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Abstract
We study the speed of convergence to the asymptotic cone for a finitely generated nilpotent
group endowed with a word metric. The first result on this theme is given by Burago who
showed that an abelian group endowedwith awordmetric converges to the normed spacewith
the speed O

( 1
n

)
in the sense of Gromov–Hausdorff distance. Later Krat showed the same

statement for the Heisenberg group, and Breuillard and Le Donne constructed an example,
the direct product of the Z and the Heisenberg group with a specific word metric, whose

speed of convergence is precisely O
(

1√
n

)
. For 2-step nilpotent groups, we show that if the

asymptotic cone is non-singular, then the speed of convergence is O
( 1
n

)
for any choice of

generating set. Our argument can be applied to every nilpotent Lie group with a left-invariant
sub-Finsler metric. In terms of sub-Finsler geometry, the condition being non-singular is
equivalent to the strongly bracket generating condition, and also to absence of abnormal
curves.
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1 Introduction

Let Γ be a torsion-free nilpotent group generated by a finite symmetric subset S ⊂ Γ , and
ρS the associated word metric. The asymptotic cone of (Γ , ρS, id) is the Gromov–Hausdorff
limit of the sequence {(Γ , 1

nρS, id)}n∈N. In general, the existence and the uniqueness of the
limit is not trivial, however, Pansu showed that the asymptotic cone of (Γ , ρS, id) is uniquely
determined up to isometry in [12]. The limit space (N , d∞, id) is a Carnot group endowed
with a subFinsler metric (see Sect. 2.3). If Γ is 2-step, then N is isomorphic to the Mal’cev
completion of Γ as a Lie group.
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The asymptotic cone and the original metric space are sometimes close in the following
sense. Burago [4] showed that a Cayley graph of every free abelian group is (1,C)-quasi-
isometric to its asymptotic cone for some C > 0. This implies that the unit ball of a scaled
down Cayley graph centered at the identity, denote B 1

n ρS
(1), converges to that of the asymp-

totic cone rapidly. Namely,

dGH (B 1
n ρS

(1), Bd∞(1)) = O(n−1),

where dGH is the Gromov–Hausdorff distance.
Motivated by this result, Gromov [9] asked whether a Cayley graph of a nilpotent group

is (1,C)-quasi-isometric to its asymptotic cone, and if not, what is the speed of convergence.
The first result on non-abelian nilpotent groups is given by Krat [10], who showed that the
discrete 3-Heisenberg group H3(Z) endowed with a word metric is (1,C)-quasi isometric to
its asymptotic cone. For general cases, Breuillard and Le Donne first gave estimates in [3].
Later the result is sharpened by Gianella [8], who showed that

dGH

(
B 1

n ρS
(1), Bd∞(1)

)
= O

(
n− 1

r

)
,

where r is the nilpotency class of Γ . Moreover, Breuillard and Le Donne also showed in [3]
that for the 2-step nilpotent group Z×H3(Z), there is a generating set such that the estimates

O(n− 1
2 ) is sharp. From this example, Fujiwara [7] asked the following question.

Question 1.1 (Question 4 in [7]) Let Γ be a lattice in a simply connected non-singular
nilpotent Lie group, and ρ a Γ -invariant proper coarsely geodesic pseudo metric. Then are
(Γ , ρ) and its asymptotic cone (1,C)-quasi isometric for some C > 0?

Here we do not pursue the assumption on the metric such as coarsely geodesic condition.
We will mention the group theoretic condition on Γ .

Definition 1.1 A simply connected nilpotent Lie group N is called non-singular if for all z
in the center Z(N ) and all x ∈ N \ Z(N ), there is y ∈ N such that [x, y] = z.

We answer Question 1.1 in the following restricted case.

Theorem 1.1 LetΓ be a lattice of a simply connected non-singular 2-step nilpotent group N,
and ρS a word metric on Γ . Then there is C > 0 such that (Γ , ρS) is (1,C)-quasi isometric
to its asymptotic cone.

Remark 1.1 In 2-step case, the asymptotic cone is isomorphic to the Mal’cev completion as
a Lie group. Hence the assumptions on the Mal’cev complation can be changed to that on
the asymptotic cone.

Via the exponential map from the associated Lie algebra n to N , the non-singular condition
is equivalent to every bracket generating subspaces in the Lie algebra being strongly bracket
generating.Here a subspaceV ⊂ n is called strongly bracket generating if for any X ∈ V \{0},
n = V ⊕[X , V ]. By TheoremA.1 in [11], strongly bracket generating condition, equivalently
non-singular condition, is equivalent to the absence of abnormal curves.

Remark 1.2 After the first draft of this paper is completed, we are informed by Emmanuel
Breuillard that Theorem 1.1 and an argument in the same line as our proof are known to
specialists including him, but it does not exist in the literature yet, and we feel it is worth
publishing it.
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Theorem 1.1 is on a finitely generated group, which is related to a claim on a nilpotent Lie
group by using the following result by Stoll.

Proposition 1.1 (Proposition 4.3 in [14]) Let Γ be a finitely generated torsion-free 2-step
nilpotent group, ρS a word metric on Γ , and N the Mal’cev completion of Γ . Then there
is a left invariant subFinler metric dS on N and C > 0 such that (Γ , ρS) is (1,C)-quasi
isometric to (N , dS) by the natural inclusion map.

He constructed such a metric dS explicitly, now called the Stoll metric.
It is easy to see that the asymptotic cones of (Γ , ρS, id) and (N , dS, id) are isometric,

hence the following theorem implies Theorem 1.1.

Theorem 1.2 (Precisely in Theorem 4.1) Let N be a simply connected non-singular 2-step
nilpotent Lie group endowed with a left invariant subFinsler metric d. Then there is C > 0
such that (N , d) is (1,C)-quasi isometric to its asymptotic cone.

Remark 1.3 In the original setting of Question 1.1, that is the metric ρ is a coarsely geodesic
metric, our method cannot be applied because of the following reason. Roughly speaking,
we show the main result by constructing a path in (N , d∞) from a geodesic in (N , d) and
vice versa. The scheme is;

1. Project the geodesic c0 in (N , d) onto its abelianized normed space, say c1.
2. Construct a path c2 in the abelianization of (N , d∞) which is close to the c1 in the

(Gromov–)Hausdorff sense.
3. Lift up the c2 to a path c3 in (N , d∞).
4. Slight variation of the c3 can have the same endpoints with the c.

Finally we find that the length of c3 is same to the c0 up to constant.
In coarsely geodesic setting, the second step is impossible since geodesics on R

n with a
Z
n-invariant metric may be quite far from the straight segment in the Hausdorff sense (cf.

[5] and [1]).

2 The asymptotic cone of a nilpotent Lie group endowedwith a left
invariant subFinsler metric

Let N be a simply connected 2-step nilpotent Lie group, and d a left invariant subFinsler
metric on N . In this section, we shall construct the asymptotic cone of (N , d, id).

2.1 Nilpotent Lie groups and nilpotent Lie algebras

Let n be the Lie algebra associated to N . It is known that the exponential map from n to N
is a diffeomorphism. By the Baker–Campbell–Hausdorff formula, the group operation on N
is written by

exp(X) · exp(Y ) = exp(X + Y + 1

2
[X , Y ]).

In particular, we can identify the commutator on N and the Lie bracket on n as

[exp(X), exp(Y )] = exp([X , Y ]).
Hence we sometimes identify elements in N and n via the exponential map.
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Let V∞ be a subspace of n such that

V∞ ∩ [n, n] = {0} and V∞ + [n, n] = n.

Then n is spanned by the direct sum V∞ ⊕ [n, n] and any element in n will be written by
X + Y , where X ∈ V∞ and Y ∈ [n, n].

To such a decomposition, we can define the following two endomorphisms of N and n.
We may associate a Lie algebra automorphism δt : n → n (t ∈ R>0) which is determined
by

δt (X + Y ) = t X + t2Y .

This Lie algebra automorphism is called the dilation. It induces the diffeomorphism of N
via the exponential map (we also denote that diffeomorphism by δt ).

Set a mapping π : n → V∞ by π(X + Y ) = X . By the Baker–Campbell–Hausdorff
formula, it is easy to see that π ◦ log : N → V∞ is a surjective group homomorphism, as we
see V∞ an abelian Lie group. We will simply denote the homomorphism π ◦ log by π .

2.2 Left invariant subFinsler metrics

Let N be a connected Lie group with the associated Lie algebra n. Suppose a vector subspace
V ⊂ n and a norm ‖ · ‖ on V are given. Then V induces the left invariant subbundle Δ of the
tangent bundle of N . Namely, a vector v at a point p ∈ N is an element of Δ if (L p)

∗v ∈ V .
For such v, we set ‖v‖ := ‖(L p)

∗v‖. This Δ is called a horizontal distribution.
One says that an absolutely continuous curve c : [a, b] → N with a, b ∈ R is horizontal

if the derivative ċ(t) is in Δ for almost all t ∈ [a, b]. Then for x, y ∈ N , one may define a
subFinsler metric as

d(x, y) = inf

{∫ b

a
‖ċ(t)‖dt

∣∣∣c is horizontal , c(a) = x, c(b) = y

}
.

Note that such d is left invariant.
Chow showed that any two points in N are connected by a horizontal path if and only if

V is bracket generating, that is,

V + [V , V ] + · · · + [V , [V , [· · · ] · · · ]︸ ︷︷ ︸
r

= n.

In particular, the subspace V∞, given in Sect. 2.1, is bracket generating.

2.3 The asymptotic cone

Roughly speaking, an asymptotic cone is a metric space which describes how a metric space
looks like when it is seen from very far. This is characterized by the Gromov–Hausdorff
distance.

Definition 2.1 Let (X , d, p) be a pointed proper geodesic metric space. If the sequence
of scaled metric spaces {(X , 1

n d, p)}n∈N converges to a metric space (X∞, d∞, p∞) in the
Gromov–Hausdorff topology, then (X∞, d∞, p∞) is called the asymptotic cone of (X , d, p).

Remark 2.1 It is not trivial whether the limit exists or not. For nilpotent Lie groups endowed
with left invariant subFinsler metrics, the existence and the uniqueness of the limit is shown
in [2]. For more precise information, see [15]
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Let us recall the definition of the Gromov–Hausdorff topology on the set of pointed proper
geodesicmetric spaces. A sequence of pointed propermetric spaces {(Xn, dn, pn)}n∈N is said
to converge to the pointed metric space (X∞, d∞, p∞) if for any R > 0, the sequence of
metric balls {Bdn (pn, R)}n∈N converges to Bd∞(p∞, R) in the Gromov–Hausdorff topology
on the set of compact metric spaces.

The Gromov–Hausdorff topology on the set of compact metric spaces is characterized
by the Gromov–Hausdorff distance. For compact metric spaces (X , dX ) and (Y , dY ), it is
determined by

dGH (X , Y ) := inf
{
dH ,Z (X , Y )

∣
∣
∣Z = X � Y , dZ |X = dX , dZ |Y = dY

}
,

Here dH ,Z is the Hausdorff distance on compact subsets on Z , namely the smallest r > 0
such that X lies in the r -neighborhood of Y and Y lies in the r -neighborhood of X .

Suppose a left invariant subFinsler metric d on N is determined by a bracket generating
subspace V ⊂ n and a norm ‖ ·‖ on V . By using the homomorphism π , define a left invariant
subFinsler metric d∞ on N which is determined by the subspace V∞ ⊂ n and the norm
‖ · ‖∞ on V∞ whose unit ball is π(B‖·‖(1)), where B‖·‖(1) is the unit ball of the normed
space (V , ‖ · ‖) cntered at 0.

We will write d(g) = d(id, g) and d∞(g) = d∞(id, g) for g ∈ N .

Theorem 2.1 (Theorem 3.2 in [3]) For any sequence {gi }i∈N on N such that d(gi ) → ∞ as
i → ∞,

lim
i→∞

d∞(gi )

d(gi )
= 1.

In particular, the asymptotic cone of (N , d, id) is isometric to (N , d∞, id).

The pair (N , V∞) is an example of Carnot group. If a subFinsler metric is induced from
a Carnot group, such as d∞, then it satisfies the following properties.

Fact 2.1 (a) For every horizontal path c,

length(c) = length(π ◦ c).

In particular,

‖π(g)‖∞ ≤ d∞(g),

and the equality holds if g ∈ exp(V∞).
(b) For x, y ∈ N,

d∞(δt (x), δt (y)) = td∞(x, y).

Notice that a general subFinsler metric, such as d , does not satisfies Fact 2.1.

Remark 2.2 (1) By its definition, π |V sends R-balls in (V , ‖·‖) onto R-balls in (V∞, ‖·‖∞).
(2) By Fact 2.1(a), π sends R-balls in (N , d∞) onto R-balls in (V∞, ‖ · ‖∞).
(3) In Lemma 3.3, we shall see that π sends R-balls in (N , d) onto R-balls in (V∞, ‖ · ‖∞).
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3 Geodesics in (N,d)

From now on we will assume that a Lie group N is a simply connected 2-step non-singular
nilpotent Lie group, and d is a left invariant subFinsler metric on N determined by a subspace
V ⊂ n and a norm ‖ · ‖ on V . In this section, we study geodesics in (N , d).

For g ∈ (N , d), let c be a geodesic from id to g with its length t = d(g). Divide c
into M pieces so that each lengths are t

M . In other words, c is the concatenation of paths
ci : [0, t

M ] → N , i = 1, . . . , M , which are geodesics from id to hi = c( i−1
M t)−1c( i

M t).
Notice that g = h1 · · · hM . Set

I (c, M, R) =
{
i ∈ {1, . . . M} ∣

∣ ‖π(hi )‖∞ < Rd(hi ) = R
t

M

}

for 0 < R ≤ 1. If an integer i is not in I (c, M, R), then it implies that the projection of the
subpath π(ci ) has the length close to a straight segment. The goal of this section is to show
the following proposition.

Proposition 3.1 There exists a positive constant K > 0 such that for any M ∈ N, any g ∈ N
with d(g) ≥ M, and any geodesic c joining id and g,

|I (c, M, R)| ≤ K

(1 − R)2
.

Example 3.1 (The 3-Heisenberg Lie group with a subFinsler metric) The 3-Heisenberg Lie
group H3(R) is the 2-step nilpotent Lie group diffeomorphic to R

3 equipped with a group
operation

(x1, y1, z1) · (x2, y2, z2) =
(
x1 + x2, y1 + y2, z1 + z2 + x1y2 − x2y1

2

)
.

The associated Lie algebra h3 is spanned by three vectors {X , Y , Z} such that [X , Y ] = Z ,
and its derived Lie algebra is [h3, h3] = Span(Z). Then V∞ = 〈X , Y 〉 ⊂ h3 and we can
identify it to the plane {(x, y, 0)} ⊂ H3 via the exponential map.

(1) Let ‖ · ‖1 be the l1 norm on a vector subspace V∞, and d1 the induced left invariant
subFinsler metric on (H3, V∞, ‖ · ‖1).
The shape of geodesics in (H3, d1) is given in [6]. For example, a geodesic c from (0, 0, 0)

to
(
0, 0, t2

16

)
is the concatenation of 4 linear paths as in Fig. 1. Here we say a curve is

linear if it is represented by c(t) = exp(t X) for X ∈ V∞. We can catch precise shape of
geodesics by projecting the curve to the plane {(x, y, 0)}. As in Fig. 2, it starts and ends
at (0, 0) forming the square.
Divide c into 4-pieces and denote them by ci (i = 1, 2, 3, 4). Then ci ’s are the linear
paths. It is easy to see that length(ci ) = length(π◦ci ) = t

4 for all i . Hence I (c, 4, 1) = 0
independent of t .

(2) Let ‖ · ‖2 be the l2 norm on V∞, and d2 the induced subFinsler (subRiemannian) metric
on (H3, V∞, ‖ · ‖2). A geodesic c from (0, 0, 0) to (0, 0, t2

4π ) is given as in Fig. 3. If
the geodesic is projected to {(x, y, 0)} by π , then the projected path starts and ends at
(0, 0) rounding the circle of radius t

2π . This curve is not a concatenation of linear paths,
however Proposition 3.1 holds.

Notice that the length of c is t , which is the circumference of the projected circle in V∞.
As in Fig. 4, divide c into 4 pieces, and denote them by ci (i = 1, 2, 3, 4). Each arc ci ’s have
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Fig. 1 (H3, d1)

Fig. 2 (W , ‖ · ‖1)

Fig. 3 (H3, d2)

length t
4 . On the other hand, each chords in Fig. 4 is a geodesic in (W , ‖ · ‖2) whose length

is 2 t
2π sin( π

4 ) = t
π

√
2
. Hence hi ’s, the endpoints of ci ’s, satisfy

‖π(hi )‖2 = t

π
√
2
.

It means that I (c, 4, R) = 0 for R ≤ 2
√
2

π
.

We start to prove easy lemmas. Fix a norm ‖ · ‖[N ,N ] on [N , N ]. We consider four kinds
of closed r -balls. Let Bd(r) ⊂ N (resp. Bd∞(r) ⊂ N ) be the r -ball centered at id of the
metric function d (resp. d∞), B‖·‖∞(r) ⊂ V∞ the r -ball centered at 0 of the norm ‖ · ‖∞,
and B‖·‖[N ,N ](r) ⊂ [N , N ] the r -ball centered at id ∈ [N , N ] of the fixed norm ‖ · ‖[N ,N ].
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Fig. 4 (W , ‖ · ‖2)

Lemma 3.1 There exists K1 > 0 such that for any r ≥ 1,

sup{‖g−1h‖[N ,N ] | g, h ∈ Bd∞(r), g−1h ∈ [N , N ]} = K1r
2.

Proof Take g, h ∈ Bd∞(r) so that g−1h ∈ [N , N ]. ByFact 2.1(b), g′ = δ 1
r
(g) andh′ = δ 1

r
(h)

are in Bd∞(1).
Set X = X1 + X2 = log(g) and Y = X1 + Y2 = log(h), where X1 ∈ V∞ and

X2, Y2 ∈ [n, n]. Here we can take the common X1 since g−1h ∈ [N , N ]. By the definition
of δ 1

r
, log(g′) = 1

r X1 + 1
r2
X2 and log(h′) = 1

r X1 + 1
r2
Y2.

Then

g−1h = exp(−X1 − X2) exp(X1 + Y2)

= exp(−X2 + Y2)

= exp(r2
1

r2
(−X2 + Y2))

= exp(
1

r2
(−X2 + Y2))

r2

= (g′−1h′)r2 .

We obtain the desired equality

sup
{‖g−1h‖[N ,N ] |g, h ∈ Bd∞(r), g−1h ∈ [N , N ]}

= r2 sup{‖x−1y‖[N ,N ] |x, y ∈ Bd∞(1), x−1y ∈ [N , N ]}
= K1r

2,

where K1 = sup{‖x−1y‖[N ,N ] |x, y ∈ Bd∞(1), x−1y ∈ [N , N ]} < ∞. ��

The following lemma reflects the non-singular condition. Notice that the derived subgroup
[N , N ] is contained in the center Z(N ) if the nilpotent group N is 2-step.
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Lemma 3.2 There exists L0 > 0 such that for all r1, r2 ∈ R>0 and all g ∈
π−1(∂B‖·‖∞(0, r1)),

B‖·‖[N ,N ](L0r1r2) ⊂ [g, Bd∞(r2)].
Proof First of all, we show that a subset [g, Bd∞(r2)] is a compact star convex neighborhood
around id ∈ [N , N ].

The subset [g, Bd∞(r2)] is compact since the mapping [g, ·] : N → [N , N ] is continuous
and the ball Bd∞(r2) is compact. Moreover it is a neighborhood around the identity since
[g, ·] is a submersion by non-singular condition.

Next we check the star convexity. For any h ∈ [g, Bd∞(r2)], we can choose Y ∈ B‖·‖∞(r2)
such that h = [g, exp(Y )]. By Campbell–Baker–Haudorff formula, for s ∈ [0, 1],

hs = [g, exp(Y )]s = [g, exp(sY )].
By Fact 2.1(b),

d∞(exp(sY )) = sd∞(exp(Y )) ≤ r2.

Hence hs ∈ [g, Bd∞(r2)], that is, [g, Bd∞(r2)] is star convex.
Wewill compute the positive number L0 > 0. By the star convexity, there exists L(g) > 0

such that

B‖·‖[N ,N ](L(g)) ⊂ [g, Bd∞(1)].
We can assume L(g1) = L(g2) if π(g1) = π(g2), since [g1, Bd∞(1)] = [g2, Bd∞(1)] for
such gi ’s. Since the commutating operator [·, ·] is continuous,wemay take L(g) continuously.
Hence

L0 = min{L(g) | g ∈ π−1(∂B‖·‖∞(1))}
exists and is positive.

We will check that such L0 is the desired constant. Since [g, Bd∞(r2)] is star convex, we
only need to show that all points at the boundary of [g, Bd∞(r2)] are at least L0r1r2 away from
the identity. It is easily observed that every element h at the boundary ∂[g, Bd∞(r2)] is written
by h = [exp(π(g)), exp(Y )], where Y ∈ ∂B‖·‖∞(r2). Set X ′ = 1

r1
π(g) and Y ′ = 1

r2
Y , then

we have

‖h‖[N ,N ] = ‖[exp(π(g)), exp(Y )]‖[N ,N ] = r1r2‖[exp(X ′), exp(Y ′)]‖[N ,N ] ≥ L0r1r2.

��
Remark 3.1 We can replace [g, Bd∞(r2)] to [g, Bd(r2)] in Lemma 3.2, since π(Bd(r2)) =
π(Bd∞(r2)) implies

[g, Bd∞(r2)] = [g, Bd(r2)].
Next we study a length preserving translation of a element in (V∞, ‖ · ‖∞) to (V , ‖ · ‖)

and vice versa.

Lemma 3.3 For any g ∈ N, there exists Yg ∈ π |−1
V (π(g)) such that

(1) ‖Yg‖ = ‖π(g)‖∞ = d(exp(Yg)) = inf{d(h) | h ∈ π−1(π(g))},
(2) An infinite path c : R≥0 → N, t �→ exp

(
t

Yg
‖Yg‖

)
is a geodesic ray i.e. for any t1, t2 ∈ R≥0,

d(c(t1), c(t2)) = |c1 − c2|.
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Proof From the constructionof the asymptotic coneof (N , d, id),π |V (B‖·‖(R)) = B‖·‖∞(R)

for any R > 0. Thus for any g ∈ N , we can take Yg in V such that ‖Yg‖ = ‖π(g)‖∞.
We shall see that this Yg is the desired one. Clearly ‖Yg‖ ≥ d

(
exp(Yg)

)
since the curve

c : [0, ‖Yg‖] → N , c(t) = exp
(
t

Yg
‖Yg‖

)
is a horizontal path from id to exp(Yg) such that

length(c) = ‖Yg‖.
We claim the converse by showing the inequality

‖π(g)‖∞ ≤ d
(
exp(Yg)

)
. (1)

Let c1 : [
0, d

(
exp(Yg)

)] → N be a geodesic from id to exp(Yg) in (N , d). Then we
obtain the horizontal path c2 in (N , d∞) by letting the derivative c′

2(t) = π(c′
1(t)) for each

t ∈ [0, d (
exp(Yg)

)]. Since π is distance non-increasing, length(c2) ≤ length(c1). By using
Fact 2.1(a), π ◦ c2 is a path in V∞ from id to π(Yg) = π(g) whose length equals that of c2.
Now we have constructed the path π ◦ c2 in (V∞, ‖ · ‖∞) from id to π(g) whose length is
shorter than length(c1), which yields the inequality (1).

The construction of π ◦ c2 from c1 is applied to any h ∈ π−1(π(g)) and any geodesic
c1 from id to h. Hence the inequality d(h) ≥ ‖π(g)‖∞ holds. This argument yields the last
part of the equality.

The second part of this lemma follows in the same way. The above arguments imply that

c : [0, d(exp(Yg))] → N , c(t) = exp
(
t

Yg
‖Yg‖

)
is a geodesic from id to exp(Yg). By the

choice of Yg , we can show the second part of this lemma if ‖tYg‖ = ‖tπ(g)‖∞ for t ∈ R≥0.
It is trivial since the mapping π is a linear homomorphism. ��
Lemma 3.4 (Proposition 2.13 in [3]) There is K2 > 0 such that for any g ∈ N,

1

K2
d(g) − K2 ≤ d∞(g) ≤ K2d(g) + K2.

Now we pass to the proof of Proposition 3.1.

Proof (Proof of Proposition 3.1) Fix M ∈ N and 0 < R ≤ 1. Let c be a geodesic from
id to g ∈ N with length(c) = t ≥ M . We consider an upper bound of the cardinality of
I = I (c, M, R). Divide c into M pieces, and denote each by ci . Let hi be the endpoint of ci ,
that is, hi = c

( t
M (i − 1)

)−1
c
( t
M i

)
. Deform c and ci as follows (Figs. 5 and 6).

(1) If i ∈ I , set c̃i : [0, ‖Yhi ‖] → N ,

c̃i (t) = Yhi
‖Yhi ‖

t,

where Yhi are given as in Lemma 3.3
(2) If i /∈ I , set c̃i = ci .
(3) Set c̃ to be the concatenation of c̃i ’s starting at the identity.

This c̃ is a horizontal path in (N , d). Let g̃ be the endpoint of c̃, and h̃i the endpoint of c̃i .
Hence h̃i = Yhi for i ∈ I and h̃i = hi for i /∈ I . By the triangle inequality, d (g̃) is bounded
above by

∑

i∈I
d

(
h̃i

)
+

∑

i /∈I

t

M
. (2)

By using (2) and Lemma 3.3,

d(g) − d (g̃) ≥
∑

i∈I

(
t

M
− d

(
h̃i

))
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Fig. 5 The path c

Fig. 6 The path c̃

=
∑

i∈I

(
t

M
− d

(
Yhi

))

=
∑

i∈I

(
t

M
− ‖π(hi )‖∞

)

≥ t

M
(1 − R) |I |.

We shall see that d(g) − d (g̃) = O(t) as t → ∞.
Set h = g̃−1g. By the triangle inequality,

d(g) − d (g̃) ≤ d(h).

Since each h̃−1
i hi is in the center of N ,

h = g̃−1g = h̃−1
M · · · h̃−1

1 h1 · · · hM =
∏

i∈I
h̃−1
i hi =

∏

i∈I
Y−1
hi

hi ∈ [N , N ].

By Lemma 3.2, we can choose X , Y ∈ ∂(B‖·‖(1))) such that

(1) [exp(X), exp(Y )] = [X , Y ] ∈ hR>0 , and
(2) ‖[X , Y ]‖[N ,N ] ≥ L0.

Set r ∈ R≥0 such that

[√r X ,
√
rY ] = r [X , Y ] = h.

Then we can construct a horizontal path from id to h (equivalently, can construct a path from
g̃ to g by translating the starting point) by connecting the following four paths: c1(s) = −Xs,
c2(s) = −Ys, c3(s) = Xs and c4(s) = Ys for s ∈ [0,√r ] (Fig. 7).
By the triangle inequality, we obtain

d(h) ≤ 4
√
r .

123



18 Page 12 of 16 Geometriae Dedicata (2022) 216 :18

Fig. 7 The path from g̃ to g

By the definition of X , Y and r , ‖h‖[N ,N ] = ‖r [X , Y ]‖[N ,N ] = r‖[X , Y ]‖[N ,N ]. Hence
we obtain

r ≤ ‖h‖[N ,N ]
L0

.

Finally we can estimate ‖h‖[N ,N ] by using Lemma 3.1 and Lemma 3.4,

‖h‖[N ,N ] = ‖
∏

i∈I
Y−1
hi

hi‖[N ,N ]

≤
∑

i∈I
‖Y−1

hi
hi‖[N ,N ]

≤ |I |K1
(
max

{
d∞(hi ), d∞(Yhi )

})2

≤ |I |K1
(
max

{
K2d(hi ) + K2, K2d(Yhi ) + K2

})2

≤ 4K1K
2
2
t2

M2 |I |.
To be summarized,

t

M
(1 − R)|I | ≤ d(g) − d (g̃)

≤ d(h)

≤ 4
√
r

≤ 4

√
‖h‖[N ,N ]

L0

≤ 8K2
t

M

√
K1|I |
L0

.

Solve the quadratic inequality for
√|I |, then we have

|I | ≤ 64K1K 2
2

L0(1 − R)2
= K

(1 − R)2
,

where K = 64K1K 2
2

L0
. ��

Remark 3.2 Another choice of a norm may inherit another constant K > 0, however it does
not affect the later arguments. If necessary, we can take the infimum one among obtained K
since our method can be applied to any norm.
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4 Proof of themain theorem

By using the facts in the previous section, we show the following theorem, which is a precise
statement of Theorem 1.2.

Theorem 4.1 Let N be a simply connected non-singular 2-step nilpotent Lie group endowed
with a left invariant subFinsler metric d, and (N , d∞, id) the asymptotic cone of (N , d, id).
Then there is C > 0 such that for any g ∈ N,

|d(g) − d∞(g)| < C .

Proof First we show that d∞(g) − d(g) is uniformly bounded above. Fix 0 < R < 1 and
M > 0 sufficiently large so that M − |I (c, M, R)| �= 0 for any geodesic c with length(c) ≥
M . It is possible by Proposition 3.1. It suffices to show the case where g ∈ N \ Bd(M), since
d and d∞ are proper metrics on N .

Let t = d(g) and c a geodesic from id to g in (N , d). We will construct a horizontal path
c̆ in (N , d∞) which starts at the identity and ends at g, and show that the length of c̆ is not
so long relative to that of c.

It needs two steps to construct a path c̆. First, Deform c into a horizontal path c̃ in (N , d∞)

as follows.

(1) Divide c into M pieces of geodesics ci as in Proposition 3.1. Since d is left invariant, we
may see each ci a geodesic from id to hi ∈ N with h1 · · · hM = g.

(2) Divide ci into m = [ t
M

]
pieces of geodesics ci j and set hi j in the same way, where [ · ]

is the Gaussian symbol.

(3) Set c̃ the concatenation of ˜ci j (s) = s
π(hi j )

‖π(hi j )‖∞ , s ∈ [0, ‖π(hi j )‖∞]. By Lemma 3.3,

length (c̃) = ∑ ‖π(hi j )‖∞ ≤ ∑
d(hi j ) = d(g).

(4) Let c̃i be the concatenation of paths c̃i1, . . . , c̃im .

Let g̃ be the endpoint of c̃ and set h = g̃−1g. Since π(hi j )−1hi j ∈ [N , N ],
h = π(hMm)−1 · · · π(h11)

−1h11 · · · hMm ∈ [N , N ].
By using the path c̃, we shall construct a horizontal path c̆. By definition of I , ‖π(hi )‖∞ ≥

Rd(hi ) = R t
M for i /∈ I . In particular, hi /∈ [N , N ] for i /∈ I . By Lemma 3.2, there exists

Xi ∈ ∂π(B‖·‖∞(1))) such that [hi , Xi ] ∈ hR>0 and that ‖[hi , Xi ]‖[N ,N ] ≥ L0. Set r ∈ R≥0

so that
∏

i /∈I
[hi , r Xi ] = (

∏

i /∈I
[hi , Xi ])r = h.

Define c̆ as the concatenation of c̆i , i = 1, . . . , M , given as follows (Figs. 8, 9, 10 and 11).

(1) For i /∈ I , let c̆i be a concatenation of three paths; c̆i1(s) = −sXi (s ∈ [0, r ]), c̃i , and
c̆i2(s) = sXi (s ∈ [0, r ]). Hence the length of c̆i is 2r + ∑

j ‖π(hi j )‖∞.
(2) For i ∈ I , set c̆i = c̃i .

This path c̆ starts at the identity and ends at g by the Campbell–Baker–Hausdorff formula.
The length of c̆ is

length (c̆) =
∑

‖π(hi j )‖∞ + 2r(M − |I |) ≤ d(g) + 2r(M − |I |).
The rest of the proof is to find an upper bound of r(M − |I |).
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Fig. 8 The path c

Fig. 9 The path c̃

Fig. 10 The subpath c̃i for i /∈ I

Fig. 11 The path c̆

By Lemma 3.2,

‖[hi , Xi ]‖[N ,N ] = ‖[π(hi ), Xi ]‖[N ,N ] ≥ R
t

M
L0.

Since each [hi , r Xi ] is in hR>0 , we obtain

‖h‖[N ,N ] =
∥∥∥∥∥

∏

i /∈I
[hi , r Xi ]

∥∥∥∥∥
N ,N ]

= r
∑

i /∈I
‖[hi , Xi ]‖[N ,N ] ≥ r(M − |I |)R t

M
L0. (3)
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Hence our goal is changed to find an upper bound of ‖h‖[N ,N ]. By using Lemmas 3.1 and 3.4,

‖h‖[N ,N ] = ∥
∥π(hmM )−1 · · · π(h11)

−1h11 · · · hmM
∥
∥[N ,N ]

=
∥
∥
∥
∏

π(hi j )
−1hi j

∥
∥
∥[N ,N ]

≤
∑

‖π(hi j )
−1hi j‖[N ,N ]

≤ mM sup

{
‖g−1h‖[N ,N ]

∣
∣
∣
∣ g, h ∈ Bd

(
t

mM

)
, g−1h ∈ [N , N ]

}

≤ mM sup

{
‖g−1h‖[N ,N ]

∣
∣
∣
∣ g, h ∈ Bd∞

(
K2

t

mM
+ K2

)
, g−1h ∈ [N , N ]

}

≤ mMK1

(
K2

t

mM
+ K2

)2

≤ 4mMK1K
2
2

t2

m2M2

≤ 4t K1K
2
2 .

Hence ‖h‖[N ,N ] is linearly bounded by t .
Combining with the Eq. (3), we obtain

r(M − |I |) ≤ 4K1K 2
2M

RL0
.

We have constructed a path c̆ which is sufficiently short relative to the original path c, hence
we have

d∞(g) ≤ d(g) + 8K1K 2
2M

RL0
.

The other side of the inequality follows in a similar way. The difference is only the

construction of c̃ and c̆. In the construction of c̃, we let c̃i j (s) = s
Yhi j

‖Yhi j ‖ . In the construction
of c̆, we let c̆i1(s) = −sYXi and c̆i2(s) = sYXi . The rest of the proof follows in the same
way. ��
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