [X , τ (Z)]]
+ [Z , [τ(X), Y ] + [X , τ (Y )]] − [τ [X , Y ], Z ] − [[X , Y ], τ (Z)]
+ [τ [X , Z ], Y ] + [[X , Z ], τ (Y )] − [τ [Y , Z ], X ] − [[Y , Z ], τ (X)]

= [τ [X , Z ], Y ] − [τ [Y , Z ], X ] − [τ [X , Y ], Z ]
where we used the Jacobi identity in g0 � l three times. If g is a twisting then τ is a homo-
morphism [32], and since t is abelian, the remaining terms all vanish.

(2) On the vector space Vect(g0), let us denote by μ0 the law of g0 and put λ(t) =
μ0 + ωτ/t . Let us check that λ(1) ∈ Og: for every X , Y ∈ g0,

λ(1)(X ∧ Y ) = μ0(X ∧ Y ) + ωτ (X ∧ Y )

= π0 ([X , Y ] + [X , τ (Y )] + [τ(X), Y ] + [τ(X), τ (Y )])
where π0 denotes the projection onto g0 parallel to t (Remember that t is abelian, hence
[τ(X), τ (Y )] = 0). Thus the law λ(1) is that of the Lie subalgebra g in g0 � t. ��

Beware that it is not true that a twisting g degenerates to its shadow g0. Here is a coun-
terexample.

Example 4 (Solvable example) Let g0 = b(3,R), with basis (X1, X2, T ) and brackets

[X1, X2] = 0, [T , X1] = X1, [T , X2] = X2. (41)

Let (dx1, dx2, dt) be the dual basis. Then H2(g0, g0) is 3-dimensional, and contains the
linearly independent classes ω1 = [dt ∧ dx1 ⊗ X2] and ω2 = [dt ∧ dx2 ⊗ X1]. ω1 and ω2

are linearly expandable into degenerations, but ω1 − ω2 is linearly expandable into a family
of twistings that are not degenerations. See Appendix A.1 for a more general computation.

If h is a graded Lie algebra and μ ∈ Oh, the groups H2(, μ) are naturally graded. This is
the case, for instance, if h is a Carnot-graded group.

Example 5 (A nilpotent example) Let G0 be the simply connected 6-dimensional Lie group
having Lie algebra with basis X1, . . . , X6 and the nonzero brackets

[X1, X2] = X3, [X1, X3] = X4, [X1, X4] = X5.

(This algebra is denoted l6,7 in [23].) Note that X6 generates an abelian direct factor. g0 is a
Carnot-graded algebra under the grading

〈X1, X2, X6〉 ⊕ 〈X3〉 ⊕ 〈X4〉 ⊕ 〈X5〉.
Let (X1, . . . , X6) be the dual basis, and denote byμ the law.Consider the following cochains:

ω = X16
2 + X62

1 ; ξ1 = X23
5 ; ξ2 = X26

5 ; ξ3 = X26
4 + X36

5 .

where we abbreviate Xk ⊗ Xi ∧ X j into Xi j
k . These are cocycles but not coboundaries in

H2(μ,μ) (See the computations in Appendix A.2.1). The cohomology classes of ω, ξ1, ξ2
and ξ3 have weight −1, 1, 2 and 1 respectively under the grading. The classes of ξ1, ξ2,
ξ3 and ξ1 + ξ2 linearly expand into formal deformations; the corresponding laws are l6,6,
l6,12, l6,13 and l6,11 respectively in [23]. All these are also degenerations, entering into the
description of Example 3 (adding cocycles with positive weights to the Lie algebra law does
not change the lower central filtration). For every k ∈ R, the cohomology class of kξ1 + ω is
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Fig. 4 Sketch ofN6(R) ⊆ L6(R) around the Carnot Lie algebra from Example 5, and some deformations

also integrable into a formal deformation, going through families of twistings of g0 = l6,7 if
k = 0, or through families of twistings of l6,6 if k )= 0 (Fig. 4).

One can check that all the simply connected solvable Lie groups that are O(u)-bilipschitz
equivalent to G0 appear as deformations of G0 of the form described above. Let us give a
few words on this. If H is such a group, then by [65] and [6], the shadow h0 of its Lie algebra
is isomorphic to l6,i with i ∈ {6, 7, 11, 12, 13}. The three last algebras are irreducible (they
have no direct factor), and maximal tori for those are computed in [55]; in this way we check
that only l6,6 and l6,7 possess derivations with purely imaginary spectra. Thus either h is l6,11,
l6,12, l6,13 or a twisting of l6,7 or l6,6. Note that the quasiisometry classes in this family are not
completely known, though it is expected that they are given by the isomorphism type of the
shadow [75, Conjecture 19.114]. The real cohomology rings H∗(l6,6,R) and H∗(l6,7,R)

are isomorphic [75, Sect. 19.6.6]. However, b2(l6,13) is 4 while it is 5 for all the others; and
we can check that the rank of H2(l6,i ,R) , H2(l6,i ,R) → H4(l6,i ,R) given by the cup
product is 2 for i = 6 while it is 3 for i = 11 and i = 12 (see A.2.2 for some details). So
none of the Lie groups L6,11, L6,12, L6,13 are quasiisometric to G0 by [67], or the recent [33,
Corollary C].

It seems natural to expect Carnot graded algebra to havemore twistings than their nilpotent
deformations (on the other extreme, observe that characteristically nilpotent Lie algebras,
which lie “deep down” in Nn(R), have no twistings). This is indeed the situation on the
previous example. Thus we ask:

Question 12 Let h be a solvable Lie algebra over R, H its associated simply connected
Lie group, and let G0 be a simply connected Carnot-group. Assume that H and G0 are
O(u)-bilipschitz. Is there a formal deformation of g0 going through h?
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Table 3 Dimensions of maximal
tori, compactly embedded
maximal tori, and outer
derivation spaces for the nilpotent
Lie algebras of Example 5

g dim tcmax dim tmax dim H1(g, g)

l6,7 1 3 9 [34, g5,5 × C]

l6,6 1 2 8 [34, g6,5 × C]

l6,12 0 2 [55, 4.2.5] 7 [34, g6,11]

l6,11 0 1 [55, 4.1.1] 6 [34, g6,12]

l6,13 0 2 [55, 4.2.6] 5 [34, g6,13]

The author does not know whether the dimension of compactly embedded maximal tori
is upper semicontinuous on Nn(R) (which would hint towards a positive answer to Ques-
tion 12). These tori embed linearly in H1(λ, λ) whose dimension we have seen to be upper
semicontinuous in Lemma 4. However the codimension of the tori may be high (see Table 3).

5.2 Higher-rank symmetric spaces

The real rank of a symmetric space X is o(r)-bilipschitz invariant, as it is the covering
dimension of asymptotic cone [15] or, more in line with [48, Corollary 6.11], the minimal
degree above which all relative homology group of subspaces in Cone•

ω X vanish. This can
be refined: the restricted root system is invariant.

Proposition 16 (After Kleiner and Leeb) Let φ : X → Y be a sublinear bilipschitz equiva-
lence between irreducible symmetric spaces X of rank ≥ 2. Then, the restricted root systems
associated with X and Y are isomorphic.

Proof The spherical Tits building at infinity in Coneω(X) has the same appartments as the
Tits boundary of X [48, Theorem 5.2.1]. ��

We note that the rank p irreducible symmetric spaces of noncompact type

SU(p, 2q)/S(Up × U2q) and Sp(p, q)/Sp(p) × Sp(q)

have same restricted root system BCp and same asymptotic Assouad-Nagata dimension 4pq
[22, TableV p. 518]. Thus, we could not distinguish themwith our techniques, andQuestion 3
remains open so far for them.

The author is grateful to P. Pansu and G. Rousseau for bringing these pairs to his attention.

5.3 Right-angled Fuchsian buildings of uniform thickness

Given (p, q) such that p ≥ 5 and q ≥ 2, the finitely presented group

Γp,q = 〈s1, . . . sp | [si , si+1], sqi 〉.
has a model Ip,q which is a CAT(−1) cellular complex generalizing the cellular action of
the hyperbolic Coxeter group Γp,2 on H

2
R tesselated by right-angled p-gons and, following

[5],

Cdim ∂∞ Ip,q = log τ(p, q)

log τ(p, 2)
= 1 + log(q − 1)

argch
(
p−2
2

) . (42)
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The conformal dimension of Ip,q is not rational unless q = 2. It is proven in [62] that
CdimO(u) ∂∞ Ip,q = Cdim ∂∞ Ip,q , so that it is a O(u)-bilipschitz invariant. Using Poincaré
profiles, Hume, Mackay and Tessera proved that there can be no coarse embedding Ip,q →
Ip′,q ′ when Cdim ∂∞ Ip,q > Cdim ∂∞ Ip′,q ′ [39, Theorem 13.2]. We found the equality case
in (42) to be related to the following conjecture.

Conjecture 1 (Four exponential conjecture, [43, p.11]) Let β1, β2 be complex numbers,
linearly independent over Q, and let z1, z2 be complex numbers, also linearly independent
over Q. Then, at least one of the numbers eβi z j is transcendental.

The analogous statement with two triples β1, β2, β3, z1, z2, z3 is known as the six expo-
nentials theorem [43]. The unconditional form of the following Proposition is stated as a
conjecture in [41] and [54]. (We indicate with an asterisk that our statement is conditional.)

Proposition * 13 Assume that Conjecture 1 holds, and let (p, q, p′, q ′) be integers such that
p, p′ ≥ 5 and q, q ′ ≥ 3. Then the boundaries of the buildings Ip,q and Ip′,q ′ have equal
conformal dimension if and only if there exists positive integers M, N such that

(q − 1)N = (q ′ − 1)M (43)

TN

(
p − 2

2

)
= TM

(
p′ − 2

2

)
(44)

where Tk is the Tchebychev polynomial of the first kind and degree k.

Proof Negating the conclusion amounts asserting that there exists an irrational number z and
a quadruple (p, q, p′, q ′) such that z log(q ′ − 1) = log(q − 1) and z argch((p − 2)/2) =
argch((p′ − 2)/2). Define β1 = log(q ′ − 1),

β2 = argch((p′ − 2)/2) = log

(
p′ − 2

2
+√p′(p′/4 − 1)

)
,

z1 = 1 and z2 = z. Then, β2/β1 is not rational. But eβ1 , ezβ1 = q − 1, eβ
2 and ezβ2 =

p−2
2 + √

p(p/4 − 1) are all algebraic. ��
Note that the Ip,q are quasiisometrically rigid for q ≥ 3 [72]; especially they are classified

up to quasiisometry by the pair (p, q) for q ≥ 3.

Proposition * 14 Assume that Conjecture 1 holds. If there exists a O(u)-bilipschitz equiva-
lence φ : Ip,q → Ip′,q ′ then (43) and (44) hold for some M, N ≥ 1.

Proof This directly follows from Proposition 13 and [62]. ��
Let us finish with some questions. Thoughwe consider (43) and (44) perhaps not sufficient

for O(u)-equivalence between Ip,q and Ip′,q ′ , we could not distinguish them up to this
relation. In a slightly different direction, one can ask:

Question 15 Assume that p, q, p′, q ′ are as in (43) and (44). Are the groups Γp,q and Γp′,q ′
(non)-measure equivalent? If yes, are they L p-measure equivalent for some p < +∞?

(We recall that a measure equivalence between the finitely generated Γ and Λ is given by
a couple of free, commuting, measure preserving actions of Γ and Λ on a Lebesgue space
(Ω,m) with Borel fundamental domains of finite measure X and Y , such that the associated
cocycles c : G × X → H and H × Y → G have c(g, ·) ∈ L p for all g.)

Closer to the problems of this paper, the author also believe the following question to
remain currently open, and of some interest in view of [39].
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Question 16 Assume that p, q, p′, q ′ are as in (43) and (44), and p )= p′. Is there a coarse
embedding Ip,q → Ip′,q ′?

Acknowledgements The author thanks Salim Tayou for a useful discussion, Tomohiro Fukaya for useful
comments on a draft of this paper, and especially the anonymous referee for many comments and corrections.

A Methods used for the cohomology computations

The cohomology groups used in this paper are obtained by direct methods (i.e. by somewhat
explicit computations of derivative, cocycles and coboundaries). We summarize them below.

A.1 Solvable Lie algebras

Let b(n,K) be defined as in Example 1, with coordinates (zα, τ, s). Decompose zα = xα +
iyα; for 1 ≤ α1 < · · · < αs ≤ n − 1 and 1 ≤ β ≤ n − 1, denote

Xα1,...,αs
β = dxα1 ∧ · · · ∧ dxαs ⊗ ∂

∂xβ

Y α1,...,αs
β = dyα1 ∧ · · · ∧ dyαs ⊗ ∂

∂ yβ

T = ∂τ , T ∗ = dτ, S = ∂s, S∗ = ds.

We apply the summation convention where we simplify
∑

μ Xαμ
α into Xαμ

α in any equality
between tensors whenever μ is unbound in the RHS.

The Lie algebra grading s0 = 〈S〉, s1 = 〈Xα, Yα〉 and s2 = 〈T 〉 extends to a grading
of the mixed exterior/tensor product so that, say, Xα1,...αs

β ∧ T has weight 1 − s + 2. The
differentials have degree 0, hence the cohomology groups are graded accordingly. Finally,
b(n,C) has a preferred complex structure, J Xα = Yα , JYα = −Xα and J S = T . This is
because Hn

C is Hermitian. J is not an automorphism; nevertheless,

J̃ (Z) =
{
J (Z) Z ∈ s1

Z Z ∈ s0 ⊕ s2

is an automorphism, and we will use it in order to simplify the computations.

A.1.1 Results

Proposition 17 H1(b(n,R), b(n,R)) =⊕(α,β))=(n−1,n−1)〈Xβ
α 〉.

Proposition 18 H2(b(n,R), b(n,R)) =⊕(α,β))=(n−1,n−1)〈[Xα ⊗ S∗ ∧ Xβ ]α )=β〉.
Since the computation of H1(b(n,C), b(n,C)) proves useful for Proposition 17 and is

not significantly harder than the case n = 2 used in Sect. 4, we provide the result for all n
and the weight decomposition below.

Proposition 19 dim H1(b(n,C), b(n,C)) = (n − 1)2 + 1 and

H1(b(n,C), b(n,C)) = span

⎧⎪⎨
⎪⎩

[T ⊗ S∗] weight − 2

[Xβ
α − Y α

β ]1≤α,β≤n−1, α )= β weight 0

[Xα ⊗ Y α]1≤α≤n−1 weight 0.
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Proposition 20 Let s′′ be the four-dimensional Lie algebra R3
�α R, where α =

diag(J2(1), 2). Then dim H1(s′′, s′′) = 4.

A.1.2 Method

In order to gain space for Propositions 17 to 19wegather the computation forR andC and then
extract the case ofK = R. We abbreviate the derivative of the complexC•(b(n,K), b(n,K))

into d ′
K.

Lemma 7 For all α, β such that 1 ≤ α, β ≤ n − 1,

d ′
CX

β
α = Xβ ∧ Y α ⊗ T ; d ′

CY
β
α = Xα ∧ Y β ⊗ T ;

d ′
C(Xα ⊗ Y β) = −2Y αβ ⊗ T ; d ′

C(Yα ⊗ Xβ) = 2Xαβ ⊗ T ;
d ′
C(Xα ⊗ S∗) = −Y α ∧ S∗ ⊗ T ; d ′

C(Yα ⊗ S∗) = Xα ∧ S∗ ⊗ T .

d ′
C(T ⊗ Xα) = Xα ∧ S∗ ⊗ T ; d ′

C(T ⊗ Y α) = Y α ∧ S∗ ⊗ T
d ′
C(T ⊗ S∗) = 0 d ′

C(S ⊗ T ∗) = −2S∗ ∧ T ⊗ S.

d ′
C(S ⊗ S∗) = −Xμ ∧ S∗ ⊗ Xμ − Yμ ∧ S∗ ⊗ Yμ − 2T ∧ S∗ ⊗ T .

d ′
C(T ⊗ T ) = −Xμ ∧ Yμ ⊗ T .

d ′
C(S ⊗ Xα) = Xα�

� − Xα ∧ Y � ⊗ Y� + Xα ∧ S∗ ⊗ S − 2Xα ∧ T ∗ ⊗ T ;
d ′
C(S ⊗ Y α) = Y α�

� − Y α ∧ X� ⊗ X� + Y α ∧ S∗ ⊗ S − 2Y α ∧ T ∗ ⊗ T ;
d ′
C(Xα ⊗ T ∗) = (Xμ ∧ Yμ − S∗ ∧ T ) ⊗ Xα + Y α ∧ T ∗ ⊗ T

d ′
C(Yα ⊗ T ∗) = (−Yμ ∧ Xμ − S∗ ∧ T ) ⊗ Yα − Xα ∧ T ∗ ⊗ T

Proof The whole computation being of little interest, let us explain in detail only how one
computes dCX

β
α , dCY

β
α and d(Xα ⊗ S∗) as a sample of the techniques employed. Applying

(30),

d ′
CX

β
α (Xμ�) = −Xβ

α [Xμ, X�] + [Xμ, Xβ
α X�] − [X�, X

β
α Xμ]

= [Xμ, δβ�Xα] − [X�, δβμXα] = 0;
d ′
CX

β
α (Yμ�) = −Xβ

α [Yμ, Y�] + [Yμ, Xβ
αY�] − [Y�, X

β
αYμ] = 0;

d ′
CX

β
α (Xμ ∧ Y�) = −Xβ

α [Xμ, Y�] + [Xμ, Xβ
αY�] − [Y�, X

β
α Xμ]

= −δμ�X
β
αT − δβμ[Y�, Xα] = δα�δβμT ;

d ′
CX

β
α (Xμ ∧ S) = −Xβ

α [Xμ, S] + [Xμ, Xβ
α S] − [S, Xβ

α Xμ]
= Xβ

α Xμ − [S, δβμXα] = δβμ(Xα − Xα) = 0,

d ′
CX

β
α (Xμ ∧ T ) = −Xβ

α [Xμ, T ] + [Xμ, Xβ
αT ] − [T , Xβ

α Xμ] = −[T , δβμXα] = 0.

d ′
CX

β
α (Yμ ∧ S) = −Xβ

α [Yμ, S] + [Yμ, Xβ
α S] − [S, Xβ

αYμ] = Xβ
αYμ = 0.

d ′
CX

β
α (Yμ ∧ T ) = −Xβ

α [Yμ, T ] + [Yμ, Xβ
αT ] − [T , Xβ

αYμ] = 0;
d ′
CX

β
α (S ∧ T ) = −Xβ

α [S, T ] + [S, Xβ
αT ] − [T , Xβ

α S] = −2Xβ
αT = 0,

which yields the expression of dCX
β
α . Applying J̃ produces dCY

β
α :

d ′
CY

β
α = dC J̃ X

β
α = J̃ Xβ ∧ J̃ Xα ⊗ T = Y β ∧ (−Xα) ⊗ T .
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Now for d ′
C(Xα ⊗ S∗)(Xμ ∧ S), using the observation that ker S∗ = s1 ⊕ s2 = [s, s],

we can reduce the number of terms needed for the computations of d(Xα ⊗ S∗): this will
evaluate to zero for any bivector where S is not a factor. The remaining terms are:

d ′
C(Xα ⊗ S∗)(Xμ ∧ S) = [Xμ, Xα ⊗ S∗S] = 0;
d ′
C(Xα ⊗ S∗)(Yμ ∧ S) = [Yμ, Xα ⊗ S∗S] = [Yμ, Xα] = −δαμT ;
d ′
C(Xα ⊗ S∗)(S ∧ T ) = −[T , Xα ⊗ S∗S] + [S, Xα ⊗ S∗T ] = 0.

��

Lemma 8 For all α, β such that 1 ≤ α, β ≤ n − 1,

d ′
RX

β
α = 0

d ′
R(S ⊗ Xα) = Xα�

� + Xα ∧ S∗ ⊗ S

d ′
R(Xα ⊗ S∗) = 0

d ′
R(S ⊗ S∗) = −Xμ ∧ S∗ ⊗ Xμ.

Proof Discard the terms with Y , S, T in the results of Lemma 7. ��

Lemma 9 (Differentials of 2-cochains)

d ′
R(Xβγ

α ) = −2Xα ⊗ Xβγ ∧ S∗

d ′
R(S ⊗ Xαβ) = −2S ⊗ Xαβ ∧ S∗

d ′
R(Xα ⊗ S∗ ∧ Xβ) = 0

d ′
R(S ⊗ S∗ ∧ Xα) = 2Xμ ⊗ Xμα ∧ S∗.

Proof Let us concentrate on d ′
R(Xβγ

α ). First recall that if g is a Lie algebra andω is a g-valued
2-form, then for every U , V ,W ∈ g3,

dγ (U ∧ V ∧ W ) = [U , γ (V ∧ W )] + [V , γ (W ∧U )] + [W , γ (U ∧ V )]
− γ ([U , V ] ∧ W ) − γ ([W ,U ] ∧ V ) − γ ([V ,W ] ∧U ).

Applying this, one checks readily that d ′
R(Xβγ

α )(Xμν�) = 0 while

d ′
R(Xβγ

α )(Xμν ∧ S) = 0 − Xβγ
α

([Xμ, Xν] ∧ S + [S, Xμ] ∧ Xν + [Xν, S] ∧ Xμ

)
= (−δβμδγ ν + δβνδγμ

)
Xα.

��

Remark 11 The Lie algebra-valued forms have a wedge product. However we did not find
a clear computational advantage in using formulae for the derivative of 2-forms using this
wedge product.

Proof (Proof of Proposition 17) By Lemma 8,

Z1(b(n,R), b(n,R)) = span
{
Xβ

α , Xα ⊗ S∗}
1≤α,β≤n−1 ,

while d ′
RXα = Xα ⊗ S∗ and d ′

RS = −Xμ
μ . ��
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Proof (Proof of Proposition 18) By Lemma 8,

B2(b(n,R), b(n,R)) = span
{
Xα�

� + Xα ∧ S∗ ⊗ S, Xμ ⊗ Xμ ∧ S∗}
α=1,...,n−1

while by Lemma 9,

Z2(b(n,R), b(n,R)) = span
{
Xμα

μ + S ⊗ S∗ ∧ Xα, Xα ⊗ Xβ ∧ S∗}
α=1,...,n−1

.

��

Proof (Proof of Proposition 19) The 1-coboundaries are computed as

d ′
CXα = Xα ⊗ S∗ − T ⊗ Yα

d ′
CYα = Yα ⊗ S∗ + T ⊗ Xα

d ′
CS = −Xμ

μ − Yμ
μ − 2T ⊗ T ∗

d ′
CT = 2T ⊗ S∗.

The right-hand side of equations in Lemma 7 provide the 1-cocycles. ��

Proof (Proof of Proposition 20) We recall that s′′ is the Lie algebra over X1, . . . , X4 with
s′′ = 〈X2, X3, X4〉 ⊕ 〈X4〉 and

ad(X4) =
⎛
⎝1 1 0
0 1 0
0 0 2

⎞
⎠

in the basis (X2, X3, X4).
Omitting the symbol

∑
i< j and using d ′(X�

k)(x
i j Xi j ) = −xi j X�

k [Xi , X j ] + δ j�

xi j [Xi , Xk] − δi�xi j [X j , Xk] one finds

d ′(X1
1) = 2X14

1 + X24
1 d ′(X2

1) = −X24
1 + X24

2
d ′(X3

1) = −X12
1 + 3X34

1 d ′(X4
1) = 0

d ′(X1
2) = X14

2 d ′(X2
2) = X24

1
d ′(X3

2) = −X34
1 − 3X34

2 d ′(X4
2) = 0

d ′(X1
3) = −X14

3 d ′(X2
3) = −X24

3
d ′(X3

3) = 0 d ′(X4
3) = 0

d ′(X1
4) = X14

4 + X24
4 + X14

1 d ′(X2
4) = X24

4 − X12
1 + 2X23

3
d ′(X3

4) = 2X34
4 − X13

1 − X23
1 − X23

2 d ′(X4
4) = −X14

1 − X24
1 − X24

2 − X34
3 .

All the nonzero co-boundaries obtained are linearly independent, hence

H1(s′′, s′′) = span(X3
3, X

4
1, X

4
2, X

4
3). ��

A.2 The Lie algebra l6,7 and its nilpotent deformations

We expand below on the computations needed for Example 5.
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A.2.1 Adjoint cohomology of l6,7

One computes the 2-coboundaries as:

d ′
μ(X1

1) = X12
3 + X13

4 + X14
5 d ′

μ(X1
2) = 0 d ′

μ(X1
3) = 0

d ′
μ(X2

1) = X23
4 + X24

5 d ′
μ(X2

2) = X12
3 d ′

μ(X2
3) = X12

4
d ′
μ(X3

1) = −X23
3 + X34

5 d ′
μ(X3

2) = X13
3 d ′

μ(X3
3) = X13

4
d ′
μ(X4

1) = −X24
3 − X34

4 d ′
μ(X4

2) = X14
3 d ′

μ(X4
3) = X14

4
d ′
μ(X5

1) = −X25
3 − X35

4 − X45
5 d ′

μ(X5
2) = X15

3 d ′
μ(X5

3) = X15
4

d ′
μ(X6

1) = −X26
3 − X36

4 − X46
5 d ′

μ(X6
2) = X16

3 d ′
μ(X6

3) = X16
4

d ′
μ(X1

4) = 0 d ′
μ(X1

5) = 0 d ′
μ(X1

6) = 0
d ′
μ(X2

4) = X12
5 d ′

μ(X2
5) = 0 d ′

μ(X2
6) = 0

d ′
μ(X3

4) = −X12
4 + X13

5 d ′
μ(X3

5) = −X12
5 d ′

μ(X3
6) = −X12

6
d ′
μ(X4

4) = −X14
4 + X15

5 d ′
μ(X4

5) = −X13
5 d ′

μ(X4
6) = −X13

6
d ′
μ(X5

4) = −X14
4 + X15

5 d ′
μ(X5

5) = −X14
5 d ′

μ(X5
6) = −X14

6
d ′
μ(X6

4) = X16
5 d ′

μ(X6
5) = 0 d ′

μ(X6
6) = 0.

This justify the assertion thatω, ξ1, ξ2, ξ3 and ξ1+ξ2 are not coboundaries. We now check
that they are cocycles. In the computation below, we omit the symbols

∑
i< j<k , and get rid

of the terms that can be checked to equal 0 by direct inspection.

d ′
μω(xi jk Xi jk) = d ′

μ(X16
2 + X62

1 )(xi jk Xi jk)

= −xi jk[X j , X
16
2 Xik] − xi jk[Xi , X

26
1 X jk] + xi jk[X j , X

26
1 Xik] = 0;

d ′
μξ1(x

i jk Xi jk) = d ′
μ(X23

5 )(xi jk Xi jk)

= −xi jk X23
5 ([Xi , X j ] ∧ Xk) + xi jk X23

5 ([Xi , Xk] ∧ X j )

− xi jk X23
5 ([X j , Xk] ∧ Xi ) + xi jk[Xi , X

23
5 X jk] − xi jk[X j , X

23
5 Xik]

+ xi jk[Xk, X
23
5 Xi j ]

= x123[X1, X
23
5 X23] + x234[X4, X5] + x235[X5, X5] = 0;

d ′
μξ2(x

i jk Xi jk) = d ′
μ(X26

5 )(xi jk Xi jk)

= xi jk[Xi , X
26
5 X jk] − xi jk[X j , X

26
5 Xik] + xi jk[Xk, X

26
5 Xi j ] = 0;

d ′
μξ3(x

i jk Xi jk) = d ′
μ(X26

4 + X36
5 )(xi jk Xi jk)

= x126[X1, X
26
4 X26] − x126X36

5 ([X1, X2] ∧ X6)

= x126(X5 − X5) = 0.

Note that dim H2(μ,μ) = 18, by the computer-produced [34, Table 11].

A.2.2 Cohomology rings

Let di denote the derivative of C∗(l6,i ,R). Then

d7X3 = −X12 d7X4 = −X13 d7X5 = −X14

d11X3 = −X12 d11X4 = −X13 d11X5 = −X14 − X23

d12X3 = −X12 d12X4 = −X13 d12X5 = −X14 − X26.
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In the notation of [55], l6,11 ⊗ C is g6,12 while l6,12 ⊗ C is g6,11. We compute that

H2(l6,7, R) = 〈[X15], [X16], [X23], [X25 − X34], [X26]〉
H2(l6,11, R) = 〈[X13], [X15], [X23], [X16 + X25 − X34], [X26 − X45]〉
H2(l6,12, R) = 〈[X13], [X15], [X16 − X34], [X26 − X45], [X24]〉

The computations for l6,11 and l6,12 can be checked with the help of the derivative di written
down with computer assistance in [55] on p.44 and p.72 respectively ([55] uses the g6,i
notation recalled above for the Lie algebras and writes ωi, j for Xi j ). Moreover,

B4(l6,7, R) = 〈X1234, X1235, X1236, X1245, X1246, X1256, X1356〉
B4(l6,11, R) = 〈X1234, X1235, X1245, X1246, X1236 − X1345, X1346, X1256 + X2345〉
B4(l6,12, R) = 〈X1234, X1235, X1245, X1246, X1236 − X1345, X1346, X1256 + X2345〉

If πi denotes the cup product H2(l6,i ,R) × H2(l6,i ,R) → H4(l6,i ,R), then

Im(π7) = 〈[X1345], [X2346]〉
Im(π11) = 〈[X1236], [X2345], [X1456 + X2346]〉
Im(π12) = 〈[X1236], [X1456 + 2X2346], [X1256]〉

One checks using the co-boundaries spaces B4 listed above that these vectors are linearly
independent, completing the proof that the cohomology rings of l6,11 and l6,12 are not iso-
morphic to that of l6,7.
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