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Abstract
In the theory of cluster algebras, a mutation loop induces discrete dynamical systems via its
actions on the cluster A- and X -varieties. In this paper, we introduce a property of mutation
loops, called the sign stability, with a focus on the asymptotic behavior of the iteration of the
tropicalX -transformation. The sign stability can be thought of as a cluster algebraic analogue
of the pseudo-Anosov property of a mapping class on a surface. A sign-stable mutation loop
has a numerical invariant which we call the cluster stretch factor, in analogy with the stretch
factor of a pseudo-Anosov mapping class on a marked surface. We compute the algebraic
entropies of the clusterA- andX -transformations induced by a sign-stablemutation loop, and
conclude that these two coincide with the logarithm of the cluster stretch factor. This gives
a cluster algebraic analogue of the classical theorem which relates the topological entropy of
a pseudo-Anosov mapping class with its stretch factor.
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1 Introduction

1.1 Cluster transformations and their algebraic entropy

The cluster algebras are at the center of research field initiated by Fomin–Zelevinsky [16]
and Fock–Goncharov [8] independently. It has been developed with fruitful connections with
other areas of mathematics such as discrete integrable systems [12,19], Teichmüller theory
[7,14], and so on. The central objects of study are seeds and their mutations. A seed consists
of two tuples of commutative variables called theA-variables and X -variables, and a matrix
called the exchange matrix. A mutation produces a new seed from a given one, transforming
the variables according to the rule determined by the exchange matrix, and changing the
exchange matrix to another one at the same time. We call the transformation of A-variables
(resp. X -variables) the cluster A-transformation (resp. cluster X -transformation). Both are
birational transformations.

A mutation sequence is a finite sequence of seed mutations and permutations of indices.
It is called a mutation loop if it preserves the exchange matrix. A mutation loop defines an
autonomous discrete dynamical system, as the composition of cluster transformations and
permutations of coordinates. The mutation loops form a group called the cluster modular
group, and this group acts on some geometric objects called the cluster A- and X -varieties,
and their tropicalizations by a semifield. Thus the discrete dynamical system induced by a
mutation loop takes place in these spaces. It is known thatmany interesting discrete dynamical
systems emerge in this way, and in some special cases a geometric construction ensures
integrability [12,19].

As ameasure of the deviation from discrete integrability, Bellon and Viallet [3] introduced
the notion of algebraic entropy of a birational map. It is defined as the growth rate of the
degree of the reduced rational expression of the iteration of a given map. It is widely believed
that Liouville–Arnold integrability corresponds to vanishing of algebraic entropy. Indeed, in
[1], Bellon indicated that the vanishing of entropy should be a necessary condition for the
integrability in the Liouville–Arnold sense. For more details, see [22] and references loc.
cit. The algebraic entropy of the cluster A- and X -transformations induced by a mutation
loop has been studied by several authors [10,21,22]. In [10,22], the authors computed the
algebraic entropies of mutation loops of length one, which have been classified by Fordy–
Marsh [13]. They determined the mutation loops with vanishing entropy among the Fordy–
Marsh construction. Moreover explicit first integrals are constructed in each of these cases
in [10], showing that the Liouville–Arnold integrability is indeed achieved.

1.2 Sign stability and themain theorem

As opposed to the integrable mutation loops discussed above, the Teichmüller–Thurston the-
ory provides a rich source of “non-integrable” mutation loops. The mapping class group
of an oriented marked surface Σ is the group of isotopy classes (mapping classes) of
orientation-perserving homeomorphisms of Σ . The Nielsen–Thurston classification theory
[11,32] classifies the mapping classes into three types: periodic, reducible (i.e., fixes a simple
closed curve on Σ), and pseudo-Anosov. The last one is of generic type, and interesting for
us. A pseudo-Anosov mapping class is characterized by the existence of a pair of invariant
foliations on Σ , and it is known that the topological entropy of a pseudo-Anosov mapping
class is positive. Indeed, these invariant foliations are equipped with a transverse measure
which is unique up to positive rescalings. The pseudo-Anosov mapping class rescales these
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measures by a reciprocal factor called the stretch factor, and the topological entropy is given
by the logarithm of the stretch factor. See, for instance, [11, Section 10.4]. In this case, the
value of the topological entropy itself is an important numerical invariant of a mapping class.

A deep connection between the Teichmüller–Thurston theory and the cluster algebra has
been known. From an ideal triangulation ofΣ we can form a seed, whose mutation class only
depends on the topology of Σ [7,14,28]. The mapping class group can be embedded into the
corresponding cluster modular group, and the manifold of positive real points of the cluster
A- (resp. X -)variety can be identified with the decorated (resp. enhanced) Teichmüller space
of Σ [7,28]. The piecewise-linear manifold of real tropical points of the cluster A- (resp.
X -)variety can be identified with the space of decorated (resp. enhanced) measured foliations
on Σ [7,31].

Based on this correspondence, the first author gave an analogue of the Nielsen–Thurston
classification for a general cluster modular group in [23], which classifies the mutation loops
into three types: periodic, cluster-reducible and cluster-pseudo-Anosov. However there exists
a slight discrepancy between pseudo-Anosov and cluster-pseudo-Anosov even for a mutation
loop given by a mapping class: a pseudo-Anosov mapping class provides a cluster-pseudo-
Anosov mutation loop, but the converse is not true. Therefore, the search for generalized
“pseudo-Anosov” properties of mutation loops continues.

As mentioned above, a pseudo-Anosov mapping class has a pair of invariant foliations.
A combinatorial model of a measured foliation, called a train track is commonly used to
study the action of a mapping class on measured foliations. The action can be described
by a sequence of splittings of the corresponding train tracks. See, for instance, [29]. Our
observation is that train track splittings can be translated into tropical cluster transformations.
More precisely, some variants of train track splittings and their reverse operations can be
unified to “signed” mutations [25], which is obtained by generalizing the usual seed mutation
by introducing a sign in the formula. Based on these observations we introduce a property
of mutation loops called the sign stability, which is more closely related to being pseudo-
Anosov. An intuitive (but not exact) definition of the sign stability is a stabilization property
of the presentation matrix of the piecewise-linear map obtained as the tropicalization of the
cluster X -tranformation. More precisely, given a mutation sequence and a point of X (Rtrop),
we define a sequence of signs indicating which presentation matrices (among three choices
at each step of mutation) are applied to that point. A mutation loop is said to be sign-stable if
the sign of each orbit stabilizes to a common one. To a sign-stable mutation loop, associated
is a numerical invariant which we call the cluster stretch factor, which is a positive number
greater or equal to 1. Now our main theorem is the following. Let Ea

φ (resp. E x
φ ) denote the

algebraic entropy (Definition 4.1) of the cluster A- (resp. X -)transformation induced by the
mutation loop φ. For a matrix A, let ρ(A) denote its spectral radius.

Theorem 1.1 Let φ = [γ ]s be a mutation loop with a representation path γ : t0 → t which
is sign-stable (Definition 3.6) on the set Ωcan

(t0)
. Then we have

log ρ(Ě (t0)
φ ) ≤ Ea

φ ≤ log R(t0)
φ ,

log ρ(E (t0)
φ ) ≤ E x

φ ≤ log R(t0)
φ .

Here R(t0)
φ := max{ρ(E (t0)

φ ), ρ(Ě (t0)
φ )}, where E (t0)

φ is the stable presentation matrix (Defi-

nition 3.15) and Ě (t0)
φ := ((E (t0)

φ )T)−1.

Corollary 1.2 Moreover if Conjecture 3.13 holds true, then we get

Ea
φ = E x

φ = log λ
(t0)
φ .
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Fig. 1 Train track splitting

Here λ
(t0)
φ ≥ 1 is the cluster stretch factor (Definition 3.15).

This corollary gives a cluster algebraic analogue of the fact that the topological entropy of
a pseudo-Anosov mapping class coincides with the logarithm of the stretch factor. Note that
the vanishing of the algebraic entropy corresponds to the equality λ

(t0)
φ = 1.

Moreover we give several methods for checking the sign stability of a given mutation
loop, and demonstrate them in concrete examples. See Sect. 5. We show that one of them can
be effectively applied to certain mutation loops of length one arising from the Fordy–Marsh
classification mentioned above. As a byproduct, we obtain a partial confirmation of [10,
Conjecture 3.1] for these mutation loops.

1.3 Related topics and future works

Surface case As mentioned earlier, the sign stability is introduced as a generalization of the
pseudo-Anosov property. In fact, it is defined by mimicking the convergence property of the
RLS word of train track splittings [30]. It would be possible to obtain a direct relation in the
surface case. The tasks are:

1. to show that the mutation loop obtained by a pseudo-Anosov mapping class is indeed
sign-stable,

2. to give a direct relation between the sign of amutation sequence given by a pseudo-Anosov
mapping class and the RLS word of the splitting sequence of the corresponding invariant
train track.

The task (1) is established in [24]. As a consequence of (1), the algebraic entropy of the muta-
tion loop obtained by a pseudo-Anosov mapping class would coincide with the topological
entropy.

Invariance of sign stability and relations with other pseudo-Anosov properties Strictly
speaking, the sequence of signs is not an invariant of a mutation loop. Indeed, it highly
depends on the choice of mutation sequence which represents a given mutation loop. For
example, an elimination or addition of a repeated mutations at the same index does not
change the mutation loop but changes (even the size of) the sign sequence. Nevertheless, a
large number of experiments indicates that the sign stability is invariant under the change of
representation sequence of a mutation loop. Thus we have the following conjecture:

Conjecture 1.3 Let γi : ti → t ′i (i = 1, 2) be two edge paths in TI which represent the same
mutation loop φ := [γ1]s = [γ2]s. Then γ1 is sign-stable if and only if γ2 is.
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A partial confirmation of this conjecture will be worked out elsewhere. Moreover we will
work on the relations between the sign stability and other properties, such as cluster-pseudo-
Anosov property and the asymptotic sign coherence property introduced in [20].

Relation with the categorical entropy A quiver with a non-degenerate potential gives a
3-dimensional Calabi–Yau category as a full subcategory of the derived category of a cer-
tain dg algebra. We can consider it as a categorification of a seed data. When there exists
a non-degenerate potential for a given quiver, a quiver mutation can be lifted to a derived
equivalence. However this lifting has an ambiguity on the choice of signs of derived equiva-
lences associated to mutations (see [26]), which corresponds to our signs of mutations. When
a mutation loop is sign-stable, the stable sign determines a canonical lifting. It will be inter-
esting to compare the algebraic entropy of a sign-stable mutation loop and the categorical
entropy [5] of its canonical lift.

1.4 Organization of the paper

In Sect.2, basic notions in cluster algebra are recollected, basically following the conventions
in [8,18]. In Sect. 3, we introduce the sign stablity of mutation loops and state some basic
properties. In Sect. 4, we recall the definition of algebraic entropy following [3] and give
a proof of Theorem 1.1. In Sect. 5, several methods for checking the sign stability for a
given mutation loop are proposed. Some concrete examples of sign-stable mutation loops
and given, and their cluster stretch factors and algebraic entropies are computed.

2 Cluster ensembles

In this section, we recall basic notions in cluster algebra. Basically we follow the conventions
in [8,18]. As a technical issue, the distinction between a mutation loop (an element of the
cluster modular group [8]) and its representative path is emphasized.

2.1 Seed patterns

We fix a finite index set I = {1, 2, . . . , N } and a regular tree TI of valency |I | = N , whose
edges are labeled by I so that the set of edges incident to a fixed vertex has distinct labels.

To each vertex t of TI , we assign the following data:

– A lattice N (t) = ⊕
i∈I Ze

(t)
i with a basis (e(t)

i )i∈I .
– An integral skew-symmetric matrix B(t) = (b(t)

i j )i, j∈I .

We call such a pair (N (t), B(t)) of data a Fock–Goncharov seed or simply a seed. Let M (t) :=
Hom(N (t),Z) be the dual lattice of N (t), and let ( f (t)

i )i∈I be the dual basis of (e(t)
i )i∈I .

We call the matrix B(t) the exchange matrix. We define a skew-symmetric bilinear form
{−,−} : N (t) × N (t) → Z by {e(t)

i , e(t)
j } := b(t)

i j . It induces a linear map p∗ : N (t) → M (t),

n �→ {n,−} called the ensemble map. Each triple (N (t), {−,−}, (e(t)
i )i∈I ) is called a seed in

[8].

Remark 2.1 1. For simplicity, we only consider seeds with skew-symmetric exchangematrix
without frozen indices. See [8,18] for a more general definition.
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2. For exchange matrices we use the notation B rather than ε, since we want to reserve the
latter for signs ε ∈ {+, 0,−}. Our exchange matrix is related to the one BFZ = (bFZi j )i . j∈I
used in [17,27] by the transposition bFZi j = b ji .

We call such an assignment s : t �→ (N (t), B(t)) a Fock–Goncharov seed pattern (or
simply a seed pattern) if for each edge t k−−− t ′ of TI labeled by k ∈ I , the exchange
matrices B(t) = (bi j ) and B(t ′) = (b′

i j ) are related by the matrix mutation:

b′
i j =

{
−bi j if i = k or j = k,

bi j + [bik]+[bkj ]+ − [−bik]+[−bkj ]+ otherwise.

Here [a]+ := max{a, 0} for a ∈ R, throughout this paper. As a relation between the lattices
assigned to t and t ′, we consider two linear isomorphisms (μ̃ε

k)
∗ : N (t ′) ∼−→ N (t) which

depend on a sign ε ∈ {+,−} and is given by

e′
i �→

{
−ek if i = k,

ei + [εbik]+ek if i 
= k.

Here we write ei := e(t)
i and e′

i := e(t ′)
i . It induces a linear isomorphism (μ̃ε

k)
∗ : M (t ′) ∼−→

M (t) (denoted by the same symbol) which sends f ′
i to the dual basis of (μ̃ε

k)
∗(e′

i ). Explicitly,
it is given by

f ′
i �→

{
− fk +∑

j∈I [−εbkj ]+ f j if i = k,

fi if i 
= k.

We call each map (μ̃ε
k)

∗ the signed seed mutation at k ∈ I .
One can check the following lemma by a direct calculation:

Lemma 2.2 The signed mutations are compatible with matrix mutations. Namely, for any
k ∈ I and ε ∈ {+,−}, we have

{(μ̃ε
k)

∗(e′
i ), (μ̃

ε
k)

∗(e′
j )} = b′

i j .

Remark 2.3 The map (μ̃+
k )∗ corresponds to the seed mutation introduced in [8]. However

we treat it as a linear isomorphism between two lattices, rather than a base change on a fixed
lattice.

For later discussions, we collect here some properties of the presentation matrices of the
signed seed mutation and its dual, with respect to the seed bases. For an edge t k−−− t ′ of TI

and a sign ε ∈ {+,−}, let us consider the matrices Ě (t)
k,ε = (Ěi j )i, j∈I and E (t)

k,ε = (Ei j )i, j∈I ,
given as follows:

Ěi j :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 if i = j 
= k,

−1 if i = j = k,

[ − εb(t)
k j ]+ if i = k and j 
= k,

0 otherwise,

Ei j :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 if i = j 
= k,

−1 if i = j = k,

[εb(t)
ik ]+ if j = k and i 
= k,

0 otherwise.
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Then the transpose of the matrix E (t)
k,ε gives the presentation matrix of (μ̃ε

k)
∗ : N (t ′) ∼−→ N (t)

with repsect to the seed bases (e(t ′)
i ) and (e(t)

i ):

(μ̃ε
k)

∗e(t ′)
i =

∑

j∈I
(E (t)

k,ε)i j e
(t)
j .

Similarly the transpose of the matrix Ě (t)
k,ε gives the presentation matrix of (μ̃ε

k)
∗ : M (t ′) ∼−→

M (t) with respect to the bases ( f (t ′)
i ) and ( f (t)

i ).

Remark 2.4 These matrices look like

Ě (t)
k,ε =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1 ··· 0
...
. . .

...
0 1 0 0 0∗ ··· ∗ −1 ∗ ··· ∗
0 0 0 1 0
...

. . .
...

0 ··· 1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

and E (t)
k,ε =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1 ··· 0 ∗ 0 ··· 0
. . .

...
. 1 ∗ 0 .· 0 −1 0 ·
˙ 0 ∗ 1 ˙

...
. . .

0 ··· 0 ∗ 0 ··· 1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

The following are basic properties, which can be checked by a direct computation.

Lemma 2.5 For any edge t k−−− t ′ and ε ∈ {+,−}, we have the following equations:

1. (E (t)
k,ε)

−1 = E (t)
k,ε , (Ě

(t)
k,ε)

−1 = Ě (t)
k,ε .

2. (E (t)
k,ε)

−1 = E (t ′)
k,−ε , (Ě

(t)
k,ε)

−1 = Ě (t ′)
k,−ε .

3. (E (t)
k,ε)

T = (Ě (t)
k,ε)

−1.

4. B(t) Ě (t)
k,ε = E (t)

k,εB
(t ′).

Notation 2.6 In the sequel, we use the notation Ǎ := (AT)−1 for an invertible matrix A. 1

2.2 Seed tori

We are going to associate several geometric objects to a seed pattern s : t �→ (N (t), B(t)).
LetGm := SpecZ[z, z−1] be the multiplicative group. A reader unfamilier with this notation
can recognize it as Gm(k) = k

∗ by substituting a field k. We repeatedly use the following:

Lemma 2.7 We have an equivalence of categories

Lattices
∼−→ Tori; L �→ TL := Hom(L∨,Gm).

Here the former is the category of finite rank lattices and the latter is the category of split
algebraic tori; L∨ := Hom(L,Z) denotes the dual lattice of L.

Indeed, the inverse functor is given by T �→ X∗(T ) := Hom(Gm, T ). We have a natural
duality X∗(T ) ∼= (X∗(T ))∨, where X∗(T ) := Hom(T ,Gm). On the other hand, for a lattice
N , we have a natural isomorphism N

∼−→ X∗(TN∨) given by n �→ chn , where chn(φ) :=
φ(n). Taking the dual of both sides and letting N = L∨, we get L ∼= (X∗(TL))∨ ∼= X∗(TL).
The character chn on TN∨ used here is called the character associated with n ∈ N .

1 Note that this is consistent with the notation Ě(t)
k,ε , thanks to Lemma 2.5 (3). When one considers a skew-

symmetrizable exchange matrix, it should be replaced with Ǎ := D(AT)−1D−1 with a positive integral
diagonal matrix D = diag(d1, . . . , dN ).
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For each t ∈ TI , we have a pair of tori X(t) := TM(t) , A(t) := TN (t) . They are called the

seed X - and A-tori, respectively. The characters X (t)
i := ch

e(t)
i

and A(t)
i := ch

f (t)
i

are called

the cluster X - andA-coordinates, respectively. The ensemble map induces a monomial map
p(t) : A(t) → X(t), p∗

(t)(X
(t)
i ) = ∏

j∈I (A
(t)
j )bi j .

2.3 Cluster transformations and cluster varieties

Consider an edge t k−−− t ′ of TI .

Notation 2.8 Whenever only one edge t k−−− t ′ of TI is concerned, we denote the cluster

coordinates by Xi := X (t)
i , Ai := A(t)

i , X ′
i := X (t ′)

i and A′
i := A(t ′)

i .

Note that the signed mutation induces monomial isomorphisms μ̃ε
k : X(t)

∼−→ X(t ′) and

μ̃ε
k : A(t)

∼−→ A(t ′) are given by

(μ̃ε
k)

∗X ′
i :=

{
X−1
k if i = k,

Xi X
[εbik ]+
k if i 
= k,

(μ̃ε
k)

∗A′
i :=

{
A−1
k

∏
j∈I A

[−εbk j ]+
j if i = k,

Ai if i 
= k.

Pre-composing the birational automorphisms μ
#,ε
k given by

(μ
#,ε
k )∗Xi := Xi (1 + X ε

k )
−bik and (μ

#,ε
k )∗Ai := Ai (1 + (p∗Xk)

ε)−δik ,

we get the cluster transformations μk := μ̃ε
k ◦ μ

#,ε
k . Explicitly, they are given by

μ∗
k X

′
i =

{
X−1
k if i = k,

Xi (1 + X−sgn(bik )
k )−bik if i 
= k

and

μ∗
k A

′
i =

{
A−1
k (

∏
j∈I A

[bk j ]+
j +∏

j∈I A
[−bk j ]+
j ) if i = k,

Ai if i 
= k,

which do not depend on the sign ε. When we stress the distinction between the X - and
A-transformations, we write μx

k and μa
k instead of μk .

Remark 2.9 The triple ((B(t))FZ, (A(t)
i )i∈I , (X (t)

i )i∈I ) forms a seed in the sense of [16]. The

variables A(t)
i and X (t)

i are called x-variable and y-variable respectively, in the terminology
of Fomin–Zelevinsky.

Definition 2.10 The cluster varieties Xs and As associated with a seed pattern s : t �→
(N (t), B(t)) is defined by gluing the corresponding tori by cluster transformations:

Xs :=
⋃

t∈TI

X(t), As :=
⋃

t∈TI

A(t).

From the definition, each X(t) is an open subvariety of Xs. The pair (X(t), (X
(t)
i )i∈I ) of the

torus X(t) and the set of characters (X (t)
i )i∈I is called the cluster X -chart associated with

t ∈ TI . Similarly we have the notion of cluster A-charts.

Proposition 2.11 ([8, Proposition 2.2]) The ensemble maps p(t) : A(t) → X(t) for t ∈ TI

commute with cluster transformations. In particular they induces a morphism p : As → Xs.

We call the triple (As,Xs, p) the cluster ensemble associated to the seed pattern s.
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2.4 Horizontal mutation loops

In this section, we give a definition of a special class of mutation loops. In brief, general
mutation loops are represented by sequences of indices in I and permutations of I , but here,
we consider the mutation loops which can be represented without permutations. We will
refer to mutation loops of this type as horizontal mutation loops. It suffices to consider only
such mutation loops for the computation of algebraic entropy (see 4.1). We give a concrete
definition below.

Fix a seed pattern s : t �→ (N (t), B(t)).We say that two vertices t, t ′ ∈ TI are s-equivalent
(and write t ∼s t ′) if both vertices are assigned the same matrix: B(t) = B(t ′). Then, the
following linear isomorphism gives a seed isomorphism:

i∗t,t ′ : (N (t ′), B(t ′)) → (N (t), B(t)); e(t ′)
i �→ e(t)

i .

Namely, it is an isomorphism of lattices with skew-symmetric bilinear forms. The s-
equivalence class containing t is denoted by [t]s.

An edge path γ from t to t ′ in TI is denoted by γ : t → t ′. For such an edge path, we
define the birational map μz

γ : Z(t) → Z(t ′) to be the composition of the birational maps
associated to the edges it traverses for (z,Z) = (a,A), (x,X ).

Remark 2.12 The map μz
γ only depends on the endpoints t and t ′, thanks to the fact that each

cluster transformation is involutive.

Let γν : tν → t ′ν be a path in TI such that tν ∼s t ′ν for ν = 1, 2. We say that γ1 and γ2 are
s-equivalent if the following diagram commutes:

Z(t ′1) Z(t1)

Z(t ′2) Z(t2),

i z
t ′1,t1

μz
δ′ μz

δ

i z
t ′2,t2

(2.1)

for paths δ : t1 → t2 and δ′ : t ′1 → t ′2. Here (z,Z) = (a,A), (x,X ) and the horizontal maps
are induced by the seed isomorphisms i∗t ′ν ,tν

for ν = 1, 2. Note that the commutativity of the

diagram does not depend on the choice of paths δ and δ′. The s-equivalence class containing
an edge path γ is denoted by [γ ]s.
Definition 2.13 A horizontal mutation loop is the s-equivalence class of an edge path γ :
t → t ′ such that t ∼s t ′. For a horizontal mutation loop φ = [γ ]s, the path γ is called a
representation path of φ.

Action on the cluster varieties. For a horizontal mutation loop φ, take a representation path
γ : t → t ′. Then we have the following composite of birational isomorphisms:

φz
(t) : Z(t)

μz
γ−→ Z(t ′)

i z
t ′,t−−→ Z(t) (2.2)

for (z,Z) = (a,A), (x,X ). It induces an automorphism on the cluster varietyZs, as follows:

Z(t) Z(t ′) Z(t)

Zs Zs Zs.

μz
γ

i z
t ′,t

φz
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Here the vertical maps are coordinate embeddings given by definition of the cluster variety.
If γν : tν → t ′ν for ν = 1, 2 are two representation paths of φ, then the following diagram
commutes:

Z(t1) Z(t ′1) Z(t1)

Z(t2) Z(t ′2) Z(t2),

μz
γ1

μz
δ μz

δ′

i z
t ′1,t1

μz
δ

μz
γ2 i z

t ′2,t2

(2.3)

where δ : t1 → t2 and δ′ : t ′1 → t ′2 are arbitrary paths. Indeed, the left square commutes
by Remark 2.12 and the right square commutes by (2.1). Thus the birational actions on Zs
induced by different representation paths are compatible with each other, and hence we get
a well-defined action of φ on Zs. We call the birational map (2.2) the coordinate expression
of φ at the vertex t0 ∈ TI , which only depends on the mutation loop φ and the vertex t0.

Later we will use the following notations: for an edge path γ : t0 k0−−− t1
k1−−− · · · kh−1−−− th ,

– k := (k0, . . . , kh−1) and write the path as γ : t0 k−→ th .
– h(γ ) := h, which is referred to as the length of γ .

– γ n : t0 k−→ th
k−→ · · · k−→ tnh for an integer n ≥ 1. Note that if γ represents a horizontal

mutation loop φ, then γ n represents a horizontal mutation loop ψ such that ψ z
(t0)

=
(φz

(t0)
)n . Therefore we write φn := ψ .

Remark 2.14 Changes of representation paths of a mutation loop are divided into the follow-
ing two types:

(a) A change with the initial vertex fixed, the path δ in (2.3) being constant. For example,
an elimination or addition of a round trip t k−−− t ′ k−−− t on an edge preserves the
s-equivalence class from Remark 2.12. Likewise, one can eliminate or add a path δ′
corresponding to one of the (h + 2)-gon relations [8].

(b) A change of the initial vertex, the paths δ : t1 k−→ t2 and δ′ : t ′1
k′−→ t ′2 in (2.3) being related

as k = k′. In this case, the birational maps φz
(t1)

and φz
(t2)

are related by the conjugation
of the map μz

δ .

Remark 2.15 The origin of the name “horizontal” is clarified in our paper [24]. A general
mutation loop can be formulated as an equivalence class of an edge path on a graphEI , which
is an enhancement of TI by the Cayley graph of the symmetric group SI . We will call an
edge of EI coming from TI (resp. the Cayley graph ofSI ) a horizontal edge (resp. vertical
edge), in analogy with the terminology used for the mapping class groupoid [28, Section
5]. As we mentioned at the beginning of this subsection, a horizontal mutation loop can be
seen as a particular element of the cluster modular group. The notation φn agrees with the
composition law in the cluster modular group.

2.5 Separation formulae and the c, g, f-vectors

Fix t0 ∈ TI . Then we assign the C-matrix C s;t0
t = (c(t)

i j )i, j∈I to each vertex t ∈ TI by the
following rule:

1. C s;t0
t0 = Id,
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2. For each t k−−− t ′ of TI , the matrices C s;t0
t and C s;t0

t ′ are related by

c′
i j =

{
−ci j i = k,

ci j + [b(t)
ik ]+[ck j ]+ − [−b(t)

ik ]+[−ck j ]+ i 
= k.
(2.4)

Herewewrite ci j := c(t)
i j and c′

i j := c(t ′)
i j . Its rowvectors c(t)

i = (c(t)
i j ) j∈I are called c-vectors2.

The following theoremwas firstly conjectured in [17], proved in [6] for skew-symmetric case,
and in [18] for skew-symmetrizable case.

Theorem 2.16 (Sign-coherence theorem for c-vectors) For any t ∈ TI and i ∈ I , c(t)
i ∈ Z

I≥0

or c(t)
i ∈ Z

I≤0.

Following [27], we define the tropical sign ε
(t)
i to be + in the former case, and − in the latter

case.
Using the identity [εb]+c + b[−εc]+ = [b]+[c]+ − [−b]+[−c]+ for real numbers b, c

and a sign ε ∈ {+,−}, we get
c′
i j = ci j + [εb(t)

ik ]+ck j + b(t)
ik [−εck j ]+

for i 
= k. Substituting ε = ε
(t)
k , we get c′

i j = ci j + [ε(t)
k b(t)

ik ]+ck j . Equivalently, we get the
following:

C s;t0
t ′ = E (t)

k,ε(t)
k

C s;t0
t , (2.5)

where E (t)

k,ε(t)
k

is defined in Sect. 2.1.

Similarly, we assign theG-matrix G s;t0
t = (g(t)

i j )i, j∈I to each vertex t ∈ TI . TheG-matrix
is originally defined as a grading vector of cluster A-variables. See [17, Section 6]. Since it
involves a bit complicated recurrence relation, we adopt here the simplified recursion given
in [27] as the definition of G-matrices:

1. G s;t0
t0 =Id,

2. For each t k−−− t ′ of TI , the matrices G s;t0
t and G s;t0

t ′ are related by

G s;t0
t ′ = Ě (t)

k,ε(t)
k

G s;t0
t . (2.6)

We refer to the row vectors g(t)
i of G s;t0

t as g-vectors. The tropical duality

G s;t0
t = Č s;t0

t (2.7)

is a consequence of Lemma 2.5 (3), (2.5) and (2.6).
In [17, Section 3], they introduce the F-polynomials as the special values of cluster

A-variables (called “x-variables” in loc. cit.) with principal coefficients. In this paper, we
adopt the recurrence relation discussed in [17, Section 5] as the definition of F-polynomial.
Fix a vertex t0 ∈ TI and N indeterminates y1, . . . , yN . We assign the i -th F-polynomials
F (t)
i (y1, . . . , yN ) ∈ Z[y1, . . . , yN ] for i ∈ I to each vertex t ∈ TI :

1. F (t0)
i = 1 for all i ∈ I ,

2 Note that, due to the conventional difference explained in Remark 2.1(2), our C-matrices are transpose of
those used in [17,27]
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2. For each t k−−− t ′ of TI , the polynomials (F (t)
i )i∈I and (F (t ′)

i )i∈I are related by

F (t ′)
i =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

F (t)
i if i 
= k,
∏

j∈I y
[c(t)
k j ]+

j

∏
l∈I (F

(t)
l )[b

(t)
kl ]+ +∏

j∈I y
[−c(t)

k j ]+
j

∏
l∈I (F

(t)
l )[−b(t)

kl ]+

F (t)
k

if i = k.

Though it is not clear that F (t)
i (y1, . . . , yN ) are polynomials from the above definition, one

can check it by following the discussions in [17]; it is one of the consequences of the Laurent
phenomenon of cluster A-variables [17, Proposition 3.6].

Using these concepts, we can separate the rational expression of A- and X -variables in
initial variables into its monomial part and polynomial part. The following formulae are
called the separation formulae:

Theorem 2.17 ([17, Proposition 3.13, Corollary 6.3]) Fix a vertex t0 ∈ TI and write Ai :=
A(t0)
i and Xi := X (t0)

i for i ∈ I . Then for each t ∈ TI , the variables A(t)
i and X (t)

i can be
written as follows:

A(t)
i =

N∏

j=1

A
g(t)
i j
j · F (t)

i (p∗X1, . . . , p
∗XN ), (2.8)

X (t)
i =

N∏

j=1

X
c(t)
i j
j F (t)

j (X1, . . . , XN )
b(t)
j i . (2.9)

The following lemma will be used to give an estimate of the algebraic entropy of the X -
transformation from below:

Lemma 2.18 ([17, Proposition 5.2])Each of the F-polynomials F (t)
i (y1, . . . , yN ) is not divis-

ible by any y j .

Fujiwara and Gyoda introduce the F-matrices as a linearization of F-polynomials in [15].

Definition 2.19 Fix a vertex t0 ∈ TI . For each i ∈ I and t ∈ T, let f (t)
i1 , . . . , f (t)

i N denote

the maximal degrees of y1, . . . , yN in the i-th F-polynomial F (t)
i (y1, . . . , yN ). Then f (t)i :=

( f (t)
i1 , . . . , f (t)

i N ) is called the f -vector and F s;t0
t := ( f (t)

i j )i, j∈I is called the F-matrix assigned
at t .

Later we use some of the mutation formulae for F-matrices derived in [15]. For a seed
pattern s, let −s denote the seed pattern t �→ (N (t),−B(t)).

Theorem 2.20 ([15, Theorem 2.8]) Let s be a seed pattern and fix t0 ∈ TI . Then for each
t ∈ TI , we have the following equations:

C−s;t0
t = C s;t0

t + B(t)F s:t0
t ,

G−s;t0
t = G s;t0

t + F s:t0
t B(t0),

F−s;t0
t = F s;t0

t .
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Theorem 2.21 ([15, Proposition 2.16]) For any edge t k−−− t ′ in TI , we have

F s;t0
t ′ = Ě (t)

k,ε(t)
k

F s;t0
t + [ε(t)

k C−s,t0
t ]k•+ .

Here for an N × N matrix A,

[A]k• := diag(0, . . . , 0,
k
1, 0, . . . , 0) · A

and [A]+ is the matrix obtained by applying [−]+ to each entries.

2.6 Tropicalizations of the cluster ensemble

Let P = (P,⊕, ·) be a semifield. For a torus TL with finite rank lattice L , we define TL(P) :=
L ⊗Z P

×. Here P
× := (P, ·) denotes the multiplicative group. A positive rational map

f : TL → TL ′ naturally induces a map f (P) : TL(P) → TL ′(P). For a more detailed (and
generalized) correspondence, see [18].

Recall the character ch�∨ ∈ X∗(TL) associated with a point �∨ ∈ L∨. It induces a group
homomorphism ch�∨(P) : TL(P) → P by ψ ⊗ p �→ 〈ψ, ch�∨〉p. One can verify that it
coincides with the evaluation map L ⊗Z P → P; λ ⊗ p �→ �∨(λ)p. Applying them to seed
tori X(t) and A(t), we get X(t)(P) = M (t) ⊗ P and A(t) = N (t) ⊗ P equipped with functions

x (t)
i := ch

e(t)
i

(P) : X(t)(P) → P, a(t)
i := ch

f (t)
i

(P) : A(t)(P) → P

which we call the tropical cluster X - and A-coordinates. Since cluster transformations are
positive rational maps, they induce maps between these sets.

Definition 2.22 We define the set of P-valued points as Xs(P) := ⊔
t∈TI

X(t)(P)/ ∼, where

for each edge t k−−− t ′, two points x ∈ X(t)(P) and x ′ ∈ X(t ′)(P) are identified if x ′ =
μk(P)(x). Similarly we define As(P).

We are mainly interested in the case P = Z
trop or Rtrop. These semifields are defined to be

the sets Z and R equipped with min-plus operations a ⊕ b := min{a, b}, a · b := a + b. In
these cases, the tropicalized cluster transformations associated with an edge t k−−− t ′ of TI

are given by

(μx
k (P))∗x ′

i =
{

−xk if i = k,

xi − bik min{0,−sgn(bik)xk} if i 
= k.
(2.10)

and

(μa
k (P))∗a′

i =
{

−ak + min
{∑

j∈I [bkj ]+a j ,
∑

j∈I [−bkj ]+a j

}
if i = k,

ai if i 
= k.
(2.11)

Here we abbreviate Notation 2.8 for tropical coordinates. In particular, Xs(R
trop) and

As(R
trop) are piecewise linear (PL for short) manifold. The ensemble map p(t) : A(t) → X(t)

induces a linear map p(t)(P) : A(t)(P) → X(t)(P), which is given by (p(t)(P))∗xk =∑
i∈I bki ai .
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3 Sign stability of mutation loops

In this section, we introduce the sign stability of (horizontal) mutation loops and state some
basic properties.

3.1 Definition of the sign stability

In what follows, we mainly deal with the R
trop or Ztrop-valued points of cluster varieties.

Therefore we omit the symbol Rtrop or Ztrop from the tropicalizations of positive maps, for
notational simplicity. Moreover we omit the symbol “a” and “x” from the superscript when
no confusion can occur.

In order to obtain the presentation matrices of the tropical cluster X -transformation in
the case P = R

trop, first we rewrite the formula (2.10). For a real number a ∈ R, let sgn(a)

denote its sign:

sgn(a) :=

⎧
⎪⎨

⎪⎩

+ if a > 0,

0 if a = 0,

− if a < 0.

Lemma 3.1 Fix a point w ∈ X(t)(R
trop). Then the tropical cluster X -transformation (2.10)

can be written as follows:

x ′
i (μk(w)) =

{
−xk(w) if i = k,

xi (w) + [sgn(xk(w))bik]+xk(w) if i 
= k.
(3.1)

Proof Using the formula a[sgn(a)b]+ = b[sgn(b)a]+ for real numbers a, b, we get

−bik min{0,−sgn(bik)xk(w)} = bik[sgn(bik)xk(w)]+ = xk(w)[sgn(xk(w))bik]+.

��
With this lemma in mind, we consider the half-spaces

Hx,(t)
k,ε := {w ∈ X(t)(R

trop) | εx (t)
k (w) ≥ 0}

for k ∈ I , ε ∈ {+,−} and t ∈ TI .
Let ψ : V → W be a PL map between two vector spaces with fixed bases. If ψ is

differentiable at x ∈ V , then the presentationmatrix ofψ at x is the presentationmatrix of the
tangent map dψx : TxV → Tψ(x)W with respect to the given bases. When V = X(t)(R

trop)

and W = X(t ′)(Rtrop) for some t, t ′ ∈ TI , we always consider the bases ( f (t)
i )i∈I and

( f (t ′)
i )i∈I respectively, unless otherwise specified.
Then we have the following immediate corollary of Lemma 3.1.

Corollary 3.2 For ε ∈ {+,−}, the tropical cluster X -transformation μk : X(t)(R
trop) →

X(t ′)(Rtrop) is differentiable at any point in intHx,(t)
k,ε , and its presentation matrix is given by

E (t)
k,ε there.

3

3 Note that this is the presentation matrix of the signed mutation (μ̃ε
k )

∗ : M(t ′) → M(t). It should be

understood as the transpose of the signed mutation (μ̃ε
k )

∗ : N (t ′) → N (t) in view of Lemma 2.5 (1) and (3)

with a notice that the lattice N (t) gives functions on X(t)(R
trop) ∼= M(t) ⊗ R.
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We are going to define the sign of a path inTI . In the sequel, we use the following notation.

Notation 3.3

1. For an edge pathγ : t0 k0−−− t1
k1−−− · · · kh−1−−− th and i = 1, . . . , h, letγ≤i : t0 (k0,...,ki−1)−−−−−−→ ti

be the sub-path of γ from t0 to ti , and let γ≤0 be the constant path at t .
2. Fixing the initial vertex t0 ∈ TI in the sequel, we simply denote the coordinate expression

of φ at t0 by φ := φ(t0) : X(t0)(R
trop) → X(t0)(R

trop). For a point w ∈ X(t0)(R
trop), let

E (t0)
φ (w) denote the presentation matrix of φ at w.

Definition 3.4 (sign of a path) Let the notation as above, and fix a point w ∈ X(t0)(R
trop).

Then the sign of γ at w is the sequence εγ (w) = (ε0, . . . , εh−1) ∈ {+, 0,−}h of signs
defined by

εi := sgn(x (ti )
ki

(μγ≤i (w)))

for i = 0, . . . , h − 1.

Next lemma expresses the heart of Definition 3.4.

Lemma 3.5 Let ε = (ε0, . . . , εh−1) be the sign of a path γ at w ∈ X(t0)(R
trop). If it is strict,

namely ε ∈ {+,−}h, then the cluster X -transformation μγ is differentiable at w, and the

presentation matrix is given by Eε
γ := E (th−1)

kh−1,εh−1
. . . E (t1)

k1,ε1
E (t0)
k0,ε0

.

Using the concept of the sign of a mutation sequence, now we define the sign stability.

Definition 3.6 (sign stability) Let γ be a path as above which represents a mutation loop
φ := [γ ]s. Let Ω ⊂ X(t0)(R

trop) be a subset which is invariant under the rescaling action of
R>0. Then we say that γ is sign-stable on Ω if there exists a sequence εstabγ,Ω ∈ {+,−}h of
strict signs such that for each w ∈ Ω \ {0}, there exists an integer n0 ∈ N satisfying

εγ (φn(w)) = εstabγ,Ω

for all n ≥ n0. We call εstabγ,Ω the stable sign of γ on Ω .

For example, if φ has an invariant rayR≥0w such that the sign εγ (w) is strict, then γ is sign-
stable on Ω := R≥0w. More interesting choices of Ω would be the set R>0 · X(t0)(Z

trop) of
integral points (cf. [20]) or the union Ωcan

(t0)
of the positive and negative cones which will be

introduced below. See Sect. 5 for concrete examples. As a simple non-example, if φ has an
invariant ray R≥0w such that the sign εγ (w) is non-strict (i.e., contains 0), then it cannot be
sign-stable on any set Ω which contains R≥0w.

Sign stability in particular implies that the presentation matrix of φ at each point w ∈ Ω

stabilizes:

Corollary 3.7 Suppose γ is a path as above which represents a mutation loop φ = [γ ]s, and
which is sign-stable on Ω . Then there exists an integral N × N-matrix E (t0)

φ,Ω ∈ GLN (Z)

such that for each w ∈ Ω , there exists an integer n0 ≥ 0 such that E (t0)
φ (φn(w)) = E (t0)

φ,Ω

for all n ≥ n0.

We will discuss a Perron–Frobenius property of the stable presentation matrix E (t0)
φ,Ω in

Sect. 3.2.
Next lemma shows that the tropical sign for c-vectors can be regarded as a special case of

the sign of a path γ in TI .
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Lemma 3.8 When the coordinates of w ∈ X(t0)(R
trop) are positive, the sign εγ (w) coincides

with the sequence of tropical signs

ε
trop
γ := (ε

(t0)
k0

, . . . , ε
(th−1)

kh−1
).

Moreover, the PL action of φ is differentiable at any point in the interior of the non-negative
cone

C+
(t0)

:=
{
w ∈ X(t0)(R

trop) | x (t0)
i (w) ≥ 0 for i = 1, . . . , N

}
,

and its presentation matrix there coincides with the C-matrix C s;t0
th :

φ|C+
(t0)

= E
ε
trop
γ

γ = C s;t0
th .

Moreover, we have Ě
ε
trop
γ

γ = G s;t0
th .

Proof For t ∈ TI , l
±
(t) ∈ X(t)(R

trop) be the unique point determined by x(t)(l
±
(t)) =

(±1, . . . ,±1)T. Here x(t) := (x (t)
1 , . . . , x (t)

N )T. Then l+(t0) belongs to the interior of the cone

C+
(t0)

. We claim that

x(ti )(μ≤i (l
+
(t0)

)) = C s;t0
ti · (1, . . . , 1)T (3.2)

holds for i = 0, . . . , h − 1. It clearly holds for i = 0. For i > 0, from Corollary 3.2 we have

x(ti )(μ≤i (l
+
(t0)

)) = E (ti−1)

ki−1,εi−1
· x(ti−1)(μ≤i−1(l

+
(t0)

))

= E (ti−1)

ki−1,εi−1
· C s;t0

ti−1
· (1, . . . , 1)T,

where εi−1 := sgn(x (ti−1)

ki−1
(l+(t0))) = sgn(

∑
j∈I c

(ti−1)

j,ki−1
) = ε

(ti−1)

ki−1
by the induction assumption

and the definition of the tropical sign. Comparing with the mutation rule (2.5), we see that
(3.2) holds. ��

We have the following “negative” version of Lemma 3.5:

Corollary 3.9 The PL action of φ is differentiable at any point in the interior of the non-
positive cone

C−
(t0)

:=
{
w ∈ X(t0)(R

trop) | x (t0)
i (w) ≤ 0 for i = 1, . . . , N

}
,

and its presentation matrix there coincides with the C-matrix C−s;t0
th for the opposite seed

pattern −s : t �→ (N (t),−B(t)) =: (N (−t), B(−t)). Namely, we have

φ|C−
(t0)

= C−s;t0
th .

If we denote the sign of φ at any point in int C−
(t0)

by ε
trop
γ , we have

C−s;t0
th = E

ε
trop
γ

γ and G−s;t0
th = Ě

ε
trop
γ

γ .
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Proof Let us write X(−t) := TM(−t) so that X−s = ∪t∈TIX(−t). Then one can easily see that

the monomial isomorphisms ι(t) : X(t)
∼−→ X(−t) given by ι∗(t)X

(−t)
i := (X (t)

i )−1 for each
t ∈ TI commute with cluster transformations, and hence combine to give an isomorphism
ι : Xs

∼−→ X−s. See [9, Lemma 2.1 (b)]. Moreover for two vertices t, t ′ ∈ TI , we have t ∼s t ′
if and only if t ∼−s t ′. Hence the s-equivalence class of a path in TI is a (−s)-equivalence
class, and vice versa. The monomial isomorphism ι : Xs

∼−→ X−s is equivariant for the action
of each mutation loop.

The tropicalized map ιtrop : Xs(R
trop)

∼−→ X−s(R
trop) is represented as −Id on each chart,

and hence sends the non-positive cone C−
(t0)

to the non-negative cone C+
(−t0)

. Therefore from
Lemma 3.5, we get

φ(w−) = (ιtrop)−1(φ(ιtrop(w−))) = (−Id)−1C−s;t0
th (−Id)w− = C−s;t0

th w−

for all w− ∈ int C−
(t0)

. The remaining assertions follows from the tropical duality (2.7). ��
In particular, we have:

Proposition 3.10 Let γ : t0 → t be a path which represents a mutation loop. Then for any
point w ∈ int C+

(t0)
(resp. w ∈ int C−

(t0)
), the path γ is sign-stable on int C+

(t0)
(resp. int C−

(t0)
) if

and only if it is sign-stable on the ray R≥0w.

Remark 3.11 Wecan define a similar sign sequence for tropicalA-transformations as follows.
Fix a point v ∈ A(t)(R

trop). Then the tropical clusterA-transformation (2.11) can be written
as follows:

a′
i (μk(v)) =

{
−ak(v) +∑

j∈I [−sgn(xk(p(v)))bkj ]+a j (v) if i = k,

ai (v) if i 
= k.
(3.3)

Indeed, it follows from
∑

j∈I [bkj ]+a j −∑
j∈I [−bkj ]+a j = ∑

j∈I bk j a j = (ptrop)∗xk .
Consider the half-spaces

Ha,(t)
k,ε := {v ∈ A(t)(R

trop) | εxk(p(w)) ≥ 0}
for k ∈ I , ε ∈ {+,−} and t ∈ TI . Then for an edge t k−−− t ′, the tropical cluster A-
transformation μk : A(t)(R

trop) → A(t ′)(Rtrop) is differentiable at any point in intHa,(t)
k,ε and

its presentation matrix there is Ě (t)
k,ε .

3.2 Perron–Frobenius property

We say that a path γ : t0 k=(k0,...,kh−1)−−−−−−−−→ t in TI is fully-mutating if

{k0, . . . , kh−1} = I .

The following is a fundamental result on the stable presentation matrix of a sign-stable
mutation loop:

Theorem 3.12 (Perron–Frobenius property) Suppose γ is a path as above which represents
a mutation loop φ = [γ ]s, and which is sign-stable on Ω . Then the spectral radius of E (t0)

φ,Ω

is attained by a positive eigenvalue λ
(t0)
φ,Ω , and we have λ

(t0)
φ,Ω ≥ 1. Moreover if either γ

is fully-mutating or λ
(t0)
φ,Ω > 1, then one of the corresponding eigenvectors is given by the

coordinate vector x(wφ,Ω) ∈ R
I for some wφ,Ω ∈ Cstabγ \ {0}.
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The proof will be given in Sect. 3.3.We have checked that the following conjecture holds true
for a large number of examples, by using a computer. We do not know any counterexamples.

Conjecture 3.13 For any point w ∈ X(t0)(R
trop) and a path γ which represents a mutation

loop, the characteristic polynomials of the matrices E
εγ (w)
γ and Ě

εγ (w)
γ are the same up to an

overall sign 4. In particular, the spectral radii of these matrices are the same.

Note that for an N × N -matrix E with det E = ±1, the characteristic polynomials of the
matrices E and Ě are the same up to an overall sign if and only if the characteristic polynomial
PE (ν) of E is (anti-)palindromic: PE (ν−1) = ±ν−N PE (ν).

Proposition 3.14 Suppose γ : t → t ′ is a path which represents a mutation loop. If the
exchange matrix B(t) is regular, then the characteristic polynomials of Eε

γ and Ěε
γ are the

same for any sign ε ∈ {+,−}h(γ ). In particular, Conjecture 3.13 is true.

Proof Let ε ∈ {+,−}h(γ ). Using Lemma 2.5 (4) repeatedly , we obtain

B(t) Ěε
γ = Eε

γ B
(t).

The assertion follows from this equation. ��
It turns out that the sign stability on the set Ωcan

(t0)
:= int C+

(t0)
∪ int C−

(t0)
plays a crucial role

in the sequel, and the corresponding eigenvalue λ
(t0)
φ,Ωcan

(t0)
is a canonical numerical invariant of

the mutation loop φ.

Definition 3.15 (Cluster stretch factor) Suppose φ = [γ ]s is a mutation loop, and the path
γ is sign-stable on the set Ωcan

(t0)
. Then we denote the stable presentation matrix (Corollary

3.7) by E (t0)
φ := E (t0)

φ,Ωcan
(t0)

, and we call the spectral radius λ
(t0)
φ := λ

(t0)
φ,Ωcan

(t0)
the cluster stretch

factor of φ.

Note that from the definition, the cluster stretch factor is an algebraic integer of degree at
most N .

Remark 3.16 If moreover the path γ as above is fully-mutating or λ
(t0)
φ,Ω > 1, then the cluster

stretch factor λ
(t0)
φ only depends on the mutation loop φ. Indeed, if φ also admits a represen-

tation path γ ′ : t ′0 → t ′ which is sign-stable on Ωcan
(t ′0)

, then choosing a path δ : t0 → t ′0, we
get the relation

(dφ(t ′0))μδ(w) ◦ (dμδ)w = (dμδ)φ(t0)(w) ◦ (dφ(t0))w (3.4)

for any point w ∈ X(t0)(R
trop). When w = wφ,Ω with Ω := Ωcan

(t0)
, then we have

φ(t0)(wφ,Ω) = λ
(t0)
φ .wφ,Ω and in particular the points wφ,Ω and φ(t0)(wφ,Ω) have the same

sign for any path δ. Denote the common presentation matrix of the PL mapμδ at these points
by M . Then (3.4) implies that

E
(t ′0)
φ = ME (t0)

φ M−1,

hence the spectral radii λ(t0)
φ and λ

(t0)
φ are the same. In this case, we simply write λφ := λ

(t0)
φ .

4 The conjecture of this form is based on a suggestion by Yuma Mizuno.
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3.3 Proof of Theorem 3.12

Fix a mutation loop φ ∈ Γs and its representation path γ : t0 k−→ t with h(γ ) = h. For a sign
ε ∈ {+,−}h we define the cone Cε

γ as

Cε
γ := rel.cl{w ∈ X(t0)(R

trop) | εγ (w) = ε} ⊂ X(t0)(R
trop),

where rel.cl denotes the relative closure.

Proposition 3.17 The sign cone Cε
γ is polyhedral and convex.

Proof Let

γ : t0 k0−−− t1
k1−−− · · · kh−1−−− th . (3.5)

By definition, one can verify that

Cε
γ =

h−1⋂

i=0

μ−1
γ≤i

(H(ti )
ki ,εi

), (3.6)

where μ≤0 := id. We will prove the claim by induction on the length of the path γ .
In the case h(γ ) = 1, the cone Cε0

γ is nothing but the half space H(t0)
k0,ε0

, so it is clearly
polyhedral and convex.

In the case h(γ ) = h > 1, we put ε′ := (ε0, . . . , εh−2), γ ′ := γ≤h−1, γ ′′ := γ≤h−2 and
Hi := H(ti )

ki ,εi
for i = 0, . . . , h − 1. Then,

Cε
γ = Cε′

γ ′ ∩ μ−1
γ ′ (Hh−1)

= μ−1
γ ′′ (μγ ′′(Cε′

γ ′) ∩ μ−1
kh−2

(Hh−1))

= μ−1
γ ′′ (μγ ′′(Cε′

γ ′) ∩ Hh−2 ∩ μ−1
kh−2

(Hh−1)).

Here, the last equation follows from

μγ ′′(Cε′
γ ′) = μγ ′′(H0) ∩ μγ ′′(μ−1

γ≤1
(H1)) ∩ · · · ∩ Hh−2.

Since μγ ′′ is linear on the cone Cε′
γ ′ , which is convex and polyhedral by the induction hypoth-

esis, the image μγ ′′(Cε′
γ ′) is also convex and polyhedral. Since the bent locus of the boundary

of μ−1
kh−2

(Hh−1) is contained in the boundary ofHh−2, the intersectionHh−2 ∩μ−1
kh−2

(Hh−1)

is the same as the intersection of two half-spaces, so it is also convex and polyhedral.
Thus the intersection μγ ′′(Cε′

γ ′) ∩ Hh−2 ∩ μ−1
kh−2

(Hh−1) is a convex polyhedral cone, and
so is the cone Cε

γ since it is the inverse image under the linear map μkh−2 |Hh−2 . ��
In order to prove Theorem 3.12, we recall the notion of dual cones.

Definition 3.18 (Dual cone) Let C be a convex cone in a finite dimensional vector space V .

1. The dimension dim C of C is the dimension of the smallest subspace of V containing C.
2. The dual cone C∨ of C is a cone in the dual space V ∗, defined by

C∨ := {n ∈ V ∗ | 〈n, v〉 ≥ 0 for all v ∈ C}.
The following lemma is well-known.
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Lemma 3.19

1. A convex cone C ⊂ V is strictly convex if and only if dim C∨ = dim V .
2. For two convex cones C1, C2 ⊂ V , (C1 ∩ C2)∨ = C∨

1 + C∨
2 .

Proposition 3.20 The sign cone Cε
γ is strictly convex if γ is fully-mutating.

Proof Let γ be as in (3.5). For each i = 0, 1, . . . , h − 1, we have

μ−1
γ≤i

(H(ti )
ki ,εi

) = {μ−1
γ≤i

(w′) | w′ ∈ X(ti )(R
trop), 〈εi · e(ti )

ki
, w′〉 ≥ 0}

= {w ∈ X(t0)(R
trop) | 〈εi · e(ti )

ki
, μγ≤i (w)〉 ≥ 0}

= {w ∈ X(t0)(R
trop) | 〈εν · e(ti )

ki
, E

ε≤i
γ≤i · w〉 ≥ 0}

= {w ∈ X(t0)(R
trop) | 〈εi · (E

ε≤i
γ≤i )

T · e(ti )
ki

, w〉 ≥ 0},
where ε≤i = (ε0, . . . , εi−1). Since (e(ti )

j ) j is the basis of N (ti ), ci := (E
ε≤i
γ≤i )

T · e(ti )
ki

is the

ki -th row vector of E
ε≤i
γ≤i . Thus,

(Cε
γ )∨ =

h−1∑

i=0

(
μ−1

γ≤i
(H(ti )

ki ,εi
)
)∨

(by (3.6) and Lemma 3.19(2))

=
h−1∑

i=0

R≥0εi · ci

Now we claim that

spanR{cν} jν=0 = spanR{e(t0)
kν

} jν=0

holds for 0 ≤ j ≤ h − 1. Indeed, with a notice that the matrices E (t ′)
k,ε are row operator

matrices (except for the −1 at the (k, k)-entry), one can easily see that the inclusion “⊆”
holds. To prove the converse inclusion “⊇”, we proceed by induction on j . For j = 0, it is
obvious since e(t0)

k0
= c0. Assume the j-th step of the induction. If k j+1 ∈ {k0, . . . , k j }, then

the claim is also obvious. If k j+1 /∈ {k0, . . . , k j }, then the matrix E
ε≤ j+1
γ≤ j+1 does not include

the row operation on the k j+1-th row, and hence its k j+1-th column vector is still the basis
vector. Hence

c j+1 − e(t0)
k j+1

∈ spanR{e(t0)
kν

} jν=0 = spanR{cν} jν=0

by the fact that c j+1 ∈ spanR{e(t0)
kν

} j+1
ν=0 which we have confirmed and the induction hypoth-

esis. Thus the claim is proved. Hence dim((Cε
γ )∨) = N by the fully-mutating condition,

which implies the assertion by Lemma 3.19 (1). ��
Proof of Theorem 3.12 Let us first consider the case where the path γ is fully-mutating. In

this case, by Proposition 3.20 the sign cone Cεstabγ
γ is strictly convex, and so is the cone

Cstabγ :=
⋂

n≥1

C(εstabγ )n

γ n ,

which is also Eφ-stable by definition. Here, (εstabγ )n := (εstabγ , . . . , εstabγ
︸ ︷︷ ︸

n

). Then by [2, Chapter

1, Theorem 3.2], the spectral radius ρ(E (t0)
φ ) is an eigenvalue and the cone Cεstabγ

γ contains
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a corresponding eigenvector wφ,Ω . Since det E (t0)
φ = ±1, we have ρ(E (t0)

φ ) ≥ 1 and the
assertion is proved.

Let us consider the case where the spectral radius ρ(E (t0)
φ ) > 1, and γ is not necessarily

fully-mutating.Write γ as in (3.5). Let I (γ ) := {k0, . . . , kh−1} ⊂ I , and s be the seed pattern
with the seed

(
N (t0)|I (γ ) :=

⊕

i∈I (γ )

Ze(t0)
i , B(t0)|I (γ ) := (b(t)

i j )i, j∈I (γ )

)

at the initial vertex t0. Then γ can be regarded as an edge path in TI (γ ), which is fully-

mutating and represents a mutation loop φ := [γ ]s. From the form of the matrices E (t ′)
k,ε

(recall Remark 2.4), we have the block-decomposition

E (t0)
φ =

(
E (t0)

φ
0

X (t0)
φ 1

)

with respect to the direct sum decomposition X(t0)(R
trop) = R

I = R
I (γ ) ⊕R

I\I (γ ) for some

|I \ I (γ )|× |I (γ )|-matrix X (t0)
φ and the stable presentation matrix E (t0)

φ
of the mutation loop

φ. In particular, ρ(E (t0)
φ ) = ρ(E (t0)

φ
). Then by applying the argument above to E (t0)

φ
, we see

that ρ(E (t0)
φ

) is an eigenvalue of E (t0)
φ

, hence of E (t0)
φ . One of the corresponding eigenvector

of the latter is given by

wφ,Ω :=
(

wφ,Ω,
X (t0)

φ wφ,Ω

λ
(t0)
φ − 1

)

,

where Ω ⊂ Xs(R
trop) is the image of Ω under the projection π : Xs(R

trop) → Xs(R
trop)

determined by π∗X (t0)
i := X (t0)

i for i ∈ I (γ ). Thus the theorem is proved. ��

Remark 3.21 From the proof, the statements in Theorem 3.12 still holds if the cone C(εstabγ )n

γ n

is strictly convex for some n ≥ 1. This generalization is useful when we deal with a general
mutation loop including permutations of indices. See Remark 5.9.

4 Algebraic entropy of cluster transformations

Let us first recall the definition of the algebraic entropy following [3].
For a rational function f (u1, . . . , uN )overQon N variables,write it as f (u) = g(u)/h(u)

for two polynomials g and h without common factors. Then the degree of f , denoted by
deg f , is defined to be the maximum of the degrees of the constituent polynomials g and h.
For a homomorphism ϕ∗ : Q(u1, . . . , uN ) → Q(u1, . . . , uN ) between the field of rational
functions on N variables, let ϕi := ϕ∗(ui ) for i = 1, . . . , N . Since Q(u1, . . . , uN ) is the
field of rational functions on the algebraic torus G

N
m equipped with coordinate functions

u1, . . . , uN , the homomorphism ϕ∗ can be regarded as the pull-back action via a rational
map ϕ : GN

m → G
N
m between algebraic tori. We define the degree of ϕ to be the maximum

of the degrees degϕ1, . . . , degϕN and denote it by deg(ϕ).
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Definition 4.1 (Bellon–Viallet [3])Thealgebraic entropy Eϕ of a rationalmapϕ : GN
m → G

N
m

is defined as

Eϕ := lim sup
n→∞

1

n
log(deg(ϕn)).

Since deg(ϕn) ≤ deg(ϕ)n , the algebraic entropy is always finite. Here are basic properties:

– For any rational map ϕ : GN
m → G

N
m and an integer m ≥ 0, we have

Eϕm = mEϕ. (4.1)

– The algebraic entropy is conjugation-invariant. Namely, we have

E f ϕ f −1 = Eϕ (4.2)

for a rational map ϕ : GN
m → G

N
m and a birational map f : GN

m → G
N
m .

Our aim is to compute the algebraic entropies of cluster transformations induced by a
sign-stable mutation loop. For a mutation loop φ, let us write E z

φ := Eφz for z = a, x . Here
is our main theorem:

Theorem 4.2 Let φ = [γ ]s be a mutation loop with a representation path γ : t0 → th which
is sign-stable on the set Ωcan

(t0)
. Then we have

log ρ(Ě (t0)
φ ) ≤ Ea

φ ≤ log R(t0)
φ ,

log ρ(E (t0)
φ ) ≤ E x

φ ≤ log R(t0)
φ .

Here R(t0)
φ := max{ρ(E (t0)

φ ), ρ(Ě (t0)
φ )}.

Note that if Conjecture 3.13 holds true, then we get R(t0)
φ = ρ(Ě (t0)

φ ) = ρ(E (t0)
φ ) = λ

(t0)
φ . In

particular we obtain Corollary 1.2.
Before proceeding to the proof, let us prepare some notations. Recall that for a representa-

tion path γ : t0 k−→ th of the mutation loop φ, the path γ n : t0 k−→ th
k−→ . . .

k−→ tnh represents
the mutation loop φn . We denote the data attached to the vertex tnh with a superscript (n).
For instance, A(n)

i := A(tnh)
i , X (n)

i := X (tnh)
i , and so on. We simply write Eφ := E (t0)

φ and

Rφ := R(t0)
φ .

4.1 Estimate of the entropy from below

For an N × N -matrix M = (mi j )i, j=1,...,N , let ‖M‖max := maxi, j=1,...,N {|mi j |} denote the
uniform norm. On the other hand, since any two norms on R

N are equivalent, there exists a
universal constant K > 0 such that K−1‖ · ‖∞ ≤ ‖ · ‖1 ≤ K‖ · ‖∞ on RN .

Lemma 4.3 For any n ≥ 0, we have deg((φx )n) ≥ K−1‖C (n)‖max.

Proof Recall the separation formula (2.9). With the help of Lemma 2.18, we get

deg(X (n)
i ) ≥ deg(X

c(n)
i1
1 . . . X

c(n)
i N
N ) = ‖c(n)

i ‖1 ≥ K−1‖c(n)
i ‖∞.

Hence we have

deg((φx )n) = max
i=1,...,N

deg(X (n)
i ) ≥ K−1 max

i=1,...,N
‖c(n)

i ‖∞ = K−1‖C (n)‖max.

��
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Let C
(n)

(resp. G
(n)

) denote the C-matrix (resp. G-matrix) associated to the seed pattern
−s : t �→ (N (t),−B(t)).

Lemma 4.4 For any n ≥ 0, we have deg((φa)n) ≥ ‖G(n)‖max/2.

Proof Here note that the separation formula (2.8) itself does not give a reduced expression
for the rational function A(t)

i . For t ∈ TI and i ∈ I , we have

F (t)
i =

∑

m∈M(t)
i

ymk
k ,

where the set M (t)
i consists of integer vectors m = (m1, . . . ,mN ) with non-negative coor-

dinates such that 0 ≤ m j ≤ f (t)
i j for all j ∈ I . Note that f (t)i ∈ M (t)

i . Using δ
(t)
i j :=

max
{[−∑k mkb

(t)
k j ]+

∣
∣ m ∈ M (t)

i

}
, the reduced expression of F (t)

i (p∗X1, . . . , p∗XN ) can
be written as

F (t)
i (p∗X1, . . . , p

∗XN ) =
∑

m∈M(t)
i

∏
j A

∑
k mkb

(t)
k j +δ

(t)
i j

j

∏
j A

δ
(t)
i j
j

.

Then the expression

A(t)
i =

∏

j

A
[g(t)

i j ]+
j

A
[−g(t)

i j ]+
j

·
∑

m∈M(t)
i

∏
j A

∑
k mkb

(t)
k j +δ

(t)
i j

j

∏
j A

δ
(t)
i j
j

,

which is obtained from (2.8), may fail to be a reduced expression only for the reason that

the numerator
∏

j A
[g(t)

i j ]+
j may have a common factor with the denominator

∏
j A

δ
(t)
i j
j . For

each j ∈ I , let degA j
denote the degree as a rational function of A j , other variables being

regarded as coefficients.

The case δ
(t)
i j = 0: In this case, the monomial A

g(t)
i j
j has no common factors with other terms.

When g(t)
i j ≥ 0,

degA j
(A(t)

i ) ≥ g(t)
i j +

∑

k

f (t)
ik b(t)

k j =
∣
∣
∣g

(t)
i j +

∑

k

f (t)
ik b(t)

k j

∣
∣
∣.

When g(t)
i j ≤ 0,

degA j
(A(t)

i ) ≥ max
{
|g(t)

i j |,
∑

k

f (t)
ik b(t)

k j

}

≥ 1

2

(
|g(t)

i j | +
∣
∣
∣
∑

k

f (t)
ik b(t)

k j

∣
∣
∣
)

≥ 1

2

∣
∣
∣g

(t)
i j +

∑

k

f (t)
ik b(t)

k j

∣
∣
∣.
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The case δ
(t)
i j > 0: When gi j ≤ 0, still there cannot be a cancellation, and hence

degA j
(A(t)

i ) ≥ max
{
|g(t)

i j − δ
(t)
i j |,

∣
∣
∣
∑

k

f (t)
ik b(t)

k j + δ
(t)
i j

∣
∣
∣
}

≥ 1

2

(
|g(t)

i j − δ
(t)
i j | +

∣
∣
∣
∑

k

f (t)
ik b(t)

k j + δ
(t)
i j

∣
∣
∣
)

≥ 1

2

∣
∣
∣g(t)

i j +
∑

k

f (t)
ik b(t)

k j

∣
∣
∣.

When gi j ≥ 0, a reduction can occur but still we have

degA j
(A(t)

i ) ≥
⎧
⎨

⎩

(g(t)
i j − δ

(t)
i j ) +

(∑
k f (t)

ik b(t)
k j + δ

(t)
i j

)
if g(t)

i j − δ
(t)
i j ≥ 0,

max
{
|g(t)

i j − δ
(t)
i j |, ∑k f (t)

ik b(t)
k j + δ

(t)
i j

}
if g(t)

i j − δ
(t)
i j ≤ 0

≥ 1

2

(
|g(t)

i j − δ
(t)
i j | +

∣
∣
∣
∑

k

f (t)
ik b(t)

k j + δ
(t)
i j

∣
∣
∣
)

≥ 1

2

∣
∣
∣g

(t)
i j +

∑

k

f (t)
ik b(t)

k j

∣
∣
∣.

By summarizing above inequalities and applying to the case t = tnh , we get

degA j
(A(n)

i ) ≥ 1

2

∣
∣
∣g(n)

i j +
∑

k

f (n)
ik b(n)

k j

∣
∣
∣.

Thus we have

deg((φa)n) = max
i∈I deg(A(n)

i ) ≥ max
i, j∈I

{
degA j

(A(n)
i )

}

≥ 1

2

∥
∥G(n) + F (n)B(n)

∥
∥
max = 1

2

∥
∥G

(n)∥∥
max.

Here the last equation follows from the second equation given in Theorem 2.20. ��
Remark 4.5 A similar estimate of deg((φa)n) using D-matrices (which have d-vectors as
column vectors) might be easier. However we do not know if the linear independence of
d-vectors holds in general, which we would need in the proof of Proposition 4.7 below.

Lemma 4.6 Suppose that the representation path γ of φ is sign-stable on Ωcan
(t0)

. Then there
exists an integer n0 ≥ 0 such that

C (n+1) = EφC
(n), C

(n+1) = EφC
(n)

,

G(n+1) = ĚφG
(n), G

(n+1) = ĚφG
(n)

for all n ≥ n0.

Proof From Lemma 3.8, the C-matrix C (n) assigned to the endpoint of the n-th iterated path

γ n is given by the matrix E
ε
trop
γ n

γ . Moreover, the sequence ε
trop
γ n of tropical signs coincides with

the sign at any point w in int C+
(t0)

. In particular, we have the recurrence relation C (n+1) =
E

εγ (φn(w))
γ C (n) for all n ≥ 0. Since γ is assumed to be sign-stable on int C+

(t0)
, there exists an

integer n1 ≥ 0 such that εγ (φn(w)) = εstabγ for all n ≥ n1. Thus we have C (n+1) = EφC (n)

for all n ≥ n1.

Similarly from Corollary 3.9, we get C
(n+1) = E

εγ (φn(w−))
γ C

(n)
for any w− ∈ int C−

(t0)
.

Since φ is also sign-stable on int C−
(t0)

, there exists an integer n2 ≥ 0 such that εγ (φn(w−)) =
εstabγ and C

(n+1) = EφC
(n)

for n ≥ n2. Putting n0 := max{n1, n2}, we get the desired

123



Geometriae Dedicata (2021) 214:79–118 103

assertion for C-matrices. The proof of the assertions for G-matrices follows from the same
line of arguments. ��
Combining Lemmas 4.3 and 4.6, we get an estimate of the algebraic entropies E x

φ and Ea
φ

from below:

Proposition 4.7 We have E x
φ ≥ log ρ(Eφ) and Ea

φ ≥ log ρ(Ěφ).

Proof From Lemma 4.6, there exists n0 ≥ 0 such that C (n) = En−n0
φ C (n0). Combining with

the first estimate in Lemma 4.3, we get

E x
φ = lim sup

n→∞
1

n
log deg(φx )n

≥ lim sup
n→∞

(
1

n
log
∥
∥C (n)

∥
∥
max + 1

n
log K−1

)

= lim sup
n→∞

1

n
log
∥
∥En−n0

φ C (n0)
∥
∥
max

= �Eφ (C (n0)).

Here �Eφ (C (n0)) := max j=1,...,N �Eφ (̃c(n0)
j ) with C (n0) = (̃c(n0)

1 , . . . , c̃(n0)
N ), and �Eφ (−)

denotes the Lyapunov exponent. See “Appendix A.2”. Since C (n0) is invertible, the column
vectors c̃(n0)

j are linearly independent. Hence the maximum of their Lyapunov exponents
attains the logarithm of the spectral radius ρ(Eφ) from Corollary A.3. Thus we get E x

φ ≥
log ρ(Eφ). The proof of the second estimate follows from the same line of arguments. ��

4.2 Estimate of the entropy from above

Lemma 4.8 Let K ′ := K N maxi, j |b ji | ≥ K > 0. Then for any n ≥ 0, we have

deg((φx )n) ≤ K ′(‖C (n)‖max + ‖F (n)‖max),

deg((φa)n) ≤ K ′(‖G(n)‖max + ‖F (n)‖max).

Proof From the separation formula (2.9), we get

deg X (n)
i ≤ deg(X

c(n)
i1
1 · · · Xc(n)

i N
N ) +

N∑

j=1

|b ji | deg(F (n)
j )

≤ ‖c(n)
i ‖1 + max

k
|bki | ·

N∑

j=1

‖f (n)
j ‖1

≤ K‖c(n)
i ‖∞ + max

k
|bki | ·

N∑

j=1

K‖f (n)
j ‖∞

≤ K ′ max
j=1,...,N

‖c(n)
j ‖∞ + K ′ max

j=1,...,N
‖f (n)

j ‖∞

= K ′(‖C (n)‖max + ‖F (n)‖max).

Similarly from the separation formula (2.8), we get

deg A(n)
i ≤ deg(A

g(n)
i1

1 · · · Ag(n)
i N
N ) + deg(F (n)

i ) deg(p(tnh ))
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≤ ‖g(n)
i ‖1 + ‖f (n)

i ‖1 max
k

∑

j

|bkj |

≤ K‖g(n)
i ‖∞ + K ′‖f (n)

i ‖∞
≤ K ′(‖G(n)‖max + ‖F (n)‖max).

Thus we get the desired assertion. ��

Now we only need to give an estimate for the growth of ‖F (n)‖∞ from above.

Lemma 4.9 Suppose that the representation path γ of φ is sign-stable on Ωcan
(t0)

. Then there
exists an integer n0 ≥ 0 such that

F (n+1) = ĚφF
(n) +

(
h−1∑

m=0

Ěh · · · Ěh−m · εh−m−1Δkh−m−1 · Eh−m−2 · · · E−1

)

C
(n)

for all n ≥ n0. Here

– k = (k0, . . . , kh−1),
– εstabγ = (ε1, . . . , εh) is the stable sign,

– Er = E (tnh+r )

kr ,εr
and Ěr = Ě (tnh+r )

kr ,εr
for r = 0, . . . , h − 1,

– E−1 = Ěh := Id, and

– Δk := diag(0, . . . , 0,
k
1, 0, . . . , 0).

Proof This is a consequence of an iterated application of Theorem 2.21. Here note that the
sign stability on the setΩcan

(t0)
implies that the two sign sequences εγ (φn(w)) and εγ (φn(w−))

forw ∈ int C+
(t0)

andw− ∈ int C−
(t0)

stabilize to the same stable sign εstabγ for large n. Since the

former one is the tropical sign and the latter is the sign of the row vectors of C−s;t0
t (cf. the

definition of the tropical sign), we see that the second term of the equation given in Theorem
2.21 becomes (C−s;t0

t )k• in the stable range. With a notice that

C−s;t0
tnh+h−m−1

= Eh−m−2 · · · E0E−1 C
−s;t0
tnh ,

the assertion follows from a direct computation. ��

A “rotated” uniform norm is suited for our computation in the sequel. For a real invertible
matrix E ∈ GLN (R), consider its real Jordan normal form: S−1ES = J (ν1,m1) ⊕ · · · ⊕
J (νr ,mr ) for some real invertible matrix S ∈ GLN (R). See Appendix A.1. Let e1, . . . , eN
be the corresponding real Jordan basis. Then for a vector v = x1e1 + · · · + xN eN ∈ R

N , we
define ‖v‖E∞ := maxk=1,...,N |xk |. Then clearly ‖ · ‖E∞ defines a norm on RN , which has the
following nice property:

Lemma 4.10 Suppose det E = ±1. Then for any v ∈ R
N , we have the inequalities ‖Ev‖E∞ ≤

ρ(E)‖v‖E∞ and ‖Ěv‖E∞ ≤ ρ(Ě)‖v‖E∞. Here recall Notation 2.6.

Proof The first statement follows from the inequality ‖J (ν,m)‖∞ ≤ max(|ν|, 1) for a real
Jordan block J (ν,m), and the fact that ρ(E) ≥ 1. The second statement follows from
S−1 Ě S = J̌ (ν1,m1) ⊕ · · · ⊕ J̌ (νr ,mr ) and ‖ J̌ (ν,m)‖∞ = ‖J (ν,m)‖∞. ��
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For a matrix M = (mi j )
N
i, j=1 with column vectors m j := (mi j )

N
i=1, let ‖M‖Emax :=

max j=1,...,N ‖m j‖E∞. We also use the operator norm

‖M‖Eop := sup
v∈RN \{0}

‖Mv‖E∞
‖v‖E∞

.

We are going to use these norms for E = Eφ .

Lemma 4.11 Let the notations as in Lemma 4.9. Let

K ′′ := h max
m=0,...,h−1

∥
∥Ěh · · · Ěh−m · εh−m−1Δkh−m−1 · Eh−m−2 · · · E−1

∥
∥Eφ

op .

and K ′′′ := K ′′ρ(Eφ)−n0−1
∥
∥C (n0)−s

∥
∥Eφ

max. Let (sn)n≥n0 be the sequence such that sn+1 =
sn + K ′′′ and sn0 = ρ(Eφ)−n0

∥
∥F (n0)

∥
∥Eφ

max. Then we have
∥
∥F (n)

∥
∥Eφ

max ≤ sn R
n
φ

for all n ≥ n0.

Proof The initial condition for the sequence (sn) is chosen so that the assertion is true for
n = n0. Let us proceed by induction on n ≥ n0. Since the sign stabilizes for n ≥ n0, we have

∥
∥F (n+1)

∥
∥Eφ

max ≤ ∥
∥ĚφF

(n)
∥
∥Eφ

max

+
h−1∑

m=0

∥
∥Ěh · · · Ěh−m · εh−m−1Δkh−m−1 · Eh−m−2 · · · E−1C

(n)
−s

∥
∥Eφ

max

≤ ρ(Ěφ)
∥
∥F (n)

∥
∥Eφ

max + K ′′∥∥C (n)
−s

∥
∥Eφ

max (Lemma 4.10)

≤ snρ(Ěφ)Rn
φ + K ′′ρ(Eφ)n−n0

∥
∥C (n0)−s

∥
∥Eφ

max

= snρ(Ěφ)Rn
φ + K ′′′ρ(Eφ)n+1

≤ (sn + K ′′′)Rn+1
φ = sn+1R

n+1
φ .

Thus the assertion is proved. ��
Combining Lemmas 4.8 and 4.11, we get an estimate of the algebraic entropies E x

φ and Ea
φ

from above:

Proposition 4.12 We have E x
φ ≤ log Rφ and Ea

φ ≤ log Rφ .

Proof Note that

lim sup
n→∞

1

n
log(An + Bn) = max

{

lim sup
n→∞

1

n
log An, lim sup

n→∞
1

n
log Bn

}

for sequences (An), (Bn) of positive numbers. From Lemma 4.8, we get

E x
φ = lim sup

n→∞
1

n
log deg(φx )n

≤ lim sup
n→∞

(
1

n
log(‖C (n)‖max + ‖F (n)‖max) + 1

n
log K ′

)

= max

{

lim sup
n→∞

1

n
log ‖C (n)‖max, lim sup

n→∞
1

n
log ‖F (n)‖max

}

.

123



106 Geometriae Dedicata (2021) 214:79–118

The first term gives �Eφ (C (n0)) = log ρ(Eφ) by the proof of Proposition 4.7. On the second

term, we replace the uniform norm with the rotated norm
∥
∥ · ∥∥Eφ

max and compute

lim sup
n→∞

1

n
log ‖F (n)‖max = lim sup

n→∞
1

n
log

∥
∥F (n)

∥
∥Eφ

max

≤ lim sup
n→∞

(
1

n
log Rn

φ + 1

n
log sn

)

= Rφ.

Here we used Lemma 4.11 and the fact that the sequence (sn) is an arithmetic sequence. The
proof of the second statement follows from the same line of arguments. ��
Combining Propositions 4.7 and 4.12, we get a proof of Theorem 4.2.

4.3 Two-sided sign stability

Let us consider the case where a path γ : t0 → t which represents a mutation loop φ = [γ ]s
is not sign-stable on Ωcan

(t0)
= int C+

(t0)
∪ int C−

(t0)
but is sign-stable on each of int C+

(t0)
and

int C−
(t0)

. When it satisfies a suitable condition, we can still compute the algebraic entropy of
the cluster transformations induced by such a mutation loop.

Definition 4.13 Let γ : t0 → t be a path which represents a mutation loop φ = [γ ]s. The
path γ is said to be two-sided sign-stable if it is sign-stable on each of int C+

(t0)
and int C−

(t0)
with stable signs ε+

γ and ε−
γ respectively, and satisfies the following conditions:

– ε+
γ = −ε−

γ , and

– the spectral radii of E
ε+
γ

γ and E
ε−
γ

γ are the same.

When γ is two-sided sign-stable, we denote the spectral radii λφ,int C+
(t0)

= λφ,int C−
(t0)

by

λ
(t0)
φ and still call it the cluster stretch factor of the mutation loop φ.
We will give an example of a two-sided sign-stable mutation loop in Example 5.10.

Corollary 4.14 Let φ = [γ ]s be a mutation loop with a representation path γ which is
two-sided sign-stable. Assuming that Conjecture 3.13 holds true, we have

Ea
φ = E x

φ = log λ
(t0)
φ .

Proof Observe that all the statements in Sects. 4.1 and 4.2 still hold, except for Lemma 4.9.
Indeed, they only depends on the sign stability on each of the cones int C+

(t0)
and int C−

(t0)
. The

replacement of Lemma 4.9 is rather simpler than the original one: ��
Lemma 4.15 Suppose that the representation path γ : t0 → t of φ is two-sided sign-stable.
Then there exists an integer n0 ≥ 0 such that

F (n+1) = Ě (t0)
φ F (n)

for all n ≥ n0.

Proof By definition of the two-sided sign stability, the stable sign ε+
γ on int C+

(t0)
is the minus

of the stable sign ε−
γ on int C−

(t0)
: ε+

γ = −ε−
γ . The former sign is the sequence of tropical
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signs by Lemma 3.8, and the latter gives the signs of row vectors of the matrices C−s;t0
t by

Corollary 3.9. Hence the second term in the right-hand side of Theorem 2.21 vanishes at
vertex tm along the path γ , for sufficiently large integer m. ��
Now Corollary 4.14 can be proved by following the same line as the proof of Theorem 4.2,
where the statements derived from Lemma 4.9 are replaced with simpler ones corresponding
to Lemma 4.15. ��

5 Checkmethods and examples

In this section we give several methods for checking sign stability and demonstrate them in
concrete examples. We denote by SX(t0)(R

trop) the quotient of X(t0)(R
trop) by the rescaling

R>0-action, and sometimes we identify it with the sphere {x21 +· · ·+x2N = 1} ⊂ X(t0)(R
trop).

When we deal with concrete examples, it is useful to represent a skew-symmetric matrix
B = (bi j )i, j∈I by a quiver Q. It has vertices parametrized by the set I and |bi j | arrows from
i to j (resp. j to i) if bi j > 0 (resp. b ji > 0). Note that that the quiver Q has no loops and
2-cycles, and the matrix B can be reconstructed from such a quiver.

5.1 An inductive checkmethod

Here we give a method for checking sign stability, assuming one uses a computer. First of
all, we fix a mutation loop φ = [γ ]s with h(γ ) = h.

1. For n ≥ 1, examine the following inductive process:

(An) Decompose X(t0)(R
trop) into the cones Cε

γ n for ε ∈ {+,−}nh .
(Bn) For each cone Cε

γ n such that dim Cε
γ n = N , check whether it satisfies φn(Cε

γ n ) ⊂
int Cε

γ n .
If such a cone is found, then the process terminates. Note that in this case, the sign
sequence ε has the form (ε0, . . . , ε0) ∈ {+,−}hn . Otherwise, proceed to the step
(An+1).

If this process terminates at n = n0, then proceed to the next process (2). (If it does not
terminate, then this method is not effective for checking if φ is sign-stable or not.)

2. Chase the orbits of the points l±(t0) ∈ Ωcan
(t0)

under the action of φ. If each of them goes to
the interior of a common cone Cε

γ n among those found in (1), then this mutation loop is

sign-stable with the stable sign ε0 ∈ {+,−}h , where ε = (ε0, . . . , ε0) ∈ {+,−}hn0 by
Proposition 3.10.

Obviously this method can misses a sign-stable mutation loop, but it detects many exam-
ples. We demonstrate these steps below:

Example 5.1 (Markov quiver) Here, we demonstrate the inductive check method for a con-
crete example. Let I = {1, 2, 3} and s : t �→ (N (t), B(t)) be a seed pattern such that

B(t0) =
⎛

⎝
0 2 −2

−2 0 2
2 −2 0

⎞

⎠

for a vertex t0 ∈ TI . The quiver corresponding to this matrix is called Markov quiver Fig. 2.
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Fig. 2 Markov quiver

Fig. 3 Cones in X(t0)(R
trop) associated to signs and C±

(t0)
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Let us consider the horizontal mutation loop φ represented by an edge path

γ : t0 1−−− t1
2−−− t2

3−−− t3
1−−− t4

2−−− t5
3−−− t6,

which is fully-mutating. Then X(t0)(R
trop) is decomposed into 17 full-dimensional cones.

Figure3 shows the image of the intersection of SX(t0)(R
trop) and the following objects under

the stereographic projection from [(1, 1, 1)] ∈ SX(t0)(R
trop):

– boundary of the cones associated to sign sequences (black lines),
– the fixed point

p+ =
[(

1,−1 + √
5

2
,
−1 + √

5

2

)]

∈ X(t0)(R
trop)

with the stretch factor λφ = 9 + 4
√
5 (red point),

– the cones C−
(t0)

and C+
(t0)

(blue regions),
– the cone associated to the sign sequence (+,−,+,−,+,−) (yellow region).

The cone C(+,−,+,−,+,−)
γ satisfies the condition in (Bn) with n = 1 and the conditions in (2).

Therefore, we conclude that φ is sign-stable with stable sign (+,−,+,−,+,−). Its stable
presentation matrices E (t0)

φ and Ě (t0)
φ are given by

E (t0)
φ =

⎛

⎝
9 6 4

−12 −7 −4
4 2 1

⎞

⎠ , Ě (t0)
φ =

⎛

⎝
−7 −4 12
−12 −7 20
−20 −12 33

⎞

⎠ .

Their characteristic polynomials are the same:

(ν − 1) · (ν2 − 18ν + 1).

Hence, Conjecture 3.13 holds true for this example, so the algebraic entropies of the cluster
transformations induced by φ are

Ea
φ = E x

φ = log(9 + 4
√
5) = 2.88727095035762 . . .

Remark 5.2 In fact, the matrix B(t0) in Example 5.1 arises from a triangulation of a once
punctured torus. Moreover, the horizontal mutation loop φ in Example 5.1 is actually the
third power of the mutation loop φLR corresponding to the mapping class called the “LR-
transformation” which gives the smallest stretch factor among the mapping classes on a
once punctured torus. This mutation loop φLR is represented by two mutations (1, 2) and a
permutation 1 �→ 2 �→ 3 �→ 1. We can regard the stable sign sequence (+,−,+,−,+,−)

as ((+,−), (+,−), (+,−)), where each sign sequence (+,−) is the stable sign sequence
for the mutation loop φLR .

5.2 A heuristic checkmethod

Fix amutation loopφ with h(γ ) = h. Aswementioned above, the process (1) of the inductive
check method may not terminate in finitely many steps. As an alternative method, when the
mutation loop φ is simple enough, it is well worth trying to find the cone satisfying the
conditions in (Bn) with n = 1 by inspection. Here is our second method:

1. Decompose X(t0)(R
trop) into the cones Cε

γ for ε ∈ {+,−}h .
2. Find a cone C ⊂ X(t0)(R

trop) such that
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Fig. 4 Kronecker quiver

Table 1 Domains of linearity
ε Cε

γ Eε
γ

(+, +) {x1 ≥ 0, �x1 + x2 ≥ 0}
(

�2 − 1 �

−� −1

)

(+, −) {x1 ≥ 0, �x1 + x2 ≤ 0}
(−1 0

−� −1

)

(−, +) {x1 ≤ 0, x2 ≥ 0}
(−1 �

0 −1

)

(−, −) {x1 ≤ 0, x2 ≤ 0}
(−1 0

0 −1

)

– dim C = N ,
– C ⊂ Cε0

γ for a sign sequence ε0 ∈ {+,−}h ,
– φ(C) ⊂ C and φn0(C \ {0}) ⊂ int C for some n0 ≥ 1.

3. Chase the orbit of the points l±(t0) ∈ Ωcan
(t0)

under the action of φ. If each of them goes to the
interior of the cone C found in (2), then this mutation loop is sign-stable with the stable
sign ε0 by Proposition 3.10.

We will refer to the cone C as an invariant cone of φ. Clearly, the choice of an invariant cone
is not unique: for example, we don’t need to take the maximal one.

Example 5.3 (Kronecker quiver) Let I := {1, 2}, and s : t �→ (N (t), B(t)) be a seed pattern
such that

B(t0) =
(
0 −�

� 0

)

for a vertex t0 ∈ TI and an integer � ≥ 2. The quiver corresponding to this matrix is called
Kronecker quiver Fig. 4. Let us consider the horizontal mutation loop φ represented by an
edge path

γ : t0 1−−− t1
2−−− t2,

which is fully-mutating. The tropical cluster X -variety X(t0)(R
trop) is decomposed into the

following four domains of linearity Cε
γ for φ with the presentationmatrix Eε

γ for ε ∈ {+,−}2:
See Fig. 5. In this case, the process (1) in the inductive check method does not terminate.

However, we can take an invariant cone C as

C = {x1 ≥ 0, x1 + x2 ≥ 0} ⊂ C(+,+)
γ .

Indeed, for each point (x1, x2) ∈ C, putting (x ′
1, x

′
2) := φ(x1, x2) we have

x ′
1 = (�2 − 1)x1 + �x2 ≥ (�2 − � − 1)x1 ≥ 0,

x ′
1 + x ′

2 = (�2 − � − 1)x1 + (� − 1)x2 ≥ (�2 − 2�)x1 ≥ 0.

Hence we have φ(C) ⊂ C. One can also see from the above computation that φ(C \ {0}) ⊂
int C. Furthermore, by a direct calculation, one can check that

φ(C(+,−)
γ ) = C(−,+)

γ , φ(C(−,+)
γ ∪ C(−,−)

γ ) ⊂ C.
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Fig. 5 Domains of linearity and
an invariant cone (yellow region)

Hence we can conclude that φ is sign stable. The stable presentation matrices Eφ and Ěφ

have the same characteristic polynomial

ν2 + (−�2 + 2)ν + 1.

Hence Conjecture 3.13 holds true in this case, so the algebraic entropies of the cluster trans-
formations induced by φ are obtained as

E x
φ = Ea

φ = log

(
�2 − 2 + �

√
�2 − 2

2

)

.

Remark 5.4 The mutation loop in Example 5.3 is so simple that we can describe the
entire dynamics on X(t0)(R

trop). First, the action of φ has only two fixed points p+, p−
in SX(t0)(R

trop) with stretch factors λ+, λ−, respectively:

p± =
[(

1,
−� ± √

�2 − 4

2

)]

, λ± = �2 − 2 ± �
√

�2 − 2

2
.

Moreover we have p± ∈ SC(+,+) (see Fig. 5). Let we consider the following two cones:

C(+,+)
+ :=

{

x1 ≥ 0, x1 + −� − √
�2 − 4

2
x2 > 0

}

,

C(+,+)
− :=

{

�x1 + x2 ≥ 0, x1 + −� − √
�2 − 4

2
x2 < 0

}

.

so that C(+,+)
γ \ p− = C(+,+)

+ � C(+,+)
− . By a direct calculation, one can see that each point

in SC(+,+)
+ converges to p+ and that each point in SC(+,+)

− leaves this region and travels

SC(+,−)
γ ,SC(−,+)

γ , and SC(−,−)
γ in this order, and finally converges to p+. Namely, the action

of φ has the north-south dynamics on SX(t0)(R
trop) with the attracting (resp. repelling) point

p+ (resp. p−). Therefore C(+,+)
+ is the maximal invariant cone.
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5.3 Mutation loops of length one

Here we give a family of examples for which the heuristic check method can be effectively
applied. Let I := {1, . . . , N }, and consider a seed pattern s : t �→ (N (t), B(t)). Fix a vertex
t0 ∈ TI and put B := B(t0). Let us consider an edge path γ : t0 1−−− t1 and a permutation σ

on I which is given by σ(i) := i − 1 mod N for i = 1, . . . , N . The following classification
theorem is due to Fordy–Marsh:

Theorem 5.5 (Fordy–Marsh [13]) The condition

σ.B(t1) = B (5.1)

holds if and only if there exists an integer vector a = (a1, . . . , aN−1) such that a j = aN− j

for j = 1, . . . , N − 1 and the skew-symmetric matrix B = (bi j )i, j∈I satisfies the following
conditions:

bi, j+1 = a j , bi+1, j+1 = bi j + ai [−a j ]+ − a j [−ai ]+ (5.2)

for all i, j ∈ {1, . . . , N − 1}.
The condition (5.1) can be paraphrased that the mutation sequence given by the edge path
γ followed by the permutation σ defines a mutation loop φ. Although it is not a horizontal
mutation loop and slightly sticks out our scope in this paper, the N -th powerφN is a horizontal
mutation loop represented by the fully-mutating edge path

γ N : t0 1−−− t1
2−−− t2

3−−− . . .
N−−− tN .

Sign stability can be naturally generalized to this situation as follows. The sign of γ at
w ∈ X(t0)(R

trop) is defined to be εγ (w) := sgn(x (t0)
1 (w)). The presentation matrix of φ at w

is given by Eε
γ := Pσ E

(t0)
1,ε , where ε := εγ (w) and Pσ := (δi,σ ( j))i, j∈I is the presentation

matrix of σ . For a scaling invariant subset Ω ⊂ X(t0)(R
trop), φ is said to be sign-stable if

there exists a strict sign εstabγ ∈ {+,−} such that for each w ∈ Ω \ {0}, there exists an integer
n0 ∈ N such that εγ (φn(w)) = εstabγ for n ≥ n0. If φ is sign-stable, then so is φN . See [24]

for a general framework. Since the sign-stability for φ is easier to check than that for φN , we
are going to work with φ. Explicitly, the presentation matrix Eε

γ is given as follows:

Eε
γ =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0 1
0 1

. . .
. . .

0 1
1 0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎝

−1
[εa1]+ 1
[εa2]+ 1

...
. . .

[εaN−1]+ 1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

[εa1]+ 1
[εa2]+ 0 1

... 0
. . .

[εaN−1]+ . . . 1
−1 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Then we can find an invariant cone as follows:

Lemma 5.6

1. The cone

C[+] := {x1 ≥ 0, [ai−1]+x1 + xi ≥ 0 for i = 2, . . . , N }
satisfies φ(C[+]) ⊂ C[+] if and only if a1 ≥ 2. Moreover in this case, we have φN (C[+] \
{0}) ⊂ int C[+].
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2. The cone

C[−] := {x1 ≤ 0, [−ai−1]+x1 + xi ≤ 0 for i = 2, . . . , N }
satisfies φ(C[−]) ⊂ C[−] if and only if a1 ≤ −2. Moreover in this case, we have φN (C[−] \
{0}) ⊂ int C[−].

Proof First suppose a1 ≥ 2. For a point w ∈ C[+], let w′ := φ(w). Let x = (x1, . . . , xN ),

x′ = (x ′
1, . . . , x

′
N ) be the coordinate vectors defined by xi := x (t0)

i (w) and x ′
i := x (t0)

i (w′)
for i = 1, . . . , N . Then from (x′)T = E+

γ xT , we get

x ′
1 = a1x1 + x2 ≥ 0,

[ai−1]+x ′
1 + x ′

i = [ai−1]+(a1x1 + x2) + ([ai ]+x1 + xi+1) ≥ 0,

[aN−1]+x ′
1 + x ′

N = a1(a1x1 + x2) − x1 = (a21 − 1)x1 + x2 > a1x1 + x2 ≥ 0.

Here i = 2, . . . , N−1.Thuswehaveφ(C[+]) ⊂ C[+]. Furthermore, letΦ+
1 := C[+]∩{x1 = 0}

and Φ+
i := C[+] ∩ {[ai−1]+x1 + xi = 0} for i = 2, . . . , N be facets of the cone C[+]. Then

the above computation shows that φ(C[+]) ⊂ C[+] \ Φ+
N ,

C[+] \ Φ+
N C[+] \ Φ+

N−1 · · · C[+] \ Φ+
2 ,

E+
γ

φ

E+
γ

φ

E+
γ

φ

and φ(C[+] \ Φ+
2 ) ⊂ int C[+]. Thus we have φN (C[+]) ⊂ int C[+]. On the other hand, when

a1 ≤ 1, x = (2,−1, 0, . . . , 0) ∈ C[+] satisfies x′ /∈ C[+]. The second assertion can be
similarly proved. ��
Corollary 5.7 Let ε ∈ {+,−} be a sign. If εa1 ≥ 2 and εai ≥ 0 for i = 2, . . . , N − 1
holds, then φ is sign-stable on the set Ωcan

(t0)
with the stable sign ε. Moreover Conjecture

3.13 holds true in this case. The cluster stretch factor is the positive solution of the equation
νN −∑N−1

i=1 εaiνN−i + 1 = 0 which is largest among the solutions in absolute value.

Proof It is enough to consider the case ε = +. We need to check that the cones C+
(t0)

and

C−
(t0)

are send into the cone C[+] by an iterated action of φ. It is clear from the definition of

C[+] that we already have C+
(t0)

⊂ C[+]. For a point w− ∈ C−
(t0)

, let xi := x (t0)
i (w−) ≤ 0 be its

coordinates for i = 1, . . . , N . Since the action of φ is presented by the matrix

E−
γ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 1
0 0 1
... 0

. . .

0
. . . 1

−1 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

whenever the first coordinate of a point is non-positive, we can compute the φ-orbit of w−
as

⎛

⎜
⎜
⎜
⎜
⎜
⎝

x1
x2
...

xN−1

xN

⎞

⎟
⎟
⎟
⎟
⎟
⎠

E−
γ�−−→

⎛

⎜
⎜
⎜
⎜
⎜
⎝

x2
x3
...

xN
−x1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

E−
γ�−−→

⎛

⎜
⎜
⎜
⎜
⎜
⎝

x3
x4
...

−x1
−x2

⎞

⎟
⎟
⎟
⎟
⎟
⎠

E−
γ�−−→ . . .

E−
γ�−−→

⎛

⎜
⎜
⎜
⎜
⎜
⎝

−x1
−x2

...

−xN−1

−xN

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.
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Hence φN (C−
(t0)

) = C+
(t0)

⊂ C[+]. Combining with Lemma 5.6, we get φ2N (Ωcan
(t0)

\ {0}) ⊂
int C[+]. Thus φ is sign-stable on the set Ωcan

(t0)
with the stable sign (+).

The characteristic polynomial of E+
γ is given by P+

γ (ν) := νN − ∑N−1
i=1 aiνN−i + 1,

which is palindromic. Hence Conjecture 3.13 holds true in this case. The case ε = − is
similarly proved. ��
Corollary 5.7 gives a partial confirmation of [10, Conjecture 3.1].

Remark 5.8 The mutation loop considered in Example 5.3 is obtained as the square of the
mutation loop for the vector a = (−�). In the case � = 1, we get the seed pattern of type
A2 and hence φ is periodic. In particular it has no invariant cone other than {0}, and not
sign-stable. This example indicates a reason why we need the condition |a1| ≥ 2 in Lemma
5.6 and Corollary 5.7.

Remark 5.9 Since the path γ N is fully-mutating, by Theorem 3.12 and Remark 3.21, an
eigenvector corresponding to the cluster stretch factor can be found in the stable cone Cstabγ .
Hence by Remark 3.16, the cluster stretch factor is intrinsic to the mutation loop φ.

Finally, we give an example of two-sided sign-stable mutation loop. See Definition 4.13.

Example 5.10 ([10, Example 3.7]) Let I = {1, 2, 3, 4, 5, 6} and s : t �→ (N (t), B(t)) be the
seed pattern with the initial exchange matrix

B(t0) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 −2 2 4 2 −2
2 0 −6 −6 0 2

−2 6 0 −6 −6 4
−4 6 6 0 −6 2
−2 0 6 6 0 −2
2 −2 −4 −2 2 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

This seed pattern satisfies the condition (5.2) in Theorem 5.5, and hence the edge path
γ : t0 1−−− t1 followed by the permutation σ : i �→ i − 1 mod 6 gives a mutation loop φ.
Let E±

γ denote the presentation matrix of φ on the cone {±x1 ≥ 0}:

E+
γ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 1 0 0 0 0
2 0 1 0 0 0
4 0 0 1 0 0
2 0 0 0 1 0
0 0 0 0 0 1

−1 0 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

, E−
γ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

2 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
2 0 0 0 0 1

−1 0 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Lemma 5.11 Let C[+] and C[−] be the cones defined by

C[+] :=
{

x1 ≥ 0, x2 ≥ 0, 2x1 + x3 ≥ 0, 4x1 + x2 + x4 ≥ 0,
6x1 + 4x2 + 2x3 + x5 ≥ 0, 16x1 + 6x2 + 4x3 + 2x4 + x6 ≥ 0

}

,

C[−] :=
{

x1 ≤ 0, x1 + x2 ≤ 0, 2x1 + x2 + x3 ≤ 0, 4x1 + 2x2 + x3 + x4 ≤ 0,
8x1 + 4x2 + 2x3 + x4 + x5 ≤ 0, 16x1 + 8x2 + 4x3 + 2x4 + x5 + x6 ≤ 0

}

.

Then for each ε ∈ {+,−} we have φ(C[ε]) = Eε
γ (C[ε]) ⊂ C[ε]. Moreover, for any point

x ∈ Cε
(t0)

there exist an integer n0 > 0 such that φn(x) ∈ C[ε] for all n > n0.
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Fig. 6 The quiver corresponding
to B(t0) in Example 5.10

Proof Let us first consider the case ε = +. For a point w ∈ C[+], let w′ := φ(w). Let

x = (x1, . . . , x6), x′ = (x ′
1, . . . , x

′
6) be the coordinate vectors defined by xi := x (t0)

i (w) and

x ′
i := x (t0)

i (w′) for i = 1, . . . , 6. Then,

x ′
1 = x2 ≥ 0,

x ′
2 = 2x1 + x3 ≥ 0,

2x ′
1 + x ′

3 = 4x1 + x2 + x4 ≥ 0,

4x ′
1 + x ′

2 + x ′
4 = 6x1 + 4x2 + 2x3 + x5 ≥ 0,

6x ′
1 + 4x ′

2 + 2x ′
3 + x ′

5 = 16x1 + 6x2 + 4x3 + 2x4 + x6 ≥ 0,

16x ′
1 + 6x ′

2 + 4x ′
3 + 2x ′

4 + x ′
6 = 31x1 + 16x2 + 6x3 + 4x4 + 2x5

= 2(6x1 + 4x2 + 2x3 + x5) + 2(2x1 + x3) + 15x1 + 8x2 ≥ 0.

That is, φ(C[+]) ⊂ C[+]. The case ε = − can be proved by a similar computation. The second
statement can be checked by chasing the orbit of (the minus of) the standard basis vectors of
X(t0)(R

trop). ��

Thus the mutation loop φ is sign-stable on each of the cones C+
(t0)

and C−
(t0)

. The characteristic
polynomial of the presentation matrix Eε

γ is given by

(ν2 + εν + 1) · (ν4 − ν3 − 2ν2 − ν + 1)

for ε ∈ {+,−}, which is palindromic. In particular Conjecture 3.13 holds true on each cone
Cε

(t0)
. The spectral radii of the matrices E+

γ and E−
γ are the same, which is the largest solution

λmax = 2.0810189966245 . . . to the equation ν4 − ν3 − 2ν2 − ν + 1 = 0. Therefore the
mutation loop φ is two-sided sign-stable, so the algebraic entropies of the induced cluster
transformations are given by

Ea
φ = E x

φ = log λmax = 0.73285767597364 . . .
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A Terminology from discrete linear dynamical systems

We recollect here some basic terminology concerning discrete dynamical systems on R
N

obtained as the iteration of a real N × N -matrix E . We refer the reader to [4] for proofs.

A.1 Real Jordan normal form of a real matrix

First we recall the real Jordan normal form of a real matrix. The real Jordan block J (ν,m)

of algebraic multiplicity m with eigenvalue ν ∈ C is defined to be

J (ν,m) :=

⎛

⎜
⎜
⎜
⎜
⎝

ν 1
. . .

. . .

. . . 1
ν

⎞

⎟
⎟
⎟
⎟
⎠

if ν is real, and

J (ν,m) :=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

ξ −η 1 0
η ξ 0 1

ξ −η

η ξ

. . .

ξ −η 1 0
η ξ 0 1

ξ −η

η ξ

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

if ν is non-real. Here we write ν = ξ ± iη and η > 0. Note that the size of the matrix J (ν,m)

is 2m if ν is non-real.
Recall that if a complex number ν is an eigenvalue of a real matrix E , then so is its complex

conjugate ν. Therefore we can pick the one with positive imaginary part.

Theorem A.1 ([4, Theorem 1.2.3]) For any real matrix E, let ν1, . . . , νr be its eigenval-
ues whose imaginary part is non-negative. Then there exists an invertible real matrix
S ∈ GLN (R) such that S−1ES = J (ν1,m1) ⊕ · · · ⊕ J (νr ,mr ), where each mk is the
algebraic multiplicity of the eigenvalue νk . We call the right-hand side the real Jordan nor-
mal form of E. We call the column vectors of S the real Jordan basis vectors.

We have the corresponding real generalized eigenspace decomposition

R
N = Ṽν1 ⊕ · · · ⊕ Ṽνr .
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Here

Ṽνk := {�(v) | v ∈ ker(EC − νk)
mk } + {�(v) | v ∈ ker(EC − νk)

mk }
for an eigenvalue νk of algebraic multiplicity mk , where we let E act on the complex vector
space C

N . Note that an eigenvector of E with real eigenvalue νk is real. Hence Ṽνk =
ker(E − νk)

mk in this case, which recovers the usual generalized eigenspace.

A.2 Lyapunov spaces and Lyapunov exponents

Let E be a real N × N -matrix. Let ν1, . . . , νr be the eigenvalues of E whose imaginary part
is non-negative. Denote the distinct modulus |νk | of eigenvalues νk by λ j , and order them
as λ1 > · · · > λl with 1 ≤ l ≤ r . Namely, we have {|ν1|, . . . , |νr |} = {λ1, . . . , λl}. The
largest modulus is denoted by ρ(E) := λ1, and called the spectral radius of E . We define
the Lyapunov space of λ j to be

L(λ j ) :=
⊕

k: |νk |=λ j

Ṽνk .

Then we have the direct sum decomposition RN = L(λ1) ⊕ · · · ⊕ L(λ�). Let 1 ≤ p ≤ r be
the largest integer such that Ṽλp ⊂ L(λ1). Namely, ρ(E) = |ν1| = · · · = |νp| > |νp+1| ≥
· · · ≥ |νr |.

For an invertible real matrix E ∈ GLN (R) and a point v ∈ R
N \ {0}, the Lyapunov

exponent of the orbit {En(v)}n≥0 is defined to be

�E (v) := lim sup
n→∞

1

n
log ‖En(v)‖,

where ‖ · ‖ is any norm on RN , and the result does not depend on this choice.
The Lyapunov exponents can be computed in terms of the eigenvalues.

Theorem A.2 ([4, Theorem 1.5.6]) For a non-zero vector v = c1v1 + · · · + c�v
� ∈ L(λ1) ⊕

· · · ⊕ L(λ�), the Lyapunov exponent of the orbit {En(v)}n≥0 is expressed as

�E (v) = max
j : c j 
=0

log λ j .

As a special case, we have the following:

Corollary A.3 Suppose that vectors v1, . . . , vN ∈ V form a basis of V . Then we have

max
i=1,...,N

�E (vi ) = log ρ(E).
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