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Abstract

For a closed, connected direct product Riemannian manifold (M, g) = (M1, g1) X -+ X
(M;, g1), we define its multiconformal class [[g]] as the totality {f12g1 DD flzgg} of all
Riemannian metrics obtained from multiplying the metric g; of each factor M; by a positive
function f; on the total space M. A multiconformal class [g]] contains not only all warped
product type deformations of g but also the whole conformal class [g] of every g € [g]l. In
this article, we prove that [g]] contains a metric of positive scalar curvature if and only if the
conformal class of some factor (M;, g;) does, under the technical assumption dim M; > 2.
We also show that, even in the case where every factor (M;, g;) has positive scalar curvature,
[[¢]l contains a metric of scalar curvature constantly equal to —1 and with arbitrarily large
volume, provided / > 2 and dim M > 3.
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Table 1 Warped product metrics RS2 = 0 RS2 — 0 RS2 <0
of constant scalar curvature
R81 >0, R81 £0 R8>0 R8>0
R8I =0 RS>0 RE=0 RE <0
Sy, RETApS1 <0, RS1 #£0 RE <0 RE <0

1 Introduction

Let M be a closed connected m-dimensional manifold and let [g] be the conformal class of
a Riemannian metric g. The conformal Yamabe invariant u(M, [g]) is defined as

Ju Rédp?

m=2
m

n(M,[g]) = inf

8<lgl Vol(M, &)

ifm > 3andas u(M, [g]) = 4m x (M) if m = 2. By the resolution of the Yamabe problem (cf.

[3,25,38,45,52]) this infimum is always attained by some metric g of constant scalar curvature.

In particular, each Riemannian metric g on a closed manifold M can be conformally changed
into a metric of constant scalar curvature.

Next we consider a direct product (M1, g1) X (M3, g2) of two closed Riemannian man-
ifolds and want to know how the metric g1 @ g» can be deformed into a metric of constant
scalar curvature. Of course, we can conformally change each factor separately to obtain a
metric of constant curvature. In that case, the sign of the resulting scalar curvature is in a
direct relation with the signs of the conformal Yamabe invariants @ (M;, [g;]) fori =1, 2.
Another common family of product manifolds are warped products (My x M, g1 & f2g2),
where f : M| — R, is a positive function.

In [12] the authors showed that if a warped product metric g = g1 @ f 2 ¢, has constant
scalar curvature then the scalar curvature R$2 has to be constant. Moreover, the sign of the
scalar curvature R? is in many cases determined by sign of the scalar curvatures of g; and
g2. We summarize the known sign restrictions and their implication in Table 1, below.

Taking the product of constant scalar curvature metrics, we see that each case in Table 1
is nonempty and that, rescaling the metric g, by constants, there is no sign restriction on the
scalar curvature in the two remaining cases in Table 1 that are left empty. The scalar curvature
of warped product type metrics are also studied in [13-18,27,44,53].

We introduce the following perspective that unifies the previous sign restrictions on scalar
curvature. For a direct product Riemannian manifold (M, g) = (M1 x---xM;, g1B---Dgi),
we define its multiconformal class [g] by

el :={/2e1® - ® fPgi| fi,..., fi: M — Ry}

Within a multiconformal class we may conformally change the metrics gi, ..., g respec-
tively and take warped product metrics of all kind. Moreover, if g € [[g] then the whole
conformal class [g] belongs to [¢]]. Our main result is the following trichotomy, see Remark
4.1 regarding the dimensional assumption.

Theorem 1.1 Let (M, g) = (M1, g1) X - -+ X (M;, g1) be adirect product of closed connected
Riemannian manifolds with dim(M;) > 2 for all 1 < i < l. Then the following trichotomy
holds.

(1) The multiconformal class [[g]] contains a metric of positive scalar curvature if and only
if there exists i € {1, ...,1} such that u(M;, [gi]) > O.
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(2) The multiconformal class [[g]l does not contain a metric of positive scalar curvature
and there exists a scalar flat metric of [g]l if and only if u(M;, [gi]) = O for every
i € {l,...,1}. In this case, if g € [ gl has nonnegative scalar curvature, then g is
necessarily scalar flat and direct product.

(3) The multiconformal class [[g]] does not contain a metric of nonnegative scalar curvature
if and only if foreveryi € {1, ...,1}, u(M;, [gi]) < 0and there existsani € {1, ... 1}
such that u(M;, [gi] < 0).

In particular, if w(M;, [gi]) < Oforall 1 <i <, then SUP[zICTel w(M, [g]) has to be
nonpositive. But there is no similar result for the infimum. In fact, we show that within the
multiconformal class [g]] we can always find a metric with constant scalar curvature equal to
—1 but with arbitrarily large volume. This is even the case when w(M;, [g;]) is nonnegative
for each 1 < i < [. However, in that case, such a metric of strictly negative scalar curvature
cannot be of warped product type.

Theorem 1.2 Let (M, g) = (M1, g1) X - -+ X (M, g1) be adirect product of closed connected
Riemannian manifolds with | > 2 and dim(M) > 3, then

nf  w(M, [§]) = —oc.
[g]Cligll

This article is organized as follows. In Sect. 2, we characterize criticality with respect to
the normalized Einstein—Hilbert functional restricted to a multiconformal class. In Sect. 3,
we compute the change of the scalar curvature under a multiconformal change and derive
an integral formula which plays a crucial role in the proofs of Theorems 1.1 and 1.2. The
trichotomy theorem (Theorem 1.1) is proved in Sect. 4. Afterwards, we prove Theorem 1.2
in Sect. 5. In Sect. 6, we discuss the structure of constant scalar curvature metrics within a
multiconformal class.

2 The normalized Einstein-Hilbert functional

Let M be a closed connected m-dimensional manifold with m > 3 and denote by Met
the space of all Riemannian metrics on M. We would like to know whether there are M
admits metrics with special curvature conditions, e.g. Einstein metrics or metrics of constant
curvature. One possible approach is to look for critical points of the normalized Einstein—
Hilbert functional

E : Met — R,
[y R8dus
. M
g E(g) = — a2
Vol(M, g)"n"

where RS denotes the scalar curvature of g. To characterize the critical points of E we take
a look on the variation formula for E. A straight-forward calculation shows that

d
Eg + th) = / (h, 27IRE — plré)g — Ric$)dut,
dt =0 M

8 g
for each i € I'(Sym? T*M), where ré = %. Therefore we see that g is a critical

value of E if and only if g is an Einstein metric. However, if we restrict E to a conformal
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class [g] the critical points are those metrics of constant scalar curvature conformal to g. In
particular, if g is a metric of constant scalar curvature the above formula simplifies to

4 E(g+1th) = —/ (h, Ric® —(R8/m)g)dus. 2.1)
dt =0 M
Aside critical points, we are also interested in the extreme values of the normalized
Einstein—Hilbert functional itself. It is well-known that both, the infimum and supremum
of E : Met — R is infinite. Thus, it is more convenient to look at the extreme values of
restrictions of E, i.e. E restricted to a conformal class [g]. While the supremum is still infinite,
its infimum is well-known as the conformal Yamabe constant,

w(M,[g]) = inf E(g).
ge€lgl

By the resolution of the Yamabe problem each g € Met is conformal tp a metric g, such
that E(g) = w(M, [g]) (cf. [3,25,38,45,52]). Such a metric g is called a Yamabe metric.
Each Yamabe metric has constant scalar curvature. Moreover, the supremum of all Yamabe
constants on a manifold, is bounded from above by

o(M):= sup (M. [g]) <o(S") =m(m— 1) Vol(S" (1))
[g]leMet
with equality if and only if M is diffeomorphic to the sphere, [38].
In the following, we introduce two subspaces of metrics leading to two intermediate
invariants between w(M, [g]) and o (M).

Definition 2.1 An almost product manifold M is a manifold with a fixed decomposition of
™ = @fz | E; into subbundles. A Riemannian metric g on an almost product manifold M
is compatible if E; 1 Ej foralli # j with respect to g. We denote by Met the space of all
compatible metrics.

Note that each g € Met; uniquely decomposes as g = g; @ - -- @ g;, where each g;
is a bundle metric on E;. This decomposition allows us to define the following equivalent
relation on Met | : We call two metrics g, ¢ € Met | multiconformally equivalent if there are
functions fi,..., fj : M — Ry such that g; = fl.zg,- for all 1 <i <. The corresponding
equivalence class for a metric g € Met is the multiconformal class [[g]]. By construction,
we have for each compatible metric g the inclusions

[¢] C [[g]l € Met; C Met. (2.2)

For an almost product manifold M we define invariants in the spirit of o (M) as follows

oL (M) := sup u(M,I[gD,
[g]CMety

o(M,[gl) = sup w(M,I[g]).
[g]clell

It is immediate that for any conformal class [g] C Met |
—00 < u(M,[gD) <o(M.[g) <o (M) <a(M) <o(5"). (23)
Lemma 2.2 Let M be a closed connected almost product manifold of dimension m > 3. Then

any of the invariants u(M, [g]), o (M, [[g]]), 01 (M) and o (M) is strictly positive if and only
if [g], [g]l, Met | and Met contain a metric of positive scalar curvature respectively.
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Proof Let g be ametric on M (not necessarily compatible). Then it follows from the resolution
of the Yamabe problem that there exists a metric g € [g] of constant scalar curvature such
that E(g) = n(M, [g]). In fact, assuming without loss of generality that Vol(M, g) = 1 it
follows that RS = w(M,[g]). Thus, u(M,[g]) > 0 if and only if [g] contains a constant
positive scalar curvature metric.

Since o (M, [[g]]),o (M, Met | ) and o (M) are just supremum of conformal Yamabe invari-
ants over different subsets of Met. Assuming one of them to be strictly positive implies that
there has to be a conformal class [g] in the respective subset of Met with w(M, [g]) > O.
Therefore, the lemma follows directly from the arguments given above. O

By definition o (M, [[g]]) and o) (M) are invariants of almost product manifolds respec-
tively. They have a resemblance in spirit to the equivariant Yamabe constant or invariant (cf.
[4,23]) defined for manifolds with group actions. However, since an equivariant conformal
class is smaller than the ordinary conformal class, one cannot expect an inequality like (2.3)
for the equivariant ones (cf. [2, Example 3]).

If the invariants o (M, [g]]) or o (M) are attained for some metric g € Met then it does
not necessarily follow that g is a critical value of the normalized Einstein—Hilbert functional
E restricted to [g]] or Met | respectively. Indeed, we show below that the critical values
of E restricted to one of these subspaces have special curvature properties that lie between
constant scalar curvature and being Einstein.

Let M be a closed and connected almost product manifold of dimension m > 3 with a
compatible metric g = g1 @ -- - @ g;. We define Riclfg € F(Sym2 T*M) and Rl.g € C®(M)
by

Ricf(X,Y) = Ric*(P; X, P;Y), (2.4)
R;g = (Ricg, g,') = tré RIC;g (25)

for all X, Y € I'(T M), where P; denotes the orthogonal projection onto the subbundle E;.
Note that

Rg=Rf+'~'+R}g (2.6)

always holds while Ric® = Ric{+ -+ + Ricf if and only if Ric®(P; X, P;Y) = 0 for all
X,Y e I'(TM) wheneveri # j.

Proposition 2.3 Letg = g1 @ -- D g € Met be a compatible metric on a closed connected
almost product manifold M.

(1) g is critical with respect to the functional E restricted to [[g]l if and only if there exists

a real number c independent of i such that R;g/mi =cforalli € {1,...,1}, where
m; = rank(E;).

(2) g is critical with respect to the functional E restricted to Met | if and only if there exists
a constant ¢ independent of i such that Ricf =cgi foralli € {1,...,1}.

Proof First we observe that any metric g that is critical for E restricted to [g]] or Met; also
has to be critical for E restricted to [g] as [g] C [g]l C Met, . Thus, any critical value g for
E restricted to [[g]] or Met | has constant scalar curvature.

To show (1) we first assume that g is critical for E|j,y. Since asectionh € I’ (Sym2 T*M)
istangent to [g] if and only if 2 = @181 D - - - D ¢ g; for some ¢; € C°(M),i € {1,...,1},
it follows that

d

0= — E tQ; gi
dt - (g +190igi)
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= —/ (pigi  Ric® —(R® /m)g)du® = —/ @i (R — (R® /m)m;) d 8
M M

forall g; € C*®°(M) and 1 <i <[ by (2.1). Thus, Rf/m,- = RS8/m. For the other direction
we assume R‘]g/ml =...= R[g/ml = c. Then Rf/mi = R&/m necessarily holds by (2.6),
and

dt

E@+tpig1® - Dwg)) = —/ (0181 @ --- D wigr, Ric® —(RE /m)g)du’®
=0 M

!
== 3 [ min S i~ Rt =0
i=1'M

forall g1, ..., ¢ € C°°(M) by (2.1). Hence, g is critical for Eljgy-

The second statement is shown analogously. Observe that a section & € I'(Sym? T* M)
is tangent to Met | if and only if / can be written as a sum 7 = hy @ - - - @ h; of sections
h; € T'(Sym? E}). First, we assume that g is critical for E |y, . Then,

O_d
Tdt

Eg+th) == [ (hi.Ric? ~(R* m)g)dn®

t=0 M

for all h; € l"(Sym2 E})andeach 1 <i <1by (2.1), whence 0 = Ricf —(R8/m)g;.
Conversely, assuming Ricf = cg; foralli € {1,...,1} implies ¢ = Rf/ml = ...

R} /m;. Thus, c = R¢/m by (2.6) and therefore

dt

E@@+th1 @ ---®h)) = —/ (h1 @ --- @ hy, Ric® —(R8 /m)g)d 8
M

t=0
l
=- Zf (i, Ricf — (RS /m)gi)dp® =0
i=1vM
for all h; € I'(Sym? E}),i € {l,...,1}. This shows that g is critical for E |ye, - O

3 The scalar curvature of a multiconformal class

Let M be a closed almost product manifold with the splitting TM = @i:l E; andlet g =
g1D- - - D g be acompatible metric. Further, foreachi € {1, .../} wesetm; := rank(E;) and
denote by P; the corresponding orthogonal projection onto E;. Now, for each f € C*(M)
we define

di f(X) :==df (P X),
grad? f :=P; grad® (f),
Hess; f(X,Y) := Hess® f(P;(X), P;Y),
Af f := tr® Hess? f.

3.1

As we are interested in the behavior of the scalar curvature of the metrics in a fixed
multiconformal class [[g]] we calculate the scalar curvature of a multiconformal change
g= f12 g1 P D fl2 g1 in terms of the scalar curvature of g; and the multiconformal factors
f1, ..., fi. Since the involved calculations are lengthy but straight-forward we moved them
to the “Appendix A” and only state the final result below.
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Theorem 3.1 Let M be an almost product manifold with the decomposition TM = Eszl E;

and an compatible metric g. The scalar curvature R® of a multiconformal change § =
flzgl RN S) flzgl is given by

l

w-y iy

i=1 Ji —i

where p; is defined by

pi = pL(fiooos 1)
A8 F: AS £
= —2(m; — 1) "f’ —2) m;— f’
/i J#i fi
|grad f; 2 radf f;, gradf .
S L L Y )Y, SRS ERd ) 3D
17 J#i fiti
|grad? ‘|2 rad? f;, grad®
~ 3 mim; - l)gliffg_ ) mjmkg(g i Ji» gradi f.
A Jifx
J#L 2 JAiL ki jF#k J
where m; = rank(E;) foreach 1 <i <.
Setting f1 = ... = f; =: f in the above theorem, yields the well-known formula

o 2
RS = ;2 <Rg—2(m—1)%—(m—1)(m—4)|d;;| )

for the scalar curvature of the conformally defomed metric g = f 2¢ and in the special case,
where fi = 1 and f; € C®°(M;) for all i > 2 yields the scalar curvature formula for the
multiply warped product metric g1 @ fzzgz DD flzgl, compare [13, Proposition 2.6].

Remark 3.2 When g is a direct product metric, the multiconformally related metric g is also
called a rwisted product.’ If in addition | = 2, it is more common to say that g is biconformal®
to g. Moreover, for a direct product metric g, a formula without proof for the curvature tensor
of g can be found in Meumertzheim—Reckziegel-Schaaf [28, Proposition 1]. In “Appendix
A” we present here the detailed computation, which works for an arbitrary compatible metric.

Theorem 3.1 states a pointwise formula for the scalar curvature of a multiconformal
change. In the next step, we derive an integral formulas based on the above theorem which
will be used to prove the theorems from the introduction. However, as we want to use partial
integration, we now assume that (M, g) = (My, g1) X --- X (M, g;) is a direct product
of closed and connected Riemannian manifolds (M1, g1), ..., (M, g1), i.e. g is the induced
product metric.

Proposition 3.3 Let (M, g) = (M1, g1) X --- x (My, g;) is the direct product of closed and
connected Riemannian manifolds (My, g1), ..., (Mj, g1) and let § = f12g1 D--- b flzgl.

1 ¢f. Koike [26, p. 3], Meumertzheim—Reckziegel-Schaaf [28, Definition 2].

2 ¢f. Mo [29, p. 15], Slobodeanu [42,43], Ou [32, Lemma 2.1], Danielo [ 11, Définition 2.1], Rovenski—Zelenko
[36, p. 504].
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Then, for each (q1, ..., q1) € R we have the integral identity

LR
Lo oo

=1
l ' l (3.3)
_Z/ Z bik(grad‘f fi.eradf fi) \ A A A,
- J . 2
i k=1 f]fk f,
where B! = (bjk)lgj,kgl are symmetric matrices given by
Bl — ,(mjmkfqu/\,fmkqj )jk
my (mj+1g1—myq;
mj_q (”’i+1)‘Ii—-1_’"i—l‘1i
— | mj+Dgy—myq; - (mj+Dgj_1—m;_1q; mi+2q; =2 (mi+Dq;1—miy1q; - (mi+Dg—mpq;
(mi+1)qjy1—mii19; mjyq
(mi+-1)g—myq; ' my
where m; = dim(M;).
Proof Let (q1,...,q1) € R! and consider the difference
L RS
RS — Z )f s s,
2 1
/1;1< i=1 fl
It follows directly from Theorem 3.1 that this difference is equivalent to
f fzf ---f,q’dug
Affi q1 qi q1
=—2(m,»—1)/ S s =2 my Lo ffdps
M f f/
J#
glez P
(mz—l)(mz—4) A
<grad< fi, grad] f)) (3.4)
-2 —z>2mf/ I g
i# M fidi
|gra gm
_Zm (mj — 1)/ f2f2 . fq’d,ug
J#
) g
_ Z mjmk/ (gradi fz],gradi fk>flq| ~-~flq]d,ug.
= VL
JFELkFEL j#£k M i JJ
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Using partial integration along each M; separately, we can get rid of the second derivatives.
This leads to the identities

—2(mi — 1) / L A

gfl|2

—2(m,—1)(ql—3)/ lgra =L faps (3.5)

gradi fis gradf fi)
+2(mi—1)Zq;/ 3 L s
j# M fiti

and

_szl f2 . f[qldﬂg

d? f;, grad?
ZZ(CIi—Z)ij/M (gra ]}3;;;3 f]>f FUdps
J#i i
3.6
leradi i1 g a e v
+2) mjlg; — 1) g el
j#i i

(gradf f;, grad] fi)
2 ¥ quk/ lfzf-f P IM g gy
ik £k M i JiJk

Inserting (3.5) and (3.6) into (3.4) the claim follows from
0
/ ﬁfﬁl e fldps
Igradg fil? .
= (m; — 1)Q2q; — m; —2)/ S s

d 2
+Zm1(2q] mj— 1)/ |gra2 ];J| ) f
J# 11

(gradf f;, grad] f;)
+22(m,q]+q,m]—m mj — qj)/ ' !
J#Fl fl f]

rad? f;, grad®
+ Z (mjqr + qjmy —mjmk)/ {grad; fzf g i Ji)
ki v Rk

e fdus

flql ...f[‘ildﬂg

1 l 8 8
Z Z ; (grad; f;, grad; fi) f] : f
= b d .
i=1 /M " fitk 1 e

Jik=1
m]

In the view of Theorem 1.1 we want to be able to determine the sign of the difference
RS =3, %. There, the following change of variables will come into use.

Ji

Lemma 3.4 Let (M, g) be a Riemannian manifold, E a vector subbundle of T M, et P be the
orthogonal projection, and let fi, ..., f; € C®(M) be a family of positive functions. For
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each choice of a vector a = (ay, ..., a;) € R', a symmetric matrix B = (bjk)1<jk<i> and
an orthogonal matrix P = (pj 1)1<j k<l

l
811 S5, oL 0o
X,: fi jél T

1
=Zpaia,-A’;;wa+ " pairpcica; + bi)(deve. devp).
a,i=1 o, B,j,k=1

where Yy = Zj Pujlog(fj) forall 1 < a < 1. Here, the operators Ag and dg are defined
as in (3.1).

Proof We consider the section
1

Xl:wHeSS%f] Zb dEf]®dEfk
T st fifk

of Sym2 T*M, where a = (ay,...,q;) € R/ and B = (bjk)1<j k< is a symmetric matrix.
Here, the operators dg and Hesng are defined analogously to (3.1), i.e.

dp f(X) =df(PX),
Hess$. f(X,Y) = Hess® f(PX,Y),

forany X, Y € T M and any smooth function f. Setting u; := log f; foreach1 < j <l we
obtain
I

! g
Hess f] de fj ® d fi
Zaj fE Z bjk Jff
J jk=1 jJk
1

!
Z HessEuj+Z(a]+bu)d5u]®d5u]—|—2b ikdeuj ® dpug.
Jj=1 Jj=1 J#k

Next, we use the orthogonal matrix P = (pjr)1<; k< and define ¥y := le=1 Dejitj. Since
P is an orthogonal matrix, it follows that u ; = fo:l PajPaj Ve Inserting this relation into
the above equation we obtain
l l
Zd(,‘ Hess% uj+ Z(aj + bjj)dEl/tj ® dEl/tj + Z b‘/kdEuj Q dguy
j=1 j=1 J#k
l !
= Zaj HG:SS‘?E uj+ Z (A+ B).,-kdEu.,' Q druy
j=1 jok=1
l !
> ajpajHessi v+ Y (A+ B)jkpajpprdeva ® dep

Jra=l1 J.k,a,p=1
Taking the trace of both sides, the claim follows. O
Corollary 3.5 If in the above lemma, the matrix B is positive (resp. negative) definite, then
le.k=1 bjkwff’;# is nonpositive (resp. nonnegative) ifand only ifdg f1 = --- =dg fi =
0.
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Proof We apply Lemma 3.4 witha = 0 and P = Id. Then,

l

(dEg fj,dE fx)
D b

Pk Y bjxlde(log f7), de(log fr). (3.7)
J

Jk=1 jok=1

By assumption B is positive definite, hence the right hand side is nonpositive if and only if
dp(log fj) =0forall1 < j </[.Thus,ifand only if dg f; =Oforall j =1,...,[.If Bis
negative definite, the same conclusion holds if the left hand side of (3.7) is nonnegative. O

4 The sign of a multiconformal class

Let (M, g) = (My, g1) X --- x (M, g1) be adirect product of closed connected Riemannian
manifolds and recall the invariant

o(M,lgl) = sup w(M,I[g])
[glelgl

defined in Sect. 2. There we also showed that o (M, [g]]) is positive if and only if there is a
metric g € [[g] of positive scalar curvature. But can be even more precise. Below we prove
Theorem 1.1 which implies that o (M, [g]]) is positive if and only if one of the factors admits
a positive scalar curvature metric.

Theorem 1.1 Let (M, g) = (M1, g1) x --- X (M, g1) be a direct product of closed connected
Riemannian manifolds such that dim(M;) > 2 for all 1 < i < [. Then the following
trichotomy holds.

(1) The multiconformal class [[g]] contains a metric of positive scalar curvature if and only
if there exists i € {1, ..., 1} such that w(M;, [gi]) > 0.

(2) The multiconformal class [[g]] does not contain a metric of positive scalar curvature
and there exists a scalar flat metric of [ gl if and only if w(M;, [gi]) = O for every
i e {l,...,1}. In this case, if g € [[g] has nonnegative scalar curvature, then g is
necessarily scalar flat and direct product.

(3) The multiconformal class [[g]] does not contain a metric of nonnegative scalar curvature
if and only if for everyi € {1, ..., 1}, u(M;, [gi]) < 0and there existsani € {1, ... 1}
such that uw(M;, [gi] < 0).

Proof First we observe that the statements of the theorem only deal with the sign of the
conformal Yamabe invariant of the factors. By the resolution of the Yamabe problem, we
know that each closed Riemannian manifold (M, g) can be conformally deformed into a
Riemannian manifold (M, g) of constant scalar curvature and volume one. In this case, the
scalar curvature is equal to (M, [g]). Thus, we can assume without loss of generality that
gi 1s a constant scalar curvature metric and Vol(M;, g;) = 1 forall 1 <i <.

Before going into each case separately, we make the following general observations:

Forany g = f12g1 & flzgz € [[g]l we apply Proposition 3.3 withq; =---=¢; =0
and obtain
1 g 1 l g g
- R! . (grad; f;, grad? 1
[, (w2 (30 o, L2 L
M i=1 fl i=1 M j,kil f]fk ‘fl
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Here, (bi,.k)_/k are the entries of the symmetric matrix

mi
B' = —(mjmp)jx — mi =2 :

mjp

where m; = dim(M;) for1 <i <.
We claim that the right hand side of (4.1) is nonpositive. By Corollary 3.5 this is the case
if all the matrices B' are negative definite for any 1 <i <. To see this, let x € R’. Then

2

[
(x,Bx)=— Y x| =D (mj—26)x7.
j=1

j=1

2
It is not hard to see that (Z] mjxj> < 0 and equality holds if and only if (xq,...,x) L

(my, ...,my). Analogously, Zj (mj —268; )sz.) < 0 with equality if and only if m; = 2 and
x=1(0,...,0, Xi, 0,...,0). Since these two conditions can not be satisfies simultaneously,
it follows that B* is negative definite. Hence, we can apply Corollary 3.5 to (4.1) and conclude
that

1 Rg
RE-D" ") dus <0 (4.2)
3 <
/ M ( io Ji
where equality holds if and only if fi, ..., f; are all constant.
(1) If [g] contains a metric g of positive scalar curvature, then it follows from (4.2) that
BaIL
0< RS < / —Ldus.
= 2
o
As f1, ..., fi are positive functions, there has to be at least one i € {1, ..., [} such that
R& > 0, which is equivalent to w(M;, [gi]) > 0 by our choice of the metric g;. On
the other hand, if ©(M;, [gi]) > O for some i € {1,...,[}, we can choose a positive
scalar curvature metric on M;. Then an appropriate scaling of the single factors leads to
a positive scalar curvature metric.

(2) If [¢] does not contain a metric of positive scalar curvature but a scalar flat metric g,
then

i
0= RE < ZRgi/ f,'_zd/wbg
i=1 M

by (4.2). Moreover, u(M;, [gi]) < 0 forall 1 < i <[ as otherwise there would be a
metric of positive scalar curvature in [g]]. Thus, it follows that the above inequality is
satisfied if and only if R% = 0, i.e. w(M;,[gi]) =0 forall 1 <i <. As in this case
the above inequality is in fact an equality the functions f7, ..., f; have to be constant.
In particular, the scalar flat metric g is a product metric.

Lastly, (3) is now an immediate consequence from (1) and (2). m}
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Remark 4.1 Theorem 1.1 has the technical assumption that no factor M; can be diffeomorphic
to S'. In the other extreme case where every factor M; is diffeomorphic to S', the enlarge-
ability obstruction (Gromov—Lawson [21,22]) or the stable minimal hypersurface obstruction
(Schoen—Yau [39-41]) show that (M, g) = SL(1) x --- x $1(1) falls into case (2) of Theo-
rem 1.1. It is interesting to ask whether our dimensional assumption m1, ..., m; > 2 can be
removed.

As remarked in Sect. 2, o (M) > 0 (resp. o (M, [[g]]) > 0) if and only if M (resp. [g]])
contains a metric of positive scalar curvature. However, it is well known that the Kazdan—
Warner trichotomy (cf. [35, Theorem 0.1]) does not completely correspond to the sign of
o (M). That is, if M does not carry a positive scalar curvature metric but a scalar flat one,
then o (M) = 0, but the converse does not hold in general.

A similar discrepancy holds for direct product Riemannian manifolds (M, g) =
(M1, g1) x -+ x (Mj, gr) such that dim(M;) > 2 forall 1 <i <[ Ifo(M,[[g]) =0
then it is a direct consequence of Theorem 1.1 that u(M;,[g;]) < Oforall 1 <i <1
and the maximum is attained if and only if w(M;, [g;]) = O for all 1 < i < [. However,
there are many cases, where the maximum is not attained. For example, if w(M1, [g1]) = O,
w(Ms, [g2]) < 0 and w(M;, [gi]) < O forall 3 < i < [ then a simple scaling argument
shows that o (M, [[g]]) = O but there is no maximizing metric in [g]. It is an interesting
question, whether (M;, [gi]) < O forall 1 <i <[ implies o (M, [[g]) < O.

5 The infimum of the conformal Yamabe invariants

In Sect. 4 we discussed the supremum of the conformal Yamabe invariants within a mul-
ticonformal class. While the sign of the invariant o (M, [g]]) of a direct product manifold
(M, g) = (My,g1) X ---x (M, g) of closed connected Riemannian manifold is related to
the sign of the conformal Yamabe invariants of its factors, see Theorem 1.1, the infinum is
always —oo.

Theorem 1.2 Let (M, g) = (M1, g1) X --- X (My, g1) be a direct product of closed connected
Riemannian manifolds with | > 2 and dim(M) > 3, then

w(M, [g]) = —oo.

nf
[glcligl

Proof Without loss of generality we assume that dim(M;) > 2 (if necessary, consider the
product manifold M| x M> as one factor). In the following, we construct a family of metrics
ge such that limg_.o u(M, [g:]) = —o0.

First, we fix a function ¢ : M — R and consider the metric

E=fle1®fien®nd -dg,

with f; = exp(a; o ¢) with smooth functions ¢; : R — R to be chosen. Next, we apply
Proposition 3.3 to g with (g1, ..., q)) = (my, ..., m;), where m; = dim(M;), and obtain
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8 3
L35 £

I 2
2 2 ; ;
B 2/ Z " (gradf f;, grad] fi) \ fi" fo" A
- ik . 2
i—1 M k=1 J fjfk fz
2 my
i
:Z/ > bid) 0 p)(ag 0 @)l grad; ¢|? L 22 qus,
i=1 M\ j k=1 1}

where

Bl = ((fm —Diny —=2) (my - l)mz)

(my — Dmy mp(my — 1)

B2 = my(my — 1) my(my — 1)
IR = mymy — 1) (ma — 1)(ma —2)

Now, we want to choose the functions aj, a> : R — R such that
/ > bl o) ag o)l grady ¢ | f" 721 dut < —f RS2 f s
j.k=1
5.1

To do so, we set

a1 (0) = sin(v/ab),
ax(0) = —p sin(v/ah).

for positive real numbers «, § to be specified later. Inserting this relation into the right hand
side of (5.1) we obtain

/M 3 bh@ 0 )@ o @)l grad, gl | £ 1 d s

k=1

= (mi —1(my —2) /Motcosz(go)| grad, p|2e(m1—2—Fm)sin(Vaw) g 8
—2(m; — Dmy /M apB cos?(p)| grad, |21 —2—Fm2)sin(Vew) g 8
+ma(my — 1) /M aB? cos?(p)| grad, g|2e™ —2-Pm)sin(Jag) g 8

=: —0{)’/ COSZ(‘P)lgradl (p|2e(ml*2*ﬂmz)Sin(«/&vﬂ)dug’

M

where we set

y = —ma(my — 1) +2(my — Dmaf — (my — 1)(ma — 2).
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It is not hard to see, that we can always choose § such that y is positive. To be more precise,
if mp = 1, we simply take g sufficiently large, and if m» > 2, then we take § slightly smaller
than the larger root of the corresponding quadratic form. With this choice for § we conclude,

-2
/ 3 bl@) 0 @)} 0 )l grad, g | £ 2 dps
M N
j.k=1

= —ay/ cos” (¢)| grad, p|Pe"1 2P InC/a9) g 8
M

< —aye_‘m'_z_ﬁmﬂ/ cosz(ga)|gradl o> dus.
M

Hence, for any fixed B such that y > 0 we can choose « sufficiently large such that the
inequality (5.1) is fulfilled. Fixing such a choice of « and 8 finally defines our metric g.
For any ¢ > 0 we define

G =fln®flendn® Oy,

where f1, f» : M — Ry are the functions constructed above. It remains to show that

limg_.o u(M, [g:]) = —o0. To see this, we apply the normalized Einstein-functional to g,
and use Proposition 3.3,
_ R3:d 18
E(g:) = fMiw
Vol(M, g¢)
2 1 ({grad{ f;.grad{ fi) -2
’m Ju (Rf + 2 jhm b : )Jﬂm1 fydus
=&“\'m —

Vol(M, g)"n
¢ 2 2 (grad§ fj.grads fi) \ emy pma—2
o Ju <R2 T k= b i f Tdus
Vol(M, )"
/ g
2 Z fM R; flmlfzmzdﬂg

+8 " o o m=2 ’
i—3 VYol(M,gy)

+¢

where m = dim(M). Since the inequality (5.1) holds by construction, the first term on the
right hand side is negative. Moreover, lim,_, ¢ 82(711’1) = 00. Thus,

lim (M, [g¢)) < lim E(g;) = —oo.
£—0 £—0

6 Multiconformal metric of permutation type

In Theorem 1.2 we showed that the multiconformal class [g]] of a direct product manifold
(M, g) = (My,g1) X -+ x (M, g) contains metrics g of strictly negative scalar curvature.
This is even the case when w(M;, [gi]) > 0 foreachi € {1, ...,[}. The goal of this section
is to show that in this case, such a negative scalar curvature metric cannot be of permutation
type in the sense of Definition 6.1.
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Let (M, g) = (M1, g1) X --- X (M, g1) be a direct product of Riemannian manifolds.

For functions f1, ..., f; € C{°(M), we may associate the (/ x [)-matrix
difi - difi
6.1)
difi - difi

of 1-forms on M. In view of this matrix, we impose the following conditions on the multi-
conformal factors.

Definition 6.1 Let ¢ = flzgl G- D f,zgl. We say that g has off-diagonal type if f; is
constant along M; forevery i. Foramapo : {1,...,l} — {1,...,1l}, we say g has type o if
f; only depends on M, (), i.e. is constant along M1 X - -+ X Mgy—1 X My@y41 X -+ X M|
for every i. If g has type o for some bijection o, then g is said to have permutation type.

Note that a multiconformal metric g = f12g1 DD flzgl has off-diagonal if and only
if (6.1) has zero diagonal entries. Similarly, g has permutation type if (6.1) is a generalized
permutation matrix.

Remark 6.2 Related terminology is the following. The notion of warped products in the
sense of Bishop—O’Neill (cf. [6, § 7], [31, § 7]) has been generalized to various situations.
We remark that doubly warped products can have two different meanings; some authors?
deal only with two factors while others* need three factors to define them. The term multiply
warped products seems to be unambiguous, but it conflicts with the first meaning of doubly
warped products.

Twisted products in the sense of Chen [9, p. 66], also called umbilic products in earlier
work of Bishop [35, p. 27], are defined on direct product manifolds, which are topologically
not twisted. Note that Bishop—O’Neill [6, p. 29] used the term warped bundles for the gener-
alization of warped products to (possibly topologically twisted) bundles. These notions are
generalized, depending on the authors’ preferences, to umbilic products,® twisted products,’
and doubly or multiply twisted products® etc.

Theorem 6.3 Let (M, g) = (My, g1) X --- x (Mj, g1) be a direct product of closed Rie-
mannian manifolds, and assume R;g > 0 for every 1 < i < l. If a multiconformal metric
g= flzgl DD flzgl has permutation type and R8 <0, then fi, ..., f1 are constant. In
particular, R& = RS = (.

3 e.g. Allison [1, Definition 2.2], Yang [53, p. 203], Unal [48, Definition 2.1], Brozos-Vizquez—Garcia-Rio—
Véazquez-Lorenzo [7, Remark 5], Olteanu [30, Definition 1].

4 e.g. Zucker [54, p. 215], Gromov—Lawson [22, p. 188], Ivey [24], Petersen [33, Chapter 1, § 4], Walsh [50,
p. 6].

5 cf. Briining [8, p. 303], Unal [47, Definition 2.1], Dobarro—Unal [13, Definition 2.1], Uguz-Bilge [49,
§ 2.2], Chen [10, p. 13].

6 ¢f. Gauchman [20, Definition 1].
7 ¢f. Koike [26, p. 3], Meumertzheim—Reckziegel-Schaaf [28, Definition 2].

8 cf. Ponge-Reckziegel [34, p. 15], Rovenskii [37, Definition 2.6], Fernandez-Lopez—Garcia-Rio—Kupeli—
Unal [19, p. 214],
Uddin [46, p. 35], Wang [51, p. 1].
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Proof Let g = f12g1 G- P flzgl has type o for some permutation o. We may assume
o (i) # i for every i. Indeed, if o (j) = j for some j, then (M, g) is isomorphic to

M, fep) x [ []Mi. P fa
i#] i#]

Setm; = dim(M;) andletq, ..., g be real numbers to be specified later. By assumption,
fi only depends on M, ;) forany 1 < i < [.Inparticular, grad‘j fi = 0forall j # o (7). Since
we can additionally assume o (i) # i for all 1 < i </, the integral formula in Proposition
3.3 simplifies to

g : Rg q1
RS — 2: R
/M< zlfl'2>f f[ g
|gadgf]|
:E (2q;i — 1)/ e g8
j;ﬁim] e f2f2 i

(gradf fis gradf Sx)

+ Z (mjqr + qjmik — mjmk)/M i "'fqudlvlg(6.2)

2r.
i#] kAL T itk
1 8 2
| grad; ;) fil
=" (mi Qg — mi — D)+ @mig; —m?)) / e
i=1 M fa(,')fi
I g 2
| grad, ) filg
= Z (4miq;i — 2m? — m,-)/ ;7(1)_51’1‘“ e fldps.
i=1 Mo Jewdi
For g; = m; the right hand side of (6.2) is nonnegative and zero if and only if fi, ..., f; are

constant, implying that

st s [ 38

. o . . RS . .
with equality if and only if fi, ..., f; are constant. Since Zgzl f—’z is by assumption non-

negative the claim follows. O

Yang [53, Theorem 1] observed thata (M| x M>, g = f12g1 ® f22g2) is of warped product
type with f; nonconstant for i = 1, 2 can only have constant scalar curvature if it is scalar
flat. He then asked whether there exist such scalar flat metrics of nontrivial warped product
type. Before providing an answer to his question, we generalize Yang’s Theorem slightly to
our setting as follows.

Theorem 6.4 Let (M, g) = (M1, g1) X --- X (M;, g1) be adirect product of closed connected
Riemannian manifolds and let g = f12 81®--- f12 81 be ametric of constant scalar curvature.
If g is of permutation type for a bijection o with o (i) # i forall 1 <i <[ and the functions
fi. ..., fi are nonconstant then R& = 0.
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Proof As, by assumption grad; f; = 0 for all 1 <i <[ the formula for the scalar curvature
given in Theorem 3.1 simplifies to

N Rf Af f; |gradf £;]?
RE=D L 2 L (mj — 1) =2
Z fzz ; fzf, ;I’I’U m; f,2f,2

1 Affo-1) |grad? f,-1;)I?
= Z 12 (Rig - 2’"0*(:‘)% =M1y Mgy — D=y |
i=1 Ji

o) To-14)
(6.3)
We fixi € {1, ..., !} and take a vector field X tangent to E, ;). Differentiation of (6.3) with
respect to X yields
0= X(R?)
1 ASf i rad® 1|2
—x (L) (R amy oy DI gy — 1 R S0
fi Jo-1a) To-10y

1 N lgrad! ;) fil?
+——X RS ) = 2m;i =29 — i (m; — 1) —22 ) .
o (i) fi f;

In other words,

Agfo—l(') |gradf fa—l(')|2
(f2> fo <z>< = 2ty = = Mot (g = D=7 —— :
o= (i) O.—I(l')

Af o) fi |gradf ;) fi?
=-X Ri(i) —2m; o® mi(m; — 1)% .
Ji J;
6.4)
By assumptions, the right hand side of (6.4) only depends on M (;. Since,
Af fomr lgrad® £, -1
@) @)
fa(l) ( —2mg-1;y } Z A = — Mgty (Mg-1;) — 1)% (6.5)
oo 1)

is constant along M, (;, there are only two possibilities: Either (6.5) is constant or X (#) =0.

But, by assumption, # is nonconstant along M, ;). Therefore, we can choose X such that

X (#) does not vanish everywhere. Hence, there is a ¢; € R such that
Ji

8
A/ fo-10)

jgrad? 12
f(f(l) ( 2m —1(1) f i — mo.—l(i)(mo——l(i) — 1) ! = (.
o (i)

2
fg—l @)
Combining this observation with (6.3) we obtain

I
~ Ci
R = —.
Z fizf(g(i)

i=1
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As above, we choose a vector field X tangent to M, ;) such that X (#) does not vanish

everywhere. Differentiation with respect to this vector field leads to

Ci Co=1(i)

) 1
0=xRH=x =) (- 4
) \fewy  To

. C_—1; . . . .
As ( G 4 o7l ) is constant along M, (;), the above equation implies that

fﬁ(i) fj—l(i)
. C——1/:
- oW =9 (6.6)
.fg(i) fgfl(l')
for each i € {1,...,1}. Since each fi is nonconstant and only depends on M, (6.6) it
follows that ¢; = O for all i. Hence, R = 0. O

In the spirit of Yang, we ask the following question:

Let (M, g) = (M1, g1) X -+ x (M, g1) be a direct product of closed Riemannian
manifolds. Does M admit a scalar flat metric of nontrivial warped product type?

Theorems 1.1 and 6.3 provide the following partial answer: If either w(M;, [g;]) < O for
alll <i<lor Rl.g > (O for all 1 <i <[ each scalar flat metric has to be of product type.
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Appendix
A Computation of the scalar curvature

In this appendix we present a detailed proof of Theorem 3.1. Thus, let M be an almost
product manifold with decomposition 7M = @i:l E; with m; := rank(E;). Further we
fix a compatible metric g and denote by P; : TM — E; the corresponding orthogonal
projections. Recall the following definitions from (3.1):

di f(X) :=df(PiX)
grad? f := P; grad® (f),
Hess! f(X,Y) := Hess® f(P;(X), P;Y),
Af f = tr® Hess? f.

(A.1)
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for each f € C®°(M) and X, Y € TM and fix a multiconformal change g = f12g1 DD
flzgl. Henceforth, we write g = ((-, -)) and g = (-, -).

Before we start computing the scalar curvature under a multiconformal change, we first
relate the Levi—Civita connections V&, V& of g, &, respectively. As the derivatives of the mul-
ticonformal factors f1, ..., f; will be involved it is reasonable to first compare the gradients
taken with respect to the metrics g and g.

LemmaA.1 For every ¢ € C*(M),

I
grad® ¢ = Z £.72 grad$ ¢. (A.2)

a=1

Proof For every X € I'(T M), we can express the derivative X (¢) either with respect to g or
with respect to g. This leads to,

X(p) = (grad® ¢, X)),
1
X(p) = (grad® ¢, X) = Y (f;*P; - grad® g, X)).
i=1

As X (gp) is independent of the Riemannian metric, (A.2) holds. ]

Proposition A.2 Define TxY = V§;Y - V)g(onr X,Y e '(TM). Then

1 1
1
TxY =) (X, grad® fa)f Pa¥ + Y (Y, grad® f(,)fap,»x

a=1 a=1

(A3)
o

I
— Y (PoX.PpY) 2 gradf f,.
a,b=1
Proof Since T is tensorial, we assume without loss of generality that X € I'(E;),Y € I'(E)).
Comparing the Koszul formulas
2((V§Y, Z)y = XY, ZY) + Y(X, Z) — Z(X. Y))
— (X, [Y, Z1) — (Y, [X, Z]) + (Z,[X, Y]},
2(V§Y,z> X(Y Z)+Y(X Z) — Z(X,Y)
for g and g, we observe that if Z € I'(E,) then
2fHVEY. Z) = 2(V5Y. Z)
=X (fZ(Y.2) +Y (f(X.2)) = Z(X. V)
— fHXL LY, Z)) — f2(Y,[X, Z]) + fHZ. (X, Y])
=2faX(fa)Y, Z) + 21 Y (fa)(X, Z) — Z(X, Y))
+ f2X(Y, Z) + fAY(X, Z)
— fIZ(X.Y) + fIZ(X,Y) (=0)
— fHX Y, Z]) = £V, (X, Z) + fHZ. X, Y])
=2fX(V§Y, Z)
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F 2L X ()Y, Z) + 2£2Y (f)(X, Z)
— Z(X, YY)+ f2Z(X,Y).

Dividing both sides by 2 f2, we obtain

X(Ja) Y, Z)+ Y(fa) (X,2) - lg«X, Y) + %Z(X, Y).

(Vey —Viy,Z) = :
X X Ja Ja 2 f2

Hence,

TXY=V§Y—vgY

1
_ Z Xapy 4 3 Y(ff“)mx — 5 Erd (X, Y) 4 5 gradf (X, 1)

a=1

- Z(X, grad® f,) = PaY+Z Y, grad® f,) = Lrx

a=1
1 s 1
~5 grad® (X, Y)) + 5 grad® (X, Y).

To conclude the claimed formula it remains to show that
. 1 ’ fi
—3 grad® (X, Y) + 3 grad®(X,Y) = — (PpX, PbY)ﬁPa grad® fj (A4)
a,b=1 a
for X,Y e F(TM).

The term — 5 grad?2 (X, Yy + 1 gradg (X, Y) is tensorial, since it is the difference of two
tensors Ty Y and Z (X, grad® fa PaY + ZL:] (Y, grad® f,) iPaX . Thus, it suffices
to check (A.4) for an g- onhonormal frame {ea )y, such that for every o € {1, ..., m} there
exists some i € {1, ..., [} with e, € I'(E;). Since {e}_, remains orthogonal w1th respect

to g, (A.4) holds for X = ey, Y = eg if a # B as both sides evaluate to 0. If o« = B8, we
derive for the left hand side

1 z 1 1 ;
—5 grad® (eq, eq) + 7 grad® (e, eq) = =5 grad* (f7)

I 1
1 _ . Ji :
=5 2 Sa Pagrad® () = =) Pagrad® fi,
a=1 a=1

a

and for the right hand side

[

S Pre P Loyt gy =~ 3 45 P grad 1.
a,b=1 f a=1"

Now (A.4) follows by combining these two identities. O

These relations are sufficient to derive a formula for the scalar curvature under a multi-
conformal change.

Theorem A.3 The scalar curvature of R¥ satisfies
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where p; is defined by

pi =p,-g(f1,...,f,)
Ag
= _2(ml f]
J#i
— (m; — 1)(m; — 4)M —2(m; —2) Z g(gradf fis gradf i) (A5
fl J#i fifj
—> mjm;j - M - ¥ mjmkg(gradf fi, eradf fo)
us i joi ki Ak fifi

Proof To begin with, we recall the general formula
Rg(X, VZ=RX.YVZ+ (VxT)yZ— (VyT)xZ+TxTyZ —1TyTxZ (A.6)
for X, Y, Z € I'(T M), which can be shown by summing up the following three identities
~VinZ=-VixnZ - TixnZ.
—VEVEZ = —VE(VxZ + Tx2)
=-VWVXxZ - (VWT)xZ —TvyxZ —Tx(VyZ) — Ty (VxZ) — TyTx Z,
VEVEZ = VxVyZ+ (VxT)yZ + Toyy Z + Ty (Vx Z) + Tx (Vy Z) + Tx Ty Z.

Here and henceforth in the proof, quantities without any superscript such as R and V are
understood to be the ones with respect to g.

We want to express all these identities in terms of the functions fi, ..., f; and their
derivatives. Let X € T'(E;), Y € I'(E;), Z € I'(E). Then (A.3) yields

1 1 Lof
TxY = (X, grad f;) —Y + (Y, grad fi) =X — (X, Y) Z ~5 Pa grad f;, (A7)
/i f =1
1 1 .
TyZ = (Y, grad fk)ﬁZ + (Z, grad fj>7Y —(Y, Z) Z ffJZPa grad f;. (A.8)
J

a=1"4
Up to interchanging the roles of X and Y there are two terms that we need to take care of.
Namely, (Vx T) Y Z and TX Ty VA

On the one hand, (A.8) and (A.3) yields

(VxT)yZ =Vx(ITvyZ) — TuyyZ — Ty (Vx Z)

1
= (Y, Vxgrad fy)—Z — (Y, gra ad fi) (fk)
Sk 2
+{Z, Vx grad f/')iy —(Z, grad f,»)X(fj) Y
Ji i

LX) 26X
—(Y,Z)Z( Z;’)— f’f;f)>7vagradfj

a=1

(Y, Z2) Z /i Pagradf,

a= l
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1 1
= Hess fi (X, Y)TZ — (X, grad fi)(Y, grad fx)—Z
k k
1
+ Hess f;(X, Z)7Y — (X, grad f;)(Z, grad fj)—zY
J j
L
— (Y. Z)(X. grad f;) > — P grad f;
a=1
I £
+2(Y,Z) > (X, grad fu) % Pa grad f
a=1 fd
= £
—(Y.2) ) =LP.Vx grad f;.
a=1 f“
Taking the inner product with W € I'(E},) leads to,
(VxTyZ, W)
1 1
= (Z, W) Hess fi(X, Y)ﬁ —(Z, W)(X, grad fi)(Y, grad fi)—
k
1 1
+ (Y, W)Hess fi(X, Z)— — (Y, W)(X, grad f;)(Z, grad f;)—
! fi ! 7 f? (A9)
1
— (Y, Z)(X, grad f;)(W, grad fj)?
h

+2(Y, Z)(X, grad f,)(W, grad fj)]]: — (Y, Z)Hess fj(X, W) ;j
h h

On the other hand, plug (A.8) into (A.7) to get

l
TxTyZ =) (X, grad f,) 3 PgTyZ—i-(TyZ grad f;) f

a=1 !

1
= (X, grad fi)(Y, grad fk)?Z + (X, grad f;){Z, grad fj)—zY

k J

l
Z (X, grad fy) f3 P, grad f;
a=1 f

a

Ji fx

4 (Y. grad fi)(Z. grad fi)—— X + (¥ grad f;)(Z. grad fn}%

[

—(Y.2) ) (P grad f;. grad f;) J;f .
c=1 fc fi

1
— (X, Z)(Y, grad f) Z

X

fi
2 —5—Pa grad f;
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l

— (X, Y)(Z, grad ;) Z P, grad f;

fi

< fifi
l

+ (Y, Z)(X, grad f;) Z

i
27 Pa grad f;.

Taking the inner product with W,

(TxTyZ, W)
! 1
=(Z, W)(X, gradfk)(Y,gradfk)F (Y, W)(X, grad f;)(Z, grad f}) —
k J
— (Y, Z)(X, gradfh)(W,gradfj)%
h
(X, W)Y, grad fi)(Z. grad fi) —— + (X, W)(Y. grad fi)(Z. grad f;) ——
fiJi fifi (A.10
1
— (X, W)Y, 2) Y (grad. f;. grad, f,)fJ;f
c=1 i
/i f:
— (X, Z)(Y, grad fi}(W, gradﬁ)% — (X, Y)(Z, grad f;)(W, gradfi)%
fi

+(Y, Z)(X, grad f; (W, grad f;)

it
Therefore, (A.6), (A.9), and (A.10) yields a formula for the difference
(RE(X,Y)Z — R(X,Y)Z, W)
forall X € I'(E;),Y € I'(Ej), Z € I'(Ex), W € T'(Ej) and by linearity, it extends to an
identity for all vector fields on M. However, the resulting formula is a very long expression.
As we are interested in a formula for the scalar curvature for a multiconformal change we

only consider the difference (R¥(X,Y)Y —R(X,Y)Y,X)for X e (Ej)and Y € I(E)).
In that case we obtain

(RE(X,Y)Y — R(X,Y)Y, X)

= (X, Y) Hess f; (X, Y)i + (X, Y)Hess fi (Y X)i

fi S
— (X, X) Hess fi (Y, Y)% — (Y, Y)Hess f;(X, X)%
— 44X, V)X, gradf,-)(Y,gradfj)%

i fi
+ 2(Y, Y)(X, grad f;)(X, grad fj)ij}
+2(X, X)(Y, grad f;)(Y, grad fj)%ﬁ
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l
fi
Y)Z (grad. fi, grad. fj)—5
c=1 f fl
’ /i
Y)ZZ grad, f;, grad, f;) - (A.11)
c=1 f f/

Taking an g-orthonormal frame {e,}!)_, so that foreach o € {1, ..., m} there exists some
i =i(w) €{l,...,1} with e, € T'(E;), we define the associated g- orthonormal frame via

{eq = fl?al) ea}('le. With respect to these orthonormal frames we conclude

3

Ric¥(Y,Y) — Ric(Y,Y) = Z((Rg(éa, Y)Y, é,) — (R(ey, Y)Y, eg)

a=1

3

= (R¥(eq, Y)Y — Rlea, V)Y, €4)
a=1

Il
AMN

D (R¥(ew. Y)Y — R(ew, Y)Y €a).

o

Il
-

Inserting (A.11) leads to

1
DD (R¥(eq, Y)Y — R(eq, V)Y, €5)

i=1 «

1
=3 (e ¥ ) Hess fj(eas V)7 +ZZ ea, Y Hessfi(Y,ea)%

i=1 o i=1 «

—ZZHessf,(Y Y) ZZ|Y| Hessfj(ea,ea);:

i=1 «

1
_ 422(@, Y)({eq, grad f;)(Y, grad fj)ﬁ
i=1 « rJJ

i
+2) > 1Y eq, grad fi){eq, grad .f_,»>%

i=1 « i

+222Y grad fi)(Y, grad fj) ——

i=l «

—sz Zgrad fiv grad, f;) f’;f

i=1 «

1
Y e VP Y e, i, e
= o c=1 cJJ

ff]

= 2Hess f;(Y, Y) Zm Hess f; (Y, Y)?
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! (Y, grad f})?
oy

f2
1 f 1
+2) Y| (grad; f;, grad; f;)-% +2Zm, (Y, grad f;)(Y, grad f;)——
i=1 fi i=1 fifj
’ : fi L |grad, f;I?
=Y milYP ) (grad, fi, grad, f) o5 + 1YY =57
i=1 c=1 fo’ c=1 fc

We thus obtain

Hess; f; : Hess; fi I /i
[ i Ai
fi Em /i ; Vi 17 )

df/®dfj l dﬁ@df]

L Bt LN +2 T

| | .

+ 2 Z(gradi fi’ grad,» f])%gj

i=1 ‘

Ric? —Ric; = 2

l l l 2
fi |grad, f;]
=2 mi Y (grade fiograd, fj)Z5ogi ) g
i=1 c=1 fcfl c=1 fc
Taking the trace with respect to g in (A.12) yields
l !
g J o JJJ Rjli Rilj
Rj_P_z f3 _Zm’fo _Zm]f'ZJA
J J i=1 JjJt i=1 iJJ
4|gradj fjl2 +2212m.(gradjﬁ,gradj i)
1
I 73
(A.13)
d; fi, grad;
+22 (grad; f,3gra Si)
It
B me _ Z (grad,. f;, grad, fj Z |grad,. f]
1
=5 e 1ifi ]c RS

Since RE = le:] Rf we sum (A.13) over j € {1, ...,[} and derive

l
~ R;
Rg—Zﬁ
j=17j
LA LA
:22 f3l - Z ifzf'
j=1 7J i,j=1 Jjt

i 2 i
rad ; f; rad; f;, grad; f;
_42|g jf]' +4Zml(g ./ng jfj)
j=1 fj i,j=1 fjfi
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B (grad, fi, grad. fj) |grad,. f;|?
mefz f2fifj Z Z foz

lj—l ¢ c=1
R MURIE -0 9 o
i=1 l i=1 j#i f f]
l
|grad f (grad; f;, grad; f;)
= Omi = 1)(m; — 4= 2ZZm,(ml—2) e
= l i=1 j#i f] fl
! 2
|grad; ;| (grad; fj, grad; fi)
5 9) NI/ SR SRR )
i=1 j#i 11 i=1 j#ik#i, j#k fi fite
This is equivalent to the claimed formula for the scalar curvature under a multiconformal
change. O
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