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Abstract

An elementary proof of a theorem of Montanucci and Zini on the automorphism group of
generalized Artin—Schreier—Mumford curves is presented, with the argument of Korchmaros
and Montanucci for Artin—Schreier—-Mumford curves being improved. Although the charac-
teristic of a ground field is assumed to be odd in the article of Montanucci and Zini, the proof
in the present article is applicable to the case of characteristic two as well. As an application
of the theorem of Montanucci and Zini, the arrangement of Galois points or Galois lines for
the generalized Artin—Schreier—Mumford curve is determined.
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1 Introduction

The Artin—Schreier—Mumford (ASM) curve over an algebraically closed field k of charac-
teristic p > 0 is the smooth model of the plane curve defined by

P =00 -y =c

where e > 0, p¢ > 2and ¢ € k\{0}. This curve is important in the study of the automorphism
groups of algebraic curves, since this is an ordinary curve and its automorphism group is
large compared to its genus (see [15]). For the case e = 1, the automorphism group was
determined in [16], and a characterization according to its genus and automorphism group
was givenin [1]. The ASM curve is generalized as the smooth model X of the curve C defined
by

Li(x) - La(y) +¢ =0,
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where ¢ € k\{0} and L and L, are linearlized polynomials of degree p¢, that is,
e e—1
L; = ojex? + djo_1x?  + -+ ajpx
for some ¢j,, Uie—1, ..., g € k with a9 % 0, fori = 1, 2. We can assume that oy, =
an, = 1 for a suitable system of coordinates. This curve was studied by the present author
[4, 5] (for the case L1 = L»), and by Montanucci and Zini [12]. The curve X is called
a generalized Artin—-Mumford curve in [12]. The full automorphism group Aut(X) of X is
completely determined by Montanucci and Zini [12, Theorems 1.1 and 1.2], as follows.
Fact1 Assume that p > 2. Let F i = [, 4,20 Fpi N ﬂj>0’a2j#0 Fpi.
(@) If L1 = Lo, then Aut(X) = X X D k_y, where X is an elementary abelian p-group of
order p*¢ and D x_y is the dihedral group of order 2(pF = 1.
(b) If Ly # Ly, then Aut(X) = X x F;k.

It is assumed that the characteristic is odd in [12]. One key point to prove is [12, Lemma
3.1 v) and Corollary 3.2], which asserts that a Sylow p-subgroup of Aut(X) is linear and
acts on 21 U 27, where the set 21 (resp. 22) consists of all poles of x (resp. of y). This
assertion relies on a theorem of Nakajima [13, Theorem 1] on relations between the p-rank
and Sylow p-subgroups of the automorphism group of algebraic curves. Another key point
is that the genus (p¢ — 1)% of X is even if p > 2, because Montanucci and Zini used some
group-theoretic lemmas from [9] concerning curves of even genus.

An alternative proof of Fact 1 for the ASM curve was obtained by Korchméros and
Montanucci [10]. Tt was proved that the linear system induced by some embedding into P3
is complete, and asserted that Aut(X) acts on 1 U Q7, by using its completeness. We will
prove the same things for generalized Artin—Schreier—Mumford curves in a different order.
It was pointed out by Garcia [8] (see also [2, 7]) that points of 1 U Q9 are Weierstrass
points (see Lemma 2 for a more precise statement), and this implies that Aut(X) acts on
Q1 U Q,. We reprove it. We also present an elementary proof of the completeness of the
linear system for generalized ASM curves (Lemma 3). With these two results combined, an
inclusion Aut(X) < PGL(4, k) is obtained (Corollary 2). More strongly:

Theorem 1 There exists an injective homomorphism
Aut(X) = Bir(C) — PGL(@3, k).
This is very close to the theorem of Montanucci and Zini. Therefore:
Theorem 2 The same assertion as Fact 1 holds for the case where p = 2.

As an application of the theorem of Montanucci and Zini, the arrangement of Galois points
or Galois lines for the generalized Artin—Schreier—Mumford curve is determined in Sects. 4
and 5.

2 Preliminaries
The system of homogeneous coordinates on P? is denoted by (X : ¥ : Z) and the system of
affine coordinates of A2 is denoted by (x, y) withx = X/Z and y = Y /Z. In this section, we

consider the generalized Artin—Schreier-Mumford curve X and its plane model C described
in Sect. 1. Let ¢ = p®. The set of all poles of x (resp. of y) is denoted by €2 (resp. by
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2,), which coincides with the set of all zeros of Ly (y) (resp. of L(x)). The sets €2; and
€2, consist of g points. The pole of x (resp. of y) corresponding to y = B (resp. x = «) for
Ly(B) = 0 (resp. L1(a) = 0) is denoted by Pg (resp. by Q). For the point Pg, t = % is a
local parameter. Let P’ = (1 : 0: 0) and Q' = (0 : 1 : 0) € P2. Then Sing(C) = {P’, Q'},
and the point P’ (resp. the point Q) is the image of | (resp. of ) under the normalization.

The system of homogeneous coordinates on P3 is denoted by (X : ¥ : Z : W). We
consider the morphism

(p:X—>]P’3; (x:y:1:xy),

similar to the case of the ASM curve (see [10]). For the point Pg € €21 defined by L>(8) = 0,
t = % is a local parameter at Pg. It follows that

og=@:y:l:xy)=@x:ty:t:txy)=1:ty:t:y)),

and ¢(Pg) = (1 : 0 : 0 : B). Therefore, g points of ¢(£21) are contained in the line
0 :Y=Z=0inP3. Similarly, g points of ¢ (£2,) are contained intheline £, : X = Z = 0.
Note that

dx dy dx dy
— — =ajolL — L — =0
fx T Iy g = @0 2(y) 77 T l(x)dz
in k(C), where f(x,y) = L1(x)L2(y) + c. This implies that
dy
—(Pg) =0.
dt( 8)
The tangent line at ¢ (Pg) is spanned by points ¢(Pg) and

dy o oday) o odi o dy At
(?7““'7?*%”dﬁ%”dﬁ&O‘*mﬁ'Lm'

Therefore, the tangent line 7y pﬁ)q)(X ) at ¢(Ppg) is defined by
W—-BX=Y-BZ=0.
Similarly, the tangent line Ty (g, @ (X) at ¢(Q) is defined by

W—-—a¥Y=X—-—aZ=0.

3 Proofs of Theorems 1 and 2

Let D € Div(X) be the divisor of X derived from the intersection of the plane model C and the
line {Z = 0} in P2. It is known that the genus g of X is equal to (¢ — 1) (see [12, Lemma 3.1],
[14,1I1.7.10]). Therefore, the degree of the canonical divisor is 2g — 2 = 2g(g — 2). We
consider the linear space £((¢ — 2) D) associated with the divisor (¢ — 2) D. The following
two lemmas were proved by Boseck [2] and Garcia [8] in a more general setting (see also
[7]). We reprove them, for the convenience of the readers.

Lemma 1 A divisor (¢ — 2)D is a canonical divisor, and

L((g—2)D) = (x'y/ [0<i,j<qg-2).
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Proof The monomials
x'y/ withi <g—2and j<g—2

are containd in £((¢ — 2)D). They are linearly independent, since degC = 2g. Since
deg(¢ —2)D =2g —2 and dim L((qg —2)D) > (¢ — D2 = g, it follows from [14,1.6.2]
that the assertion follows. O

Lemma 2 The set Q1 U Q2 coincides with {P € X | ¢ € H(P)}, where H(P) is the
Weierstrass semigroup of P. In particular, all points of 21 U Qy are Weierstrass points.

Proof We consider the embedding v induced by the canonical linear system |(g — 2) D|. Let
P € Qpandletr = (1/x). Then ¢ is a local parameter at P. Note that ordp (y — B) = ¢ for
some B € k. Considering the functions t*yl e £((x172) + (g — 2)D), it follows that the
orders ord pyy* H for hyperplanes H > P are

1,2,...,9 —2,q, ...,

namely, ¢ — 1 4 1 is a non-gap (of pole numbers). On the other hand, ord 4 1) (x — a)?2(y —
b) = g — 1 for each point (x, y) = (a, b) of X\ (£2; U Q2), since functions x —a and y — b
are local parameters. O

Corollary 1 The automorphism group Aut(X) preserves 21 U Q5.

Lemma 3 The morphism ¢ : X — P3 is an embedding, and the linear system induced by ¢
is complete.

Proof The former assertion is derived from the fact that the set ¢ (2] UQ2;) = ¢(X)N{Z = 0}
consists of 2¢g points (this proof is similar to [10]). We consider the latter assertion. It follows
that 1, x, y, xy € L£(D).Eachelement of the linear space L(D) is represented by a polynomial
of x and y, since each function g € £(D) is regular on the affine open set C N {Z # 0}.
Using the defining polynomial, since

x?yd = Z aij xiyl
i=q,j=q,(,))#(q.9)
in k(X), it follows that any g € £(D) is represented as a linear combination of monomials
xiyj withi < g or j <gq.

Assume that g = >/, a; (y)x' withm > g and a,,(y) # 0. Then degay, (y) < g. This
implies that there exists a pole P of x such that ordpa,,(y) = 0. Then ordpg = —m <
—q < —1. This is a contradiction to g € £(D). It follows that any g € £((D) is represented
as a linear combination of monomials

xiyj withi < ¢ and j < gq.

Let g = Z;":O a; (y)xi with m < g and a,,(y) # 0. Since dega,, (y) < ¢, there exists
a pole P of x such that ordpa,, (y) = 0. Then ordpg = —m. By the condition g € L(D),
—m =ordpg > —1. It follows that any g € £(D) is represented as a linear combination of
monomials 1, x, y, xy. O

Corollary 2 There exists an injective homomorphism

Aut(X) < PGL(4,k).
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Proof By Corollary 1, 0*D = D for each 0 € Aut(X). By Lemma 3, dim |D| = 3. The
assertion follows. O

Using Corollaries 1 and 2, we prove Theorem 1.

Proof of Theorem 1 Ttis proved that ¢(21) and 9(£23) C IP? are contained inlines Y = Z = 0
and X = Z = 0 respectively, in Sect. 2. The point (0 : 0 : 0 : 1) given by the intersection of
such lines is fixed by each element of Aut(X). Then Aut(X) acts on the sublinear system of
| D| corresponding to the linear subspace (x, y, 1) C L(D). m}

The image of the injective homomorphism described in Theorem 1 is denoted by Lin(X).
Let

Yi={ogp:(x,y) > (x+a,y+pB)|Li(x)=0,L(B) =0} C PGL(3,k),
[={6,:(x,y) > Gx, A7 'y) |1 e Fri} C PGL(3, k),

and let t € PGL(3, k) be defined by t(x, y) = (y, x). It follows that (X, ") C Lin(X). If
Ly = Ly, then (X, T, 7) C Lin(X).

Proof of Fact 1 We prove that (X, ") = Lin(X) if L| # L,, and that (X, ", 7) = Lin(X)
if Ly = Lp.Let P/ = (1 : 0 : 0)andlet Q' = (0 : 1 : 0). Then Lin(X) acts on
Sing(C) = {P’, Q’}. Note that all tangent lines at P’ (resp. at Q') are definedby Y —Z =0
(resp. X —aZ = 0) for some B € k with Ly(B8) = 0 (resp. for some o € k with L{(«) = 0).
Since Lin(X) acts on the set of tangent lines at P’ or at Q’, it follows that there exists
7’ € Lin(X) such that t/(P’) = Q" and t/(Q’) = P’ if and only if L1 = L,. Therefore, we
prove that if o € Lin(X), o(P') = P’ and 6 (Q’) = Q/, theno € (X, T).

Assume that o € Lin(X), o(P’) = P’ and o(Q’) = Q. Then o is represented by a
matrix

Ay =

S O

0 ¢
b d
0 1

forsomea, b, c,d € k. Let B € k (resp. « € k) be aroot of L, (resp. L1). Then the image of
the tangent line Y — BZ = 0 (resp. X — «Z = 0) under o is some tangentline Y — g'Z =0
(resp. X — o’Z = 0). Then an automorphism o7 := 04_ g_pg 0 0 fixes the tangent lines
Y — BZ =0and X — «Z = 0. Therefore, this automorphism is represented by

a 0 a(l—a)
Aoy =10 b B(A-b)
0 0 1

Since

o (L1(x) - La(y) +¢) = (Za”icxlixpi +cl> prjazjypj +o | +c
i J
=Li(x) - La(y)+¢

up to a constant for some cy, c2 € k, it follows that¢c; = ¢; = 0,ab =l and a,b € F;k.
For an automorphism 6,1 € T, 03 := 0,-1 0 04_o' g—p’ © 0 is represented by

0 a@'=1

Bla—1)

1
Ay=|0 1
00 1
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This implies that 6,-1 0 0447 g_p' © 0 € X, namely, o € (X, T). O

4 Application to the arrangement of Galois points

A point R € P?\C is called an outer Galois point for a plane curve C C P? if the function
field extension k(C)/ nl”;k(IF’l) induced by the projection g from R is Galois (see [11, 17]).
Furthermore, an outer Galois point is said to be extendable if each element of the Galois
group is the restriction of some linear transformation of P2 (see [4]). The number of outer
Galois points (resp. of extendable outer Galois points) is denoted by §’(C) (resp. by 86(C)).
As we are investigating Galois points or Galois lines, the following fact regarding Galois
extensions is required in this and the next sections (see [14,111.7.1, 111.7.2]).

Fact2 Let w : C — C' be a morphism between smooth projective curves C and C' with
7(C) = C'. Assume that the field extension k(C)/n*k(C") is Galois. Then the following
hold.

(a) The Galois group acts on each fiber of 7 transitively.
(b) For points Q1, Q2 € C withn(Q1) = 7w (Q2), the ramification indices are the same.

In this section, we consider outer Galois points for the plane model C of the generalized
Artin—Schreier-Mumford curve X. According to Theorem 1, §'(C) = 8(’)(C ). It was proved
by the present author that for the case where Ly = L2, §,(C) > p* — 1 and the equality
holds if p = 2 (see [4, 5]). Therefore, it has been proved that §'(C) = 8{(C) = p* — 1 if
p = 2. The same assertion holds for the case where p > 2.

Theorem3 If L| = Ly, then 8'(C) = §)(C) = pk — 1.

Proof Let R € P?\C be an outer Galois point. Note that the line R P’ corresponds to the
fiber of the projection g, where P’ = (1 : 0 : 0) € Sing(C). If R ¢ {Z = 0}, then 7 is
ramified at each point of €21, by Corollary 1 and Fact 2 (a). However, the directions of the
tangent lines at P’ are different. This is a contradiction. Therefore, R € {Z = 0}.

We can assume that p > 2. Since |Gg| = 2q, there exists an involution T/ € Gg C
Lin(X). If /(P") = (P’), then 7’ fixes some point of ;. This is a contradiction to the
transitivity of G on fibers in Fact 2 (a). Therefore, /(P’) = Q' and t/(Q’) = P’, where
Q' =(0:1:0) € Sing(C). Since each elements of (X, I') C Lin(X) are represented by

X:Y:2) > W' X4+a2): MY +BZ): 2)
for some A € IF;,( and some «, § € k with L1(«) = L1(B8) = 0 as described in the previous
section, it follows that T’ is given by

(X:Y:2) > QWY +B2): A "X +aZ): 2).

Then fixed points of 7" on {Z = 0} are (A : 1 : 0) and (—A : 1 : 0). Note that any element of
G fixes R, since G g preserves any line passing through R. Therefore, R = (A : 1 : 0) or

(=X :1:0). The claim follows. O
Remark 1 Let Ry, ..., Rpk_l be all outer Galois points for C and let Gg,, ..., GRP,_] be
their Galois groups. Then Aut(X) = (Gg,, ..., GRpk_l ).

For the case where L| # L, the following holds.
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Theorem 4 [f Ly # Ly, then §'(C) = 0.

Proof Let R € P>\C be an outer Galois point. By Corollary 1 and Fact 2, the projection 7g
is ramified at each point of 1. However, the directions of the tangent lines at P’ € ¢(2))
are different. This is a contradiction. m}

Remark 2 The generalized Artin—Schreier—Mumford curve with L # L, does not belong to
families studied by the present author in [4, 5], since a linear subgroup of the automorphism
group of the families acts on the set defined by Z = 0 transitively.

5 Application to the arrangement of Galois lines

Aline £ C P3 is called a Galois line for a space curve X C P3 if the function field extension
k(X)/nZ‘k(IPl) induced by the projection 7, from £ is Galois (see [3, 18]). In this section,
we consider Galois lines for a space model ¢(X) C P3 of the generalized Artin—Schreier—
Mumford curve X, where

(p:X—>IP3; (x:y:1:xy).
The following lemma is required to determine Galois lines for ¢ (X).

Lemma4d Let P € QU and let H O Typyp(X) be a tangent hyperplane in P3 at p(P).
Then ordpp™H > q.

Proof Let P = Pg € Q1. Then H is defined by
aW—-8X)+b(Y —-BZ2)=0
for some a, b € k with (a, b) # (0, 0). It follows that
ordp,¢*H = ordp,(a(y — ) + b(y — B)1),
where t = 1/x. Since ordp, (y — B) = ¢, the claim follows. O

The following is an analog of [6,Lemma 1 (b)] and can be proved in the same way.

Lemma5 Let H C IP? be a hyperplane with H # {Z = 0}. If H D ¢(1), then H contains
the tangent line at some point of (21), or q points of (p(X) N H)\@(21) are collinear. For
both cases, the defining equation of the tangent line or of the line spanned by the q points of
(p(X) N H)\@(L21) is of the form
W—-aX=Y—-aZ=0
for some a € k.
For the case where ]Fpk = [Fpe, thatis, L} = Ly = x7 + x (for a suitable system of

coordinates), the arrangement of Galois lines was determined in [6]. We can assume that
k<e.

Theorem 5 Assume that Ly = L, and k < e. Let £ C P3 be a line. Then £ is a Galois line
Jor ¢(X) if and only if £ is one of the following:

(a) an Fpk -line contained in {Z = 0} and passing through (0:0:0: 1), or
(b) the line definedby W —aX =Y —aZ =00r W —aY = X —aZ = 0 for some a € k.
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Proof The proof of the if-part is similar to [6], and is easily verified by a direct computation.
Assume that ¢ is a Galois line. The proof for the nonexistence of the case where £N¢(X) = 0
and £ Z (0 :0:0: 1) is similar to [6,Case (i)], according to Montanucci—Zini’s theorem
(and Theorem 2). If £ N(X) =W and £ > (0: 0:0 : 1), then such Galois lines correspond
to Galois points in 2. According to Theorem 3, £ is an p+-line, that is, £ is of type (a) in
the claim. If the degree of the projection from £ is 2¢g — 1, then £ is not a Galois line, by
considering the orders |G¢| and |Aut(X)|.

Assume that £ is a tangent line or £ N ¢(X) consists of at least two points. If £ C {Z = 0}
and £ # {1, >, where ¢| and ¢, are lines spanned by ¢(€21) and ¢(£2;) respectively, then
there exist points P € (1) and Q € ¢(2») such that £ = P Q, where PQ C P3 is a line
passing through P and Q. Thendegmy = 2g —2 = 2(g — 1). Since |Aut(X)| = 2¢2%(p* — 1)
by Montanucci—Zini’s theorem (and Theorem 2), £ must not become a Galois line.

Assumethat {N{Z = 0} = {R} ¢ £1UL,. If there does not exist a pair of points P € ¢(£21)
and Q € ¢(Q2) with R € PQ, then G, fixes QU pointwise. This is a contradiction, since
Aut(X) acts on 21 U Q2 faithfully. Therefore, there exist points P € ¢(£21) and Q € ¢(£22)
such that R € P Q.If H contains the tangent lines at P and at Q, then by Lemma 4, £ N ¢(X)
is an empty set. Therefore, by Fact 2 (b), it follows that H is not a tangent hyperplane at P
or at Q. Since the Galois group G, acts on {P, Q} by Fact 2 (a) and Corollary 1, it follows
that deg my = 2, namely, X is hyperelliptic. This is a contradiction to Lemma 1.

Assume that £ N {Z = 0} = {R} C €; U £>. We can assume that R € ¢;. The plane H
spanned by ¢ and £ contains ¢(€21). By Fact 2 (a) and Corollary 1, H N ¢(X) C €; U L.
Since ¢ contains two points or is a tangent line, it follows from Lemma 5 that £ is defined by
W —aX =Y —aZ = 0 for some a € k, that is, £ is of type (b) in the claim. O

Theorem 6 Assume that L1 # Ly. Let £ C P be a line. Then £ is a Galois line for (X) if
and only if € is defined by aW — bX = aY —bZ = 0oraW —bY =aX —bZ = 0 for
some a, b € k with (a, b) # (0, 0).

Proof The proof of the if-part is similar to [6], and is easily verified by a direct computation.
Assume that £ C P3? is a Galois line. The proof for the nonexistence of the case where
LNeX)=0@and € # (0:0:0:1)is similar to [6,Case (i)], according to Montanucci—
Zini’s theorem (and Theorem 2). If £ N (X)) =@ and £ > (0 : 0 : 0 : 1), then such Galois
lines correspond to Galois points in P2. According to Theorem 4, this is a contradiction. If
the degree of the projection from ¢ is 2¢ — 1, then £ is not a Galois line, by considering the
orders |G| and |Aut(X)]|.

Assume that £ is a tangent line or £ N ¢ (X) consists of at least two points. If £ C {Z = 0}
and £ # £1, €5, then there exist points P € ¢(21) and Q € ¢(£2,) such that £ = P Q. Then
degmy =2 —2 =2(q — 1). Since |Aut(X)| = g*(pF =1 by Montanucci—Zini’s theorem
(and Theorem 2), £ must not become a Galois line.

Assume that £ N {Z = 0} = {R} ¢ €1 U £,. Since Aut(X) acts on 1, G, fixes
pointwise. The same claim holds for €2,. This is a contradiction, since Aut(X) acts on
Q1 U Q) faithfully.

Assume that £ N {Z = 0} = {R} C £; U £,. We can assume that R € £1. The plane H
spanned by ¢ and £ contains ¢(£21). By Fact 2 (a) and Corollary 1, H N ¢(X) C €1 U £.
Since ¢ contains two points or is a tangent line, it follows from Lemma 5 that £ is defined by
W —aX =Y —aZ = 0for some a € k, that is, £ is a line described in the claim. O
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