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Abstract

We consider the evolution of a strictly convex hypersurface by a class of general curvature. We
prove that given some Neumann boundary condition, the flow exists for all time and converges
to a solution with prescribed general curvature that satisfies the Neumann boundary condition.
Our method also works for the corresponding elliptic setting.
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1 Introduction

In this paper, we study the deformation of a strictly convex graph over a bounded, convex
domain 2 C R", n > 2, to a convex graph with prescribed general curvature and Neumann
boundary condition.

More precisely, let £ (1) = {X := (x, u(x,1))|(x, 1) € Q x [0, T)}, we study the long
time existence and convergence of the following flow problem

u=w(fk[Z®)]) — P(x,u) inQ x [0, T)
uy = @(x, u) on a2 x [0, 7T) (1.1
uli=0 = uo in Q,

where @, ¢ : Q x R — R are smooth functions, v denotes the outer unit normal to 9€2,
w = +/1+ |Du|?, «[2(t)] = (k1,...,k,) denotes the principal curvatures of % (), and
ug : © — R, the initial hypersurface, is a smooth, strictly convex function over 2.

To guarantee that as long as the flow exits, X () stays convex, the curvature function f has
to satisfy some structure conditions. Accordingly, the function f is assumed to be defined
in the convex cone TV = {A € R" : each component A; > 0} in R" and satisfying the
following conditions:
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df(A
filn = f()>01nr;f, 1<i<n, (1.2)
oA
and
f is a concave function. (1.3)

In addition, f will be assumed to satisfy some more technical assumptions. These include

f>0inI};, f=0 ondl}, (1.4)

f,....H=1, (1.5
and

f is homogeneous of degree one. (1.6)

Moreover, for any C > 0 and every compact set E C F,f, thereis R = R(E, C) > 0 such
that
f, .oy Ap—1, A+ R)>C, VA€E. (1.7)

An example of functions satisfying all assumptions above is given by

1
f= % |:H,,” + (H,/ Hl)ﬁ] , where H; is the normalized /-th elementary symmetric poly-

1
nomial. However, we point out that the pure curvature quotient (H, /H;) 77 does not satisfy
(1.7).
For a graph of u, the induced metric and its inverse matrix are given by
uu j

(1.8)

R e ij 8. _
glj_alj +uju; and g" = ij w2

where w = /1 + | Du|?. Following [2], the principle curvature of graph u are eigenvalues
of the symmetric matrix Alu] = [a;;] :

ik, ol , .
ayy = L2 Ghere yik = 8y — —Mk (1.9)
w w(l + w)
The inverse of '/ is denoted by y;;, and
Uil
g Witk 1.10
vij =0ty +w (-1

Geometrically [y;;] is the square root of the metric, i.e. yixyxj = &ij-
Now, for any positive definite symmetric matrix A, we define the function F by

F(A) = f(A(4)),
where A(A) denotes the eigenvalues of A. We will use the notation
dF °F

Fij,kl _

Fli(A) = =
ajj da;joay

(A).

The matrix [F/(A)] is symmetric and has eigenvalues fi, ..., f.. By (1.2), [F/(A)] is
positive definite. Moreover, by (1.3), F is a concave function of A, that is

FUHM(A)g 84 <0,

for any n x n symmetric matrix [&;;].
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We rewrite Eq. (1.1) as following,

ikl
i=w [F (%) - q>(x,u)] in Q x [0, T)
w

(1.11)
Uy, = @(x,u) ondQ x [0, T)

uli=0 = uo in Q.
We will prove

Theorem 1.1 Let Q be a smooth bounded, strictly convex domain in R". Let ®, ¢ : Q xR —
R, be smooth functions satisfying

® >0 and o, >0, (1.12)
@; < ¢y <0. (1.13)

Let ug be a smooth, strictly convex function that satisfies the compatibility condition on 9S2:
viup — @(x, u) ,=0 (1.14)
1=l

We also assume
f&[Zo]) — @(x, up) = 0, (1.15)

where $o = {(x, uo(x))|x € Q). Then there exists a solution u € C®(Q x (0, o)) of
Eq. (1.11). Moreover, as t — o0, the function u(x, t) smoothly converges to a smooth limit
Sfunction u®°, such that u® solves the Neumann boundary value problem

ik 0o lj

u

F (y"”’) —dx,u®)  inQ
w

(1.16)
uy’ = @(x,u™) on 9%2,

where v is the outer unit normal of 9<2.

Remark 1.2 As it is explained in [11], in view of the compatibility assumption (1.14), the
short time existence for Eq. (1.11) follows from Theorem 5.3 in [6] and the implicit function
theorem. Moreover, the solution u(-, t) approaches ug in C%(Q) ast — 0, this implies u is
continuous up to t = 0.

By applying short time existence theorem, we know that the flow exists for r € [0, T*),
for some 7* > 0 very small. In the following sections, we fix T < T*, and establish the
uniform C2 bounds for the solution « of (1.11) in (0, T]. Since our estimates are independent
of T, repeating this process we obtain the longtime existence of Eq. (1.11).

Neumann boundary problem has attracted lots of attetions through the years. In particu-
lar, real Monge—Ampere equations in bounded uniformly convex domains are solved with
Neumann boundary conditions by Lions, Trudinger, and Urbas in [8]. There, they built the
foundation for C? a priori estimates of Neumman boundary problem, which departs com-
pletely from that of the Dirichlet problem. By adapting and developing the techniques in
[8], Jiang et al. [5] proved the classical solvability of a generalized Monge—Ampere type
equation with Neumann boundary condition. Recently, Ma and Qiu proved the existence of
the solution to Hession equations with Neumann boundary condition in their beautiful paper
[9], which confirms a longstanding conjecture by Trudinger.

The Neumann boundary problems for parabolic equations have been widely studied as
well. For example, mean curvature flow with Neumann boundary condition have been studied

@ Springer



348 Geometriae Dedicata (2021) 213:345-358

in [1,3,10,14]; Guass curvature flow with Neumann boundary condition have been studied
in [12,13].

Our paper is oganized as follows: In Sect. 2 we prove the uniform estimate for i, which
also implies the convexity of u(-, ¢). This estimate is used in Sect. 3 to derive the bounds for
|u] and | Du|. Section 4 is the most important section, in which we derive the C 2 estimates for
u. Finally, in Sect. 5, we combine all results above to prove the convergence of the solution
of (1.11) as t — oo.

2 Speed estimates

Lemma 2.1 As long as a smooth convex solution of (1.11) exists, we have
min{mi(r)u't, 0}<uc< max{ma(;; i, 0. 2.1
1= =
Proof 1f (11)? achieves a positive local maximum at (x, t) € 92 x (0, T'], then by (1.13) at

this point we would have
(t1)? = 20, = 2(i1)%¢, <0, (2.2)

which leads to a contradiction. Thus, we assume (17)? achieves its maximum at an interior
point. Now let’s denote

_ ik lj
G(D%u, Du,u) = wF <%> — wd(x, )
w
and r = (i)2. A straightforward calculation gives us
F=GUrj —2GY0; + Gry +2G,r, (2.3)
where G/ = % G = gﬁ and G, = %g Since
. FYe
G, =—=-wd, <0, 2.4
ou
we have o y
F— Gljr,'j — Ger < 0. (25)

By the maximum principle we know that a positive local maximum of (i)> can not occur at
an interior point of 2 x (0, T']. Therefore, we proved this Lemma. O

Lemma 2.2 A solution of (1.11) satisfies t > O fort > 0if0 £ 1 > 0 fort = 0.

Proof Differentiating

i = G(D*u, Du, u), (2.6)
with respect to t we get,
%u, = G (uy)ij + G*(up)s + Guuy. 2.7)
Then, for any constant A we have
%(u,e“) =G (u,e)‘t)ij + Gs(u,e)‘t)s + Gu(u,e)") + Auge. 2.8)
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Now we fix o > 0, and choosing a constant A such that » + G, > Ofor (x,1) € Qx[0, 10]. If

;€* = 0 at some interior point (x1, 1) € 2 x (0, #o], then by the strong maximum principle
we would have u,e* vanishes identically in Q x [0, 7o] , which leads to a contradiction.
Assuming ueM =0ata boundary point (x, 1) € 32 x (0, #p], then we would have

(wre™), = ¢ (ue™) = 0. 2.9)

This contradicts the Hopf Lemma. O

Remark 2.3 Lemma 2.2 implies that, if we start from a strictly convex hypersurface ¥ that
satisfies the inequality (1.15), then as long as the flow exists, the flow surfaces X (¢) are
strictly convex and satisfying f(«[2(¢)]) — ©(x, u) > 0.

3 €% and C! estimates

Recall that u,, = ¢(x, u) on 92, the strict convexity of u and the fact that (-, z) — —o0
uniformly as z — oo implies that # is uniformly bounded from above. By Lemma 2.2 we
also have,

t
u(x,t):u(x,O)—i—/ u(x, v)dt > u(x,0). 3.1
0
This yields u is bounded from below. To conclude, we have

Theorem 3.1 (CO estimates) Under our assumption (1.15) on ug, a solution of equation
(1.11) satisfies
lul < Co, (3.2)

where Co = Co(ug, ¢).

Theorem 3.2 (C! estimates) For a convex solution u of Eq. (1.11), the gradient of u remains
bounded during the evolution,
|Du| < Ci, (3.3)

where C; = C1(|u|co, 2, ).

Proof The proof is the same as Theorem 2.2 in [8], for readers convenience we include it
here. By the convexity of u we have for any 7 € [0, T']

Du(- = Du(., t)|. 4
max |Du(:, )] = max | Du(:, 1)| (3.4)

Let xo € 02 and let T be a direction such that v - T = 0 at xo. Let B = Bg(z) be an interior
ball at x¢, L be the line through xg in the direction of —v, and L intersects d B at yo. Then
7= %(xo + y0), we also let y € 3B be the unique point such that &:;I =1

Now let w be an affine function such that w(xg) = u(xg, t) and Dw = Du(xg, t). Then

w<u(x,t), x € Qand

®(z) = w(xg) + Dw(xp) - (z — x0)
= u(x0, 1) + Dulxo, 1) - —— . |z — x| (3.5)
|z — xo]

> M(.x(), t) - MlRa
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where we assume |¢(x, u)| < M1 in Q x [—Cp, Co]. Therefore,

0() — @) _u.0—u@.n+MR _2C

D . 1)=D =
ru(x0, 1) T @ (X0) Iy — 2| = R R

+ M;.
(3.6)

Since 7, X0, and ¢ are arbitrary, we are done. O

4 C2 estimates

First of all, we will list some evolution equations that will be used later. Since the calculations
are straightforward, we will only state our results here.

Lemma 4.1 Let u be a solution to the general curvature flow (1.11). Then we have the
Sfollowing evolution equations:

() Lgij = —2(F — ®)hyj,

(i) fn=—g"/(F — )1},

a
(i) Lot = —gV(F — ®)ju;,
Vi) Ln! = (F — ®)] + (F — ®)hthj,

where g;j, h;j are the first and second fundamental forms, n is the upward unit normal to
=), "t = (n, "), and h! = g/*hy;.

4.1 C? interior estimates

In this subsection, we will prove the following theorem.

Theorem4.2 Let X (1) = {(x, u(x, t))|x € Q,t € [0, T} be the flow surfaces, where u(x, t)
satisfies Eq. (1.11) and

n"l'>2a>0 onX(), Vtel0, T

For X € 3(t), let kmax (X) be the largest principle curvature of X (t) at X. Then

Kmax
where Qr = Q x (0, T].
Proof Let’s consider
Kmax
Mo = MK g

we assume Mo > 0 is attained at an interior point (xo, fo) € 2 x (0, T]. We can choose a

local coordinate at (xg, o) such that k| = kmax, A’

P = K,‘(S,'j, and 8ij = 3[j.

hl . . . . .
At (x0, t0), ¥ = m achieves its local maximum. Therefore, at this point we have

1 i+1
hy; Vin

}T} T, 4.2)
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Moreover, by Lemma 4.1
Ew 3 h} B h}ﬁn+l
T ot — +1 _ ;)2
ot n" a (n" a) (43)
1 > hi
Since
Vo = q)xlxl(X,u)+2q>xlz”l + ®.uyy, 4.4)
Vi = (X, ent1)y = (him, eps) = hyn" (4.5)
Vit = Vi (—hix e, ens1) = (—hiik T, ent1) — hiy (0, enp1) (4.6)
and N N
V11F=Fuhijll‘i‘FU’rshijlhrsl (4.7)
= FU(hy1;; — W3 hij + hichiihin) + F97 b,
In view of Egs. (4.3), (4.6), and (4.7), we get at (xo, t9)
9 y
0= ¥ - F''Viiyr
1 . iy
=i, [F”him + F7 " hijihesy — V1@ + (F — d));cf}
hit Fiihyi hi i n+l
+ (1 _a)z(F — Piui — t — g2 i is
S TP PR BT e\ L “4-8)
B AT T
Vi @ (F — ®)i} i
Tt g Tt g et — a)z(F — P)iui
hi i 2 bl
+ T —a)? F'" (=Vihizug — him"t) .
By our assumptions (1.6) and (1.3), we know that at (xo, #p),
Fiihil‘ = fiKi = F (49)
and N
F"" hijthrs1 < 0. (4.10)
Substituting (4.4) and (4.5) into (4.8), then combining with (4.9) and (4.10) we get
0< 31# — FiiViy
— 8t 113
—ah 2 @Klz C
= @ —a)y e e Sy e S (4.11)
CDZan”'H K1
- n"tl — g - (n"+1 — a)2 (®i + Dzui)ui,
which implies,
(7 inf c1>> K?
—aKy 2 Qx[—Co.Col
0< ra. a)zfiKi — N — + Ck1, (4.12)
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thus
k1 < C =C(D, |u|cr). (4.13)

Note that the constants C in (4.12) and (4.13) also depend on a; since our choice of a depends
on |u|c-1, we omit the dependency on a. Therefore, we conclude that

Kmax
max

0 m < C2 (1 + ranélx Kmax) . (4]4)
T - T

[m}

4.2 2 boundary estimates

We use v for the outer unit normal of 9€2 and 7 for a direction that tangential to 9€2. By the
exactly same argument as Lemma 4.1 of [13] we have

Lemma 4.3 (Mixed C2 estimates at the boundary) Let u be the solution of our flow Eq. (1.11).
Then the absolute value of u,, remains a priori bounded on 0<2 during the evolution.

Now we consider the function
V(x,& 1) i= uge — 2(& - V)& (Dig — DeuDV"), 4.15)

where & € S"! is a unit vector and £’ = & — (£ - v)v. By Theorem 4.2, we may assume
V(x, &, t) achieves its maximum at (xg, o) € 32 x (0, T'], otherwise, we would be done.
We will devide it into 3 cases.

(1) & is tangential We will compute the second tangential derivatives of the boundary
condition. The proof is the same as in [9], for readers convenience, we will include it
here. Following the notation in [9], we denote ¢/ = §;; — v'v/. Differentiating the
boundary condition with respect to the tangential direction twice we obtain

uvt = /Dy — c’]ulevl +! v]vlulj,

and

ulipvl =cP1D, (ciijw — cijulev[ + viujvlu1j> + vpqululiq — cpqul,-qul.

Summing with £/£7 yields

uggy = =267 Dy — wEP Dipv'E +uyy Y EPD,VE

1

— Y EPEV D,V Djg + puee +EPE gip

1
+ wzz’é + 2M§$i¢zi,

where we have used Zj v/ D/ = 0.
Therefore, at (xg, f9) we have

Dggyu < —2(D1Vk)DjkM§i§/ + (Divj)éiéj Dyyu + ¢, D;jué;§; + C, (4.16)

where C = C(flullc1, 1923, @l c2).
Next, since V attains its maximum at (xo, #p), we get

0 <D,V =ugey — axDiyu — (Dyay) Dru — D,b, 4.17)
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where ax = 2(¢ - v)(¢;& — &/ D; vEy and b = 2(& - V)&, ¢k Thus, applying Lemma 4.3
uggy = ayDyyu — C(ll@llc2, lullcr, [1982)c3) = =C, (4.13)

where we have used a, = 0. Combine with (4.16) and condition (1.13) yields
- 2(Divk)D_/kM$i§/ + (Divj)éiéjuw +cyDiju§i&; + C > —C. (4.19)

By virtue of the uniformly convexity of the domain €2, we have [ D; vk > ¢o1, for some
co > 0. This gives
Desu(xo, to) < C(1+ Dyyu(xo, to)). (4.20)

(i) & is non-tangential We write § = at 4+ v, wherea =& -7, B =& - v # 0. Then

Dgsu = aszru + ﬂzDWu +2aB8D.yu

, , , (4.21)
=o " Dru+ B Dyyu+ V'i(x, &),
where V' = 2(¢ - v)§/(Djp — DyuD;v¥). Thus we get,
V(x0. €. 10) = &*V (x0. . 10) + BV (x0. v, o) 4
< a®V(x0, & 10) + BV (x0, v, o), '
which yeilds
ugg (x0, 10) < C(1 + uyy(xo, o). (4.23)
(ili) Double normal C?-estimates at the boundary Let’s recall our evolution equation
ik 1j
i=w|F (LY — D(x,u)
w 4.24)
uy = @(x, u)

In the following we denote

’

G(Dzu Du)=F (ylkuk”/[]>
w

then G satisfies similar structure conditions to those of F'. We have
y 9G 1 I
Gi= o = —FKyikyli, (4.25)
Uijj w

and it’s easy to see that

%ZF” < ZG” < %ZF”. (4.26)

By a straightforward calculation we get (for details see the proof of Lemma 2.3 in [4]),
_ G _ Ug

GS — _—— -
T Quy w? w(l + w)

FYay (wury™ +ujy*), (4.27)

where we have used Y fik; = f (k). Since [a; 7] 1is positive definite, we obtain
Y IG' < CF < Co. (4.28)
Now, let

Q,i={xeQ:0<d() =dist(x, Q) < u}.
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Consider g(x) = —d(x) + Nd?(x), then g € C* in ,, for some constant j satisfies
nw<pand Nu < %, where [ is a small constant depending on €2. Since

—Dd(yo) = v(xp)

where xo € 92 and dist(yg, 0€2) = dist(xg, yo), ¢ satisfies the following properties in
Q

1
~p+Np?<g<0 and 3 =1Dgl 2. (4.29)

Moreover, % = v in £, here v is the unit outer normal to the boundary 9<2.
Next, let
M = max u,, (4.30)
3Qx[0,T]
and Q(x,1) = Q(x) = (A + %M)q(x) in ,, where u, A, N are positive constants
to be chosen later. We consider the following function

P(x,t):=Du-Dqg—¢—Q 4.31)

Lemmad4.4 Forany (x,t) € QM x [0, T], if we choose A, N > 0 large, u > 0 small, then
we have P(x,t) > 0.

Proof First, let’s assume P (x, t) attains its minimum at (xo, f) € €, x (0, T']. Let’s choose
a local coordinate such that a;; (xo, fo) = k;(x0, f0)d;j, 1 < i, j < n. Then at this point we

have Fi = %(Si ;- Differentiating P twice, we get
1

and

Pi=Y wiqi+ Y wqi —¢i — Qi, (4.32)
1 1

Pij =Y wijqr+2Y wiqy + Y wqij — ¢ij — Qij- (4.33)
1 ] 1

Moreover,

Py = Du; - Dg — ¢,

=Y w(F — O)igr — g = Y [w(F — )iy — pow(F — @), @3
1 1

Therefore, at (xg, o) we have

1 .,
7Pt - GUPU
w
1 .
= —[w(F = ®)ligi = ¢.(F = ) = GV (Z wijq +2 ) uiqi
! l

1 -
+ ) g — wij) + (A + 5M> G"qij (4.35)
I

1 .
= —lw(F = ®)igr = ¢=(F = ) = G7 3 wiijq
1 i

— 23 Guiqy - GUuquj + GYeij + (A + §M> G"qij.
I I
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This implies at (xg, fp)

1 ..
0> —PFP — G”P,‘j
w
(F —®) usuquq
— Al Fiq; — D11 — @, (F — @
Xz: ” ” +Xl: 141 Xl: 191 — @=( )
iy y N (4.360)
— G wija =2 Gluiqi =Y GYuqu;
l l l
. 1 .
+ GV (@rixj + 20x,21j + Qrzttittj + @ruij) + (A + §M> G" qij.
Since G(D?u, Du) = F we have
GYujji + G'ug = Fy, (4.37)
which gives us N
Fiqr — GYuijiqr = G'ugq. (4.38)
By (4.28) and (4.29) we have ~
|G ugqi| < Cr(M + 1). (4.39)

Furthermore, by the speed estimate (2.1), height estimate (3.2), and the gradient estimate

(3.3), we obtain

Foo ) .
UL G| < EoM. (4.40)
w

|Pq1| +

Now, by the convexity of €2, we may assume
K[2kodap] < k[—dapl < k[kiapl, 1 <a,Bp <n—1, (4.41)
for some ko, k1 > 0 depending on 92. Thus, in £, we have
k[(k1 +3N)8;j]1 > klqij] = k[—d;ij +2Ndd;; +2Nd;d;] > «[kod;;], (4.42)
where 1 < i, j <n and «[A] denotes the eigenvalue of the matrix A. This gives
2GVuiiquj| < Cs(ki +3N), (4.43)

where C3 depends on F. Next, an easy calculations yields

giji = —diji +2Ndd;j +2Ndd;j; +4Nd;d;, (4.44)
which implies
Igijil < C(10R2]¢3) + 6Nk;. (4.45)
Therefore, N -
G wiquij| < (C(18Q¢cs) + 6Nki) C1 Y G, (4.46)

where we have used G/ = L Fklyikyli < 3" FF < C'Y" G'. Consequently, we have
G uiqiij + GY (gxpa; + 20215 + @zziu )| < (Ca+ CsNk)) Y G (447)
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To conclude, we obtained

1 .
0> *P;—G]P[j
w

v

—CaM — C1(M + 1) = C3(ki + 3N) — (C4 + CsNk1) Y G (4.48)

A M (A M
— 4+ =k 4= +=)GD%. D
+(2+4>0§G+<2+4)G( g, Du),

Note that here we used the inequality G¥ (D*u, Du)q;; > G(D?q, Du), which follows from
the concavity of f. By Lemma 2.2 of Guan and Spruck [4], we may choose N sufficiently
large such that

1 ~ -
76D’ Du) = Ci + G+ 1, (4.49)
then we choose A such that
ko L - . y
?AZG” > C3(ki +3N) + (C4 + NCsk) Y G", (4.50)
here we have used ) Gl > co(|u]c1) > 0, which follows from (4.26) and the assumptions

(1.3), (1.6) of f. Substituting (4.49) and (4.50) into (4.48) we get

1 .
—P—GYP;; >0 4.51)
w

at (xq, to), which leads to a contradiction.
Finally, note that for any (x, ) € 92 x [0, T] we have
P(x,t) =0.
For (x, 1) € 02, \ 022 x [0, T'] we have

~ 1 1
P@.1) 2z =Co+ (A+ 5M) - S >0,
2Téf’.Moreover, when A > C7 = C7(|luglc2, l¢lc1, 882 2), we have for x € Q,

P(x,0) > 0.

when A >

Thus, choosing
4 = ACs3(ki +2N) + Ca+ NCski] N 2Cs
N koco
we have P(x,t) > 0in ,, x [0, T]. Here cp = min{l, ) G} > 0. m]

+67

Theorem 4.5 Let Q2 be a smooth bounded, strictly convex domain in R", u is a smooth solution
of (1.11), v is the outer unit normal vector of 2. Then we have

max u,, < C. (4.52)
82x[0,T]

Proof Assume (zo, fy) € 92 x [0, T] is the maximum point of u,, on I x [0, T]. By
Lemma 4.4 we have

1
0= Py(zo,10) = (Z ungr + uigr — %) - (A + 5M> qv

! (4.53)

1
> uyy — C(lulcr, N, |10Q2] 2, l@lc1) — (A + §M> ,
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Therefore we have,

1
max u,, <C+ -M. (4.54)
9Qx[0,T] 2
Inequality (4.52) follows from (4.54) and the assumption (4.30). ]

5 Convergence to a stationary solution

Let us go back to our original problem (1.1), which is a scalar parabolic differential equation
defined on the cylinder Q7 = 2 x [0, T'] with initial value u¢. In view of a priori estimates,
which we have estimated in the preceding sections, we know that

|D*ul < C, (5.1)
[Du| < C, (5.2)
and
lul < C. (5.3)
Therefore,

F is uniformly elliptic.

Moreover, since F is concave, we can apply the results of Chapter 14 in [7] to obtain uniform
C?® estimates for u. Then standard Schauder estimates imply uniform bounds for u in
C*, k > 0. Therefore, a smooth solution of (1.1) exists for all # > 0.

Lemma 5.1 If a solution of the flow Eq. (1.1) exists for all t > 0. Moreover, the initial
surface satisfies (1.15). Then the solution converges uniformly to a solution of the Neummann

boundary problem
ik, 00,,1j
FIZ2Y ) — o u®) e,
w 5.4
ul = @x,u™) on 2.
Proof By integrating the flow equation with respect to 7 we get
[*
u(x,t™) —u(x,0) = f w(F — ®)dt. (5.5)
0
In particular, by (5.3) we have
o0
/ w(F — ®)dt < oo Vx € Q. (5.6)
0

Hence for any x € 2 there existes a sequence #y — oo such that F — & — 0. On the
other hand, by Lemmas 2.1 and 2.2 we know u(x, -) is monotone increasing and bounded.
Therefore, u(x, t) converges uniformly to u°°. By virtue of our a priori estimates, we also
know that u™ is of class C*°(£2). Moreover, it’s easy to see that 4™ is a stationary solution
of our problem, i.e., f(k[X*®°]) = ®(x, u*) and u;° = ¢ (x, 00). O
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