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Abstract
Let X be a compact connected Riemann surface of genus g, with g ≥ 2, and let G be a
connected semisimple affine algebraic group defined over C. Given any δ ∈ π1(G), we
prove that the moduli space of semistable principal G-bundles over X of topological type δ

is simply connected. More generally, if G is a connected reductive complex affine algebraic
group, then the fundamental group of the moduli space is isomorphic to Z

2gd , where d
is the complex dimension of the center of G. In contrast, the fundamental group of the
moduli stack of principal G-bundles over X of topological type δ is shown to be isomorphic
to H1(X , π1(G)), when G is semisimple. We also compute the fundamental group of the
moduli stack of principal G-bundles when G is reductive.
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1 Introduction

Let X be an irreducible smooth complex projective curve, or, equivalently, a compact con-
nected Riemann surface. Let G be a connected reductive affine algebraic group defined over
C. The topological types of holomorphic principal G-bundles over X are parametrized by
π1(G) (see [3, p. 186, Proposition 1.3(a)], [18, Section 5]). For any δ ∈ π1(G), let Mδ

G
denote the moduli space of semistable principal G-bundles over X of topological type δ.
These moduli spaces have been extensively studied for the last twenty years. Our aim here
is to compute the fundamental group of Mδ

G.
When genus(X) = 0, thenMδ

G is a point; this follows from the facts that any holomorphic
principal G-bundle over CP

1 admits a reduction of structure group to a maximal torus of
G [15, p. 122, Théorème 1.1], and the holomorphic line bundles on CP

1 are classified by
their degree. When genus(X) = 1, there are explicit descriptions of Mδ

G [13,14,23]. So we
assume that g := genus(X) > 1.

There is a short exact sequence of groups

1 −→ [G, G] −→ G
q−→ Q := G/[G, G] ∼= (Gm)d −→ 1,

where d is the dimension of the center of G. Let

Jα
Q(X) ∼= Pic0(X)d

be the moduli space of all holomorphic principal Q-bundles on X of topological type α =
q∗(δ). The above homomorphism q induces a morphism of moduli spaces

q̃ : Mδ
G −→ Jα

Q(X)

which is in fact an étale locally trivial fibration (see the proof of Corollary 4.5). We prove
the following (see Corollary 4.5).

Theorem 1.1 The homomorphism of fundamental groups

q̃∗ : π1(M
δ
G) −→ π1(J

α
Q(X)) ∼= Z

2gd

induced by the above projection q̃ is an isomorphism.

Theorem 1.1 actually extends to the more general case of any connected complex affine
algebraic group (see Remark 4.6).

Theorem 1.1 has the following immediate consequence:
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Corollary 1.2 For a semisimple G the moduli spaceMδ
G is simply connected.

We note that Theorem 1.1 was proved earlier in [8] under the assumption that δ = 1.
The method of [8] does not extend when δ is nontrivial; the crucial Lemma 2.4 in [8] fails to
extend (also Corollary 2.2 in [8] does not extend).

The proof of Theorem 1.1 uses uniformization theorems [3,10,20], for moduli stack of
bundles and unirationality of Mδ

G for a semi-simple group G. For example, if we take G =
SL(r) and δ be an integer coprime to r , then it is well known that the corresponding moduli
space is a projective, smooth, unirational Fano variety [2,3,20] and hence simply connected
[21,37]. However the varieties Mδ

G for general G and δ are not always smooth and hence we
need to use different methods to address these issues.

We first consider, the fundamental group of the moduli stack Mδ
G (see Sect. 3.1 for a

definition) of principal G-bundles over X of topological type δ. We prove the following (see
Theorem 2.10):

Theorem 1.3 For a semisimple G the fundamental group π1(Mδ
G) is isomorphic to

H1(X , π1(G)).

It should be mentioned that more generally, when G is reductive, the fundamental group
of the moduli stack of principal G-bundles over X is computed in Corollary 2.11. As an
example if we take G=PGL(r), then for any δ, the fundamental group of the moduli stack is
(Z/rZ)2g , where as the corresponding moduli space is simply connected.

To give a rough reasonwhyπ1(Mδ
G) vanishes for G semisimple, first consider the action of

the group H1(X , π1(G)) on any twisted moduli space (see Sects. 3.1 and 3.7 for definitions)
of semistable principal ˜G-bundles on X , where ˜G denotes the universal cover of G. This
action has the property that the subgroup of H1(X , π1(G)) generated by all the isotropy
subgroups is H1(X , π1(G)) itself. As a consequence of a general result of [1], this makes the
corresponding quotient by H1(X , π1(G)), of the twisted moduli space under consideration,
a simply connected space, because the twisted moduli space is simply connected. Finally, the
quotient by H1(X , π1(G)) of a twisted moduli space of semistable principal ˜G-bundles is
isomorphic to themoduli spaceMδ

G, where δ ∈ π1(G) is the element used in the construction
of the twisted moduli space under consideration.

We now give an application of Theorem 1.1. If Y is a proper variety over an algebraically
closed field, there is an isomorphism

Hom(π ét
1 (Y ), Z/nZ)

∼=−→ H1
ét (Y , Z/nZ)

for any n. From the long exact sequence of cohomologies associated to the short exact
sequence of groups

0 −→ Z/nZ −→ Gm
z �→zn−→ Gm −→ 0,

it follows that H1
ét (Y , Z/nZ) is isomorphic to the n-torsion part

H1
ét (Y , Gm)[n].

Consequently, using a generalization of Hilbert Theorem 90 ([27, p. 124, Proposition 4.9]),
it follows that

Hom(π ét
1 (Y ), Z/nZ) � Pic(Y )[n].

Now setting Y = Mδ
G, where G is connected semisimple affine algebraic group over C, the

following corollary of Theorem 1.1 is obtained.
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Corollary 1.4 For a connected semisimple affine algebraic group G over C the Picard group
ofMδ

G is torsion-free.

If G is simply connected, the Picard group of MG is known to be Z [20]. A result of [3]
says that the Picard group of Mδ

G is torsion-free if G is a classical semisimple group.

2 Uniformization and fundamental group of themoduli stack

Let G be a connected, reductive affine algebraic group defined overC. Let X be an irreducible
smooth complex projective curve. The moduli stack of principal G-bundles on X will be
denoted by MG. It is well known that the stack MG is algebraic [24].

2.1 Uniformization

Let G be a connected, semi-simple affine algebraic group defined over C. We now recall
the uniformization theorem that describes MG as a quotient of the affine Grassmannian
[2,12,20]. Let LG denote the loop group viewed as an ind-scheme over C; we note that the
set ofC-points ofLG is justG(C((t))). The group of positive loops (respectively, theC-valued
points of the groups of positive loops) will be denoted by L+G (respectively, G(C[[t]])). The
quotient

QG := LG /L+G (2.1)

is the affine Grassmannian. The universal cover of G will be denoted by ˜G. The kernel of the
projection map ˜G −→ G is isomorphic to the fundamental group π1(G).

Fix a point p ∈ X . Let LXG denote the ind-sub group of LG whose set of C-valued
points is

G(OX (∗p)) = G(OX\{p}) ⊂ G(C((t))).

The first part of the following result is standard and can be found in [2,12,20], while the
second part is proved in [10].

Proposition 2.1 There is a canonical isomorphism between the stacks MG and LXG\QG.
Moreover, the quotient map QG −→ MG is locally trivial in the étale topology.

We now recall some well known results on the objects described above; see Lemma 1.2
in [3, p. 185].

Proposition 2.2 ([3]) Let X be an irreducible smooth complex projective curve and G a
connected semisimple complex affine algebraic group. Then the following four hold:

(1) π0(LG) = π1(G).
(2) The quotient morphism LG −→ QG induces a bijection π0(LG) −→ π0(QG). Each

connected component of QG is isomorphic to Q
˜G (defined as in (2.1) by substituting ˜G

in place of G). As before, ˜G denotes the simply connected cover of G.
(3) The group π0(LXG) is canonically isomorphic to H1(X , π1(G)), i.e.

π0(LXG) ∼= H1(X , π1(G)).

Further via the universal coefficients theorem in cohomology, we get

H1(X; π1(G)) ∼= Hom(H1(X , Z), π1(G)) = Hom(Z2g, π1(G)) ∼= (π1(G))2g.
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(4) The group LXG is contained in the neutral component (LG)0 of LG.

By Proposition 2.2 (cf. [3, p. 186, Proposition 1.3]), the set of connected components
π0(MG) has a canonical bijection with the fundamental group π1(G).

Definition 2.3 For any δ ∈ π1(G), let Mδ
G denote the connected component of MG cor-

responding to δ. The component of LG(C) corresponding to δ ∈ π1(G) will be denoted by
LGδ(C).

Let ζ be any element in the component LGδ(C). By Proposition 2.2(2), we get an action of
ζ−1LXGζ on Q

˜G. We now recall the uniformization theorem for each component Mδ
G [3,

Proposition 1.3(b)]. The second statement of the following proposition is derived from [10].

Proposition 2.4 For each δ ∈ π1(G), let ζ be any element in the component LGδ(C) (see
Definition 2.3). There is a canonical isomorphism of stacks

Mδ
G � (ζ−1LXGζ )\Q

˜G.

Moreover the quotient map π : Q
˜G −→ Mδ

G is locally trivial in the étale topology.

2.2 Fundamental groups

The quotientC-spaceQG in (2.1) as constructed in theworks of Beauville-Laszlo, Kumar and
Laszlo-Sorger, [2,22,25], is an ind-scheme, which is a direct limit of a sequence of projective
schemes. It turns out that when G is simply connected, the ind-scheme QG is both reduced
and irreducible, hence it is integral [25, p. 508, Proposition 4.6], [2, p. 406–407, Lemma 6.3].
The affine Grassmannian QG = LG /L+ G can be realized as an inductive limit of reduced
projective Schubert varieties [22,26].

Remark 2.5 We do not need to assume that G is semisimple for defining LG. The same
definition works for any reductive group G.

We now recall a lemma (Lemma 2.6) whose proof can be found in Section 8 of [33] for
G = GLn . The general case follows from more general results in Section 4 of [28]. We also
refer the reader to Theorem 1.6.1 and the paragraph after Theorem 1.6.1 in [38] for a more
comprehensive discussion.

Lemma 2.6 The affine Grassmannian QG is homotopic to the based loop group �e(KG),
where KG is a compact form of G.

The following lemma is a direct consequence of Lemma 2.6.

Lemma 2.7 Assume that G is semisimple and simply-connected. Then π1(QG) is trivial.

2.2.1 Topological stacks

We refer the reader to papers of Behrang Noohi [30–32] for the notion of topological stacks
and its associated homotopy theory. Topological stacks are defined in Section 13.2 in [30]
and homotopy groups of topological stacks are discussed in Section 17 in [30]. We also refer
the reader to Section 5.1 in [32] for more discussion of higher homotopy groups.

In [30, Section 20], the author constructs a functor that takes an algebraic stack overC to a
topological stack (see Proposition 20.2 in [30]). Moreover this functor has nice properties—it
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sends smooth morphisms to local fibrations and étale morphisms to local homeomorphisms.
The stacks Mδ

G are all algebraic (admitting locally finite presentation over C) and hence in
particular topological. Moreover, the affine GrassmannianQ

˜G has a natural topology coming
from its ind-variety structure. We refer the reader to Sect. 3.5 for a proof of the following
proposition.

Proposition 2.8 The natural morphism π : Q
˜G −→ Mδ

G in Proposition 2.4 gives a mor-
phism between the corresponding topological stacks.

The long exact sequence in homotopy associated to a “Serre fibration” of topological
stacks can be found in Section 5.2 in [32]. We also refer the reader to Section 4.2 in [32] for
discussions on quotient stacks. Throughout this paper, we consider the fundamental group
of an algebraic stack to be the fundamental group of the associated topological stack. The
following lemma is due to Behrang Noohi.

Lemma 2.9 Let X be a filtered topological stack with filtration given by {Xi }i∈N and X =
∪i∈IXi , then π1(X) = lim π1(Xi ).

Proof We shall use the notion of the classifying space f : X ′ −→ X for any topological
stack [31]. This X ′ is a topological space, and f is a (representable) morphism with the
property that the base extension fT of f , along anymorphism T −→ Xwith T a topological
space T , is a weak equivalence of topological spaces. We refer the reader to [31] for all these
notions and the existence of such a topological space X ′.

So we choose one classifying space, and let {X ′
i }i∈N be the filtration induced on X ′ via

pull back. Since each X ′
i −→ Xi is a weak equivalence, the result now reduces to the same

statement of the lemma for topological spaces. �
Theorem 2.10 Assume the group G to be a semisimple affine algebraic group but not neces-
sarily simply connected. For any δ ∈ π1(G), there is a natural isomorphism

π1(Mδ
G) ∼= π0(LXG) ∼= H1(X , π1(G)).

Proof Consider the quotient map π in Proposition 2.4. By the Proposition 2.8, this induces
a map between the underlying topological stacks. Since this fibration is locally trivial with
respect to the étale topology, we have a long exact sequence of homotopy groups

π1(Q˜G) −→ π1(Mδ
G)

η−→ π0(ζ
−1LXGζ ) −→ π0(Q˜G) −→ 0. (2.2)

associated to the Serre-fibrationπ (see Theorem 5.2 in [32]). Now, fromLemma 2.7 it follows
that the homomorphism η in (2.2) is injective, and from Proposition 2.2 we conclude that η
is surjective. Consequently, the homomorphism η is an isomorphism.

Since LXG and ζ−1LXGζ are conjugate (by ζ ), it follows that the two sets π0(ζ
−1LXGζ )

and π0(LXG) are bijective. Now the theorem follows from Proposition 2.2. �
A consequence of Theorem 2.10 is the following corollary on the fundamental group of

the moduli stacks of principal bundles with a reductive group as a structure group.

Corollary 2.11 Let G be a reductive complex affine algebraic group, and let Mδ
G denote a

component of themoduli stack of principalG-bundles on the smooth complex projective curve
X, where δ ∈ π1(G). Then the fundamental group π1(Mδ

G) is a subgroup of the (abelian)
group H1(X , π1(G/Z(G))) × H1(X , π1(G /[G, G])) such that the quotient group

(

H1(X , π1(G/Z(G))) × H1(X , π1(G /[G, G]))) /π1(Mδ
G)

is H1(X , Z([G, G])), where Z([G, G]) is the center of [G, G].
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Proof Let Z(G) denote the center of G, and let [G, G] be the commutator subgroup of G.
Consider the natural group homomorphism

f : G −→ (G /Z(G)) × (G /[G, G]).
It is easy to see that the kernel K of f is Z(G)

⋂[G, G] which also coincides with the center
Z([G, G]). Now, since [G, G] is semisimple, we conclude that K = kernel( f ) is a finite
group. The corresponding morphism of moduli stacks

M f : Mδ
G −→ Mδ1

G/Z(G) × Mδ2
G /[G, G]

is an étale Galois cover with Galois group H1(X , K); here Mδ
G denotes a particular com-

ponent of the moduli stack MG, while δ1 and δ2 are the images of δ in π1(G/Z(G)) and
π1(G / [G, G]) respectively under the quotient maps. Hence from the long exact sequence
of homotopy groups associated to the above fibration M f we see that π1(Mδ

G) injects into

π1(Mδ1
G/Z(G)) × π1(Mδ1

G /[G,G]) with quotient H1(X , Z([G, G])).
Since G/Z(G) is semisimple, Theorem 2.10 says that

π1(Mδ1
G/Z(G)) = H1(X , π1(G/Z(G))) .

On the other hand, since G /[G, G] is a product of copies of the multiplicative group Gm , it
follows that

π1(Mδ1
G / [G,G]) = H1(X , π1(G /[G, G])).

This completes the proof. �

The following consequence of Corollary 2.11 was observed by an anonymous referee and
we thank him for his comment.

Corollary 2.12 The rank (as an abelian group) of π1(Mδ
G) is 2gd, where d = dim Z(G). In

particular the fundamental groups of the moduli space Mδ
G (see Theorem 1.1) and that of the

moduli stack Mδ
G differ only on their torsion parts.

Proof The result follows from the following short exact sequence obtained from Corol-
lary 2.11, the additivity of rank in such sequences and the vanishing of the ranks of
H1(X; π1(Ad(G))) and H1(X; Z([G, G])). We have

0 −→ π1(Mδ
G) −→ H1(X; π1(Ad(G))) ⊕ H1(X; π1(G

d
m)) −→ H1(X; Z([G, G])) −→ 0.

Here Ad(G) = G /Z(G) denotes the adjoint group of G. �

3 Twistedmoduli stack and fundamental group of its smooth locus

In this section, we compute fundamental group of some twisted moduli stacks. We consider
moduli stacks of certain reductive group CA˜G associated to a central subgroup A of ˜G. The
idea to consider moduli stacks for these groups CA˜G comes from the work of Beauville–
Laszlo–Sorger [3].
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3.1 Fundamental group of the twistedmoduli stack

As before, let ˜G be a semi-simple and simply connected affine complex algebraic group.
Given a subgroup A of the center of ˜G, define

G := ˜G/A.

Take any δ ∈ π1(G). We shall now recall from [3] the construction of a “twisted” moduli
stack Mδ

˜G
dominating Mδ

G.
For any positive integer n, the group of n-th roots of unity will be denoted by μn . We

identify μn with Z/nZ using the generator exp(2π
√−1/n) of μn . Fix an isomorphism

A �
s

∏

j=1

μn j . (3.1)

Since
∏s

j=1 μn j is canonically a subgroup of T := (Gm)s , the isomorphism in (3.1) iden-
tifies A with a subgroup of T . Next we identify the quotient Gm/μn with Gm via the
endomorphism z �−→ zn of Gm . Using these, the quotient T /A gets identified with T .
Let

CA(˜G) = (˜G × T )/A (3.2)

be the quotient by the diagonal subgroup A. The projection to the second factor

CA(˜G) −→ (˜G/A) × (T /A) = G×(T /A) −→ T /A = T

induces a morphism of the moduli stacks

det : MCA(˜G) −→ MT . (3.3)

Now, since ˜G is simply connected, there is an isomorphism

ρ : π1(G) ∼= A.

Take any d = (d1, . . . , ds) ∈ Z
s (see (3.1)) such that 0 ≤ di < ni for all 1 ≤ i ≤ s.

We set

δ := ρ−1(exp(2π
√−1(−d1/n1)), . . . , exp(2π

√−1(−ds/ns))) . (3.4)

Let

Mδ
˜G,A

:= det−1((OX (d1 p), . . . , OX (ds p))) ⊂ MCA˜G (3.5)

be the sub-stack, where δ and d = (d1, . . . , ds) are related by (3.4). Following [3, Section
2], we shall call the stackMδ

˜G,A
the twisted moduli stack parametrizing CA(˜G)-bundles with

“determinant” (OX (d1 p), . . . , OX (ds p)).
It should be mentioned that the twisted principal (CA˜G)-bundles, described above, can

be realized as parahoric G-torsors on X [7,17]. SoMδ
˜G,A

is also a moduli stack of parahoric
G-torsors.

Remark 3.1 In [3],Mδ
˜G,A

is defined for arbitrary semi-simple groups (not necessarily simply

connected) and is denoted byMd
˜G,A

. The notationMδ
˜G,A

is used in [3] for an open and closed

substack ofMδ
˜G,A

. It was observed [3] that for simply connected groups these two substacks
coincide.
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The natural projection CA(˜G) −→ ˜G/A = G induces a surjective morphism of stacks

Mδ
˜G,A

−→ Mδ
G.

We now recall from [3, Proposition 1.3 and Example 2.4], [7] and [17] the uniformization
theorem for twisted moduli stacks.

Proposition 3.2 Let A denote a subgroup of the center Z(˜G) of ˜G, and consider the group
G = ˜G/A. Let ζ be any element of LGδ(C). Then there is a canonical isomorphism

Mδ
˜G,A

� (ζ−1(LX˜G)ζ )\Q
˜G,

and moreover the natural fibration π : Q
˜G −→ Mδ

˜G,A
is locally trivial in the étale

topology.

Remark 3.3 In the statement of Proposition 3.2, note that ζ is an element of LGδ . We explain
the notation of conjugation by ζ in LX ˜G. Consider the short exact sequence

0 −→ T /A −→ CA(˜G) −→ ˜G/A −→ 0,

where G = ˜G/A. Moreover T /A is in the center of CA(˜G). Any two lifts of ζ to LCA(˜G)

will differ by a central element. Consequently, conjugation in LCA(˜G) by any lift of ζ is
independent of the lift.

Proof of Proposition 3.2 We just sketch the main step to reduce to the untwisted case. First
observe that ˜G is the kernel of the natural homomorphism CA˜G −→ T . Now by construc-
tion,

Mδ
˜G,A

= det−1((OX (d1 p), . . . , OX (ds p))),

where δ and (d1, . . . , ds) are related by (3.4). Observe that (OX (d1 p), . . . , OX (ds p))
restricted to X\{p} is just (OX\{p}, . . . , OX\{p}). Thus any principal CA(˜G)-bundle with
determinant (OX (d1 p), . . . , OX (ds p)) restricted to the punctured curve X\{p}, is a princi-
pal˜G-bundle on X\{p}. This construction is clearly functorial, in the sense that if a scheme S
parametrizes a family of CA(˜G)-bundles on X with determinant (OX (d1 p), . . . , OX (ds p)),
then the restriction of the family to (X\{p}) × S gives a family of principal ˜G-bundles on
X\{p} parametrized by S.

Now the proof follows as in the untwisted case by using [10] and the proof of Proposition
1.3 in [3] (see also Remark 3.6 in [2]), but we outline the key steps for completeness. First
consider the natural homomorphism CA(˜G) −→ T which in turn gives a homomorphism of
the corresponding loop groups det : LCA(˜G) −→ L T. Let us consider the ind-subscheme
of LCA(˜G) given by L˜G

δ := det−1(z−d1 , . . . , z−ds ). The discussion in the above paragraph
and the uniformization theorem [10] together give the following isomorphism of stacks:

Mδ
˜G,A

� LX˜G\L˜Gδ/L+
˜G.

Let ζ be any element of L Gδ(C). Take any lift˜ζ of ζ in L˜G
δ
. Observe that multiplication

by˜ζ−1 gives an isomorphism of L˜G
δ
with L˜G. Hence the result on uniformization follows.

Local triviality follows directly from [10]. �
Recall that ˜G is simply connected, and G = ˜G/A, where A is a subgroup of the center

of ˜G isomorphic to π1(G). Now as in Sect. 2.2.1, we apply the homotopy exact sequence to
the above Serre-fibration π , to get the following:
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Corollary 3.4 For any δ ∈ π1(G), the above moduli stack Mδ
˜G,A

is simply connected.

Proof Since ˜G is simply connected, it follows from Proposition 2.2 that π0(ζ
−1(LX˜G)ζ ) is

trivial. Hence the above mentioned homotopy exact sequence gives that

π1(Mδ
˜G,A

) � π0(ζ
−1(LX˜G)ζ ) = {1}.

This completes the proof. �

3.2 Notation

Let G be a connected semisimple complex affine algebraic group, and let ˜G be its universal
cover. For a central subgroup A of ˜G isomorphic to π1(G), henceforth we drop the subscript
A and denote by Mδ

˜G
the twisted moduli stack Mδ

˜G, A
.

3.3 Fundamental group of the regularly stable locus

Henceforth, we assume that genus(X) = g ≥ 2. Take an element δ of the center of a
simple and simply connected group ˜G. If g = 2, then in this section, we assume that either
G �= SL(2, C) or δ �= 1.

We shall recall the definition of a regularly stable principal bundle [3,5]; for this we need
the definition of a stable principal bundle which we also recall below [35].

Definition 3.5 Let H be a connected reductive affine algebraic group over C. A principal
H -bundle EH on X is said to be semistable (respectively, stable) if for any given reduction
EP ⊂ EH of the structure group of EH to any proper parabolic subgroup P � H (not
necessarily maximal), and any nontrivial dominant character χ : P −→ Gm which is
trivial on the center of H , we have degree(χ∗EP ) ≤ 0 (respectively, degree(χ∗EP ) < 0),
where χ∗EP = EP ×χ

Ga is the line bundle on X associated to the principal P-bundle EP

for the character χ .

It is known that a principal H -bundle EH is semistable (respectively, stable) if and only if
for anymaximal parabolic subgroup P � H , and any section s of the projection EH/P −→
X , we have degree(s∗Trel) ≥ 0 (respectively, degree(s∗Trel) > 0), where Trel is the relative
tangent bundle for the above projection EH/P −→ X [35, Lemma 2.1].

A principal H-bundle E on X is called regularly stable if

• E is stable, and
• the natural homomorphism from the center of H to Aut(E), given by the action of H on

E , is an isomorphism.

As before, Mδ
˜G
denotes the twisted moduli stack associated to the triple (X , G, δ) (see

Sect. 3.2). Let

Mδ,rs
˜G

⊂ Mδ
˜G

be the open sub-stack defined by the regularly stable locus. Then there are the following
natural inclusions

Mδ,rs
˜G

⊂ Mδ,s
˜G

⊆ Mδ,ss
˜G

⊂ Mδ
˜G
, (3.6)

where theMδ,s
˜G

(respectively,Mδ,ss
˜G

) denotes the open sub-stack ofMδ
˜G
given by the stable

(respectively, semistable) locus.
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3.4 Presentation as quotient stacks

In this section, we recall following [36], a presentation of Mδ,ss
˜G

as a quotient stack. We
closely follow and recall the constructions given in the proof of Lemma 7.3 in [3] (see also
Proposition 3.4 in [19]). As mentioned before, it is assumed that g(X) ≥ 2.

Let G be any semisimple group. Choose a faithful representation ρ : G −→ SLr . For
any principal G-bundle P , let ρ∗(P) := Pρ = P ×ρ

C
r be the vector bundle associated to

P for the representation ρ.
Fix a closed point p on the curve X . For any integer n sufficiently large, we have

H1(X , Pρ(np)) = 0 for all all semistable principal G-bundles P . Indeed, this follows from
semicontinuity of cohomology and boundedness of semistable principal G-bundles. Take n
to be sufficiently large. Set m(n) = r(n + 1 − g), and consider the functor parametrizing
locally free quotients E ofO⊕m(n)

X of rank r and degree rn. This is clearly representable [36]
by a scheme R(n) along with a universal family E . Moreover R(n) is smooth for for all n
sufficiently large. By [36, Sections 4.8. 4.13.3], we get a scheme RG(n) that represents the
functor of global sections of the fiber bundle E/G on X × R(n) which is equivalent to the
functor parametrizing principal G-bundles P whose associated vector bundle Pρ(np) is a

locally free quotient of O⊕m(n)
X . By the discussion in the proof of Lemma 4.13.3 in [36] we

get that RG(n) is smooth for n large enough and supports an universal family of principal
G-bundles. Moreover the group 
n = GL(m(n)) acts on RG(n) and R(n) and the morphism
RG(n) −→ R(n) is 
n equivariant.

Now assume as before that ˜G is simply connected and A = ∏s
j=1 μn j ⊂ T is a central

subgroup of ˜G such that ˜G/A = G. The group CA˜G = (˜G × T )/A is reductive; we first
embedCA˜G into a reductive group S = ∏s

i=1 GLNi ×T /A such that the center ofCA˜G goes
to the center of S (see the proof of Lemma 7.3 in [3] for the construction of S). Now as before
we have a map det : MS → MZ(S), where Z(S) is the center of S. For any element d ′ =
(d ′

1, . . . , d
′
2s) ∈ Z

2s and a closed point p, consider the element (OX (d ′
1 p), . . . ,OX (d ′

2s p))

of MZ(S). We denote by Md ′
S the closed sub-stack det−1(OX (d ′

1 p), . . . ,OX (d ′
2s p)). In

particular, we have the diagram

MCA˜G MS

Mδ
˜G

Md ′
S

(3.7)

Here δ and d ′ are related by the map between the centers of CA˜G and S and Eq. (3.4). Since
Ramanathan’s construction works for arbitrary reductive group, the above construction goes
through with the role of SLr being replaced by S. Thus we get a scheme RCA(˜G)(n) along
with a universal family of principal CA(˜G)-bundles. The projection CA˜G −→ T /A � T
induces a map

det : RCA˜G(n) −→ MT ,

where T := G
s
m . Fixing d and δ related by Eq. (3.4), we define the scheme Rδ

˜G
(n) =

det−1(OX (d1 p), · · · , OX (ds p)). Similarly we also define the scheme Rd ′
S . Since RCA˜G(n)

is smooth for n large enough, and the morphism det is smooth, this implies that Rδ
˜G
(n) is

also smooth.
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For a faithful representation ρ : CA˜G −→ S, consider the stack Mδ
˜G
(n) parametrizing

δ-twisted ˜G-bundles E such that the corresponding vector bundles Eρ(np) are generated by
global sections and H1(X , Eρ(np)) = 0. By the above discussion, we get the following:

Proposition 3.6 The stacksMδ
˜G
(n) canbe presented as the quotient stack [Rδ

˜G
(n)/
n], where

Rδ
˜G
(n) is a smooth scheme and 
n is a reductive group. Moreover Rδ

˜G
(n) supports a family

W of δ-twisted ˜G-bundles along with a lift of the action of 
n.

3.5 Proof of Proposition 2.8

We now observe that these spaces Rδ
˜G
(n) can be used to give the morphism of the underlying

topological stacks π top : Q
˜G −→ Mδ

G induced by the morphism of stacks π : Q
˜G −→

Mδ
G in Proposition 2.4. Since Mδ

G is a quotient of Mδ
˜G
by the finite group H1(X , π1(G)),

it is enough to consider the simply connected case. For each n, we define Xn ⊂ Q
˜G by

Xn = {gP ∈ Q
˜G : H1(X , ρ∗(π(g)) ⊗ O(np)) = 0},

whereP = L+
˜G. It follows that Xn ⊂ Xn+1. The affine GrassmannianQ

˜G has the structure
of an ind-variety, and hence Xn acquires a natural topology. By the proof of Lemma 3.2 in
[19], we see that each Xn is open in Q

˜G and that
⋃

n≥0 Xn = Q
˜G. By definition

Xn = π−1(Mδ
˜G
(n)) ,

and it parametrizes a family of δ-twisted˜G-bundles. By the universality of Rδ
˜G
(n) (see Section

7.8 in [20] and Section 3 in [19]), we get a familyFn of
n-bundles on Xn and
n-equivariant
morphism Fn −→ Rδ

˜G
(n). Taking quotients, we get a morphism of their underlying topo-

logical quotient stacks Xn −→ Mδ
˜G
(n). Taking the limit, we get the required morphism of

topological stacks π top : Q
˜G −→ Mδ

˜G
. This completes the proof of Proposition 2.8.

3.6 Fundamental group ofMı,rs
˜G

Let Rδ,ss
˜G

(n) (respectively, Rδ,rs
˜G

(n)) be an open subscheme of Rδ
˜G
(n) such that the associated

family of δ twisted principal ˜G-bundles is semistable (respectively, regularly stable). Since
our representation ρ takes the center of CA˜G to the center of S, it follows from [34, Theorem
3.18] (see also [36]), that the canonical map RCA˜G(n) −→ RS(n) preserves semistability.

For n large enough,Mδ,ss
˜G

↪→ Mδ
˜G
(n) and we get thatMδ,ss

˜G
coincides with the quotient

stack [Rδ,ss
˜G

(n)/
n].

Lemma 3.7 For n large enough, the codimension of the complement of Rδ,ss
˜G

(n) in Rδ
˜G
(n) is

at least two. In particular π1(Mδ,ss
˜G

) = π1(Mδ
˜G
(n)).

Proof By [5, Lemma 2.1] (see also [12, Theorem II.6]), the codimension ofMδ,ss
˜G

inMδ
˜G
(n)

is at least two. Since Rδ
˜G
(n) and Rδ,ss

˜G
(n) are 
n torsors, this implies that the codimension of

the complement of Rδ,ss
˜G

(n) in Rδ
˜G
(n) is at least two. Now by construction Rδ

˜G
(n) is smooth

and hence π1(R
δ,ss
˜G

(n)) = π1(Rδ
˜G
(n)). Thus the result follows. �
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Lemma 3.8 The fundamental group π1(Mδ,rs
˜G

) is trivial if

• either g(X) ≥ 3, or
• g = 2 with either ˜G �= SL2 or δ �= 1.

Proof By [6, Theorem2.5], we get that the codimension of the complement ofMδ,rs
˜G

inMδ,ss
˜G

is at least 2 if g(X) ≥ 3 and ˜G �= SL2 or δ �= 1 if g(X) = 2. Since Rδ,rs
˜G

(n) (respectively

Rδ,ss
˜G

(n)) are both 
n-torsors, it implies that for n large enough the codimension of the

complement of Rδ,rs
˜G

(n) in Rδ,ss
˜G

(n) is at least two. Moreover, both Rδ,rs
˜G

(n) and Rδ,ss
˜G

(n) are

smooth. Thus π1(R
δ,rs
˜G

(n)) = π1(R
δ,ss
˜G

(n)). Thus for n large enough, we get

π1(Mδ,rs
˜G

) = π1(Mδ,ss
˜G

) = π1(Mδ
˜G
(n)).

Now by taking limits and applying Lemma 2.9, we get that π1(Mδ,rs
˜G

) � π1(Mδ
˜G
). �

3.7 Twistedmoduli spaces

The twisted moduli space Mδ
˜G
associated to the triple (X , G, δ) is defined just as the twisted

moduli stack is defined (see Eq. (3.5)). As before, let A be the subgroup of the center of ˜G
isomorphic to π1(G).

Definition 3.9 The space Mδ
˜G,A

is defined to be the moduli space of semistable principal

CA˜G-bundles E on X (see Eq. (3.2)) such that the associated principal T -bundle obtained
by extending the structure group of E using the homomorphism det in (3.3) is the principal
T -bundle corresponding to (OX (d1 p), . . . , OX (ds p)), where δ and d = (d1, . . . , ds) are
related by (3.4).

For notational simplicity, we drop the subscript A and write Mδ
˜G
for Mδ

˜G, A
.

Let

Mδ,rs
˜G

⊂ Mδ
˜G

be the twisted moduli space of regularly stable principal G-bundles associated to the triple
(X , G, δ). As before, we assume that g ≥ 3 and for g = 2, either G �= SL2(C) or δ �= 1.

3.7.1 Presentation of moduli spaces

We continue with the same notations as in Sect. 3.4. By our constructions in Sect. 3.4, we
get a map CA˜G → S which preserves the center. This induces a morphism MCA˜G → MS ,

which, in turn, give the morphisms Mδ
˜G

→ Md ′
S (see Diagram 3.7). By the discussion in

Sect. 3.4, the stack Mδ,ss
˜G

(respectively, Md ′,ss
S ) is represented as a stack quotient of Rδ,ss

˜G

(respectively, Rd ′,ss
S ) by a reductive group 
n . From classical theory of existence of good

quotients of moduli spaces of vector bundles on a curve, it follows that Md ′
S is a good quotient

of Rd ′,ss
S by 
n . Now since semistability is preserved ([34, Theorem 3.18]), the construction

of Mδ
˜G
as a good quotient of Rδ,ss

˜G
by 
n follows from Lemma 5.1 in [36].

Corollary 3.10 The variety Mδ,rs
˜G

is simply connected.
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Proof The coarsemoduli space forMδ,rs
˜G

isMδ,rs
˜G

. Themorphism to the coarsemoduli space

Mδ,rs
˜G

−→ Mδ,rs
˜G

(3.8)

is a gerbe banded by the center Z(˜G) of ˜G. A typical fiber over a point x ∈ Mδ,rs
˜G

(C) is given

by the classifying stack 
x := B(Z(˜G)), whose associated topological stack is connected.
Moreover, banded gerbes are weak Serre fibrations [32, Section 4.4]. Therefore, using the
homotopy exact sequence for the morphism (3.8), we conclude that the homomorphism

π1(Mδ,rs
˜G

) −→ π1(M
δ,rs
˜G

)

induced by the morphism (3.8) is surjective. Finally, π1(Mδ,rs
˜G

) = 1 by Lemma 3.8. �

4 Fundamental group of amoduli space of principal bundles

4.1 Simply connected simple groups

Let X be a compact connected Riemann surface of genus g ≥ 2. Let G be a simple group
with simply connected cover ˜G. Consider π1(G) as a subgroup A of the center of ˜G. As
before, for any δ ∈ π1(G), let Mδ

˜G
= Mδ

˜G,A
be the twisted moduli space (see Definition 3.9)

of semistable bundles associated to (X , G, δ). Recall that G is isomorphic to ˜G/A.

Proposition 4.1 The moduli space Mδ
˜G
is simply connected.

Proof First we consider the case where g = 2, G = SL(2, C) and δ = 1. In this case,
it follows from [29, p. 27, Lemma 6.2 (ii) and p. 33, Theorem 2] that Mδ

˜G
= CP

3, so this
moduli space is simply connected.

Therefore, we assume that either G �= SL(2, C) or δ �= 1 whenever g = 2. The Zariski
open subset

Mδ,rs
˜G

⊂ Mδ
˜G

(4.1)

is simply connected (Corollary 3.10). First observe that Mδ
˜G
is a subspace of Mδ

CA˜G
realized

as a fiber of the determinant mapM
CA˜G

−→ MT in (3.3). Since CA˜G is reductive, we know

by Corollary 3.4 of [5] that Mδ,rs
CA˜G

is the smooth locus of Mδ
CA˜G

. Since Mδ,rs
CA˜G

is an étale

locally trivial fiber bundle over a smooth variety with Mδ,rs
˜G

as the typical fiber, it follows

that Mδ,rs
˜G

is the smooth locus of Mδ
˜G
.

We note that if Z is a normal projective variety, andUZ ⊂ Z is its smooth locus, then the
homomorphism π1(UZ ) −→ π1(Z) induced by the inclusion map is surjective. To prove
this, take any desingularization

σ : ̂Z −→ Z .

By Zariski’s main theorem (cf. [16, p. 280, Ch. III, Corollary 11.4]) the fibers of σ are all
connected. Therefore, the homomorphism

σ∗ : π1(̂Z) −→ π1(Z)
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induced by σ is surjective. Furthermore, the homomorphism π1(σ
−1(UZ )) −→ π1(̂Z)

induced by the inclusion map is surjective, because ̂Z is smooth. But

σ |σ−1(UZ ) : σ−1(UZ ) −→ UZ

is an isomorphism. Hence combining the above observations we conclude that the homo-
morphism π1(UZ ) −→ π1(Z) is surjective.

Now, by construction ([3, Lemma 7.3] and [36, Theorem 5.9]) the variety Mδ
˜G
is a good

quotient (see Sect. 3.7.1) of a smooth scheme by a reductive group; hence it is normal. So the
homomorphism of fundamental groups induced by the inclusion in (4.1) is surjective. This
implies that Mδ

˜G
is simply connected, because Mδ,rs

˜G
is simply connected by Corollary 3.10.

�

4.2 All simple groups

As before, assume that g ≥ 2. Let G be any simple group. Fix an element

δ ∈ π1(G). (4.2)

As before, Mδ
G denotes the moduli space of semistable principal G-bundles on X of topolog-

ical type δ.

Theorem 4.2 The moduli spaceMδ
G is simply connected.

Proof Let γ : ˜G −→ G be the universal covering. The subgroup kernel(γ ) ⊂ ˜G will be
denoted by A. This subgroup A is contained in the center of ˜G, and

A = π1(G). (4.3)

Let


 := Hom(π1(X), A) = H1(X , A) (4.4)

be the isomorphism classes of principal A-bundles on X . We note that 
 is a finite abelian
group. The group structure on A produces a group structure on 
 because A is abelian.

Let Mδ
˜G

be the twisted moduli space of semistable principal bundles associated to

(X , G, δ), where δ is the element in (4.2). We will construct an action of 
 on Mδ
˜G
. The

homomorphism

˜G × A −→ ˜G , (z, a) �−→ za

produces a homomorphism

τ : CA˜G × A −→ CA˜G,

where CA˜G is the quotient group in (3.2). Given a principal CA˜G-bundle E and a principal
A-bundle F on X , we have a principal CA˜G-bundle τ∗(E ×X F), which is the extension of
structure group of the principal (CA˜G× A)-bundle E×X F , using the above homomorphism
τ . Clearly, τ∗(E ×X F) is semistable if and only if E is semistable. Consequently, we get an
action on Mδ

˜G
of the group 
 in (4.4)

τ̂ : Mδ
˜G

× 
 −→ Mδ
˜G
. (4.5)

Consider the projection to the second factor

CA˜G −→ (˜G/A) × (T /A) = G×(T /A) −→ G,
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where CA˜G is defined in (3.2). Given a principal CA˜G-bundle on X , we have a principal G-
bundle obtained by extending the structure group using this homomorphism. This produces
a morphism Mδ

˜G
−→ Mδ

G. This morphism clearly factors through the quotient Mδ
˜G
/
 for

the above action of τ̂ on Mδ
˜G
. The resulting morphism

Mδ
˜G
/
 −→ Mδ

G

is an isomorphism.
The homomorphism 
 −→ Aut(Mδ

˜G
) given by the above action of τ̂ on Mδ

˜G
is injective.

To prove this, take any nontrivial element h0 ∈ Hom(π1(X), A) = 
. Let F −→ X be
the principal A-bundle corresponding to h0. Let

h : ˜X −→ X

be the étale Galois covering corresponding to kernel(h0) ⊂ π1(X). The pullback h∗F −→
˜X is a trivial principal A-bundle. Take any principal CA˜G-bundle E on X such that

• the pullback h∗E is regularly stable, and
• E lies in the moduli space Mδ

˜G
.

Since h∗F is a trivial principal A-bundle, it follows that an isomorphism between E and
τ∗(E ×X F) produces an automorphism of h∗E ; such an automorphism of h∗E is not given
by an element of the center of CA˜G because F is nontrivial. Since h∗E is regularly stable,
it follows that the point of Mδ

˜G
given by E is not fixed by the action of h on Mδ

˜G
. Therefore,

the above homomorphism


 −→ Aut(Mδ
˜G
)

is injective.
The fundamental group of the quotient of a path connected, simply connected, locally

compact metric space by a faithful action of a finite group B is the quotient of B by the
normal subgroup of it generated by all the isotropy subgroups [1, p. 299, Theorem]. We shall
apply this result to the action in (4.5). Note that the moduli space Mδ

˜G
is simply connected

by Proposition 4.1.
Since A is abelian, the group
 in (4.4) is generated by the homomorphismsπ1(X) −→ A

such that the image is a cyclic subgroup of A. Take any

θ : π1(X) −→ A (4.6)

such that θ(π1(X)) is a cyclic subgroup of A; the order of θ will be denoted by m0. In view
of the above mentioned result of [1], to prove that Mδ

G is simply connected it suffices to show
that the action of θ on Mδ

˜G
has a fixed point. This result was proved in [3, Lemma 7.4(b)].

We give another proof of this fact and also recall the proof in [3].

4.2.1 First proof

It can be shown that there is a set of generators {a1, · · · , ag, b1, · · · , bg} of standard type
of π1(X) with a single relation

g
∏

i=1

aibi a
−1
i b−1

i = 1

such that
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(1) θ(bi ) = 1 for all 1 ≤ i ≤ g, and
(2) θ(ai ) = 1 for all 2 ≤ i ≤ g.

Indeed, for any element � := (�1, . . . , �2g) ∈ (Z/m0Z)2g (recall that m0 is the order of
the image of θ ), there is an element A ∈ Sp(2g, Z) such that

�A = (�1, 0, 0, . . . , 0).

The image of the natural homomorphism from the mapping class group for X to the auto-
morphism group Aut(H1(X , Z)) is the symplectic group associated to the symplectic form
on H1(X , Z) defined by the cap product. Combining these it follows that given any standard
presentation of π1(X), there is an element of the mapping class group that takes it to a pre-
sentation of π1(X) satisfying the above conditions. Clearly, the above presentation of π1(X)

depends on θ .
Fix a maximal compact subgroup

˜K ⊂ ˜G

Let F2g denote the free group generated by {a1, . . . , ag, b1, . . . , bg}, so π1(X) is a quotient
of F2g . Let R denote the space of all homomorphisms

β : F2g −→ ˜K

such that β(
∏g

i=1 aibi a
−1
i b−1

i ) = δ′, where δ′ ∈ A is the element corresponding to δ ∈
π1(G) (see (4.3), (4.2)). The group˜K acts onR through the conjugation action of˜K on itself.
A theorem of Ramanathan [35] shows that

Mδ
˜G

= R/˜K.

The action τ̂ (see (4.5)) of θ (see (4.6)) on Mδ
˜G
sends any homomorphism β as above to the

homomorphism defined as follows:

• bi �−→ β(bi ) for all 1 ≤ i ≤ g,
• ai �−→ β(ai ) for all 2 ≤ i ≤ g, and
• a1 �−→ β(a1)θ(a1).

Define the subset of ˜K
3

˜S := {(x1, x2, x3) ∈ ˜K
3 | [x1, x2] = δ′, [x3, x1] = θ(a1), [x3, x2] = 1}.

The number of connected components of ˜S coincides with that of the quotient space

S := ˜S/˜K

because ˜K is connected. The set of connected components of S is described in [9, p. 6,
Theorem 1.5.1(3)]; if we set

C =
⎛

⎝

1 δ′ θ(a1)−1

(δ′)−1 1 1
θ(a1) 1 1

⎞

⎠

in [9, p. 6, Theorem 1.5.1], and G in [9, p. 6, Theorem 1.5.1] to be ˜K , then the above quotient
S coincides with the space TG(C) in [9, p. 6, Theorem 1.5.1]. Setting k = 1 in [9, p. 6,
Theorem 1.5.1(3)] we conclude that TG(C) = S is nonempty because the Euler ϕ-function
sends 1 to 1.
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Take any triple (x1, x2, x3) ∈ ˜S. Let

β0 ∈ Hom(F2g, ˜K)

be the homomorphism defined by

• bi �−→ 1 for all 2 ≤ i ≤ g,
• ai �−→ 1 for all 2 ≤ i ≤ g,
• a1 �−→ x1, and
• b1 �−→ x2.

Note that β0 ∈ R. Let

β ′
0 ∈ R/˜K = Mδ

˜G

be the image ofβ0 under the quotientmap.We have x3x1x
−1
3 = x1θ(a1), because [x3, x1] =

θ(a1). In view of this and the third condition that [x3, x2] = 1, we conclude from the above
description of the action of 
 on R/˜K = Mδ

˜G
that the above point β ′

0 is fixed by the action
of θ . As noted before, this completes the proof using [1, p. 299, Theorem]. �

4.2.2 Second proof

The following proof is well known [3, Lemma 7.2(b)], but we recall it for completeness of
the exposition:

Recall that
 = H1(X , A) acts onMδ
˜G
,where˜G is simply connected. Thus every element

of γ ∈ 
 gives an automorphism of Mδ
˜G
of finite order. First following an argument in [20,

Corollary 6.3], we show that Mδ
˜G
is unirational. By uniformization theorem, Proposition 2.2,

we get a surjection from the affine Grassmannian Q
˜G to the moduli stackMδ

˜G
. In particular

there is a surjection from an open subset ofQ
˜G parametrizing semistable bundle toMδ

˜G
. Since

Q
˜G is a direct limit of an increasing sequence of generalized Schubert varieties, it follows

that Mδ
˜G
is unirational.

Lemma 4.3 Let Y be an unirational, projective variety over C. Then any finite order auto-
morphism of Y must have a fixed point.

Proof Let us assume that Y is smooth. Since Hi (Y , OY ) = 0 for all i > 0, by the
holomorphic Lefschetz fixed-point formula, any finite order automorphism of Y must have
a fixed point. Thus we are done. If Y is singular, let C be the cyclic group generated by the
finite order automorphism. Let ˜Y be a C-equivariant resolution of singularities, [4,11], of
˜Y . By the previous step, we get a fixed point of ˜Y under the action of any element c ∈ C .
Since the resolution is C-equivariant, we get a fixed point of Y under the action of c. This
completes the proof. �

4.3 The case of reductive groups

First assume that G is any connected semisimple affine algebraic group defined over C. Take
any δ ∈ π1(G). Let Mδ

G denote the moduli space of semistable principal G-bundles on X of
topological type δ.

Corollary 4.4 The moduli spaceMδ
G is simply connected.
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Proof Let Z ⊂ G be the center. The quotient G /Z is isomorphic to
∏d

i=1 Gi , where each
Gi is simple with trivial center. The image of δ in π1(Gi ) under the quotient map

G /Z =
d

∏

i=1

Gi −→ Gi

will be denoted by δi . Let M
δi
Gi

be the moduli space of semistable principal Gi -bundles on X
of topological type δi .

The isomorphism classes of principal Z-bundles on X will be denoted by 
. The homo-
morphism G×Z −→ G, (x, z) �−→ xz, produces an action of the abelian group 
 onMδ

G.
We have

d
∏

i=1

Mδi
Gi

= Mδ
G/
. (4.7)

Now
∏d

i=1 M
δi
Gi

is simply connected by Theorem 4.2. Therefore, from (4.7) we conclude that

Mδ
G is simply connected. �
Finally, let G be any connected reductive affine algebraic group defined over C. The

commutator subgroup [G, G] is connected semisimple, and there is a short exact sequence
of groups

1 −→ [G, G] −→ G
q−→ Q := G /[G, G] −→ 1, (4.8)

where the quotient Q is a product of copies of the multiplicative group Gm .
Take any δ ∈ π1(G). The image of δ in π1(Q) under the above projection q will be

denoted by α. Let Mδ
G denote the moduli space of semistable principal G-bundles on X of

topological type δ. The moduli space of principal Q-bundles on X of topological type α

will be denoted by J
α

Q(X). We note that J
α

Q(X) is isomorphic to (Pic0(X))d , where d is the
dimension of Q. Therefore, we have

π1(J
α
Q(X)) = Z

2gd .

The projection q in (4.8) induces a morphism

q̃ : Mδ
G −→ Jα

Q(X). (4.9)

Corollary 4.5 The homomorphism

q̃∗ : π1(M
δ
G) −→ π1(J

α
Q(X))

induced by the projection q̃ in (4.9) is an isomorphism.

Proof Let Z denote the center of [G, G]. The moduli space of principal Z-bundles on X will
be denoted by 
.

The projection q̃ in (4.9) is surjective. It can be shown that q̃ is étale locally trivial as
follows. For that, let Z0 ⊂ Z be the connected component containing the identity element.
Let

q ′ : G −→ G /Z0

be the natural projection. Let

α′ := q ′∗(δ) ∈ π1(G /Z0)
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be the image under the homomorphism q ′∗ : π1(G) −→ π1(G /Z0) induced by q ′. Let
Mα′

G /Z0
be the corresponding moduli space of semistable principal G /Z0-bundles on X . Let

� : Mδ
G −→ Mα′

G /Z0
× Jα

Q(X)

be the morphism of moduli spaces corresponding to the surjective homomorphism

G −→ (G /Z0) × (G /[G, G]), z �−→ (q ′(z), q(z)).

It is straightforward to check that

q̃ = p2 ◦ �, (4.10)

where p2 : Mα′
G /Z0

× Jα
Q(X) −→ Jα

Q(X) is the natural projection, and q̃ is the map in (4.9).
Consider the finite abelian group Z1 := [G, G]⋂Z0 ⊂ G. Let MZ1 be the group of

principal Z1-bundles on X . The group MZ1 acts on M
δ
G, and this action of MZ1 on M

δ
G takes

any fiber of q̃ to itself. In fact, we have

q̃−1(t)/MZ1 = Mα′
G /Z0

.

Therefore, from (4.10) it is deduced that q̃ is étale locally trivial.
Hence by Corollary 4.4, we get that M is simply connected. Now from the long exact

sequence of homotopy groups associated to the fiber bundle in (4.9) we conclude that the
homomorphism q̃∗ is an isomorphism. �
Remark 4.6 TakeG to be any connected complex affine algebraic group. Let G be the quotient
of G by the unipotent radical of G, so G is a connected complex reductive affine algebraic
group. For any δ ∈ π1(G) = π1(G), the natural projection

Mδ
G −→ Mδ

G

is surjective with contractible fibers, in particular this map Mδ
G −→ Mδ

G induces an isomor-
phism of fundamental groups. Consequently, Theorem 1.1 computes the fundamental group
of Mδ

G .

Acknowledgements We thank the two referees for very helpful comments. We are very grateful to Behrang
Noohi for Lemma 2.9.We thank S. Lawton and D. Ramras for making us aware of the question addressed here.
We thank the Institute for Mathematical Sciences in the National University of Singapore for hospitality while
this work was being completed. The first author is supported by a J. C. Bose Fellowship. The second author
was supported in part by a Simons Travel Grant and by NSF Grant DMS-1361159 (PI: Patrick Brosnan) and
also by the Science and Engineering Research Board, India (SRG/2019/000513). The first and second author
were also supported by the Department of Atomic Energy, India, under Project No. 12-R&D-TFR-5.01-0500.

References

1. Armstrong,M.A.: The fundamental group of the orbit space of a discontinuous group. Proc. Camb. Philos.
Soc. 64, 299–301 (1968). https://doi.org/10.1017/s0305004100042845

2. Beauville, A., Laszlo, Y.: Conformal blocks and generalized theta functions. Commun. Math. Phys. 164,
385–419 (1994)

3. Beauville, A., Laszlo, Y., Sorger, C.: The Picard group of the moduli of G-bundles on a curve. Compos.
Math. 112, 183–216 (1998). https://doi.org/10.1023/A:1000477122220

4. Bierstone, E., Milman, P.D.: Canonical desingularization in characteristic zero by blowing up the
maximum strata of a local invariant. Invent. Math. 128, 207–302 (1997). https://doi.org/10.1007/
s002220050141

123

https://doi.org/10.1017/s0305004100042845
https://doi.org/10.1023/A:1000477122220
https://doi.org/10.1007/s002220050141
https://doi.org/10.1007/s002220050141


Geometriae Dedicata (2021) 214:629–650 649

5. Biswas, I., Hoffmann, N.: A Torelli theorem for moduli spaces of principal bundles over a curve. Ann.
Inst. Fourier 62, 87–106 (2012). https://doi.org/10.5802/aif.2700

6. Biswas, I., Hoffmann, N.: Poincaré families of G-bundles on a curve. Math. Ann. 352, 133–154 (2012).
https://doi.org/10.1007/s00208-010-0628-x

7. Balaji, V., Seshadri, C.S.: Moduli of parahoric G-torsors on a compact Riemann surface. J. Algebraic
Geom. 24, 1–49 (2015). https://doi.org/10.1090/S1056-3911-2014-00626-3

8. Biswas, I., Lawton, S., Ramras, D.: Fundamental groups of character varieties: surfaces and tori. Math.
Zeit. 281, 415–425 (2015). https://doi.org/10.1007/s00209-015-1492-x

9. Borel, A., Friedman, R., Morgan, J.M.: Almost commuting elements in compact Lie groups. Mem. Am.
Math. Soc. (2002). https://doi.org/10.1090/memo/0747

10. Drinfeld, V.G., Simpson, C.T.: B-structures on G-bundles and local triviality. Math. Res. Lett. 2, 823–829
(1995). https://doi.org/10.4310/MRL.1995.v2.n6.a13

11. Encinas, S., Villamayor, O.: Good points and constructive resolution of singularities. Acta Math. 181,
109–158 (1998). https://doi.org/10.1007/BF02392749

12. Faltings, G.: A proof of the Verlinde formula. J. Algebraic Geom. 3, 347–374 (1994)
13. Friedman, R., Morgan, J.W.: Holomorphic principal bundles over elliptic curves. II. The parabolic con-

struction. J. Diff. Geom. 56, 301–379 (2000). https://doi.org/10.4310/jdg/1090347646
14. Friedman, R., Morgan, J.W., Witten, E.: Principal G-bundles over elliptic curves. Math. Res. Lett. 5,

97–118 (1998). https://doi.org/10.4310/MRL.1998.v5.n1.a8
15. Grothendieck, A.: Sur la classification des fibrés holomorphes sur la sphère de Riemann. Am. J. Math.

79, 121–138 (1957). https://doi.org/10.2307/2372388
16. Hartshorne, R.: Algebraic Geometry. Graduate Texts inMathematics, vol. 52. Springer, NewYork (1977).

https://doi.org/10.1007/978-1-4757-3849-0
17. Heinloth, J.: Uniformization of G-bundles. Math. Ann. 347, 499–528 (2010). https://doi.org/10.1007/

s00208-009-0443-4
18. Hoffmann, N.: On moduli stacks of G-bundles over a curve. In: Affine Flag Manifolds and Principal

Bundles. Trends in Mathematics, pp. 155–163. Birkhäuser/Springer Basel AG, Basel (2010). https://doi.
org/10.1007/978-3-0346-0288-4_5

19. Kumar, S., Narasimhan, M.S.: Picard group of the moduli spaces ofG-bundles. Math. Ann. 308, 155–173
(1997). https://doi.org/10.1007/s002080050070

20. Kumar, S., Narasimhan, M.S., Ramanathan, A.: Infinite Grassmannians and moduli spaces of G-bundles.
Math. Ann. 300, 41–75 (1994). https://doi.org/10.1007/BF01450475

21. Kollár, J.: Fundamental groups of rationally connected varieties. Mich. Math. J. 48, 359–368 (2000).
https://doi.org/10.1307/mmj/1030132724

22. Kumar, S.: Demazure character formula in arbitrary Kac-Moody setting. Invent. Math. 89, 395–423
(1987). https://doi.org/10.1007/BF01389086

23. Laszlo, Y.: About G-bundles over elliptic curves. Ann. Inst. Fourier 48, 413–424 (1998). https://doi.org/
10.5802/aif.1623

24. Laumon, G., Moret-Bailly, L.: Champs algebriques. Ergebnisse der Mathematik und ihrer Grenzgebiete,
3, Folge. A Series of Modern Surveys in Mathematics, 39 Springer. Berlin (2000). https://doi.org/10.
1007/978-3-540-24899-6

25. Laszlo,Y., Sorger,C.: The line bundles on themoduli of parabolicG-bundles over curves and their sections.
Ann. Sci. École Norm. Sup. 30, 499–525 (1997). https://doi.org/10.1016/S0012-9593(97)89929-6

26. Mathieu, O.: Formules de caractères pour les algèbres de Kac-Moody générales, Astérisque. No. 159–160
(1988)

27. Milne, J.S.: Etale Cohomology. Princeton Mathematical Series, vol. 33. Princeton University Press,
Princeton (1980)

28. Nadler, D.: Matsuki correspondence for the affine Grassmannian. Duke Math. J. 124, 421–457 (2004).
https://doi.org/10.1215/S0012-7094-04-12431-5

29. Narasimhan, M.S., Ramanan, S.: Moduli of vector bundles on a compact Riemann surface. Ann. Math.
89, 14–51 (1969). https://doi.org/10.2307/1970807

30. Noohi, B.: Foundations of Topological Stacks I. arXiv: math/0503247v1
31. Noohi, B.: Homotopy types of topological stacks. Adv. Math. 230, 2014–2047 (2012). https://doi.org/10.

1016/j.aim.2012.04.001
32. Noohi, B.: Fibrations of topological stacks. Adv. Math. 252, 612–640 (2014). https://doi.org/10.1016/j.

aim.2013.11.008
33. Pressley, A., Segal, G.: Loop groups. Oxford Mathematical Monographs. The Clarendon Press, Oxford

University Press, New York (1986)
34. Ramathan, A., Ramanan, S.: Some remarks on the instability flag. Tohoku Math. J. 36, 269–291 (1984).

https://doi.org/10.2748/tmj/1178228852

123

https://doi.org/10.5802/aif.2700
https://doi.org/10.1007/s00208-010-0628-x
https://doi.org/10.1090/S1056-3911-2014-00626-3
https://doi.org/10.1007/s00209-015-1492-x
https://doi.org/10.1090/memo/0747
https://doi.org/10.4310/MRL.1995.v2.n6.a13
https://doi.org/10.1007/BF02392749
https://doi.org/10.4310/jdg/1090347646
https://doi.org/10.4310/MRL.1998.v5.n1.a8
https://doi.org/10.2307/2372388
https://doi.org/10.1007/978-1-4757-3849-0
https://doi.org/10.1007/s00208-009-0443-4
https://doi.org/10.1007/s00208-009-0443-4
https://doi.org/10.1007/978-3-0346-0288-4_5
https://doi.org/10.1007/978-3-0346-0288-4_5
https://doi.org/10.1007/s002080050070
https://doi.org/10.1007/BF01450475
https://doi.org/10.1307/mmj/1030132724
https://doi.org/10.1007/BF01389086
https://doi.org/10.5802/aif.1623
https://doi.org/10.5802/aif.1623
https://doi.org/10.1007/978-3-540-24899-6
https://doi.org/10.1007/978-3-540-24899-6
https://doi.org/10.1016/S0012-9593(97)89929-6
https://doi.org/10.1215/S0012-7094-04-12431-5
https://doi.org/10.2307/1970807
http://arxiv.org/abs/math/0503247v1
https://doi.org/10.1016/j.aim.2012.04.001
https://doi.org/10.1016/j.aim.2012.04.001
https://doi.org/10.1016/j.aim.2013.11.008
https://doi.org/10.1016/j.aim.2013.11.008
https://doi.org/10.2748/tmj/1178228852


650 Geometriae Dedicata (2021) 214:629–650

35. Ramanathan, A.: Stable principal bundles on a compact Riemann surface. Math. Ann. 213, 129–152
(1975). https://doi.org/10.1007/BF01343949

36. Ramanathan, A.: Moduli for principal bundles over algebraic curves II. Proc. Indian Acad. Sci. Math.
Sci. 106, 421–449 (1996). https://doi.org/10.1007/BF02837697

37. Serre, J.-P.: On the fundamental group of a unirational variety. J. Lond. Math. Soc. 34, 481–484 (1959).
https://doi.org/10.1112/jlms/s1-34.4.481

38. Zhu, X.: An introduction to affine Grassmannians and the geometric Satake equivalence. In: Geometry
of Moduli Spaces and Representation Theory. IAS/Park City Mathematics Series, vol. 24, pp. 59–154.
American Mathematical Society, Providence (2017). https://doi.org/10.1090/pcms/024/02

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

https://doi.org/10.1007/BF01343949
https://doi.org/10.1007/BF02837697
https://doi.org/10.1112/jlms/s1-34.4.481
https://doi.org/10.1090/pcms/024/02

	Fundamental groups of moduli of principal bundles on curves
	Abstract
	1 Introduction
	2 Uniformization and fundamental group of the moduli stack
	2.1 Uniformization
	2.2 Fundamental groups
	2.2.1 Topological stacks


	3 Twisted moduli stack and fundamental group of its smooth locus
	3.1 Fundamental group of the twisted moduli stack
	3.2 Notation
	3.3 Fundamental group of the regularly stable locus
	3.4 Presentation as quotient stacks
	3.5 Proof of Proposition 2.8
	3.6 Fundamental group of mathcalMδ,rswidetildeG
	3.7 Twisted moduli spaces
	3.7.1 Presentation of moduli spaces


	4 Fundamental group of a moduli space of principal bundles
	4.1 Simply connected simple groups
	4.2 All simple groups
	4.2.1 First proof
	4.2.2 Second proof

	4.3 The case of reductive groups

	Acknowledgements
	References




