CORRECTION

Correction to: Classification of generalized Wallach spaces

Yu. G. Nikonorov¹

Published online: 25 February 2021 © Springer Nature B.V. 2021

Correction to: Geom Dedicata (2016) 111:193–212 https://doi.org/10.1007/s10711-015-0119-z

The paper [2] is devoted to the classification of generalized Wallach spaces. A generalized Wallach space is a homogeneous spaces G/H of a connected compact semisimple Lie group G (H is a compact subgroup of G), such that there is a $\langle \cdot, \cdot \rangle$ -orthogonal and Ad(H)-invariant decomposition $\mathfrak{g} = \mathfrak{h} \oplus \mathfrak{p}_1 \oplus \mathfrak{p}_2 \oplus \mathfrak{p}_3$, where \mathfrak{g} and \mathfrak{h} are Lie algebras of G and H respectively, $\langle \cdot, \cdot \rangle$ is the minus Killing form of \mathfrak{g} , the modules \mathfrak{p}_i are Ad(H)-irreducible, $[\mathfrak{p}_i, \mathfrak{p}_i] \subset \mathfrak{h}$ for i = 1, 2, 3. Here we will make a correction to the obtained classification. In what follows, we use the notation from [2].

The main result of the paper [2] (Theorem 1) should be stated as follows (in fact, we just add the item (4)):

Theorem 1 Let *G*/*H* be a connected and simply connected compact homogeneous space. *Then G*/*H* is a generalized Wallach space if and only if it is of one of the following types:

- (1) *G/H is a direct product of three irreducible symmetric spaces of compact type* $(A = a_1 = a_2 = a_3 = 0 \text{ in this case});$
- (2) The group G is simple and the pair (g, h) is one of the pairs in Table 1 of [2] (the embedding of h to g is determined by the following requirement: the corresponding pairs (g, t_i) and (t_i, h), i = 1, 2, 3, in Table 2 of [2] are symmetric);
- (3) $G = F \times F \times F$ and $H = \text{diag}(F) \subset G$ for some connected simply connected compact simple Lie group F, with the following description on the Lie algebra level:

 $(\mathfrak{g},\mathfrak{h}) = (\mathfrak{f} \oplus \mathfrak{f} \oplus \mathfrak{f} \oplus \mathfrak{f}, \operatorname{diag}(\mathfrak{f}) = \{(X, X, X, X) \mid X \in f\}),$

where \mathfrak{f} is the Lie algebra of F, and (up to permutation) $\mathfrak{p}_1 = \{(X, X, -X, -X) \mid X \in f\}, \mathfrak{p}_2 = \{(X, -X, X, -X) \mid X \in f\}, \mathfrak{p}_3 = \{(X, -X, -X, X) \mid X \in f\} (a_1 = a_2 = a_3 = 1/4 \text{ in this case}).$

☑ Yu. G. Nikonorov nikonorov2006@mail.ru

The original article can be found online at https://doi.org/10.1007/s10711-015-0119-z.

¹ Southern Mathematical Institute of Vladikavkaz Scientific Centre of the Russian Academy of Sciences, Markus St. 22, Vladikavkaz, Russia 362027

(4) H = diag(K) ⊂ K × K ⊂ F × F = G, where (f, f) is a compact irreducible symmetric pair with simple f and with simple or one-dimensional f, (up to permutation)
p₁ = {(X, X) | X ∈ q}, p₂ = {(X, -X) | X ∈ q}, p₃ = {(Y, -Y) | Y ∈ f}, and q is the orthogonal complement to f in f with respect to the Killing form of the Lie algebra f.

The same item (4) should be added in the statement of Theorem 3 in [2]. The reason for the above correction is the fact that Corollary 2 in [2] is not correct in general, but it is true under some additional assumptions. The correct version of this corollary is as follows.

Corollary 1 If $p \ge 2$ and at least one of the modules \mathfrak{p}_i , i = 1, 2, 3, is situated in some simple ideal \mathfrak{g}_j of the Lie algebra \mathfrak{g} , then A = 0, consequently, G/H locally is a direct product of three irreducible symmetric spaces of compact type.

Proof Without loss of generality we may suppose that $\mathfrak{p}_1 \subset \mathfrak{g}_1$, then $[\mathfrak{p}_1, \mathfrak{p}_2] \subset \mathfrak{p}_3 \cap \mathfrak{g}_1$ and $[\mathfrak{p}_1, \mathfrak{p}_3] \subset \mathfrak{p}_2 \cap \mathfrak{g}_1$. If $[\mathfrak{p}_1, \mathfrak{p}_2] = 0$ or $[\mathfrak{p}_1, \mathfrak{p}_3] = 0$, we get A = 0. Otherwise, $\mathfrak{p}_2, \mathfrak{p}_3 \subset \mathfrak{g}_1$ (note that all the modules $\mathfrak{p}_2, \mathfrak{p}_3, \mathfrak{p}_2 \cap \mathfrak{g}_1$, and $\mathfrak{p}_3 \cap \mathfrak{g}_1$ are Ad (*H*)-irreducible), which implies p = 1.

This result should be completed with the following proposition (that provides the case (4) for Theorems 1 and 3 in [2]).

Proposition 1 If $p \ge 2$ and no one module \mathfrak{p}_i , i = 1, 2, 3, is in some simple ideal \mathfrak{g}_j of \mathfrak{g} , then p = 2 and $(\mathfrak{g}, \mathfrak{h}) = (\mathfrak{f} \oplus \mathfrak{f}, \operatorname{diag}(\mathfrak{k}))$, where $(\mathfrak{f}, \mathfrak{k})$ is a compact irreducible symmetric pair with simple \mathfrak{f} and with simple or one-dimensional \mathfrak{k} . Moreover, up to permutation of indices, we have $\mathfrak{p}_1 = \{(X, X) \mid X \in \mathfrak{q}\}, \mathfrak{p}_2 = \{(X, -X) \mid X \in \mathfrak{q}\}, \mathfrak{p}_3 = \{(Y, -Y) \mid Y \in \mathfrak{k}\},$ where \mathfrak{q} is the orthogonal complement to \mathfrak{k} in \mathfrak{f} with respect to the Killing form of the Lie algebra \mathfrak{f} .

Proof Recall that $\varphi_i(\mathfrak{h})$ is the $\langle \cdot, \cdot \rangle$ -orthogonal projection of \mathfrak{h} to \mathfrak{g}_i . Let \mathfrak{q}_i be the $\langle \cdot, \cdot \rangle$ -orthogonal complement to $\varphi_i(\mathfrak{h})$ in $\mathfrak{g}_i, 1 \le i \le p$. It is clear that $\mathfrak{q}_1 \oplus \mathfrak{q}_2 \oplus \cdots \oplus \mathfrak{q}_p \subset \mathfrak{p}$. Obviously, we have $p \le 3$. If p = 3, then all $\mathfrak{q}_i, i = 1, 2, 3$, are Ad(*H*)-irreducible and $\varphi_1(\mathfrak{h}) \oplus \varphi_2(\mathfrak{h}) \oplus \varphi_2(\mathfrak{h}) \subset \mathfrak{h}$. Since $[\varphi_i(\mathfrak{h}), \mathfrak{q}_i] \ne 0$ and $[\varphi_i(\mathfrak{h}), \mathfrak{q}_j] = 0$ for $i \ne j$, the Ad(*H*)-modules $\mathfrak{q}_i, i = 1, 2, 3$, are pairwise non-isomorphic, hence, they coincides with the corresponding modules $\mathfrak{p}_i, i = 1, 2, 3$. By the above corollary we have A = 0 in this case.

If p = 2, then there are some isomorphic Ad (*H*)-irreducible submodules $\mathbf{q}'_1 \subset \mathbf{q}_1$ and $\mathbf{q}'_2 \subset \mathbf{q}_2$. Therefore, by the above arguments, $\varphi_1(\mathfrak{h}) \not\subset \mathfrak{h}$ and $\varphi_2(\mathfrak{h}) \not\subset \mathfrak{h}$ (otherwise, \mathbf{q}'_1 is not isomorphic to \mathbf{q}'_2). Hence, $\mathfrak{h} \subsetneq \varphi_1(\mathfrak{h}) \oplus \varphi_2(\mathfrak{h})$, $\mathbf{q}'_1 = \mathbf{q}_1$, and $\mathbf{q}'_2 = \mathbf{q}_2$. Without loss of generality, we may assume that $\mathfrak{p}_1 \oplus \mathfrak{p}_2 = \mathbf{q}_1 \oplus \mathbf{q}_2$, and $\mathfrak{h} \oplus \mathfrak{p}_3 = \varphi_1(\mathfrak{h}) \oplus \varphi_2(\mathfrak{h})$. Therefore, $(\varphi_1(\mathfrak{h}) \oplus \varphi_2(\mathfrak{h}), \mathfrak{h})$ is a compact irreducible symmetric pair, which has the form $(\mathfrak{t} \oplus \mathfrak{k}, \operatorname{diag}(\mathfrak{t}))$, where \mathfrak{t} is a compact simple Lie algebra or \mathbb{R} [1, Theorem 7.81]. Hence, φ_1 and φ_2 determine Lie algebra isomorphisms between \mathfrak{h} and $\varphi_i(\mathfrak{h})$, i = 1, 2. Let us consider $\theta : \varphi_1(\mathfrak{h}) \mapsto \varphi_2(\mathfrak{h})$, such that $\theta = \varphi_2 \circ \varphi_1^{-1}$. It is clear that $\mathfrak{h} = \{(Y, \theta(Y)) \mid Y \in \varphi_1(\mathfrak{h})\}$.

Now, let us consider the $\langle \cdot, \cdot \rangle$ -orthogonal projections $\pi_i : \mathfrak{p}_1 \to \mathfrak{q}_i$, i = 1, 2. We may assume that π_1 is a bijection (otherwise, we can take \mathfrak{p}_2 instead of \mathfrak{p}_1). Now, let us consider the Ad (*H*)-equivariant linear map $\psi := \pi_2 \circ \pi_1^{-1} : \mathfrak{q}_1 \mapsto \mathfrak{q}_2$. We have $\mathfrak{p}_1 = \{(X, \psi(X)) | X \in \mathfrak{q}_1\}$. Since $[\mathfrak{h}, \mathfrak{p}_1] \subset \mathfrak{p}_1$ and $[\mathfrak{p}_1, \mathfrak{p}_1] \subset \mathfrak{h}$, we get $[\mathfrak{q}_1, \mathfrak{q}_1] \subset \varphi_1(\mathfrak{h})$, $\psi([Y, X]) = [\theta(Y), \psi(X)]$ and $\theta([X, Z]) = [\psi(X), \psi(Z)]$ for every $Y \in \varphi_1(\mathfrak{h})$ and for every

 $X, Z \in \mathfrak{q}_1$. In particular, $(\mathfrak{q}_1, \varphi_1(\mathfrak{h}))$ is a compact irreducible symmetric pair with simple \mathfrak{q}_1 and and with simple or one-dimensional $\varphi_1(\mathfrak{h})$.

If we extend the linear map ψ from \mathfrak{q}_1 to \mathfrak{g}_1 setting $\psi(X) := \theta(X)$ for any $X \in \varphi_1(\mathfrak{h})$, we obtain the isomorphism ψ between \mathfrak{g}_1 and \mathfrak{g}_2 . Indeed, $\psi([X, Y]) = [\psi(X), \psi(Y)]$ for every $X, Y \in \mathfrak{g}_1, \varphi_2(\mathfrak{h}) \subset \psi(\mathfrak{g}_1)$, and \mathfrak{g}_1 is simple. Therefore, $\psi(\mathfrak{g}_1)$ is a simple Lie subalgebra in \mathfrak{g}_2 , and, moreover, $\psi(\mathfrak{g}_1) = \mathfrak{g}_2$, since $\varphi_2(\mathfrak{h}) \subset \psi(\mathfrak{g}_1)$ and \mathfrak{p}_2 is ad (\mathfrak{h})-irreducible. Note that $\mathfrak{p}_2 = \{(X, -\psi(X)) \mid X \in \mathfrak{q}_1\}$ and $\mathfrak{p}_3 = \{(Y, -\psi(Y)) \mid Y \in \varphi_1(\mathfrak{h})\}$. Therefore, we may consider \mathfrak{g}_2 as the copy \mathfrak{g}_1 under the isomorphism ψ . The proposition is proved.

The list of all generalized Wallach spaces of the type as in the Proposition 1 follows directly from the list of compact irreducible symmetric spaces, see e. g. [1, 7.102]. Using structure of symmetric spaces and the Casimir operators for the isotropy representations (see e. g. [1, Chapter 7]), one can easily compute the values A, a_1 , a_2 , and a_3 (see the formulas (5) and (6) in [2]) for the spaces in Proposition 1: $A = \frac{1}{4} (\dim(\mathfrak{f}) - \dim(\mathfrak{f})) = \frac{1}{4} \dim(\mathfrak{p}_1) = \frac{1}{4} \dim(\mathfrak{p}_2), a_1 = \frac{A}{\dim(\mathfrak{p}_1)} = a_2 = \frac{A}{\dim(\mathfrak{p}_2)} = 1/4$, and $a_3 = \frac{A}{\dim(\mathfrak{p}_3)} = \frac{\dim(\mathfrak{f}) - \dim(\mathfrak{f})}{4 \dim(\mathfrak{f})} \le 1/2$.

Acknowledgements The author would sincerely thank Huibin Chen and Zhiqi Chen for pointing out an omission in the statement of the classification theorem for generalized Wallach spaces in [2].

References

- 1. Besse, A.L.: Einstein Manifolds. Springer, Berlin, p. XII+510 (1987)
- Nikonorov, Yu.G.: Classification of generalized Wallach spaces. Geometriae Dedicata 111(1), 193– 212 (2016). https://doi.org/10.1007/s10711-015-0119-z

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.