CORRECTION

Correction to: Classifcation of generalized Wallach spaces

Yu. G. Nikonorov1

Published online: 25 February 2021 © Springer Nature B.V. 2021

Correction to: Geom Dedicata (2016) 111:193–212 <https://doi.org/10.1007/s10711-015-0119-z>

The paper [\[2\]](#page-2-0) is devoted to the classifcation of generalized Wallach spaces. A generalized Wallach space is a homogeneous spaces *G*/*H* of a connected compact semisimple Lie group *G* (*H* is a compact subgroup of *G*), such that there is a $\langle \cdot, \cdot \rangle$ -orthogonal and Ad(*H*) -invariant decomposition $\mathfrak{g} = \mathfrak{h} \oplus \mathfrak{p}_1 \oplus \mathfrak{p}_2$, where \mathfrak{g} and \mathfrak{h} are Lie algebras of *G* and *H* respectively, $\langle \cdot, \cdot \rangle$ is the minus Killing form of **g**, the modules \mathfrak{p}_i are Ad(*H*)-irreducible, [\mathbf{p}_i , \mathbf{p}_i] ⊂ $\mathbf{\hat{h}}$ for *i* = 1, 2, 3. Here we will make a correction to the obtained classification. In what follows, we use the notation from [[2\]](#page-2-0).

The main result of the paper [[2](#page-2-0)] (Theorem 1) should be stated as follows (in fact, we just add the item (4)):

Theorem 1 *Let G*/*H be a connected and simply connected compact homogeneous space. Then G*/*H is a generalized Wallach space if and only if it is of one of the following types:*

- (1) *G*/*H is a direct product of three irreducible symmetric spaces of compact type* $(A = a_1 = a_2 = a_3 = 0$ *in this case*);
- (2) *The group G* is simple and the pair $(\mathfrak{q}, \mathfrak{h})$ is one of the pairs in Table 1 of [\[2](#page-2-0)] (the embed d ing of ${\frak h}$ to ${\frak g}$ is determined by the following requirement: the corresponding pairs $({\frak g},{\frak k}_i)$ and (\mathbf{t}_i , \mathbf{h}), $i = 1, 2, 3$, *in Table 2 of* [[2\]](#page-2-0) *are symmetric*);
- (3) $G = F \times F \times F \times F$ and $H = \text{diag}(F) \subset G$ for some connected simply connected com*pact simple Lie group F*, *with the following description on the Lie algebra level:*

 $(\mathfrak{g}, \mathfrak{h}) = (\mathfrak{f} \oplus \mathfrak{f} \oplus \mathfrak{f} \oplus \mathfrak{f}, \text{diag}(\mathfrak{f}) = \{(X, X, X, X) \mid X \in \mathfrak{f}\})$,

where \tilde{f} *is the Lie algebra of* F *, and (up to permutation)* $\mathfrak{p}_1 = \{(X, X, -X, -X) | X \in f\}$, $\mathfrak{p}_2 = \{(X, -X, X, -X) \mid X \in f\}$, $\mathfrak{p}_3 = \{(X, -X, -X, X) \mid X \in f\}$ (*a*₁ = *a*₂ = *a*₃ = 1/4 *in this case)*.

 \boxtimes Yu. G. Nikonorov nikonorov2006@mail.ru

The original article can be found online at<https://doi.org/10.1007/s10711-015-0119-z>.

¹ Southern Mathematical Institute of Vladikavkaz Scientific Centre of the Russian Academy of Sciences, Markus St. 22, Vladikavkaz, Russia 362027

(4) $H = \text{diag}(K) \subset K \times K \subset F \times F = G$, where (f, f) is a compact irreducible symmet*ric pair with simple* \mathfrak{f} *and with simple or one-dimensional* \mathfrak{k} , *(up to permutation)* $\mathfrak{p}_1 = \{(X, X) \mid X \in \mathfrak{q}\}, \ \mathfrak{p}_2 = \{(X, -X) \mid X \in \mathfrak{q}\}, \ \mathfrak{p}_3 = \{(Y, -Y) \mid Y \in \mathfrak{k}\}, \text{ and } \mathfrak{q} \text{ is the }$ *orthogonal complement to* \mathbf{t} *in* \mathbf{f} *with respect to the Killing form of the Lie algebra* \mathbf{f} .

The same item (4) should be added in the statement of Theorem 3 in [[2\]](#page-2-0). The reason for the above correction is the fact that Corollary 2 in [\[2](#page-2-0)] is not correct in general, but it is true under some additional assumptions. The correct version of this corollary is as follows.

Corollary 1 *If* $p \ge 2$ *and at least one of the modules* \mathfrak{p}_i , $i = 1, 2, 3$, *is situated in some simple ideal* \mathfrak{g}_i *of the Lie algebra* \mathfrak{g}_i , *then* $A = 0$ *, consequently, G/H locally is a direct product of three irreducible symmetric spaces of compact type.*

Proof Without loss of generality we may suppose that $\mathfrak{p}_1 \subset \mathfrak{g}_1$, then $[\mathfrak{p}_1, \mathfrak{p}_2] \subset \mathfrak{p}_3 \cap \mathfrak{g}_1$ and $[\mathfrak{p}_1, \mathfrak{p}_3] \subset \mathfrak{p}_2 \cap \mathfrak{g}_1$. If $[\mathfrak{p}_1, \mathfrak{p}_2] = 0$ or $[\mathfrak{p}_1, \mathfrak{p}_3] = 0$, we get $A = 0$. Otherwise, $\mathfrak{p}_2, \mathfrak{p}_3 \subset \mathfrak{g}_1$ (note that all the modules \mathfrak{p}_2 , \mathfrak{p}_3 , $\mathfrak{p}_2 \cap \mathfrak{g}_1$, and $\mathfrak{p}_3 \cap \mathfrak{g}_1$ are Ad (*H*)-irreducible), which implies $p = 1.$

This result should be completed with the following proposition (that provides the case (4) for Theorems 1 and 3 in [\[2](#page-2-0)]).

Proposition 1 *If* $p \geq 2$ *and no one module* \mathfrak{p}_i , $i = 1, 2, 3$, *is in some simple ideal* \mathfrak{g}_j *of* $\mathfrak g$, then $p = 2$ and $(\mathfrak g, \mathfrak h) = (\mathfrak f \oplus \mathfrak f, \text{diag}(\mathfrak f))$, where $(\mathfrak f, \mathfrak f)$ is a compact irreducible symmet*ric pair with simple* $\mathfrak f$ *and with simple or one-dimensional* $\mathfrak k$. *Moreover, up to permutation of indices, we have* $\mathfrak{p}_1 = \{(X, X) \mid X \in \mathfrak{q}\}, \mathfrak{p}_2 = \{(X, -X) \mid X \in \mathfrak{q}\}, \mathfrak{p}_3 = \{(Y, -Y) \mid Y \in \mathfrak{k}\},\$ *where* **q** *is the orthogonal complement to* $\ddot{\mathbf{t}}$ *in* $\ddot{\mathbf{t}}$ *with respect to the Killing form of the Lie algebra* 𝔣.

Proof Recall that $\varphi_i(\mathfrak{h})$ is the $\langle \cdot, \cdot \rangle$ -orthogonal projection of \mathfrak{h} to \mathfrak{g}_i . Let \mathfrak{q}_i be the $\langle \cdot, \cdot \rangle$ -orthogonal complement to $\varphi_i(\mathfrak{h})$ in $\mathfrak{g}_i, 1 \leq i \leq p$. It is clear that $\mathfrak{q}_1 \oplus \mathfrak{q}_2 \oplus \cdots \oplus \mathfrak{q}_p \subset \mathfrak{p}$. Obviously, we have $p \le 3$. If $p = 3$, then all q_i , $i = 1, 2, 3$, are Ad(*H*)-irreducible and $\varphi_1(\mathfrak{h}) \oplus \varphi_2(\mathfrak{h}) \oplus \varphi_2(\mathfrak{h}) \subset \mathfrak{h}$. Since $[\varphi_i(\mathfrak{h}), \varphi_i] \neq 0$ and $[\varphi_i(\mathfrak{h}), \varphi_j] = 0$ for $i \neq j$, the Ad (*H*) -modules q_i , $i = 1, 2, 3$, are pairwise non-isomorphic, hence, they coincides with the corresponding modules \mathfrak{p}_i , $i = 1, 2, 3$. By the above corollary we have $A = 0$ in this case.

If $p = 2$, then there are some isomorphic Ad (*H*)-irreducible submodules $q'_1 \subset q_1$ and $\mathfrak{q}'_2 \subset \mathfrak{q}_2$. Therefore, by the above arguments, $\varphi_1(\mathfrak{h}) \not\subset \mathfrak{h}$ and $\varphi_2(\mathfrak{h}) \not\subset \mathfrak{h}$ (otherwise, \mathfrak{q}'_1 is not isomorphic to q'_2). Hence, $\mathfrak{h} \subsetneq \varphi_1(\mathfrak{h}) \oplus \varphi_2(\mathfrak{h})$, $q'_1 = q_1$, and $q'_2 = q_2$. Without loss of generality, we may assume that $\mathfrak{p}_1 \oplus \mathfrak{p}_2 = \mathfrak{q}_1 \oplus \mathfrak{q}_2$, and $\mathfrak{h} \oplus \mathfrak{p}_3 = \varphi_1(\mathfrak{h}) \oplus \varphi_2(\mathfrak{h})$. Therefore, $(\varphi_1(\mathfrak{h}) \oplus \varphi_2(\mathfrak{h}), \mathfrak{h})$ is a compact irreducible symmetric pair, which has the form (*t* ⊕ **t**, diag(**t**)), where **t** is a compact simple Lie algebra or ℝ [[1](#page-2-1), Theorem 7.81]. Hence, φ_1 and φ_2 determine Lie algebra isomorphisms between \mathfrak{h} and $\varphi_i(\mathfrak{h})$, $i = 1, 2$. Let us consider θ : $\varphi_1(\mathfrak{h}) \mapsto \varphi_2(\mathfrak{h})$, such that $\theta = \varphi_2 \circ \varphi_1^{-1}$. It is clear that $\mathfrak{h} = \{(Y, \theta(Y)) \mid Y \in \varphi_1(\mathfrak{h})\}$.

Now, let us consider the $\langle \cdot, \cdot \rangle$ -orthogonal projections $\pi_i : \mathfrak{p}_1 \to \mathfrak{q}_i$, $i = 1, 2$. We may assume that π_1 is a bijection (otherwise, we can take \mathfrak{p}_2 instead of \mathfrak{p}_1). Now, let us consider the Ad (*H*)-equivariant linear map $\psi := \pi_2 \circ \pi_1^{-1} : \mathfrak{q}_1 \mapsto \mathfrak{q}_2$. We have $\mathfrak{p}_1 = \{(X, \psi(X)) \mid X \in \mathfrak{q}_1\}.$ Since $[\mathfrak{h}, \mathfrak{p}_1] \subset \mathfrak{p}_1$ and $[\mathfrak{p}_1, \mathfrak{p}_1] \subset \mathfrak{h}$, we get $[\mathfrak{q}_1, \mathfrak{q}_1] \subset \varphi_1(\mathfrak{h})$, $\psi([Y,X]) = [\theta(Y), \psi(X)]$ and $\theta([X,Z]) = [\psi(X), \psi(Z)]$ for every $Y \in \varphi_1(\mathfrak{h})$ and for every

 $X, Z \in \mathfrak{q}_1$. In particular, $(\mathfrak{q}_1, \varphi_1(\mathfrak{h}))$ is a compact irreducible symmetric pair with simple \mathfrak{q}_1 and and with simple or one-dimensional $\varphi_1(\mathfrak{h})$.

If we extend the linear map ψ from \mathfrak{q}_1 to \mathfrak{g}_1 setting $\psi(X) := \theta(X)$ for any $X \in \varphi_1(\mathfrak{h})$, we obtain the isomorphism ψ between \mathfrak{g}_1 and \mathfrak{g}_2 . Indeed, $\psi([X, Y]) = [\psi(X), \psi(Y)]$ for every *X*, *Y* ∈ \mathfrak{g}_1 , $\varphi_2(\mathfrak{h}) \subset \psi(\mathfrak{g}_1)$, and \mathfrak{g}_1 is simple. Therefore, $\psi(\mathfrak{g}_1)$ is a simple Lie subalgebra in \mathfrak{g}_2 , and, moreover, $\psi(\mathfrak{g}_1) = \mathfrak{g}_2$, since $\varphi_2(\mathfrak{h}) \subset \psi(\mathfrak{g}_1)$ and \mathfrak{p}_2 is ad (\mathfrak{h})-irreducible. Note that $\mathfrak{p}_2 = \{(X, -\psi(X)) \mid X \in \mathfrak{q}_1\}$ and $\mathfrak{p}_3 = \{(Y, -\psi(Y)) \mid Y \in \varphi_1(\mathfrak{h})\}$. Therefore, we may consider \mathfrak{a}_2 as the copy \mathfrak{a}_1 under the isomorphism ψ . The proposition is proved. sider g_2 as the copy g_1 under the isomorphism ψ . The proposition is proved.

The list of all generalized Wallach spaces of the type as in the Proposition [1](#page-1-0) follows directly from the list of compact irreducible symmetric spaces, see e. g. [\[1,](#page-2-1) 7.102]. Using structure of symmetric spaces and the Casimir operators for the isotropy representations (see e. g. [[1](#page-2-1), Chapter 7]), one can easily compute the values A, a_1 , a_2 , and a_3 (see the for-mulas (5) and (6) in [[2](#page-2-0)]) for the spaces in Proposition [1:](#page-1-0) $A = \frac{1}{4} \left(\dim(\mathfrak{f}) - \dim(\mathfrak{f}) \right) = \frac{1}{4} \dim(\mathfrak{p}_1) = \frac{1}{4} \dim(\mathfrak{p}_2), \ a_1 = \frac{A}{\dim(\mathfrak{p}_1)} = a_2 = \frac{A}{\dim(\mathfrak{p}_2)} = 1/4, \text{ and }$ $a_3 = \frac{A}{\dim(\mathfrak{p}_3)} = \frac{\dim(\mathfrak{f}) - \dim(\mathfrak{f})}{4 \dim(\mathfrak{f})} \le 1/2.$

Acknowledgements The author would sincerely thank Huibin Chen and Zhiqi Chen for pointing out an omission in the statement of the classifcation theorem for generalized Wallach spaces in [[2\]](#page-2-0).

References

- 1. Besse, A.L.: Einstein Manifolds. Springer, Berlin, p. XII+510 (1987)
- 2. Nikonorov, Yu.G.: Classifcation of generalized Wallach spaces. Geometriae Dedicata **111**(1), 193– 212 (2016).<https://doi.org/10.1007/s10711-015-0119-z>

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.