Geometriae Dedicata (2022) 216:26
https://doi.org/10.1007/510711-022-00687-6

ORIGINAL PAPER

®

Check for
updates

Lightlike and ideal tetrahedra

Catherine Meusburger'® - Carlos Scarinci?

Received: 23 January 2022 / Accepted: 18 February 2022 / Published online: 23 March 2022
© The Author(s) 2022

Abstract

We give a unified description of tetrahedra with lightlike faces in 3d anti-de Sitter, de Sitter and
Minkowski spaces and of their duals in 3d anti-de Sitter, hyperbolic and half-pipe spaces.
We show that both types of tetrahedra are determined by a generalized cross-ratio with
values in a commutative 2d real algebra that generalizes the complex numbers. Equivalently,
tetrahedra with lightlike faces are determined by a pair of edge lengths and their duals by
a pair of dihedral angles. We prove that the dual tetrahedra are precisely the generalized
ideal tetrahedra introduced by Danciger. Finally, we compute the volumes of both types of
tetrahedra as functions of their edge lengths or dihedral angles, obtaining generalizations of
the Milnor—Lobachevsky volume formula of ideal hyperbolic tetrahedra.
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1 Introduction

Ideal hyperbolic tetrahedra Hyperbolic ideal tetrahedra are fundamental building blocks
in 3d hyperbolic geometry. They are geodesic tetrahedra in H3 with vertices in the ideal
boundary ds,H> = CP!. As they are determined by their vertices, they are parametrized, up
to isometries, by a single complex parameter z € C\{0, 1}, its shape parameter or cross-ratio.

The general approach to the construction of 3d hyperbolic structures via hyperbolic ideal
tetrahedra was introduced by Thurston in [20]. Starting with a topological 3-manifold M
with a topological ideal triangulation, one chooses hyperbolic structures on the tetrahedra
that glue smoothly into a hyperbolic structure on M. The consistency conditions for the
gluing determine a system of algebraic equations on the set of shape parameters. Under a
few additional assumptions, solutions to these gluing equations define a smooth hyperbolic
structure on M.

This construction is a powerful tool in 3d hyperbolic geometry. Given a hyperbolic 3-
manifold M with a geodesic ideal triangulation and solutions of Thurston’s gluing equations,
one can in principle compute many invariants of M. In particular, the hyperbolic volume
of M can be computed as the sum of volumes of each ideal tetrahedron [20], see also [17],
which is a well-know function of the shape parameter [16].

Generalized ideal tetrahedra This description of hyperbolic 3-manifolds in terms of ideal
hyperbolic tetrahedra can be generalized to other geometries. In [4, 6] Danciger introduced a
generalized notion of ideal tetrahedra in 3d anti-de Sitter and 3d half-pipe spaces and studied
a generalized version of Thurston’s gluing equations.

Denoting by Y4 the 3d hyperbolic space for A > 0, the 3d anti-de Sitter space for
A < 0 and the 3d half-pipe space for A = 0, one can describe these generalized ideal
tetrahedra as geodesic tetrahedra in Y 4 with vertices at the ideal boundary dY 4 and with
spacelike edges. The additional condition that the edges are spacelike imposes restrictions
on the relative position of the vertices at the asymptotic boundary. Nonetheless, generalized
ideal tetrahedra are also parametrized, up to isometries, by a single shape parameter, now
taking values in the ring of generalized complex numbers C 4. See also [11], for a general
discussion of gluing equations over commutative rings.

Generalized ideal tetrahedra share many properties with their hyperbolic counterparts and
thus offer the prospect to generalize results and constructions from hyperbolic geometry to
3d anti-de Sitter and half-pipe geometry. In particular, they were applied by Danciger in [4,
6] to construct geometric transitions between hyperbolic and anti-de Sitter structures, going
through half-pipe structures, and were also used as building blocks for the study of more
general polyhedra in [7].

A particularly interesting quantity in this respect is the hyperbolic volume. The volume of
a generalized ideal tetrahedron can be defined as the integral of a 3-form invariant under the
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action of the isometry group, which is unique up to global rescaling. However, so far there is
no anti-de Sitter or half-pipe analogue of the Milnor—Lobachevsky formula for the volume
in this setting. This raises

Question 1 Is there a simple formula for the volume of a generalized ideal tetrahedron in
Y4 as a function of its shape parameter and the parameter A that controls the geometric
transitions?

3d Lorentzian geometry Another strong motivation to investigate generalized ideal tetra-
hedra is the close relation between structures from 2d and 3d hyperbolic geometry and 3d
Einstein geometry in Lorentzian signature. Every 3d Lorentzian Einstein manifold M is
locally isometric to a homogeneous and isotropic Lorentzian 3d manifold X4 of constant
curvature A, namely the 3d de Sitter space for A > 0, the 3d anti-de Sitter space for A < 0
and the 3d Minkowski space for A = 0. The geometry of M can then be described by geo-
metric structures modeled on X 4 and with structure group G 4 = Isomg(X4), that is, by an
atlas of coordinate charts valued in X 4 with isometric transition functions.

Under additional assumptions on causality, namely maximal global hyperbolicity and the
completeness of a Cauchy surface S, there is a full classification result [1, 3, 12, 18], which
characterizes the 3d Einstein manifolds in terms of structures from 2d and 3d hyperbolic
geometry. More specifically, it identifies the moduli space GH 4 (M) of maximal globally
hyperbolic Einstein metrics, modulo isotopy, on a 3-manifold M = R x § with the bundle
ML(S) of bounded measured geodesic laminations over the Teichmiiller space 7(S) of the
Cauchy surface.

For each value of A, this identification is given by a Lorentzian counterpart of the grafting
construction from 3d hyperbolic geometry. Moreover, the Lorentzian grafting construction is
directly related to hyperbolic grafting via the Wick-rotation and rescaling theory developed
by Benedetti and Bonsante [3]. It was also shown by the first author in [13] that these
constructions admit a unified description via the ring of generalized complex numbers C 4.

Symplectic structures and mapping class group actions The moduli spaces GH 4 (M)
admit a symplectic structure induced by Goldman’s symplectic structure [9, 10] on the spaces
of holonomies Hom(7r{(S), GA)/G 4. This is a natural Lorentzian generalization of (the
imaginary part of) Goldman’s symplectic structure on the moduli space of quasi-Fuchsian
hyperbolic 3-manifolds or, more generally, the moduli space of hyperbolic end 3-manifolds.
In fact, these structures are closely related via Wick-rotation and rescaling theory. More
precisely, it was shown by the second author in joint work with Schlenker [19], that Wick
rotations induce symplectic diffeomorphisms between the moduli spaces GH 4 (M) and the
moduli space of hyperbolic end 3-manifolds for all values of A.

In [14] we showed that these symplectic structures can be given a unified description in
terms of C 4-valued shear coordinates associated with ideal triangulations of a punctured
Cauchy surface. This description generalizes the Weil-Petersson symplectic structure on
Teichmiiller space 7(S), and leads to a simple description of the mapping class group action
in terms of 2d Whitehead moves. Interestingly, they involve C 4-analytic continuations of
classical dilogarithms, which suggests a close relation to the volumes of ideal hyperbolic
tetrahedra.

Generalized ideal tetrahedra and their duals The role of hyperbolic structures in 3d
Lorentzian geometry suggests that there should be a distinguished class of tetrahedra in 3d
de Sitter, Minkowski and anti-de Sitter space with structural similarities to ideal tetrahedra,
such as a simple description in terms of shape parameters.
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Question 2 Are there analogues of generalized ideal tetrahedra in the spaces X 4 with similar
geometric properties?

If the answer to this question is yes, one may generalize Question 1 to these tetrahedra and
ask whether the geometry of these tetrahedra is simple enough to admit a volume formula in
terms of simple quantities such as shape parameters and similar to the Milnor—Lobachevsky
formula.

Question 3 Is there a simple volume formula for these tetrahedra in X4 ?

In this article, we show that the answers to these three questions are positive. More
specifically, we show that the analogues of generalized ideal tetrahedra in the Lorentzian
spaces X 4 are the geodesic tetrahedra whose faces lie in lightlike geodesic planes.

We also find that they are related to Danciger’s generalized ideal tetrahedra from [6] via the
projective duality between the spaces X4 and Y 4 (Theorem 4.19). This duality pairs points in
one space with (totally) geodesic spacelike planes in the other. It admits a natural extension
to the ideal boundary, which assigns points in 9, Y 4 to lightlike geodesic planes in X 4, and
hence pairs generalized ideal tetrahedra in Y 4 and lightlike tetrahedra in X 4.

We achieve this via a unified description of the spaces X4 and Y, in terms of 2 x 2-
matrices with entries in C 4. This description leads to simple expressions for the geodesics,
geodesic planes, metrics and isometry group actions on both spaces, and also for the ideal
boundary of Y 4. It allows us to parametrize both lightlike and ideal tetrahedra, to investigate
their geometry in detail and to explicitly relate them.

In particular, we show in Proposition 4.2 that lightlike tetrahedra are also parameterized
by pair of real parameters «, 8 € R or, equivalently, by a generalized complex number
z € C4. These parameters have simple geometric interpretations, analogous to the ones for
ideal tetrahedra. For example, the parameters |«|, | 8], |@ + B]| represent edge lengths of the
lightlike tetrahedron, with opposite edges having equal length. Under duality, these lengths
correspond to the dihedral angles of the dual ideal tetrahedron.

Volumes of generalized ideal tetrahedra and their duals We also apply the explicit
parametrization of lightlike and ideal tetrahedra to derive a unified formula for their vol-
umes as a function of the parameters «, 8. For a generalized ideal tetrahedron I C Y 4 the
resulting formula in Theorem 5.1 is a generalization of the Milnor-Lobachevsky volume
formula for ideal hyperbolic tetrahedra, involving A as a deformation parameter

vol(]):%(CIA@O[)+C1A(2,3)+C1A(2y)>, a+pB+y =0

Here, Cl, is a generalized Clausen function. It coincides with the usual Clausen function for
A > 0, the hyperbolic Clausen function for A < 0 and the integral of a logarithmic function
for A = 0. The volume computation for a lightlike tetrahedron L C X, is more involved
and is achieved in Theorem 5.2. The result is again a very simple expression involving A as
a deformation parameter

vol(L) = i(cm Qa) + Cly28) + ClA(2y)>

1
+ — (aloglsat@)] + Bloglsa(B)l + loglsa(r)]).

with s given by the sine function for A > 0 and the hyperbolic sine function for A < 0.
The volume for A = 0 can be either computed directly or as the limit A — 0 from a power
series expansion around A = 0 and reads vol(L) = —afy /3.
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2 Lorentzian 3d geometries and their duals
2.1 Projective models

In this section, we describe the 3d Lorentzian geometries considered in this article and their
duals. We work with a projective formulation that identifies these spaces with subsets of RP>.
We denote by RP-4"" the vector space R?T97" endowed with the symmetric bilinear form of
signature (p, g, 1)

(x, x)p,q,r = —(X1)2 — = (xp)2 + (xp+q+1)2 +---+ (xp+q+r)2- (2.1)

A vector x € RP?7 is called timelike if (x, x) < 0, spacelike if (x, x) > 0 and lightlike if
x # 0and (x, x) = 0. We call it a unit vector or normalized if |(x, x)| = 1 orif |(x, x)| = 0.

Anti-de Sitter space The Klein model of 3d anti-de Sitter space can be defined as the space
of timelike lines through the origin in R?:0-2

AdS? = [x € R202 | (x, x)202 < 0]/[R>< C RP3, (2.2)

This can also be seen as the quotient of the hyperboloid of unit timelike vectors in R>%-2 by
the antipodal map and thus inherits a Lorentzian metric of constant sectional curvature —1.

The group of orientation preserving isometries of AdS? is POy (2,2) = PSL(2,R) x
PSL(2, R). It acts transitively on AdS>. The full group of isometries of AdS> is the group
PO(2,2) € PGL(2, R) x PGL(2, R). It is a double cover of POy (2, 2) and is generated by
POy (2, 2) together with the isometry

[(x1, x2, x3, x4)] = [(x1, —x2, X3, X4)].

de Sitter space The Klein model of 3d de Sitter space can be defined similarly as the space
of spacelike lines through the origin in R1:0:3

as? = [x e RMO3 | (x,x)1.03 > O]/[Rx C RP3. 2.3)

It is the quotient of the hyperboloid of unit spacelike vectors in R"-%3 by the antipodal map and
thus inherits a Lorentzian metric with sectional curvature +1. Note that with this definition
dS? is orientable, but not time orientable.

The group of orientation preserving isometries is POg(1, 3) = PGL(2, C). It acts tran-
sitively on dS3. The full isometry group is the group PO(1, 3), generated by POq(1, 3) and
[(x1, x2, x3, x4)] = [(x1, —x2, X3, X4)].

Minkowski space We also consider a Klein model of 3d Minkowski space. This is defined
as the space of lines through the origin in R"!-? transversal to the hyperplane x, = 0

Mink? = {x eRV2 | (x2)? > o}/Rx C RP3. (2.4)

As Mink? can be identified with the hyperplane H = {x € R'2 | xo = 1}, it inherits
a Lorentzian metric of sectional curvature 0. The group of orientation preserving isome-
tries of Mink? is the Poincaré group in 3 dimensions POq(1, 1,2) = POg(1,2) x RI:Z2
PSL(2, R) x sl(2, R). It acts transitively on Mink3. The full isometry group of Mink?3 is the
group PO(1, 1,2) = PO(1, 2) x R"2 = PGL(2, R) x 5[(2, R). It is generated by POy (1, 1, 2)
and the isometry [(x1, x2, X3, x4)] — [(x1, —x2, X3, X4)].
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In the following, we denote these three projective quadrics in RP? by X4, where A €
{—1, 0, 1} is the sectional curvature of the quadric

AdS3, A =1,
Rp=14dS3, A=1,
Mink®, A =0.
Dual models The projective quadrics X, C RP? can also be characterized by their duality

to three other projective quadrics Y, C RP3? for A = —1, 0, 1. The latter are defined as the
spaces of timelike lines through the origin in R*

Va={veR (o< 0]/[Rx C RP3. 2.5)

with respect to the symmetric bilinear form
(Vo9 a = =V + A3 +y3 4+ y3. (2.6)
As Y, is the quotient of the set of timelike unit vectors for (-, -) 4 by the antipodal map,
it also inherits a constant curvature metric. For A = —1, this is again a Lorentzian metric
of sectional curvature —1, and Y_; is identical to X_; = AdS3. For A = 1 one obtains a

Riemannian metric of sectional curvature —1, and Y is the Klein model of 3d hyperbolic
space H3. For A = 0 one has a degenerate metric of signature (0, 0, 2), and Yo = H? x Ris
the product of 2d hyperbolic space with the real line, the so called co-Minkowski or half-pipe
space, see for instance [2, 4, 5, 8]. Thus,

AdS?,  A=-1,
Yp={H, A =1,
H2 xR, A=0.

For each value of A, the isometry group of Y 4 agrees with the isometry group of X 4. The
isotropy groups, however, are different.

2.2 Projective duality

Geodesics lines and geodesic planes in X 4 and Y 4 are obtained as the intersections of X 4 and
Y 4 with projective lines and with projective planes in RP?. The latter are the projections of
2d and 3d linear subspaces of R* to RP3. As usual, a geodesic in X4 or Y 4 is called timelike,
lightlike or spacelike if its tangent vectors are timelike, lightlike or spacelike. A geodesic
plane in X4 or Y4 is called timelike, if it contains a timelike geodesic, spacelike if all of its
geodesics are spacelike, and lightlike, if it contains a lightlike but no timelike geodesics.

The projective duality between X 4 and Y 4 is a bijection between points in one space and
(totally) geodesic spacelike planes in the other. For A # 0, it is induced by orthogonality
with respect to the ambient bilinear form (-, -) 4 on R* from (2.6). To a point [x] € X, it
assigns the spacelike plane x* C Y, and to a point [y] € Y4 the spacelike plane y* C X4
with

= {Dlevalwoa=0f  y={mexalmma=0} @

where [x], [y] € RP? denote the equivalence classes of x, y € R* in RP3. This duality also
induces a bijection between spacelike geodesics in X4 and in Y 4. It assigns to a spacelike
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geodesic g the intersection p* N ¢* for any two points [p], [¢] € g. This intersection is a
spacelike geodesic and independent of the choice of [p], [¢] in g.

For A = 0 the ambient bilinear form (-, -) 4 becomes degenerate and the duality cannot be
directly interpreted in terms of orthogonality. One can, however, understand the duality for
A = 0 as a limit of the other two cases via certain blow-up procedures, see [8]. The duality
between points and geodesic planes in X and Yy is then given by

= {Dlevol oo =nn)l  yi={eXo o =nmn) @8

The geometric interpretation of the duality is the following. Half-pipe space Yo = H? x R
can be identified with the set of spacelike affine planes in Minkowski space, whose normal
vector is given by a point in H2 and whose offset in the direction of the normal vector by a real
parameter. The duality sends a point in Y to the associated spacelike affine plane in Mink>.
Conversely, a point x € Mink? is dual to the graph of the map f : H2 > R, n > (x, n)1.1,2,
which defines a spacelike geodesic plane in half-pipe space.

The duality between points and geodesic planes extends to more general convex subsets
X4 and Y 4. A set in RP3 is called convex if it is the projection of a convex cone in R?* that
contains no non-trivial linear subspace. The projective dual of a convex set is then defined
as the projection of the corresponding dual cone.

Convex sets in X4 and Y4 can then be defined as the restriction of convex set in RP3
to each of these projective quadrics. The projective duality can thus be defined with respect
to the duality between of convex cones in R*. We refer the reader to [8] for more details.
Geometrically, the dual of a convex set can also be characterized as the set of spacelike
geodesic planes which do not intersect the convex set.

2.3 Ideal points and lightlike planes

The spaces Y 4 admit a natural compactification in the projective quadric model. Namely, we
can consider the closure of Y 4 in RP3, given by

Va={y e RO} (304 = 0] /R~
Its boundary in RP? is the projective lightcone
Ioc¥a = V4 = {y € RO} | (3. 3)a = 0] /.

This can be viewed as the asymptotic ideal boundary of Y 4. It generalizes the description of
the boundary 9H? as the set of lightlike rays in R1:%-3. We will see in Sect. 3.6 that the ideal
boundary 9,,Y 4 can be identified with RP! x RP' for A = —1, with CP! for A = 1 and
with RP! x R for A = 0.

The projective duality (2.7) between points and spacelike planes in X4 and Y 4 admits a
natural extension to a duality between points [y] € 95V 4 and lightlike planes y* C X4,
given again by (2.7).

3 3d geometries via generalized complex numbers

In this section, we give a unified description of the projective quadrics X4 and Y 4 in terms
of 2 x 2-matrices with entries in a commutative real algebra C,, whose multiplication
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depends on A. For the spaces Y 4, this description was introduced in [4-6]. For the spaces
X 4 similar descriptions were considered by the first author in [13, 15] and by both authors
in [14]. In Sects. 3.1-3.3 we summarize the results from [4-6] and [13—15] and combine
both descriptions in a common framework. In Sect. 3.4 we derive simple parametrizations of
geodesics and geodesic planes in these spaces, which are applied in Sect. 3.5 to investigate the
geometry of lightlike geodesic planes in X 4. Section 3.6 summarizes Danciger’s description
of the ideal boundary from [4—6] and interprets his results in terms of Lorentzian geometry
by duality with the spaces X 4.

3.1 Generalized complex numbers

For any A € R we define the ring of generalized complex numbers C 4 as the quotient of the
polynomial ring in one variable £ by the ideal generated by £2 + A

Ca =R/ (2 + 2)-

Elements in C 4 can thus be parametrized uniquely as z = x+£y, withreal x, y and €2 = — A.
We write x = Re (z) and y = Im (z) and refer to x and y as the real and imaginary parts
of z € C4. We also define generalized complex conjugates by 7 = x — £y and the modulus
|z = zzZ.

Note that, up to isomorphisms, C 4 only depends on the sign of A. We therefore restrict
attention to A = 1,0, —1. For A = 1, this yields the field C of complex numbers, and for
A = 0, —1 the dual numbers and hyperbolic numbers, respectively. Note that for A = 0, —1
the ring C 4 is not a field, as there are nontrivial zero divisors. These are real multiples of ¢
for A = 0 and real multiples of 1 &= ¢ for A = —1. The group of units in C4 is

@3:{166“ |z|2=zz;eo}.

The real algebra C 4 becomes a 2d Banach algebra for all values of A when equipped with
an appropriate norm. This allows one to consider power series and analytic functions on C 4
and on the algebras Mat(n, C4) of n x n matrices with entries in C 4. In particular, any real
analytic function f : I — R on an open interval / C R can be extended to a unique analytic
function F : 2 — C 4 on an appropriate open set I C 2 C Cy4, via

Wi+ + Sfa—y), A=-1,
Fx+¢€y) =1 f(x+iy). A=1,
f+Lf (x)y, A=0.

The analytic continuation F satisfies a generalization of the Cauchy—Riemann equations on
$2

dRe FF dlm F dRe F

olm F
—A .
ay ox

)

ox ay

Using the exponential map, we define generalized trigonometric functions ¢4, s4 : R > R
by

exp(£0) = ca(0) + £s(9), 3.1
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which yields
cosh(@), A =—1, sinh(f), A= —1,
ca(@) = 1{cos(@), A=1, sA(0) = {sin(@), A=1,
1, A =0, 0, A=0.

They satisfy the following generalized trigonometric identities

A O) + Asi6) =1,
ca@)ca(p) — Asa(@)sa(p) = ca(0 + @),
cA@)sa(@) +sa(@)calp) =546 +9), (3.2)

and their derivatives are given by
ca(0) = —Asa(0), 5A(0) =ca(6). (3.3)
We also introduce the generalized tangent and cotangent functions
54(6) tanh(0), A = —1,

() = 5 = Jan@), A=l cta(6) =
A 0, A=0,

—_—, 3.4
1A (0) G4

and denote by tXl and ctX1 their inverse functions with tXl (r) e (—%, %) and ctXl (r) €
O, m)if A=1.

3.2 A unified description of Xp and Y

To obtain a unified description of the quadrics X 4 and Y 4, we consider the ring Mat(2, C4)
of 2 x 2-matrices with entries in C 4. This allows one to identify the orientation preserving
isometry groups of the projective quadrics X4 and Y 4 with the projective linear group over
Ca, see [4]

PGL*(2,C4) = {4 € Mat2, €4) | |det AP > 0} .

More explicitly, the group isomorphisms between PGL™ (2, C ) and the orientation pre-
serving isometry groups of X4 and Y 4 are given by

PGL>%(2,R) (R+I1,R-1), A=—1.
PGL™(2,C4) — {PSL(2, 0), R+0I+— {R+il, A=1,
PGL(2, R) x sl(2, R), (R, R7'D), A=0,

where PGL2% (2, R) consists of pairs (A, B) € PGL(2, R) x PGL(2, R) withdet AB > 0.
The description of the projective quadrics X4 and Y 4 in terms of matrices with entries in
C 4 is obtained from a pair of involutions o, { : Mat(2, C4) — Mat(2, C,), given by

(-5 () -G

The sets of fixed points under these involutions are four-dimensional real vector spaces. The
spaces X4 and Y4 can then be realized as their subsets of positive determinant matrices
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modulo rescaling

X4 = {x € Mat(2, Cp) | x° = x, det(x) > 0}/[Rx, (3.5)

Va = [y eMat@.Ca) 1y =y, det(y) > 0] /. (3.6)

Explicitly, the identification of the quadrics X4 from (2.2), (2.3) and (2.4) with (3.5) is
given by the linear map

x - R* = Mat(2, C,), (X1, X2, X3, 4) > <x2”x4 b "”)>, (3.7)

£(x3 +x1) x2 — x4
and the identification of the quadrics Y 4 from (2.5) with (3.6) by

yi+y3 va+ Eyz)

3.8
y4—Ly2 y1—y3 (3:8)

¢y : R* > Mat(2, C,), 15 ¥2, 3, y4) > <

These maps identify R* with the set of matrices A, B € Mat(2, C,) satisfying A = A° and
B = BT, respectively. With these identifications, the action of the group PGLT (2, C4) on

X4 and Y 4 takes the form
> :PGLT(2,C) X X4 — X4, ADx = AxA°, 59)
> :PGLT(2,Cx) x Y4 — Vg, B>y =ByB'. '

The full isometry group of X 4 and Y 4 is generated by PGL ™ (2, C 4) together with generalized
complex conjugation.

The fact that PGL™ (2, C 4) acts transitively on the spaces X 4 and Y 4 can then be seen as
a consequence of the following lemma.

Lemma 3.1 For any point x € X5 and y € Y 4, there are isometries A, B € PGLT (2, C,)
such thatx = At>1 = AA° and y = B> 1 = BB". They can be chosen to satisfy A° = A
and BT = B.

Proof Given a point x € X4 we can always choose a representative x’ € Mat(2, C4) with
xN° =%, detxh) =1, tr(x)>0.
Then the matrix A’ = 1 + x’ € Mat(2, C ) satisfies
det(A)=2+tr(x') >0, (A)?=det(A)x, (A)° =4,

and thus define an element in PGL™ (2, C 4) with the desired properties. The proof for y € Y 4
is analogous. O

The stabilizers of 1 in X4 and in Y, are given by the projective unitary matrices with
respect to o and

Stab(1, X 4) = {U € PGL*(2,C) | U° = U*l},
Stab(1, Y ) = {V € PGLT(2,C,) | Vi = v—l}.

We denote by PSL(2, R) 4 and PSU(2) 4 the identity components of these groups. They are
isomorphic to the groups

APSL(2, R), APSL(2, R),
PSL(2,R)4 = {PSL(2, R), PSU22) 4 = { PSU(2),
PSL(2, R) x {0}, U(1) x R2,
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for A = —1, 1,0, respectively. Here, A PSL(2, R), APSL(2,R) ¢ PGL%* (2, R) stand
for the images of the diagonal and the anti-diagonal embeddings of PSL(2, R) given by
A:Ur (U, U)and A:V — (V,(V-HT).

3.3 Tangent vectors

The tangent spaces 7y X 4 and 7)Y 4 can also be given a simple matrix description [4, 15].
With Lemma 3.1, points in X4 and Y4 can be parametrized asx = A>1andy = B> 1,
with A° = A and BT = B. The tangent spaces T, X 4 and T,Y 4 can then be parametrized by

ToAy = A x4, xA={XeMat(2,d:A)|x°=x, tr(X)=0],
T\YA = B>y, 4= {Y eMat2,C ) | Y =Y, w(Y)= 0}. (3.10)
The induced actions of Stab(1, X4) on x4 and of Stab(1, Y4) ony, are given by
> : Stab(1, X4) X X4 — X4, Us>X=UXU"",
> :Stab(1,Y4) Xy, — Y. VY =Vvyv-l

Note that x4 and y 4, are endowed with invariant bilinear forms
(X, X)x, = —det(Im X), (Y,Y)y, = —det(Y). 3.11)

These are unique up to real rescaling and are transported to the tangent spacesatx = A>1 €
Xaandaty = Bp>1 € Y4 viathe PGL™ (2, C4)-action. More precisely, for X € x4,Y € YA
and A, B € PGLT (2, C,) the metrics on the tangent spaces at A > 1 and B > 1 are defined
by

(A X, A X) = (X, X)x,, (B>Y,B>Y)=(Y,Y)y,. (3.12)

Note also that x4 = £s[(2,R) = €LiePSL(2, R) and that the bilinear form (-, -)x, is
proportional to the Killing form on sl(2, R). This shows that the tangent space T, X, with
the metric from (3.11) and (3.12) is isometric to 3d Minkowski space for all values of
A. We therefore call a matrix X € x4 timelike, lightlike or spacelike, if (X, X) < 0,
(X, X) =0or (X, X) > 0, respectively. This is equivalent to the statement that the matrix
exp(Im X) € PSL(2, R) is elliptic, parabolic or hyperbolic, respectively.

To simplify notation later, we define o : x4 — {—1, 0, 1} with

—1, if X is timelike,
o(X) =10, if X is lightlike,
1, if X is spacelike.

For each X € x4, we denote by X € x4 its normalization, given by

if X is timelike or spacelike,

X
X = 1 Vixxy
X, if X is lightlike.

The bilinear form (-, -)y, on y, has different signatures for different values of A. It is
Lorentzian for A = —1, Riemannian for A = 1, and degenerate with signature (0, 1, 2) for
A = 0. We define timelike, lightlike and spacelike matrices and normalization for matrices
iny 4, analogously. Note that timelike vectors in y 4 arise only for A = —1 and lightlike ones
only for A =0, —1.

@ Springer



26 Page 120f41 Geometriae Dedicata (2022) 216:26

These conventions allow one to refine Lemma 3.1 and to parametrize points x € X4 and
y € Y4 in terms of exponentials of unit tangent vectors.

Lemma 3.2 Any point x € X4 or'y € Y 4 can be expressed as
X = exp(%X) >1= (CAg(x)(%) +SAU(X)(%)X> > 1,
y = eXp(%Y) >1= (CJ(Y)(%) + Sﬂy)(%)Y) > 1,

with unit vectors X € xa, Y € y,, 0 > 0 and with 0 < 27 for Ao(X) <0oro(Y) < 0.
This parametrization is unique for x, y # 1.

Proof By Lemma 3.1 there are matrices A, B € PGL* (2, C) with A° = A, BT = B such
thatx = A> 1 and y = B > 1. By rescaling A and B we can achieve det(A) = det(B) = 1
and tr(A), tr(B) > 0. Using the parametrizations (3.7), (3.8) and (3.10), we can express them
as

A=al+bX, B=cl+dY,

witha, b, ¢, d > 0 and unit matrices X € x4 and Y €y 4. The condition det(A) = det(B) =
1 then read a? + Ao (X)b? = 1 and ¢ + o (Y)d? = 1. We can thus parametrize

a=cae)B),  b=si05), c=ccmr(@), d=s.m (),

withf > 0and 0 < 27 for Ao (X) < OQoro(Y) < 0. A direct matrix computation using the
definition of x4 and y4 in (3.10) then shows that these expressions for A, B coincide with
exp(%X) and exp(%Y). O

Proposition 3.3 The subgroups of Stab(1, X 4) and Stab(1, Y 4) that stabilize a spacelike or
timelike vector X e xp orY €y, are

Stab(X) = {aﬂ +bmX |a,beR, a* # a(X)bz}/[Rx,

SmMY)=la1+£b?|mb651QZ#_AGOQH]/RK

Proof The conditions | det(U)|2 > 0andU>1 = UU® = 1foranelementU € PSL(2,C,)
imply

U = al + bIm Xy,

for some a,b € R and Xy € x4 with a? — a(}A( U)b2 # 0. Furthermore, the condition
UXU~! = X for a spacelike or timelike vector X € x, implies Xy = X, up to rescaling.
The proof for Y 4 is analogous. m]

3.4 Geodesics and geodesic planes

The description of the spaces X4 and Y 4 in terms of generalized complex matrices allows
one to parametrize their geodesics in terms of the matrix exponential. As the isometry group
PGL™ (2, C,) acts transitively on these spaces, all geodesics are obtained from geodesics
through 1 via the action of the isometry group. Geodesics through 1 are obtained by expo-
nentiating matrices in X4 and y 4.
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Proposition3.4 Letx € X4, y € Yo and A, B € PGLT (2, C,) be as in Lemma 3.1. Then
for any unit tangent vector At> X € TyX, at x = A D> 1 the geodesic x : R — X, with
x(0) = x and x(0) = A > X is given by

x(1) = A expX) = A > (car00 D1+ 54000 (1X), (3.13)

and for any unit tangent vector B1>Y € T,Y 4 at y = B > 1 the geodesic y : R — Y 4 with
v(0) = y and y(0) = B> Y is given by

y(t) = B> exp(tY) = B > (c_g(y)(t)ﬂ + s_g(y)(t)Y>. (3.14)

Proof As the expressions for x = A > 1 and y = B > 1 are obtained from the ones for
x = 1 and y = 1 via the action of the isometry group, it is sufficient to consider the cases
A=B=1.

Geodesics in X4 or Y 4 are obtained by projecting planes in R*. The identifications (3.7)
and (3.8) of R* with the sets of hermitian matrices for o and 1 then shows that their image
is contained in Span({1, X}) or Span({1, Y'}) for a vector X € x4 or Y € y,. They are
characterized uniquely by the conditions x(0) = 1, x(0) = X, (x(r), x(f)) constant or
y(0) =1 y(0) = Y and (y(¢), y(¢)) constant. The first two conditions follow directly from
(3.13) and (3.14), the last conditions from the identities

() = (Aexp(5X)) > X, () = (Bexp(5Y) >,
which are obtained using (3.2) and (3.3). O

Note that a geodesic x : R — X4 or y : R — Y, is timelike, lightlike or spacelike,
respectively, if the vectors X € x4 or Y € y, from Proposition 3.4 are timelike, lightlike or
spacelike. Equation (3.14) implies that a geodesic in Y 4 is closed if and only if it is timelike,
which is possible only for A = —1. By Eq. (3.13) a geodesic in X4 is closed if and only if
it is spacelike and A = 1 or timelike and A = —1.

The parameter + € R in (3.13) and (3.14) can be readily identified as the arc length
parameter of a spacelike or timelike geodesic. By an abuse of notation, we write d(x, x") and
d(y, y’) for the arc length of a geodesic segment with endpoints x, x’ € X4 ory, y' € Y4.
This segment is of course non-unique whenever there is a closed geodesic containing x, x’
or y, y'. In this case, any identity stated for d(x, x’) and d(y, y’) is understood to hold for
all such choices.

Proposition 3.5 Let x,x’ € X4 and y,y € Y. Then the arc lengths d(x, x’), d(y,y’)
satisfy

leas d(x, x' )| = 3@ -7, o (@d(y, YD = S - 57hI,

where o = —1, 0, 1, respectively, if the geodesic segment connecting x, x' or y, y' is time-
like, lightlike or spacelike and x,x’,y,y' are matrices of unit determinant representing

x,x',y,y.
For A = 0 one also has

od(x,x)* = —detIm (&' — %),

where X', X are matrices with traces of equal sign representing x', x.
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Proof Let x : R — X4 be a spacelike or timelike geodesic parametrized as in (3.13) with
x(0) =% = Ar>1and ¢t > 0 such that x(#) = X’. Then the arc length between x and x’ is
d(x,x") =t, and from (3.13) one has

@ 5] = [ (A a0 OL+ 50000 X) - A7) | =2les0 0 0]

The proof for points y, y’ € Y4 is analogous.
For A = 0 and x, x’ € X4 the geodesic with x(0) = A > 1 = X and x(¢) = &’ is given
by x(t) = A > (1 + tX) with a unit vector X € x4. And we have

detIm (&' — ¥) = 2 det(Im (A > X)) = 2 det(X) = t>0(X) = o (X)d(x, x)?,

where we used that X is a unit vector and that A > X = Re (A) > X = Re (A)XRe (A)~!
forall X € x4 and A € PGL(2,C,4) = PGL(2,R) x s[(2,R) if A = 0. O

The explicit description of geodesics in Proposition 3.4 also allows one to compute their
stabilizer groups.

Proposition 3.6 For a spacelike or timelike geodesic x : R — X 4, parametrized as in (3.13),
the subgroup of PGL™ (2, C ») stabilizing x(R) and preserving its orientation is given by

Stab(x(R) = {Aexp (§X) UA™' |6 € R, U € Sb(X)].

Similarly, for a spacelike or timelike geodesic y : R — Y 4, parametrized as in (3.14), the
subgroup of PGL™ (2, C ) stabilizing y(R) and preserving its orientation, is given by

Stab(y(R)) = {B exp(4Y)VB™ |0 eR, Ve Stab(Y)].

Proof As all geodesics are obtained from geodesics through 1 by the action of the isometry
groups, we can assume A = B = 1. For any isometry T € Stab(x(R)) there is 6 € R with
T > 1 = x(#). This implies T = exp(%X)U, where U € Stab(1) with U > RX = RX.
Due to invariance of the bilinear form (3.11) on x4, because x is spacelike or timelike and
because T preserves the orientation of x, we have U > X = X, and the claim follows from
Proposition 3.6. The proof for geodesics in Y 4 is analogous. O

The parameter 6 in Proposition 3.6 describes a translation along the geodesics x : R — X4
and y : R — Y4, which corresponds to a shift + + ¢ + 6 in the parametrization in
Proposition 3.4. It is the arc length of the geodesic segment between a point on x or y and
its image. The parameters a and b that define the elements U = al + bIm X € Stab(X) and
V =al+¢bY e Stab(Y) via Proposition 3.3 describe generalized angles between geodesic
planes through x and y. More precisely, these angles are given by

-1 a 1 a
(p:ZCl_G(X) (Z)’ ) :2CtA0(y) (B>’

for geodesics x : R — X4 and y : R — Y4, respectively. In the first case, the parameter ¢ is
the rapidity of a Lorentzian boost or the angle of a rotation around the geodesic x : R — X 4.
In hyperbolic geometry, which corresponds to Y 4 for A = 1, the parameter ¢ describes the
angle between a plane containing the geodesic y and its image. We will use the nomenclature
derived from hyperbolic geometry and call 6 and ¢ the shearing and bending parameters
along x and y, respectively.

The parametrization of geodesics in terms of the matrix exponential in Proposition 3.4
also gives rise to a parametrization of the geodesic planes in X 4. As the isometry group
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PGL™ (2, C,) acts transitively on X 4, the geodesic planes through x = A 1> 1 are obtained
from the geodesic planes containing 1 by the action of isometries. Using the parametrization
of the geodesics in Proposition 3.4 and the non-degenerate bilinear form on x 4 from (3.12),
one then obtains

Proposition 3.7 For every point x € X, and tangent vector X € Ty X4, there is a unique
geodesic plane P with x € P such that the tangent vectors of geodesics in P at x span X*.
If we parametrize x = A>1and X = At> N with A € PGLY(2,C4) and N € x4, then

P = [Al>exp<t]X1 +t2X2) | 1,1 € [R}.

for any linearly independent pair X1, X € N*. We call X a normal vector to P based at x.

3.5 Lightlike geodesic planes in Xp

In this section, we derive some elementary properties of lightlike planes in X, that will
be identified as the duals of certain statements about the ideal boundary d~,Y 4 in the next
section. Recall that a geodesic plane in X 4 is called lightlike, if it contains a lightlike geodesic,
but no timelike geodesics. This is equivalent to its normal vector from Proposition 3.7 being
lightlike.

It follows directly that two distinct lightlike planes in X 4 that intersect always intersect
in a spacelike geodesic. Conversely, for any spacelike geodesic in X 4, there is a unique pair
of lightlike planes that intersect in this geodesic. In the following we often need an explicit
parametrization of his intersection geodesic.

Lemma 3.8 If two distinct lightlike planes Pi, P> in X 5 intersect, then for any point x €
P1 N Py, there is an isometry that sends x to 1, their intersection to the spacelike geodesic

g(t) =exptX) X=¢ <(1) _01> (3.15)
and their normal vectors in x to
00 0-1
N1:£<10>, N2:Z<00). (3.16)
Proof By applying isometries, we can assume x = 1. The action of PSL(2,R)4 C

Stab(1, X4) on x4 = £s(2, R) then coincides with the action of PSL(2, R) on Minkowski
space, and the action on the normal vectors of these planes with the PSL(2, R)-action on the
set of lightlike rays in 3d Minkowski space. This can be identified with the PSL(2, R)-action
on dH?, which is known to be 3-transitive. Hence, there is an isometry in PSL(2, R) that
sends the normal vectors of the planes to (3.16). Then we have N IJ- N N2J- = RX with X
unique up to real rescaling and given by (3.15). O

An analogous parametrization exists for triples of lightlike planes that intersect in a com-
mon point. In this case, the 3-transitivity of the PSL(2, R)-action on dH? implies uniqueness
up to permutations.

Lemma 3.9 [f three distinct lightlike planes in X 4 intersect in a common point x, then there
is an isometry that sends x to 1 and their normal vectors in x to

00 0 -1 1 -1
mi=e(T0) m=c(oy) m=e(11):
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This isometry is unique up to isometries permuting the three planes.

Proof By applying isometries, we can assume that the intersection point of these planes is 1.
The action of PSL(2, R)4 C Stab(1, X4) on x4 = £5[(2, R) then coincides with the action
of PSL(2, R) on Minkowski space, and the action on the normal vectors of these planes on the
PSL(2, R)-action on the set of lightlike rays in 3d Minkowski space. This can be identified
with the PSL(2, R)-action on dH2, which is known to be 3-transitive. m}

3.6 The ideal boundary of Y5

Under the duality between X4 and Y 4 from Sects. 2.2 and 2.3, lightlike geodesic planes in
X 4 are dual to points on the ideal boundary of Y 4. We thus summarize the properties of
the ideal boundary 0 Y 4 from [4—6]. To make the paper self-contained, and because details
will be needed in the following, we also include proofs, adapted from [6]. We also point out
their duality with results on lightlike planes and show that in some cases this provides an
additional geometric interpretation.

In the matrix parametrization of Y 4, the ideal boundary d»,Y 4 becomes the set of rank 1
matrices modulo real rescaling

oY = {va € Mat(2,C4) |veC?, vol £ 0}/|RX~
This identifies Y 4 with the generalized complex projective line

RP! x RP!, A= -1,
CaP! ={v6¢3§1|vv7'7é0}/@§= CP!, A=1, (3.17)
RP' xR, A =0.
It should be mentioned, however, that the topology induced by this identification does not

coincide with the one induced by RP3 for A = 0.
For A =1 this holds by definition. For A = —1 the identification is given by the map

RP! x RP! —>CAP1, ([Z]’[x])'_) |:u+x+ﬁ(u—x):| u,v,x,y €R,

y vy +Lv—y)
(3.18)
and for A = 0 by the map
1 1 X x4+ Lyu
RP' x R — C4P", ([y],u) — |:y+£xu] u,x,y €R. (3.19)

The action (3.9) of PGL* (2, C4) on Y 4 extends to a PGLT (2, C 4)-action on dx0Y 4
> : PGLY(2,Cp) X 00oY A — 900V 4, BrY = BYB'.

Under the identification of 9,Y 4 with C P!, this action becomes the standard action of
PGL* (2, C4) on C4P! via projective transformations

> :PGLT(2,C4) x C4P' — C4P', B> [v] =[B vl

Note that for A = 1 this coincides with the action of Mobius transformations on the Riemann
sphere CP! = 9,,H>3. In this case, the condition vv’ # 0 in (3.17) simply states that v 3 0.
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By rescaling representatives of points in CP! such that their second entry is 1, one obtains:

az+b
() [)-[z2-[] e [1LL e

In the following, the action of PGL™ (2, C4) on C 4Pl is often described with respect to three
fixed reference points vy, vo, v3 € C AP!

v = |:(1):| =00, vy = |:(1):| =0, vy = |:i:| =1, (3.21)

which correspond to the points 00, 0, 1 € CP! = CU{oo} for A = 1. We also write v; = oo,
vy = 0 and v3 = 1 to denote the points vy, v2, V3 € C4Plin (3.21) for A # 1.
The subgroup of PGL™ (2, C ) that permutes vy, v2, v3 is the group of order six generated

by the classes of
0 1 01
T = <_1 1), 1= (1 O)' (3.22)

It permutes the points vy, vy, v3 according to

T : (vi,v2,v3) = (v2, V3, V1), I: (vy,v2,v3) = (v2, V1, V3).

Spacelike geodesics in Y 4 have two endpoints in d, Y 4, obtained from their parametriza-
tion (3.14) as the limits 1 — =oo. These endpoints are the duals of the two unique lightlike
planes that intersect in the dual spacelike geodesic in X 4. The action of the isometry group
PGL* (2, C4) on dxY 4 allows one to map these endpoints to fixed reference points, namely
the points vy UI and vpv, for vy, v3 givenin (3.21). This is dual to the statement in Lemma 3.8
that by acting with isometries, one can transform the normal vectors of the lightlike planes
into (3.16).

Lemma3.10 Let y4, y— € 05 Y 4 be endpoints of a spacelike geodesic in Y 5. Then there is
an isometry B € PGLT (2, C ) such that

+ 10 + 00
B|>y+=v1v1=<00>, B|>y_=v2v2=<0] . (3.23)
Proof Using (3.14) we can parametrize any spacelike geodesic y in Y 4 as
Y1) = A (cosh(t)ll n sinh(t)Y),

with A € PGL1 (2, C,) and a spacelike unit matrix ¥ € y,. Any normalized spacelike
matrix in y 4 can be written as

_ a b+l . _ 2 2 2 _
Y_<b—€c 4 ), with (Y,Y)y, =a"+b"+ Ac” = 1.

The endpoints of the geodesic y are then represented by the matrices
Y =y(£oo) =A> (1 xY) € dxVa. (3.24)

Using the identification of the boundary 9.,Y 4 with the complex projective line C P! from
(3.17), one can parametrize the endpoints as y+ = vy - vl with

14+a —b —Lc
v+_A'|:b—£cj|’ v__A-|:l+a:|, fora # —1,
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. b+ Lc . l—a
v+_A-|:1_a], U__A'|:—b+£ci|’ fora # 1.
A direct computation then shows that (3.23) is satisfied for the projective matrices
_( 1+a b+ic\ _(b+ilc 1—a -1
B—(—b+zc1+a>A ’ B_(l—a —b—i—Ec)A :
fora # —1 and a # 1, respectively. O

It is shown in [6,Proposition 2], see also the remark after [6,Proposition 3], that this result
extends to triples of points in d, Y 4, provided that they are contained in a common spacelike
plane. In this case one can take the three reference points vi = 0o, v = 0, v3 = 1in (3.21).

Proposition 3.11 [6,Proposition 2] Let y1, y2, ¥3 € 00 Y 4 be distinct points on a common
spacelike plane. Then there is a unique isometry B € PGLT (2, C ) such that B 1> y| = 00,
B>y, =0and B> y; = 1.

Proof By Lemma 3.10, one can assume that y; = v vf and y, = vzv; As y3 is connected
to y; and y; by spacelike geodesics, by (3.24) there are isometries A; € PGL' (2, C,) and
vectors ¥; € y, fori = 1, 2 such that

A —YDAT = v, AL+ YDA] = y3. (3.25)
Using the identification of d,0Y 4 with C AP!, we can parametrize y3 = w3 w; with w3 €
C4P!. The condition | det(A4;)|*> > 0 together with (3.25) then implies that both entries of
w3 are units in C 4, and by rescaling it, we can achieve that its second entry is 1 and its first
entry is a unit z € CX, as in (3.20). The condition that y{, y, y3 lie on a common spacelike
plane implies |z|> > 0 and that

_(10 +
B_<Oz> € PGL™(2,C,)

is an isometry with B > vi = vy, B> vy = vy and B > w3 = v3. O

Note that for A = 1 Proposition 3.11 is the well-known 3-transitivity of the action of
PGL(2, C) on the Riemann sphere CP!. However, for A = 0 and A = —1 the action of
PGL*(2,C4) on C AP1 is in general not 3-transitive, even if one allows for permutations
of the three points. In particular, the proof of Proposition 3.11 shows that an element of
PGL™ (2, C,) that stabilizes or exchanges v; = oo and v, = 0 cannot map a general point
DS CAP1 tovy = 1.

Proposition 3.11 can be viewed as the dual of Lemma 3.9. The dual of the spacelike plane
in Y 4 containing the points yi, y2, ¥3 € 0s0Y 4 is a point in X4 that lies on the dual planes
to yi1, 2, ¥3 and hence in their intersection. The normal vectors of the lightlike planes in
Lemma 3.9 are thus given by the points y1, y2, y3 in Proposition 3.11.

Given four distinct points in d, Y 4 such that any three of them lie on a common spacelike
plane, one can apply an isometry to send three of them to the points v vf, vzv; v3 v; , as
in Proposition 3.11. As the fourth point is on a spacelike plane through vle and vzt);r , it
is represented by an element v4 € C,P! whose entries are units in C, by the proof of
Proposition 3.11. Rescaling this element, one obtains

vy = m . with  ze CX\({1}. (3.26)
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Hence, up to isometries, the four points are characterized uniquely, by an element in Cj \{1},
the shape parameter introduced in [6,Section 3.1], which can be viewed as a generalized
cross-ratio.

Definition 3.12 Let y1, y2, y3, y4 be four distinct points on 9., Y 4 such that any three of them
lie on a spacelike plane. Let B € PGL* (2, C4) be an isometry such that B > y; = v, vlT for
i =1,2,3 and B > y4 is parametrized as in (3.26). Then their cross-ratio is

cr(yi, y2, y3, y4) = cr(00,0, 1,2) =z € C\{1}.
Note that the orbit of the cross-ratio z = cr(co, 0, 1, z) under the action of the subgroup
(3.22) of PGL™ (2, C 4) permuting vy, v, v3 is given by

1 z—1 1 b4

-, 11—z, .
11—z z z z—1

Z,

These are the familiar expressions for the transformation of a cross-ratio in CP!' under the
subgroup of Mobius transformations that permute oo, 0, 1. Indeed, for A = 1, any point
y € CP! can be parametrized as in (3.26) and the cross-ratio coincides with the usual cross-
ratio on CP! defined by

(z3 —21)(z4 — 22)

. 3.27
(z3 — z22)(z4 — 21) G20

cr(z1, 22, 23, 24) =
This is a consequence of formula (3.20) for the PGL(2, C)-action on CP! and the invariance
of the cross-ratio under isometries. Note, however, that for A = 0 and A = —1 the cross-ratio
cannot defined globally by (3.27), since z3 — z2 or z4 — z1 need not be units in C4.

We remark that cross-ratios for A = —1 can be viewed as a pair of real cross-ratios on
RP!

cr(z) = %cr(u) + 1%‘gcr(v) forz = (z1,22,23,24) = %u + %v.
For A = 0, we have a real cross-ratio on RP! together with an infinitesimal cross-ratio

Cr(Z) = Cr(x) + €dxcr(y) for 7= (Z] , 22,23, Z4) =x 4+ Ky

4 Lightlike and ideal tetrahedra

In this section we investigate the geometric properties of tetrahedra with lightlike faces in
X 4 and their duals in Y 4. We then show that the latter are precisely the generalized ideal
tetrahedra introduced by Danciger in [6].

In the following, we denote by x; and y; the vertices of tetrahedra in X4 and Y 4, respec-
tively, and by x;; or y;; the geodesic through the vertices x;, x; or y;, y;. In both cases, we
write e;; for the edge of the tetrahedron through the vertices x;, x; or y;, y;, the geodesic
segment of x;; or y;; that is part of the tetrahedron.

4.1 Lightlike tetrahedra
We start by considering tetrahedra in X, whose faces are all contained in lightlike planes.

We will also require that these tetrahedra are (i) convex, i. e. obtained as projections of
convex cones in R?, (ii) non-degenerate, i. e. not contained in a single geodesic plane, and
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(iii) that their internal geodesics at each vertex, the geodesics that intersect the interior of the
tetrahedron, are all spacelike. The last condition is relevant mainly for A = 1.

Definition 4.1 A lightlike tetrahedron in X 4 is a non-degenerate convex geodesic 3-simplex
in X 4 with lightlike faces such that all internal geodesics starting at its vertices are spacelike.

Note that this definition implies with Lemma 3.8 that all edges of a lightlike tetrahedron
are spacelike geodesic segments. The two faces containing an edge of a lightlike tetrahedron
then lie on the two unique lightlike planes that intersect along this spacelike geodesic. Each
vertex is the unique intersection point of the three lightlike planes containing the adjacent
faces.

By applying isometries we can relate any lightlike tetrahedron to one in standard position.
By this, we mean a lightlike tetrahedron with one of its vertices at x = 1 and the three lightlike
normal vectors at this vertex given as in Lemma 3.9. The vertices of the lightlike tetrahedron
can then characterized uniquely by its fourth lightlike normal vector, up to rescaling, and
hence by a pair of real parameters.

Proposition 4.2 Let L be a lightlike tetrahedron in X o with vertices x1, X2, X3, X4. Then there
is a unique isometry A € PGLY(2, C ) and parameters o, B,y € Rwitha +p +y =0,
such that

et —20s 4 (@) et 0
ADX‘:<0 et ) AI>X2:(2£SA(/3) )

v 0 10
Al>x3:<eo egy>, Al>x4:<01>. @.1)

For A = 1 one can choose 0 < ||, |B], |y| < 7.

Proof Let A; € PGL™ (2, C,) an isometry with A? = Ajand A; > 1 = x;,asin Lemma 3.1.
Denote by A; > N;; the normal vector of the face f; at the vertex x; from Proposition 3.7.
Then by Lemma 3.9 we can assume that x4 = 1 and

00 0-—1 1 -1
N41=E<1 0), N42=€<0 0>, N43=€<1 _1>- 4.2)

Denote by x;; a spacelike geodesic through x; and x; with x;;(0) = x;. Then, by Proposi-
tion 3.4, the geodesic x;; can be parametrized as

x,‘j(t) = Ai > exp(inj), (4.3)

where X;; € x4 is a spacelike unit vector, unique up to a sign, that is orthogonal to both
Nir and Nj; with respect to the bilinear form (3.11) for distinct i, j, k, [ € {1, 2, 3,4}. By
Lemma 3.2 the remaining vertices can be expressed as

xi = A; > 1 = exp(e; X4i), 4.4

wherei =1,2,3,a; € R.
With (4.2) and expression (3.11) for the bilinear form on x 4, one computes

1 -2 1 0 —10
X4 =5<0 _1>, X4 =€(2 _1>, X3 =5<0 1)- 4.5)

Inserting these matrices in formula (4.4) and computing the exponential with formula (3.13),
one finds that x, x3, x3 are indeed given by the matrices in (4.1), if « = o1, B = « and the
parameters «; satisfying o1 + a2 + @3 = 0 (modx for A = 1).
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To obtain the relation between these parameters we now compute the remaining vectors
X;; and N;;. For the former, note that (4.3) and (4.4) imply

exp(1;; Xij) = exp(—% Xu;) - exp(er; X4;) - exp(—F X4;),

where f;; € R is given by the condition x; = x;;(#;). Using this identity with expression
(3.13) for the exponential and the identities

Im (X4;)Im (X4;)Im (X4;) = —2Im (X4;) — Im (X4;), (4.6)
which follow from (4.5), one obtains
sa(aj)

X = Xu — Xa; + Xai), ti = —a; —a;, 4.7

ij 4i SA(Oli +Olj)( 4i + 4./) ij (6% aj ( )

for all distinct i, j € {1, 2, 3}. Using again relation (4.6), expression (4.4) for the matrices
A; and the parametrization (3.13) of the matrix exponential implies for all distinct i, j €
{1,2,3,4}

Xji = —AJ-A[._IX!-/A,-A;]. (4.8)

The matrices N;; € x4 can then be computed from the condition that N;; is orthogonal
to X;x for all distinct i, j, k, and normalized such that (N;;, X;;)x, = —1. Note that this
last condition is also satisfied by the matrices Ny4; and X4; from (4.2) and (4.5). A direct
computation with expression (3.11) for the bilinear form on x4 shows that (X4;, X4i)x, =1
and (X4;, X4j)x, = —1 for distinct i, j € {1, 2, 3}. Equations (4.4) and (4.8) imply X4; =
—Xi4. Together with (4.7), these identities imply that

K . + .
Nij __ sA (o aj)N4j,
sa(aj)
sala; + o) sa(a; + og)
Nig = X4 — T A Nk, 4.9)
salaj) s (o)

for all distinct i, j, k € {1, 2, 3}. A short computation using (4.5) and (3.11) finally shows
that they are all lightlike if and only if o + o + a3 = 0 (modn for A = 1). O

By applying isometries to a lightlike tetrahedron in X 4, we may assume that its vertices are
in the standard position given in Proposition 4.2. Then, the group of isometries which fixes
the vertex x4 = 1 and permutes the lightlike planes intersecting at this vertex is precisely the
subgroup of PGLT (2, C,) that permutes the reference points vy = oo, v, = 0,v3 = 1 €
C4P'in (3.21).

Corollary 4.3 For a lightlike tetrahedron with vertices as in Proposition 4.2 the isometry T
in (3.22) fixes A > x4 and cyclically permutes the lightlike vectors N4y, Nao, Naz in (4.2) and
the spacelike vectors Xa1, Xap, X43 in (4.5). The isometry I in (3.22) fixes A > x4, N43 and
X43, exchanges N4y and Nap and X471 and X 4o and changes the signs of N4, N4a, N4z and
X41, Xqp and X 43.

Using these symmetries we may always choose two of the parameters «, §, y in Proposi-
tion 4.2 to be positive. For A = 1, due to periodicity of spacelike geodesics, we can further
choose 0 < |a|, |B], |y| < 7. The description of X 4 as a projective quadric in RP? then
shows that the vertices in Proposition 4.2 always define a lightlike tetrahedron. It also gives
rise to an explicit parametrization of lightlike tetrahedra.
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Proposition 4.4 The vertices in Proposition 4.2 define a lightlike tetrahedron in X 4 if and
onlyifa+pB+y =0, withO < ||, |Bl, |ly| < 7 if A = 1. Up to isometries, any lightlike
tetrahedron L C X 5 admits a global parametrization

L= {x —exp(rX(A,B) |0<r<r(A,B)y<m 0<A,B,1—A— B}, (4.10)

with
B_ | AtB-1

A
(1 24 _ i n@ T ae T ue
X(A,B)_£<2B _1), r(A, B) = ct, < IX(A. B)| .

wherea, B >0, witha+ 8 <mwif A=1.

Proof Let x1, x2, x3, x4 € X4 be as in Proposition 4.2 and choose lifts x{, x5, x5, x) € R*
Mat(2, C 4). Up to isometries, and an overall change of signs of xlf , We can assume

, et 2054 () , eth 0
T=lo ete ) 2=\ 2es4(8) )

, 0 10
Xy = <e0 e@>, xp = (O 1>, @.11)

with o, B > 0. For A = 1 we can further assume 0 < o, 8 <m and —m <y < m.
Consider the convex cone spanned by these lifted vertices

I

4 4
L= [x’ =Y axla;=0, Y a # 0} CR*. (4.12)

i=1 i=1

This cone projects to X 4 if and only if every x” € L’ satisfies det(x’) > 0 for A = —1, 1 and
tr(x") # 0 for A = 0. A direct computation shows that this is always satisfied for A = —1, 0,
without any additional requirements on «, 8, y. For A = 1 the condition becomes

2
(x', x') = <a4 + a;j cos(ey) + aj cos(aj) + ak cos(ozk))
2
+ (ai sin(a;) — aj sin(o;) — ag sin(otk)> —4ajag sin(a;) sin(ag) > 0,

for all ¢; as in (4.12), with distinct i, j, k € {1,2,3}and o) = o, p = B and a3 = y.

Note that this imposes restrictions on the possible values of «, 8, ¥, but does not determine
y uniquely as a function of «, 8. The condition that the internal geodesics starting at each
vertex are spacelike imposes further restrictions, namely

2
<aiSA (i) —ajsalaj) —arsa (Olk)) —dajagsa(aj)salog) > 0,

2
(a4SA (i) +ajsala; + o) +agsale; + ak)) —4ajagsa(aj)salax) > 0,

and these are satisfied for all ¢; as in (4.12) if and only if o] + a2 + @3 = 0.
A global parametrization of the coefficients a; in (4.12) can then be obtained via

B 1-A—-B
A =——, My =——, A3 = ——-r,
sa(a) sA(B) sala+B)
V1 —4AB A B 1-A—-B
Aay = — + + ,
tA(r) ta(e)  ta(B)  tale+ B)
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where A, B and r satisfy the conditions in (4.10) and A € R;. By comparison with (4.10)
we find

4
x' = Zaixl{ = Aexp (rf((A, B)).
i=1

[}

This proposition gives a geometric interpretation of the parameters «, 8, y as the edge
lengths of the lightlike tetrahedron. The vertices of the tetrahedron are given by » = 0 and
by r = r(A, B) for (A, B) = (0, 0), (1, 0) and (0, 1) in the parametrization (4.10). With the
formulas for arc lengths in Proposition 3.5 one obtains

Corollary 4.5 A lightlike tetrahedron L is determined up to isometries by its edge lengths. If
L is parametrized as in Proposition 4.4, its edge lengths are o, B and o + B, with opposite
edges having equal lengths.

Using the parametrization in Proposition 4.4 and the formulas for arc lengths in Proposi-
tion 3.5, we obtain more general expressions for the arc lengths of geodesic segments between
points on opposite edges.

Proposition 4.6 Let L be a lightlike tetrahedron in X 4 parametrized as in Proposition 4.4
and with edge geodesics x;j as in (4.3). Then the arc length d; ji (s, t) of a geodesic segment
between points x4; (% + ) and xjk(% + t) on opposite edges es;, e ji satisfies

ca(s +1)sa(aj) +cals —t)salag)

conldsi ix(s, 1) = , A #£0,
lcoa( 4l,jk( DI SA(aj Tap) 7&
s+t2a-+ s — 1)
O'd4l',jk(s,l‘)2 = ( ) J ( ) o — o, A=0, (4.13)
o + ok
withay = o, ap = Bandaz =y, s,t € (—la—zi‘, Ioé—"l) and o = —1,0, 41 if the geodesic

segment between them is timelike, lightlike or spacelike, respectively.

Note that the formulas for A = 0 in (4.13) are obtained from the ones for A # 0 by
expanding the latter as a power series in «, 8 and A. Expression (3.1) for the generalized
trigonometric functions in terms of the exponential map extends to general A = —¢? € R
and defines s, and c4 as power series in A. One can thus expand the left- and right-hand
side of the equations for A # 0 in (4.13) as a power series in A. To zero-th order in A these
equations are satisfied trivially, and at first order one obtains the equations for A = 0.

Proposition 4.4 and Corollary 4.5 show that for all admissible values of the edge lengths
a, B, the lightlike tetrahedron has a distinguished pair of opposite edges, namely its longest
edge pair of edge length o + B. Proposition 4.6 implies that this edge pair also plays a
distinguished role with respect to the causal structure. The longest edge pair is the only pair
of opposite edges that are connected by timelike geodesic segments.

Corollary 4.7 There is a timelike geodesic segment between two opposite edges of a lightlike
tetrahedron if and only if these are its longest edges. The arc length of such timelike geodesic
segments is maximized at the midpoints of the longest edges.

Proof The functions da; ji(s,t) have a single critical point for s, ¢ in (—|o;]/2, |o;]/2),
namely at (0, 0). If one chooses o = o, ap = B and a3 = —a — f, with o, 8 > 0,
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as in Proposition 4.4, the longest edges are e¢1» and e43 and (0, 0) is a local maximum for
dy3,12. By inspection of the formulas (4.13), one finds that ¢ o (d43,12(0, 0)) > 1 for A =1,
CAc(ds3,12(0,0)) < 1 for A = —1 and od43,12(0, 0)2 = —apff for A = 0. This shows in
all cases that o = —1 and hence the geodesic segments between the midpoints of e43 and
e12 are timelike. For d4; 13 and d41 23, the point (0, 0) is a saddle point. By investigating the
boundary values of these functions, one finds that all geodesics connecting points on e4> and
e13 or points on e4] and ep3 are spacelike. O

Remark 4.8 Corollary 4.7 shows that for A = —1, 0 a lightlike tetrahedron L is the inter-
section of the past of the geodesic containing one of the two longest edges with the future
of the geodesic containing the other. For A = 1, the space X; = dS? is not time orientable,
but it still holds that any point in L is connected to each of two longest edges by a timelike
geodesic segment in L that ends on a face through the opposite edge.

Instead of using geodesics through the midpoints of its edges, we can also characterize
the geometry of a lightlike tetrahedron in terms of lightlike geodesics. For this, we consider
lightlike geodesics in the geodesic planes defined by its faces and through one of its vertices.
The longest edges of a lightlike tetrahedron are then distinguished by the fact that such
lightlike geodesics through their endpoints intersect the opposite face.

Corollary 4.9 Let L be a lightlike tetrahedron in X5 with vertices x; and n;; the unique
lightlike geodesic through x; in the geodesic plane containing the face opposite x ;.

Thenn;j intersects the edge geodesic xy ifandonly ifi = k,i =lori, j, k,1 € {1,2,3, 4}
are all distinct. The intersection points are given by

nij Nxip = nij N xg = Xxi, nij N xq = x4(—a;),
n4j N X = X1 (—ag), nia N xp = xp(—oy),

where o) = a, ay = B, a3 = y and the edge geodesics x;j are parametrized as in (4.3).
In particular, n;; intersects the tetrahedron L outside x; if and only if x;; contains one of
the longest edges of L.

Proof 1f n;; and xy; intersect, then x;, x;, x; lie on a common lightlike plane. Since n;; lies
on the lightlike plane opposite x ;, the only edge geodesic containing x; which intersects n;;
is x;;, with the intersection point given by x;. Furthermore, the edge geodesics xi; opposite
to x; (that is, with k, [ # j) intersect n;; at a single point. This is given by x;, if k = i or
| =i.For k,l # i, the intersection point can be computed solving

nij(0ij) = A; > exp(t; Nij) = Ag > exp(ti Xpi) = Xk (1)
for 0;; and f;, where N;; and Xj; are given by (4.2), (4.9), and (4.5), (4.7). O

Corollary 4.9 defines canonical projections of each vertex x; on each of the geodesics xz;
containing its opposite edge ex;. We will call these null projections in the following. Thus,
given a vertex x;, we define the point m;(x;) on the geodesic xi; as the unique intersection
point between xy; and the lightlike geodesic 7;;, as shown in Fig. 1. It should be emphasized
that 77 (x;) may lie outside of the corresponding edge ex;.

Each geodesic xy; contains exactly two such projections, namely 7z (x;) and 7y (x ;) for
the two vertices x; and x; opposite x;. For each edge geodesic x;;, this defines two geodesic
planes that intersect in x;;, the planes through x;, x;, 74 (x;) and through x;, x;, 7y (x), as
shown in Fig. 2. We call them the internal planes of the lightlike tetrahedron at the edge e;;.
The angles between these planes are given by the ratios of the generalized sine functions of
the edge lengths.
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Fig.1 Null projection of the
vertex x; on the opposite edge ey;

Fig.2 Internal planes of a
lightlike tetrahedron at the edge

el_]

Tkl

Proposition 4.10 Let L be a lightlike tetrahedron in X 5 with vertices x; as in Proposition 4.2.
Then the Lorentzian angle ¢;; between the internal planes at the edge e;; is given by

2cosh(g;j) = |zij| + lzij| ™

where |z;j| = |zi| and
|z12] = Iz34] = ’M |z31] = |z04] = sa) |z23] = |z14] = sa(r)
sale) ! sa(y) ! sA(B)

Proof Denote by x;; and xy,; the geodesics through x;, x; and through xi, x;, parametrized
as in (4.3). For any point xi;(¢) on the geodesic x;; we can parametrize the plane through
Xi, Xj, x(t) as

Pij (1) = {Ai > exp (rXij +SXij,k1(t)> |r,s € [R},

where X;; € X, is a unit vector parameterizing the geodesic x;; asin (4.3) and X;; 1/(f) € X
is the unit vector parameterizing the geodesic x;; x; through x; and xi; (¢) via

xij ki (s) = A; > exp(s Xij u (1))

These vectors can be computed directly as the normalized trace-free parts of A;” > x j and
A;l > xx;(t), respectively.
We can then compute the normal vector A; > N;; 1 (t) of P;j x;(¢) at x; from the conditions

(Nijx (1), Xij) =0, (Nijx1 (), Xij (@) =0,

where X;; are the matrices from (4.5) and (4.7). This yields for all distinct i, j, k € {1, 2, 3}

Nijar(@) = W(Ni - rijk(t)Nik),
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Ny ij (1) = W(NM - rijk(t)N4j>a

with ry g (1) = AL 5400 n4 Ny and Nig given by (4.2) and (4.9).

sa(t)  salaj)
Corollary 4.9 gives the null projections of x; and x; on the opposite edge geodesic x4

a4k (x;) = xij(—0),  wa(xj) = x;j(—aj),
and the null projections of x4 and x; on x;;
mij(x4) = xjj(—oq), 7 (xe) = xij(—j).

In particular, the normal vectors at x; of the plane P;; 4x(—c;) through x;, x, w4 (x;) and of
the plane P;j 4x (—a;) through x;, x;, w4 (x;) are given by

_saapl o Isaled)]

Nijak(—a;) = Nig — Nig,  Njja(—aj) = Tl i4— 2@ ik-
i J

Similarly, the normal vectors at x4 to the planes Py ;i (—«;) through x4, xi, 7 (x4) and
P;j 4k (—a) through x4, xi, 7 (x;) are given by

Isalap)l o lsalo)|

Najij(—ot;) = Nay — N4j,  Najij(—aj) = 4i — 4j-
v ’ ! YU sate)] T Isaep)

In both cases, we find that the Lorentzian angle between the two planes is given by

2 cosh(gi;) = 2 cosh(gay) = s (ci)l |SA(O‘J')|.
[sale;)]  Isalo)l
The claim then follows by setting o1 =, 0 = 8,03 =y = —a — B. O

Proposition 4.10 associates to each edge of a lightlike tetrahedron L a Lorentzian angle
that is given by the ratios of generalized sine functions of the edge lengths «, 8, y. Combining
these with the corresponding edge lengths, we may define a generalized complex parameters
zij = zji € C’) for each edge ¢;; of L, namely

_SA(,B) o sa(a) olB SA(V)ega
sa(@) sA(Y) sa(B)
These are the shape parameters of the lightlike tetrahedron L. Note that opposite edges have

equal shape parameters, while the shape parameters of adjacent edges satisfy the cross-ratio
relations

712 =234 = . 231 =224 = — . 223 =214 = — . (4.14)

1 z—1
Z/:i7 Z//: .
1-z z

Corollary 4.5 and Proposition 4.10 show that the arguments of the shape parameters
determine the edge lengths of a lightlike tetrahedron, while their moduli determine the angles
between its internal planes. We will show in Sect. 4.2 that they play a similar role to the
classical shape parameters of ideal hyperbolic tetrahedra. In particular, the shape parameter
of a single edge uniquely determines the geometry of a lightlike tetrahedron.

The shape parameter can also be characterized in terms of the symmetries of a lightlike
tetrahedron.

Proposition 4.11 Let L C X 4 be a lightlike tetrahedron with vertices x1, X2, X3, X4 and x;
the geodesic through x; and x j, oriented from x; to x;.
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Then there is a unique isometry T;; € PGL* (2, C ) that stabilizes X;j, with its orientation
and its adjacent null planes, which maps x; to x j and the normal vector A; > Nj to A; > N ji,
up to a sign. With the parametrization from Proposition 4.2 one has

T, = A,~<%(]l +ImX;;) — %(1 —ImX;))A7,
where A; € PGLY(2, C,) with A; > 1 = x;, the tangent vector Xij of x;j is given by (4.5),
(4.6), the shape parameter z;j = 7j; € Cﬁ by (4.14) and 0;j = oj; € {£1} by
s4(B)

sa(a)

sa(a)
sA(y)

SA(V))
sa(B)/”
Proof This follows from the expressions (4.2), (4.5), (4.7), (4.9) for the normal and tangent

vectors derived in the proof of Proposition 4.2 (Fig. 3).
By Proposition 3.6 and Eq. (4.3), we can parametrize T;; as

m2=@4=%n( >,0m=am=5@( ) ®3=m4=%n(

£6ij 1
Ty = Arexp(— Im Xij) (i1 + byjIm Xi; ) 4;
_ Ai(aii‘;bi_i e@f),‘j/z(]l +1Im XU) + dij;bii (3_{6’.’./2(]]_ —Im le)>A;l

The requirement that 7;; maps x; to x; determines the parameter 6;; as follows. Using
Eq. (4.4), we can rewrite this requirement as

T,'j >x; = Aiexp(%ImXij) >1 =Xj= Aj >1,
which is equivalent to

aj o 0i;
R;j :=exp ( — 7X4‘,-> exp <?X4,-) exp (TXU) € PSL(2,R) 4.
By an explicit computation of the matrices R;;, one finds that this is satisfied if and only if
Op=0=0a3, 031 =0u=ay, O3=014=u0,

with 6;; = 6;;. In the case A = 1, this holds up to multiples of 7.

To investigate the action of 7;; on the normal vectors of the adjacent faces, denote by
A; > Ny the lightlike vector at x; normal to a face f; adjacent to x;;, with the normalization
(Nik, Xix)x, = —1,and with distinct i, j, k € {1, 2, 3, 4}. Then T;; stabilizes the null planes
intersecting along the geodesic x;; and preserves its orientation if and only if

Tij > (Ai > Nix) = 0ijAj > Nji, Tij > (Ai > Xij) = —Aj > Xji,
Fig.3 The isometries and normal Aj D> Ny
vectors from Proposition 4.11
le
Tij ------+ 0 |
Tik (7]
x; A; > N
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for some o;; € R*. With the condition |o;;| = 1 this is equivalent to
(a,'j:ﬂ. + bijImXiJ-)Nik(aij]l — b,-jIm Xij) = Uini;lekRij, aizj — bizj = 1»

and, again by a direct computation, one finds

salan) |£1/2 sa(a2)
alzﬂ:b12=a34ﬂ:b34=‘ ‘ , 012=O34=Sgn< ),
salorr) sa(or)
salay) |£1/2 salar)
a3 £b31 = axg £ by = ’ , 031 = 024 :sgn< )
sa(as) sa(as)
sa(az) |F1/2 sa(az)
azaﬂ:b23=a14:|:b14=‘ ’ 023=014=Sg11< )
sa(an) sa (o)
with a;; = a;;, bjj = bj; and 0;; = 0};. Factoring out —o;;(a;j — bij)e_wif/z and inserting

o] = «a, a2 = B and a3 = y, we obtain the expressions in the proposition. O

4.2 Ideal tetrahedra

Corollary 4.5 shows that the edge lengths of a lightlike tetrahedron in X4 play a similar role
to the dihedral angles of an ideal hyperbolic tetrahedron: up to isometries, they determine the
lightlike tetrahedron completely. Indeed, the duality between lightlike planes in X 4 and points
on the ideal boundary d,,Y 4 suggests that lightlike tetrahedra should be dual to tetrahedra
in Y4 whose vertices are points in dxY 4, pairwise connected by spacelike geodesics.

Such tetrahedra are precisely the generalized ideal tetrahedra introduced and investigated
by Danciger in [4, 6], up to the fact that we exclude the degenerate ones. In this section we
review the results on generalized ideal tetrahedra in [4, 6] that are needed in the following
and relate them to the corresponding statements about lightlike tetrahedra. We then show that
lightlike and ideal tetrahedra are dual under the projective duality from Sects. 2.2 and 2.3.

Definition 4.12 An ideal tetrahedron in Y 4 is a non-degenerate convex geodesic 3-simplex
whose vertices are points in d» Y 4 and whose faces lie on spacelike geodesic planes.

As all vertices of an ideal tetrahedron are contained in d, Y 4 and all faces lie on spacelike
geodesic planes, the action of the isometry group PGL™ (2, C 1) on 94, Y 4 allows one to map
three vertices of an ideal tetrahedron to fixed reference points in d Y 4, as in Proposition 3.11.
It is shown in [6,Proposition 3] that the remaining vertex is then parametrized by the cross-
ratio from Definition 3.12. Alternatively, this vertex is given by two real parameters «, S,
which can be viewed as generalized dihedral angles.

Proposition 4.13 Let I be an ideal tetrahedron in Y 4 with vertices y1, y2, y3, Ya. Then there
is a unique isometry B € PGLT(2,C,) and a, B,y € R, satisfying « + B+ y = 0, such

that
10 00 11
B>y1=(00>, B>y2=(01>, Bl>y3=<11>,

saB) _sa (B) ot
= (o) sale
BB y4 _Sj/(xﬂ()xe—ﬁy 1 :

sa(a)

For A =1, one can choose 0 < ||, |B], |y| < m.
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Proof As y1, y2, y3 € 000Y 4 lie on a spacelike geodesic plane, by Proposition 3.11 there is
a unique isometry B € PGL*(2, C,) with

10 00 11
B>y1=<00), B>yz=<01>, Bl>y3=<1 1>,

up to a permutation of the vertices. The remaining vertex is then given by B > y4 = va vz
with

2
vy = <|Zz| f) , ze 1),

As all faces lie on spacelike geodesic planes, by the proof of Proposition 4.13 one has
1 — z € C;\{1}. In particular, there exists 1, r2, 8, y € R* such that

z=re", 1 —z=re P

Eliminating the parameters ry, 7 yields

——Mezy, a+p+y=0, (4.15)
sa(a)
and therefore
4B _sa Eﬂ; oty
= 54 () sala
B>y, _ij/(\ﬂ?e—z;/ A | .
sa(a)

O

Equation (4.15) relates the parameters o, B that parametrize an ideal tetrahedron in Propo-
sition 4.13 to the generalized cross-ratio of its vertices from Definition 3.12. By considering
also the images of the cross-ratio under the action of the subgroup (3.22) that permutes the
vertices B I> y1, B > y; and B I> y3, one obtains all the cross-ratios of a generalized ideal
tetrahedron [6,Section 3.1].

Corollary 4.14 The cross-ratios of vertices of the ideal tetrahedron in Proposition 4.13 are
given by
1 -1
_SA(ﬂ)ezy _ _SA(Ol)ezﬁ Z _ _SA(J/) lo
sa(a)

)

) = e
-z sa(y) z sa(B)
and their multiplicative inverses.
As for lightlike tetrahedra, using the symmetries (3.22), we may always choose two of
the parameters «, 8, y in Proposition 4.13 to be positive. For A = 1, due to periodicity, we

can further choose 0 < |«/|, |B[, |y| < m. We then obtain the following parametrization of
an ideal tetrahedron that is the counterpart of Proposition 4.4.

Proposition 4.15 The vertices in Proposition 4.13 define an ideal tetrahedron in Y 4 for all
o, B,y witha + B+ 7y = 0. Up to isometries, any ideal tetrahedron I C Y 4 admits a global
parametrization

1={3t.r.0)€¥a 112106, 07 =r®), —a <0 =0,
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where
2 2
Y 0) = (f LR 9)> B
_ (340 —y) o\ _ B sa)
0= ) " e B

witha, B > O0forall Aando + < 1 for A = 1.

Proof Let y1, y2, 3, y4 € Y4 be as in Proposition 4.13, and choose lifts y|, y5, ¥5, ¥ €
R* c Mat(2, Cy). Up to isometries (possibly reversing orientation), we can choose

/ 10 / 00 / 11
i= (o) =ah) w=()

swﬁ); _ J'Agﬁ; oty
! = (o) sala
Vi —-Yj?ﬂ?e— ty X ., a,B>0. (4.16)
sa(a)

We consider the convex cone in R* spanned by lifts of the vertices y; € Y4 C RP? to
vectors y; € R*. This takes the form

4 4
1’={y’=Zbiy{|bi20,Zbi;AO}. @.17)
i=1 i=1

This projects to a convex tetrahedron in Y 4 if and only if (y’, y')4 < O forall y’ € I’, and
this condition is satisfied forall o, 8 > 0 and y = —a — .
Any point y € Y 4 that is connected to y; by a spacelike geodesic can be parametrized as
2 2
y(z,z):%<t J;'“ f) with >0, z€Cy. (4.18)
The points on d Y 4 that are connected to y; by a spacelike geodesic are obtained from
(4.18) as the limit # — 0. Note also that forall z € C4,themap g, : R — Y 4,1 — y(e*, 2)
is a spacelike geodesic in Y 4, parametrized by arc length and with g, (co) = y. This follows
because g, parametrizes the intersection of the image of a plane in R* under the map (3.8) with
the set of matrices of unit determinant and because d (g, (s), g,(s")) = |s — s’| by Proposition
3.5. Hence, we can view the sets

Hion) = [y, |z e Cal,

for fixed t > 0 as generalized horocycles based at y; € 9,Y 4. For A = 1, they coincide
with the usual horocycles in H>.

The edge geodesic through y; and y; is obtained by setting By = Ofork ¢ {1, j}in (4.17).
By comparing the resulting expression with (4.18), one finds that this geodesic intersects each
horocycle H;(y;) in a unique point y(t, z;) with z; given by

_saB) el

sa(@)
More generally, a comparison of the parametrizations (4.17) and (4.18) shows that any
geodesic through y; that intersects the ideal tetrahedron / intersects each horocycle H;(y1)
in a unique point y(z, z) with z given by

22=0, =1, =

2(r,0) = ret@# _ 346 1y (4.19)
sA(cr)
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with

sa(B)  saly)
sa(a) sa(@ —B)’
The intersection point of the geodesic g9 : R — Y4, s = y(e®, z(r, 0)) with the face

opposite the vertex y; is obtained by setting B; = 0 in (4.17). Parameterizing z as in (4.19)
and comparing with (4.18), we find that this intersection point is given by

0<r=<r@® =

—a <6 <0.

5400 — )/)r _ r2)1/2
sa(a) )

Inserting formula (4.19) into the parametrization (4.18) then completes the proof. O

& =1(r,0) = (

The parameters «, 8, y in Propositions 4.13 and 4.15 also have a geometrical interpreta-
tion, namely as generalized dihedral angles at the edges of the ideal tetrahedron. Here, our
convention for the dihedral angles uses one exterior angle, namely the biggest dihedral angle
o + B, and two interior angles, @ and B. For A = 1 these are the usual dihedral angles
between the faces of an ideal hyperbolic tetrahedron, up to the fact that one of them is exter-
nal and given by w — 6, where 6 the usual interior dihedral angle. For A = —1 they give a
Lorentzian angle between its faces, and for A = 0 they are the length of the unique translation
along the degenerate direction that relates adjacent faces. Using the global parametrization
in Proposition 4.15, we obtain the analogue of Corollary 4.5 (Fig. 4).

Corollary 4.16 An ideal tetrahedron I is determined up to isometries by its generalized dihe-
dral angles. If 1 is parametrized as in Proposition 4.15, its dihedral angles are o, 8 and
o + B, with opposite edges having equal dihedral angles.

Proposition 4.15 and Corollary 4.16 show that the dihedral angles of an ideal tetrahedra
play an analogous role to the edge lengths of lightlike tetrahedra. It is also possible to give a
geometric interpretation for the ratios of their generalized sine functions as shearing distances
along edges.

We define the shearing distance along an edge e;; as the signed arc length ¢;; between the
orthogonal projections of y; and y; on ¢;;, for all distinct i, j, k, 1 € {1, 2, 3, 4}. The sign of
;j is taken positive (resp. negative) if the orientations of ¢;; induced (i) by the face opposite
vk and (ii) by moving from 7;; (yx) to 7;; (y;) agree (resp. disagree), see Fig. 5.

Proposition4.17 Let I C Y, be an ideal tetrahedron with vertices yi, Y2, Y3, Y4
parametrized as in Proposition 4.13. Then the shearing distance @;; at the edge e;; is given

Fig.4 Exterior dihedral angle 01>

and shearing distance @1, in H>
AN
Yoo\,
AL
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Yi Yi
Yk Y
uo Uk
Yi Yi

®ij >0 vij <0

Fig.5 Sign conventions for the shearing distance g; ;

by
2 cosh(g;j) = |zij| + lzij] ",
where |z;j| = |zji| and
lz12] = lz34] = s4(6) vzl =zl = sale) ozl =zl = a0
sal) sa(y) sA(B)

Proof Denote by B;; the unique isometry with B;; >00 = y;, B;; >0 = y; and B;; > 1 = yi
from Proposition 3.11, where (y;, y;, Yx) is positively ordered with respect to the orientation
of I. Then the orthogonal projection of yi on e;; is given by m;; (yx) = Bi; "> 1 and the
orthogonal projection of the remaining vertex y; by m;;(y) = Bj_l.1 > 1. Suppose B;; is
normalized with | det(B;;)| = 1. Then by Proposition 3.5 the shearing distance ¢;; satisfies

2cosh(g;j) = | te(B};' Bji(B;;' Bji)")l.

The claim then follows by computing the matrices B;; from the parametrization of the vertices
in Proposition 4.13. O

As in the case of lightlike tetrahedra, the cross-ratios or shape parameters of a generalized
ideal tetrahedron can also be characterized in terms of its symmetries.

Proposition 4.18 Let I C Y 4 be an ideal tetrahedron. Denote by y;; the geodesic segment
between y; and y |, oriented from y; to y ;. There exists a unique isometry T;; € PGLT(2,Cx)
that stabilizes y;j, together with its orientation, and maps one opposite vertex to the other.
With the parametrization of Proposition 4.13, we have

zij 0 _
Tij = Bij (6] 1) B!,

where z;j = zj; is given by

sA(B) eey
sa(a)

sa(@) g o sAW)
s S BTEE B

and where B;; € PGL™T (2, C) maps 00,0, 1 € 35Y4 to y;, Yj, Yk, respectively, with the
order of (yi, yj, yr) induced by the orientation of 1.

212 =234 = — ) 231 =234 = —

Proof Given an isometry B;; with B;; > 00 = y;, B;j >0 = y; and B;; > 1 = yy, define
Zij = Bi; I y; € C P! as the preimage of the remaining vertex y;. The projective matrix

(Z(")f (1)) € PGLT(2,C )
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then stabilizes both oo and 0 in C 4 P! and maps 1 to z;;. It follows that the isometry

zij 0 _
Tij = Bij (6] 1) B!,

stabilizes y; and y; and maps yy to y;.
From Proposition 4.13 we obtain

The other parameters z;; are obtained by computing the isometries By, Y j» for instance

0 = yi = 0, 00 >y = 1,
OHyz'_)l’ 00— = 734 = Z12,
Bil oByy: B;41 o By : 2 3 12
1 = y3 > o0, : > y3 > 00,
212 Y4 o203 = 10 Z12 > y4 — O.
The claim then follows from the identity « + 8 + y = 0. O

Corollary 4.16 and Proposition 4.17 show that the cross-ratios of an ideal tetrahedron
from Corollary 4.14 have a direct geometric interpretation that generalizes the one of ideal
tetrahedra in H3. Their arguments are generalized dihedral angles between faces, and their
moduli shearing distance along edges.

They are the counterparts of Corollary 4.5 and Proposition 4.10 for lightlike tetrahedra
in X4, which state that the arguments of their shape parameters determine the edge lengths
and their moduli the Lorentzian angle between the internal planes of a lightlike tetrahedron.
Proposition 4.18, which characterizes the cross-ratios of an ideal tetrahedron in terms of its
symmetries, is the counterpart of Proposition 4.11 for lightlike tetrahedra.

We have seen in Proposition 4.4 that given parameters «, 8, y, satisfyinga ++y =0,
there exists a lightlike tetrahedron with edge lengths |«|, |81, |y |, unique up to isometries.
Similarly, under the same assumptions, Proposition 4.13 proves the existence of a generalized
ideal tetrahedron with generalized dihedral angles |«|, | 8], |y |, again unique up to isometries.
The following theorem gives a geometric interpretation for this correspondence between
lightlike and ideal tetrahedra in terms of the projective duality of Sects. 2.2 and 2.3.

Note, however, that this correspondence is not given by the duality between convex sets
in X4 and Y 4 from [8] discussed in Sect. 2.2. As explained in Sect. 2.2, the dual of a convex
set in X4 or Y4 can be characterized as the set of spacelike geodesic planes that do not
intersect the convex set. Here, instead, we characterize lightlike tetrahedra in X 4 as the sets
of spacelike geodesic planes in Y 4 that do intersect ideal tetrahedra in two specified pairs of
opposite edges. Conversely, ideal tetrahedra in Y 4 correspond to spacelike geodesic planes
in X4 that intersect a lightlike tetrahedron in all pairs of opposite edges except its longest
edge pair.

Theorem 4.19 The projective duality from Sect. 2.2 identifies a lightlike tetrahedron in X 5
with the set of spacelike planes in Y 4 that intersect an ideal tetrahedron along two pairs of
opposite edges. It identifies an ideal tetrahedron in Y 4 with the set of spacelike planes in X 5
that intersect a lightlike tetrahedron along its shortest edges.
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Proof This follows from the parameterization of lightlike tetrahedra and ideal tetrahedra as
projections of the convex cones

4 4 4 4
L = [x’ =Y aix{|a; =0, ) a ;eo], I = [y/ = by 16 = 0. bi ;eo],
i=1 i=1 i=1 i=1

with the vertices x/ and y’,. given by (4.11) and (4.16). By assumption, we havea ++y =0
with o, B > 0 and « 4+ 8 < 7 for A = 1. This implies (x;, y}) =0fori # j and

(x],¥]) = =sa(@) <0, (x5, ¥3) = —sa(B) <0,
(x5, ¥5) = —sa(y) > 0, (x4, y4) = —sa(y) > 0. (4.20)

In particular, the spacelike plane in Y 4 dual to any point in the lightlike tetrahedron must
intersect the ideal tetrahedron: given any x” € L’ there exists y’ € I’ such that (x’, y’) = 0.
Such spacelike planes, however, cannot not intersect the pair of edges ez and e3q in I’: If
{i,j}={1,2}or{i, j} = (3.4} and y' = b;y| + bjy} with b;, b; > 0 and b; +b; # 0 we
have (x’, y’) < 0 for all x" € L’. For all other combinations of i and j, there are b;, b; > 0
and b; + b; # 0 for which (x’, y’) = 0. By Proposition 4.4 and Corollary 4.5 the edges e1>
and e34 are the longest edges of the lightlike tetrahedron. The proof of the second statement
is analogous. O

Although this correspondence is not the duality of convex sets from Sect. 2.2, it still
identities faces and vertices of a lightlike tetrahedron with faces and vertices of a lightlike
tetrahedron. Geodesics through two vertices or on two faces of a lightlike tetrahedron are
identified with geodesics on the two dual faces or though the two dual vertices, respectively.
In this sense, lightlike tetrahedra in X 4 and ideal tetrahedra in Y 4 are projectively dual.

5 Volumes of lightlike and ideal tetrahedra

In this section we derive formulas for the volumes of lightlike tetrahedra in X, and of
generalized ideal tetrahedra in Y 4 as functions of their edge lengths and dihedral angles,
respectively. These formulas are obtained by direct integration of the volume forms on X 4
and on Y 4, defined here uniquely up to global rescaling as the PGL™" (2, C 4)-invariant 3-
forms on each space.

5.1 Volumes of ideal tetrahedra

We start with the computation of volumes of generalized ideal tetrahedra in Y 4. This is
technically much simpler to compute and serves as a guide for the computation of the lightlike
volume below. For A = 1, it includes the Milnor—Lobachevsky formula [16], which gives
the volume of a hyperbolic ideal tetrahedron 7 as

vol(I) = %(Cl(Za) +CI2B) + Cl(2y)) = n(a) + 1(B) + 1(y). (5.1)

Here o, B and y = m — (a4 B) are the interior dihedral angles of the tetrahedron, Cl : R — R
is the Clausen function of order two and i1 : R — R the closely related Lobachevsky function.

Note that taking the exterior dihedral angle for y instead and setting y = —(a 4 B) in
(5.1) gives the same result due to periodicity. Hence, (5.1) remains valid for our conventions
on dihedral angles, where y = —(« 4+ B) (see Proposition 4.18).
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We will now show that the volume formulas for generalized ideal tetrahedra I C Y4 can
be computed for all values of A simultaneously and are simple generalizations of formula
(5.1), in which A appears as a deformation parameter.

The standard computation of the volume for an ideal hyperbolic tetrahedron, due to Milnor
[16] and based on the work by Lobachevsky, proceeds by subdividing the ideal tetrahedron
in three sub-tetrahedra with a higher degree of symmetry. This method can be extended
to generalized ideal tetrahedra. However, for simplicity and to exhibit the analogies with
the computation of the volume of lightlike tetrahedra in X 4, we compute the volume by a
different method that does not require a subdivision, namely with the parametrization from
Proposition 4.15.

Theorem 5.1 The volume of an ideal tetrahedron I C Y 4 is given by

vol(I) = %(cu(za) £ Cla2B) +Cly (2)/)),

where a, B and y = —(a + B) are its generalized dihedral angles from Proposition 4.13 and
Cly is the generalized Clausen function defined by

o
Cla() = —/ dolog|2s4(5)|.
0

Proof To compute the volume, we express the volume form on / in terms of the coordinates
r, 6, t from Proposition 4.15 and use the identification (3.8) of R* with the set of matrices
Y € Mat(2, C,) satisfying Y7 = Y. For A = =1, the volume form on I is then induced by
the semi-Riemann metric (2.6) on R* via (3.8) and the parametrization in Proposition 4.15.
A direct computation shows that it is

dvol = t%dt Adr A d6. (5.2)

For A = 0 the bilinear form (2.6) is degenerate and does not induce a volume form on Y 4.
Nevertheless, the volume form on Y4 can be defined, up to real rescaling, as the unique
3-form on Y4 invariant under the action of PGL™ (2, C,). It is again given by (5.2). The
volume of [ is then obtained from (5.2) and the parametrization in Proposition 4.15

o r(0) 00 r 1 o r(0) dr
vol(]) =/ d9/ dr/ dt — =—7/ d@/ _—
0 0 (o) 1 2 Jo 0 - Saldpob)

sa(B)
= [ tog| 2200
2 Jo sala+ B —0)sa00+ B)

« B
:—/ d910g|2sA(9)|—/ d910g|2sA(9)|+/
0 0 0

1
2

a+p
dOlog|2s,(0)]

(ClA(Za) +Cla(2B) — Cla2(a + /3))>~

5.2 Volumes of lightlike tetrahedra

We now consider the volumes of lightlike tetrahedra L C X 4. These volumes can be com-
puted in a similar way from the parametrization in Proposition 4.4. By a straightforward
change of coordinates, this yields a parametrization in which both, the lightlike tetrahedron
and its volume form become particularly simple.
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Theorem 5.2 The volume of a lightlike tetrahedron L C X4 is
1
vol(L) = (CIA(2a) £ ClA2B) +Cly (2y))
I
+ - (aloglsat@) + loglsa(B) +y loglsa()l). A ==L,
1
vol(L) = — gaﬂy, A =0,

where o, B and —y = a + B are the edge lengths of L and Cl 4 is the generalized Clausen
Sfunction from Theorem 5.1.

Proof Starting from the parametrization in Proposition 4.4 and setting

A sin(s) — sin(¢) B sin(s) + sin(z)
T 2cos(r) T 2cos(r)
we can rewrite the matrix X (A, B) in Proposition 4.4 as
sin(s) — sin(t) sin(s) + sin(z) sin(s) — cos(z)
X(s,t) = X X X43.
(s.7) 2 cos(t) at 2 cos(t) 2+ cos(t) 3

This yields the global parametrization

L={xe.s.0l0sr=ren<m iss<F—ul -F=<1=3} 3
with
_[eatn) —I—Zgg:g;s[‘(r) ng(ézs(zl)n(y)s (r)
x(r, S, t) - ( esm(g()):zzl)n(t) SA (r) cA (r) _ E(c:gbsx;s (r) (54)
1 fa sin(z) + b cos(t) + csin(s)
r(s,t) =cty < doos(s) ) , (5.5)
and
1 (SA(Ot) B SA(/3)> o=l (SA(Ol) N SA(ﬂ))
2\s4(8)  sa@))’ 2\s4(8)  sa@)’
b=cypla+B), d=sp(a+ B). (5.6)

To express the volume form on L in terms of the coordinates r, s, f, we use the identification
(3.7) of R* with the set of matrices X € Mat(2, C ) satisfying X° = X. For A = %1 the
volume form on X 4 is the 3-form on AdS3 or dS; induced by the semi-Riemannian metric
(-, )2,020r (-, -)1,0,3 on R*, respectively. For A = 0, it is the standard 3-form on R3. In all
three cases, the induced volume form on L is obtained from the identification (3.7) and the
parametrization (5.4) and reads

sa(r)?

dvol =
cos(s)?

dt Nds Ndr.

To compute the volume of the lightlike tetrahedron L, we integrate this volume form over
the parameter range in (5.3). For A = 0, this is a direct and simple computation

V01(L)=/Z dt/ o /’(”) sa(r)? /” / s’
-z I cos(s)? z It cos(s)2
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/ /2 (s, ) 4 r(s, —1)3
cos(s)? '

Inserting expression (5.5) for r (s, t) with 4 (x) = x for A = 0, we obtain
g g
d3 T 5t
vol(L) = & f Y / *ds — coss)
(asin(t) + bcos(t) + csin(s))?
/ dt/ cos(s)
(—a sin(t) + b cos(t) + csin(s))3

& / dt ( 1 N 1
T 6c Jo cos()2 \((a+c)tan(t) + )2 ((c —a)tan(t) + b)2>

& /z dt < 1 N 1 )
6c Jo cos(t)? \(atan(t) +b+c)?2 (—atan(t) +b +c)?
= Japla+p),

where we used the substitution rule twice and in the last step inserted the expressions for
a,b,c,d from (5.6) with sy, (x) = x and cx(x) = 1 for A = 0.

For A = +£1 the computation of the volume is more involved. Performing the integration
over r and splitting the integral over ¢ we obtain

z |z| (s, z) 2
vol(L) :fi dt/ / sA(r)z
-z It cos(s)
T -l —
_ L/’4 dt/2 ds saQr(s, 1)) —2r(s,t)
4¢2 -z Il cos(s)?

_ L /'Z dt/g_ttls <SA(2r(s, 1)) — 2r(s, 1) n saQ2r(s, —1)) — 2r(s, —t)) .
402 J, p

cos(s)? cos(s)?

To integrate over s, we now use the indefinite integral
sAQr(s,t)) —2r(s,t) asin(t) 4+ b cos(t) + ¢ sin(s)
ds = —2ct tan(s)
cos(s)? d cos(s)

- ((a cos(r) — bsin(#))? — ¢ sin(s)(a sin(f) + b cos(r)) — c2> atan(t) + b
“la d sin(s)(a cos(t) — bsin()) a—btan@)

where ctg1 is the generalized inverse cotangent given by (3.4). That the derivative of the
right hand side with respect to s is indeed the integrand of the left hand side follows by a
direct but lengthy computation. The derivative of the term tan(s) on the right hand side gives
the second term on the left. The first term on the left is obtained from the derivatives of the
inverse generalized cotangents on the right hand side with the formulas

d _ 1 _ 2x
ECZAI(X)Z—W, SA(ZCfAl(X))=m

)

that follow from (3.2), (3.3) and (3.4). After some computations using trigonometric identities
and inserting expressions (5.5) and (5.6) for r (s, t) and a, b, ¢, d, one then obtains the first
term in the integrand on the left.
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To perform the integration over s, we insert this indefinite integral into the expression for
vol(L). Simplifying the resulting terms with the addition formulas

2

-1 -1 —i(xy+4t
ct X) +ct =ct ( )

A (X)) A L

derived from (3.2) and (3.4), then yields

1 [T [iatan()+b (a +¢)tan(t) + b
vol(L) = ﬁ/ dt[(m—i-tan(t)) (f)

(Z tinb(ttzn(t) + t'gm(t)) ety (a +ccz t—an(tt;i nm)

(a tan(t) —b Cot(l)) <(a +o)(1 —tan(r)) + b(1 + tan(t))
(b

(G hwn

a+b tan(t) d(1 + tan(z))

atan(t) + b ((a +¢)(1 +tan(z)) + b(1 — tan(t)))
a—>b tan(t) d(1 —tan(z))

atan(t) — _1/b

a+b tan(t) tan(t)>6t/‘ (E)

B <atan(t) +b atan(t) — b) tXl(a +b +c>].

— cot(t))

a—btan(t) a + btan(t) ¢ d
To simplify this integral further, we apply a change of variables,

. B 1 —tan(z)
an(s) = m,

to the third and fourth term to combine them with the first and second term, respectively.
After some further computations involving trigonometric identities we then obtain

vol(L)
N L 1 _i/(a+otan() +b
22 _/0 cos2(t) |:<tan(l) -1 tan() -3 + tan(t) + %)CZA ( d )
1 1 1 _—1(a+c+btan(r)
a (tan(t) —1 tan(t) + g b )UA ( d tan(t) )

1 _1/a+b+c 1 _1/a—b—c
t — 1 .
tan(r) — ¢4 ( d ) tan(r) + &4 ( d )}

To perform the integration over ¢ we apply the changes of variables

(a+c)tan(t) + b a+ ¢+ btan(r)

@ =" MO =T o

to the first and third terms and to the second and fourth terms in this expression, respectively.
We then combine the resulting expressions, insert formulas (5.6) for the variables a, b, ¢, d
and use the definition of the generalized trigonometric functions in terms of the exponential
and the identities (3.2). After some computations this yields

1 [et+B 0+p 0
vol(L) = Z/,g do <1 2 ] _ ezé(ﬂ—m)
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1P » 60—« 0
+ N 0 1 — e20(a+p=0) ~ 1 _ o2L(p—0)

1 [oth 0—pB 0
Ty a9 200 1422 —20(B+) 1422
p I—em™iz l-e e
1 [# 0+a 0
+ Z/ a9 —2@(:—[’34—0) 1+22 20(B+6) 1422
0 1—e T 1—e e

where z is the cross-ratio from Corollary 4.14.
The terms in the third and fourth line cancel, and the remaining terms can be recombined

to
1 [fotp 0+ 8 1 [ 0+8 1 [P 0+ B
L) = - a0 2P g TP D [Ty T
vol(L) g/(; | — o200 3/0 1 — o200 f/o 1 — o200

1L fetF 948 1 (% —604+p 1(F 048
" do——— —— | a0—- — | ap——_
+ ; /0 1—e2t0 ¢ /0 1—e2t0 ¢ /0 1 _ o200
1 [foth s | B
— 72/0 do 6 ct4(0) — ﬁfo do 6 ct4(0) — ﬁ/o do 6 ct4(0).

To complete the computation of the volume it is now sufficient to note that

o o d
/0 dGGCtA(Q):fO d9|:d—9<910g|2s/1(9)|)—10g|2sA(9)|]

o
1
= o log 254 ()| —/ d0 log [254(6)] = alog 254 (@)| + 5 Claa),  (5.7)
0

where Cl 4 is the generalized Clausen function defined in Theorem 5.1. Inserting this identity
in the expression for the volume yields the volume formula for A = +1 in Theorem 5.2. O

Note that the volume of the lightlike tetrahedron L C X4 for A = 01is also obtained from
the volume formula for a 3-simplex in 3d Minkowski space. Omitting the coordinate x, in
the identification (3.7) we can identify the vertices of L with points in R3. The volume is then
given by the Minkowski bilinear form (-, -); 0.2 and the Lorentzian wedge product on R? as

1 1
vol(L) = = |{xs = xa. (11 = x0) A (62 = x9))| = S0B@ + B,

It remains to clarify the relation between the volume formulas for a lightlike tetrahedron
for A = 0and A = &1. For A = —¢? = 0 the division by ¢ in the volume formula for
A = =1 is ill-defined. However, in this case we have Cl4(x) = —xlog|2s4(x)| + x and
hence the numerator of the volume formula for A = =1 also vanishes. In fact, we can obtain
the volume formula for A = 0 as a limit of the formula for A = +£1 if we extend the latter
to A € R by considering its expansion as a power series in £.

Corollary 5.3 The volume of a lightlike tetrahedron L C X 4 is given as a power series in its
shortest edge lengths a, B and in A by

%} 4k(_])k71AkleZk k <k + 1> el
vol(L) = )l pEEI
L w2l
= %aﬁ(ox +B8)+0(4), (5.8)
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where Boy, is the 2kth Bernoulli number.

Proof Using expression (3.1) for the generalized trigonometric functions in terms of the
exponential map, which extends to general A = —¢> € R, and the well-known Laurent
series expansion of the cotangent and hyperbolic cotangent, we obtain the power series

4kB lkAk A A2
Z 2% (—1) e D2 LAy

zA(x)_ T Y T T3 45

for general A = —¢? € R. Integrating this expression as in (5.7) yields

1 y
3 CLA@Y) + ylog 254 ()] = / dx
0

ta(x)
4k By (kAR Ayd A%y
= =y 2 5.9
Z Qk+1y 7 YTy T s (59)

Subtracting expression (5.9) for y = o and y = 8 from the one for y = o + § annihilates
the linear term. After dividing by £2 = — A and applying the binomial formula one obtains
the first line in (5.8). O
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