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Abstract
Liouville’s theorem says that in dimension greater than two, all conformal maps are Möbius
transformations. We prove an analogous statement about simplicial complexes, where two
simplicial complexes are considered discretely conformally equivalent if they are combinato-
rially equivalent and the lengths of corresponding edges are related by scale factors associated
with the vertices.
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1 Introduction

Liouville’s theorem says that in dimension three and higher, conformal maps are Möbius
transformations. More precisely:

Theorem (Liouville) If U ⊂ R
n is a domain and n ≥ 3, then any sufficiently regular

conformal map f : U → R
n is the restriction of a Möbius transformation.

Liouville himself proved this theorem under the assumption that f is four times contin-
uously differentiable [16, Note VI, pp. 609–616]. Different modern proofs can be found,
e.g., in the textbooks of Blaschke [1, §40, pp. 66f] and Dubrovin et al. [6, §15, pp. 138ff].
The regularity assumption can be weakened considerably. Gehring [7] and Reshetnyak [20]
showed it is sufficient to assume that f is in the Sobolev space W 1

n,loc(U ), see also [3,12].
The purpose of this article is to extend the theorem in a different direction. We establish

the following discrete version of Liouville’s theorem for simplicial complexes (see Sect. 2
for precise definitions):
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Theorem 1 If n ≥ 3, then two locally Delaunay discrete domains in R
n are discretely con-

formally equivalent if and only if they are Möbius equivalent.

Roughly, simplicial complexes are considered discretely conformally equivalent if they
are combinatorially equivalent and the lengths of corresponding edges are related by scale
factors associated with the vertices. They are consideredMöbius equivalent if they are com-
binatorially equivalent and the vertex positions are related by a Möbius transformation.

One implication of the equivalence statement, “Möbius equivalence implies discrete con-
formal equivalence”, holds for arbitrary simplicial complexes and for any dimension n (see
Sect. 3.1). The other implication, “discrete conformal equivalence implies Möbius equiva-
lence”, is only true for n ≥ 3 and for a more restrictive class of simplicial complexes (see
Sect. 3.3). In Definitions 2.3 and 2.4 we therefore define a locally Delaunay discrete domain
to be a locally finite, full-dimensional simplicial complex that satisfies some additional condi-
tions that are sufficient and necessary to deduceMöbius equivalence from discrete conformal
equivalence in dimension three or greater.

The basic concepts are explained in Sect. 2. Section 3 is devoted to a proof of Theorem 1,
which may in hindsight appear rather obvious. Theorem 1 and its proof suggest a necessary
and sufficient condition for discrete conformal flatness. This, the connection between discrete
conformal equivalence and hyperbolic geometry, and some open questions are discussed in
Sect. 4.

A related approach to discretize the notion of conformality is via circle packings [25], or,
in higher dimension, sphere packings. Cooper and Rivin’s local rigidity theorem for sphere
packings [5,8,21] and Xu’s global version [26] state, roughly, that a 3-manifold triangulation
and prescribed solid angles at the vertices determine a sphere packing uniquely (if it exists).
An analogous statement may also hold in the setting of discrete conformal equivalence,
roughly: A 3-manifold triangulation together with functions that assign a length to each edge
and an solid angle to each vertex determine a discretely conformally equivalent triangulation
with the given solid angles at the vertices uniquely (if it exists). It seems natural to expect that
the analytic method of proof, based on a variational principle, also extends to this setting.

But our Theorem 1 is different in nature: It is not about the metric rigidity of piecewise flat
closedmanifolds, but about theMöbius rigidity of triangulated domains inRn . Themethod of
proof is also very different: Rather than a variational principle, our proof of Theorem 1 relies
on Cauchy’s rigidity theorem for convex polyhedra and its higher dimensional generalization
[18], which does all the hard work (see Sect. 3.3). The rest is essentially just setup. Cauchy’s
rigidity theorem will be applied to Möbius images of the links of interior vertices, with
convexity ensured by the local Delaunay condition. This explains why the discrete Liouville
theorem holds only in dimensions three and higher: In dimension two, the respective links
are polygons, which are not rigid.

2 Basic definitions

In this article, a combinatorial isomorphism of simplicial complexes K and K ′ in R
n is

understood to be a bijection

φ : V −→ V ′ (1)

between the vertex sets V and V ′ of K and K ′, respectively, such that for any subset
{v0, . . . , vk} ⊆ V the simplex

[v0, . . . , vk] ⊂ R
n
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is an element of K if and only if the simplex

[φ(v1), . . . , φ(vk)] ⊂ R
n

is an element of K ′. Thus, a combinatorial isomorphism φ induces a bijection between the
complexes K and K ′, as well as a piecewise linear simplicial map between their carriers |K |
and |K ′|. Simplicial complexes are combinatorially equivalent if there exists a combinatorial
isomorphism between their vertex sets.

Definition 2.1 (discrete conformal equivalence) Combinatorially equivalent simplicial com-
plexes K and K ′ in R

n are called discretely conformally equivalent with respect to a
combinatorial isomorphism (1) if there exists a function

u : V −→ R

such that the length of each edge [v1, v2] ∈ K is related to the length of the corresponding
edge [φ(v1), φ(v2)] ∈ K ′, by

∣
∣ φ(v1) − φ(v2)

∣
∣ = e

1
2 (u(v1)+ u(v2))

∣
∣ v1 − v2

∣
∣, (2)

where | · | denotes the euclidean norm on R
n . In other words, each edge length is scaled by

the geometric mean of the scale factors eu attached to its vertices.
We say that K and K ′ are discretely conformally equivalent if they are discretely confor-

mally equivalent with respect to some combinatorial isomorphism.

This notion of discrete conformal equivalence appeared first in the four dimensional
Lorentz-geometric context of the Regge calculus [22]. In the two-dimensional setting of
surfaces, it has lead to a rich theory which is intimately connected with hyperbolic geometry
[2,4,9–11,15,19,23] and useful in diverse applications, see, e.g., [13,14,24].

To fix ideas and introduce some notation, let us collect a few basic facts about Möbius
transformations, beginning with the definition: AMöbius transformation of R̂n is a compo-
sition of inversions in hyperspheres and reflections in hyperplanes, where

R̂n = R
n ∪ {∞}

is the one-point compactification of Rn .
A Möbius transformation preserves or reverses orientation, depending on whether it is a

composition of an even or an odd number of inversions and reflections. TheMöbius transfor-
mations of R̂n form a Lie group Möb(n) of dimension 1

2 (n + 1)(n + 2) which is isomorphic
to the projectivized orthogonal group PO(n + 1, 1). Indeed, we may identify R̂n with the
n-dimensional unit sphere Sn ⊂ R

n+1 via stereographic projection and considerRn+1 as the
real projective space RPn+1 minus a projective hyperplane “at infinity”. This identifies the
Möbius group Möb(n) with the group PO(n + 1, 1) of projective transformations of RPn+1

that map the sphere Sn to itself.
The group Sim(n) of similarity transformations ofRn , i.e., of transformations of the form

x �−→ λ A x + b,

where

λ ∈ R>0, A ∈ O(n), b ∈ R
n,

is the subgroup of Möbius transformations that fix ∞ ∈ R̂n :

Sim(n) = {T ∈ Möb(n) | T (∞) = ∞}.
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Conversely, the Möbius group Möb(n) is generated by the similarity group Sim(n) together
with one sphere inversion.

In Möbius geometry, a hypersphere in R̂n is either a euclidean hypersphere in R
n or

the union of a hyperplane in R
n with {∞}. Möbius transformations map hyperspheres to

hyperspheres. A Möbius transformation that is not a similarity transformation does not map
simplices in Rn to simplices, except for zero-dimensional simplices, i.e., vertices. Two sim-
plicial complexes are considered Möbius equivalent if their vertices are related by a Möbius
transformation. More precisely:

Definition 2.2 (Möbius equivalence) Simplicial complexes K and K ′ inRn are calledMöbius
equivalent with respect to a combinatorial isomorphism φ : V −→ V ′ if there is a Möbius
transformation T ∈ Möb(n) such that

φ(v) = T (v) for all vertices v ∈ V .

Simplicial complexes K and K ′ are calledMöbius equivalent if they are Möbius equivalent
with respect to some combinatorial isomorphism.

The following Definitions 2.3 and 2.4 specify the extra assumptions under which we will
show that discretely conformally equivalent simplicial complexes areMöbius equivalent. All
of the conditions (i)–(iii) of Definition 2.3 and the local Delaunay condition of Definition 2.4
are necessary. It is easy (given the proof of Theorem 1 presented in Sect. 3) to construct
examples showing that the implication may fail if any one of these conditions is not satisfied.

Definition 2.3 (discrete domain) A locally finite simplicial complex K in R
n is called a

discrete domain if it satisfies the following conditions:

(i) K is n-dimensional and pure, i.e., K contains only n-dimensional simplices and their
faces.

(ii) Every n-dimensional simplex in K has at least one interior vertex, i.e., a vertex contained
in the interior of the carrier |K |.

(iii) The subgraph of the 1-skeleton of K induced by the interior vertices is connected.

Definition 2.4 (local Delaunay condition) A discrete domain K in R
n is called locally

Delaunay if, for every n-simplex σ ∈ K , the open ball bounded by the circumsphere of σ

contains no vertices of n-simplices sharing a common (n − 1)-face with σ .

Remark 2.5 Let σ and σ ′ be two n-simplices in Rn that share a common (n − 1)-face, say

σ = [v0, . . . , vn], σ ′ = [v1, . . . , vn+1].
Then the following statements are equivalent:

• v0 is contained in the open ball bounded by the circumsphere of σ ′.
• vn+1 is contained in the open ball bounded by the circumsphere of σ .

Thus, the local Delaunay condition imposes one condition for every (n − 1)-simplex in K
that is incident with two n-simplices.

To state the obvious, Theorem 1 refers to discrete conformal equivalence and Möbius
equivalence with respect to the same combinatorial isomorphism, i.e., we will prove the
following statement:

Theorem 1 (pedantic version) Suppose n ≥ 3, K and K ′ are locally Delaunay discrete
domains in R

n, and φ is a combinatorial isomorphism between K and K ′. Then K and
K ′ are discretely conformally equivalent with respect to φ if and only if they are Möbius
equivalent with respect to φ.
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3 Proof of Theorem 1

3.1 The easy implication: “Möbius equivalence implies discrete conformal
equivalence”

This implication holds for arbitrary simplicial complexes inRn and for arbitrary dimension n.
So let K and K ′ be simplicial complexes in Rn and assume they are Möbius equivalent. We
will show that they are discretely conformally equivalent.

If theMöbius transformation T ∈ Möb(n) relating K and K ′ is a similarity transformation
ofRn , then K and K ′ are obviously discretely conformally equivalent, because the relation (2)
holds with a constant scale factor eu .

If T is the inversion in the unit sphere,

T (x) = 1

|x |2 x,

then the identity

∣
∣ T (x) − T (y)

∣
∣ = 1

|x | |y| |x − y| , (3)

implies that K and K ′ are discretely conformally equivalent. Indeed, in this case the rela-
tion (2) holds with eu(v) = |v|−2.

Since the similarity transformations and the inversion in the unit sphere generate the
Möbius group, the implication holds for all T ∈ Möb(n).

3.2 The equivalence of simplices

In this section, we consider conformal equivalence and Möbius equivalence for pairs of
simplices. In the next section, wewill use the results to prove the harder implication, “discrete
conformal equivalence implies Möbius equivalence.”

Lemma 3.1 For n-simplices [v0, . . . , vn] and [v′
0, . . . , v

′
n] in R

n, the following statements
are equivalent:

(i) There are real numbers u0, . . . , un such that
∣
∣ v′

i − v′
j

∣
∣ = e

1
2 (ui + u j )

∣
∣ vi − v j

∣
∣ (4)

for all two-element subsets {i, j} of {0, . . . , n}.
(ii) There is a Möbius transformation T of R̂n such that

v′
i = T (vi ) for all i ∈ {0, . . . , n}. (5)

Section 3.1 proves the implication “(ii) ⇒ (i)”, so it remains to show the converse state-
ment, “(i) ⇒ (ii)”. This is based on the following observations, which will also be useful by
themselves:

Lemma 3.2 Assume condition (i) of Lemma 3.1 holds. Let Sv0 and Sv′
0
be the inversions in

the spheres with radius 1 centered at v0 and v′
0, respectively, and let

wi = Sv0(vi ), w′
i = Sv′

0
(v′

i ).

Then

w0 = w′
0 = ∞,

and the (n−1)-simplices [w1, . . . , wn] and [w′
1, . . . , w

′
n] are similar with scale factor e−u0 .
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To show the implication “(i) ⇒ (ii)” of Lemma 3.1 using Lemma 3.2, let F be a similarity
transformation of Rn mapping wi to w′

i for i ∈ {1, . . . , n}, then
T = Sv′

0
◦ F ◦ Sv0

is a Möbius transformation satisfying (5). (Note that there are two such similarity trans-
formations, one of which preserves orientation while the other reverses orientation.) This
completes the proof of Lemma 3.1, assuming Lemma 3.2.

To prove Lemma 3.2, note that

wi = v0 + 1

| vi − v0 |2 (vi − v 0).

for i ∈ {1, . . . , n}, and a similar equation holds for w′
i . Using the identity (3), one obtains

| wi − w j | = 1

| vi − v0 | | v j − v0 | | vi − v j | (6)

for i, j ∈ {1, . . . , n}, and a similar equation for | w′
i − w′

j |. Now (4) implies

| w′
i − w′

j | = e−u0 | wi − w j | ,
and hence the simplices are similar with scale factor e−u0 . This completes the proof of
Lemma 3.2.

We will also use the following fact, the proof of which we leave to the reader:

Lemma 3.3 If there exists anyMöbius transformation T satisfying (5), then there exist exactly
two of them, say, T1 and T2, of which one preserves orientation while the other reverses
orientation, and which are related by

T2 = T1 ◦ C = C ′ ◦ T1,

where C and C ′ are the inversions in the circumspheres of the simplices [v0, . . . , vn]
and [v′

0, . . . , v
′
n], respectively.

3.3 The harder implication: “discrete conformal equivalence implies Möbius
equivalence”

Let K and K ′ be two locally Delaunay discrete domains in R
n , where n ≥ 3, and

assume K and K ′ are discretely conformally equivalent with respect to the combinatorial
isomorphism φ.

Note thatφmaybe orientation preserving or orientation reversing.Wemay assumewithout
loss of generality that φ is orientation preserving. (If φ is orientation reversing, consider
orientation preserving isomorphism between K and a mirror image of K ′.)

Lemmas 3.1 and 3.3 say that for each n-simplex σ ∈ K , there is a unique orientation
preserving Möbius transformation Tσ such that Tσ (v) = φ(v) for every vertex v ∈ σ . Note
that the assumptions about orientation ensure that Tσ maps the inside of the circumsphere of
σ ∈ K to the inside of the circumsphere of φ(σ) ∈ K ′.

It remains to show that these Möbius transformations Tσ are in fact all equal. To this end,
it is enough to show the equality for n-simplices in the star of an interior vertex, i.e., to show
the following lemma:

Lemma 3.4 If v is an interior vertex of K and if σ and σ̃ are two n-simplices contained in
star(v), then Tσ = Tσ̃ .

123



Geometriae Dedicata (2021) 214:389–398 395

Indeed, suppose Lemma 3.4 holds and σ and σ̃ are any n-simplices of K . By assumption,
both contain interior vertices of K , say v and ṽ. Furthermore, by assumption, there is a path
from v to ṽ in the 1-skeleton of K traversing only interior vertices. By induction on the length
of the path, Lemma 3.4 implies that Tσ = Tσ̃ .

The proof of Lemma 3.4 relies onCauchy’s rigidity theorem for convex polyhedra, applied
to the link of v after an inversion centered at v. Convexity follows from the following general
observation:

Lemma 3.5 Let K0 be a simplicial complex in R
n, n ≥ 1, with one interior vertex v and

K0 = star(v). Let S be an inversion in some sphere centered at v, and apply it to the vertices
of ∂K0 to obtain a Möbius equivalent (n − 1)-dimensional complex P. Then the following
statements are equivalent:

(i) K0 satisfies the local Delaunay condition.
(ii) P is convex.

Proof (Lemma 3.5) Each n-simplex of K0 corresponds to an (n − 1)-dimensional face of P ,
and S maps the closed ball bounded by the circumsphere of an n-simplex of K0 to a closed
halfspace in R

n bounded by the hyperplane of the respective face of P . Thus, the local
Delaunay condition for K0 is equivalent to a local convexity condition for P involving
adjacent faces, which is equivalent to the global convexity of P . ��

Now to show Lemma 3.4, let v′ = φ(v), and let Q and Q′ be the links of v and v′,
respectively, i.e.,

Q = ∂star(v), Q′ = ∂star(v′).

Let Sv and Sv′ be the inversions in the spheres with radius 1 centered at v and v′, respectively.
Apply the inversions Sv and Sv′ to the vertices of Q and Q′, respectively, to obtain for each a
Möbius equivalent polyhedron, P and P ′. By Lemma 3.5, the local Delaunay condition for
K and K ′ implies that P and P ′ are convex polyhedra in R

n . As in Sect. 3.2, one sees that
the facets of P and P ′ are similar. By Cauchy’s rigidity theorem for convex polyhedra and
its higher dimensional generalization [18], there is a similarity transformation F of Rn that
maps P to P ′. By the orientation assumption, F is orientation preserving. Hence

T = Sv′ ◦ F ◦ Sv

is an orientation preserving Möbius transformation that maps star(v) to star(v′). Therefore,
T = Tσ for all σ ∈ star(v). This proves Lemma 3.4 and hence the implication “discrete
conformal equivalence implies Möbius equivalence”, and this completes the proof of Theo-
rem 1.

4 Discrete conformal flatness and induced hyperbolic metric:
concluding remarks, outlook and open questions

The definition of discrete conformal equivalence (Definition 2.1) extends in an obvious way
from simplicial complexes in R

n to triangulated piecewise euclidean manifolds, possibly
with boundary, i.e., to manifolds that consist of euclidean simplices glued together along
their facets. We propose the following notion of discrete conformal flatness:

Definition 4.1 A triangulated piecewise euclidean manifold is discretely conformally flat
if the vertex star of every interior vertex is discretely conformally equivalent to a locally
Delaunay discrete domain.
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Applying the same idea as in the proof of the discrete Liouville theorem, and in particular
Eq. (6), one obtains the following result:

Theorem 2 A n-dimensional triangulated piecewise euclidean manifold is discretely confor-
mally flat if and only if every interior vertex v0 satisfies the following condition:

There exists a convex polyhedron in R
n that is combinatorially equivalent to the link of

v0 and whose edge lengths are

�̃i j = �i j

�0i�0 j
, (7)

Here, �i j denotes the length of the edgebetween twoadjacent verticesvi ,v j of the triangulated
piecewise euclidean manifold, and for vertices vi , v j in the link of v0, �̃i j denotes length of
the corresponding edge of the convex polyhedron.

Note that for n = 2, the condition on the vertex link is equivalent to the polyhedral
inequalities for the �̃i j , i.e., each �̃i j is larger than the sum of the others.

Note also that a connection between discrete conformal equivalence and hyperbolic geom-
etry, which plays an important role in the theory in dimension two [2,23], extends to higher
dimensions: If you interpret the circumsphere of a euclidean n-simplex as the boundary of n-
dimensional hyperbolic space in the Beltrami-Klein model, this induces a hyperbolic metric
on the simplex minus its vertices, turning the simplex into an ideal hyperbolic simplex. If you
perform this construction on all simplices of a triangulated piecewise euclidean manifold,
this induces a hyperbolic metric on the manifold with cusps at the vertices and cone-like
singularities in the faces of codimension two. Just as in the two-dimensional setting, one can
prove the following theorem:

Theorem 3 Two triangulated piecewise euclidean manifolds are discretely conformally
equivalent if and only if they are isometric with respect to the induced hyperbolic metrics.

As in the two-dimensional setting [2,23], this observation suggests extending the definition
of discrete conformal equivalence to triangulations that are not combinatorially equivalent:

Definition 4.2 (discrete conformal equivalence, extended) Two triangulated piecewise
euclidean manifolds (which need not be combinatorially equivalent) are discretely confor-
mally equivalent if they are isometric with respect to the induced hyperbolic metrics.

In the 2-dimensional setting, the known uniformization results [11,23] show that any
triangulated surface is discretely conformally flat, provided the notion of discrete conformal
flatness is based on the extended notion of discrete conformal equivalence.

In dimensions 3 and higher, the situationmore complicated. The induced hyperbolicmetric
will in general have cone-like singularities along faces of codimension 2, even if the piecewise
euclidean manifold is flat. The total dihedral angles at the faces of codimension 2 are discrete
conformal invariants. Thus, any codimension-2-face whose hyperbolic cone angle is not
equal to 2π occurs in any discretely conformally equivalent triangulated piecewise euclidean
manifold.

Maybe the most intriguing question opened by this line of research is how far the analogy
between smooth and discrete conformal flatness extends. Consider for example the case of
closed 3-dimensionalmanifoldsM . TheChern–Simons functionalCSM (g) is anR/Z-valued
conformally invariant function on the space of Riemannian metrics g on M , and the critical
points of CSM are precisely the conformally flat metrics on M , see, e.g., [17]. Is there an
analogous invariant on the set of discrete conformal classes whose critical points are exactly
the discretely conformally flat classes?
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