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Abstract
A long-standing conjecture asserts that any Anosov diffeomorphism of a closed manifold
is finitely covered by a diffeomorphism which is topologically conjugate to a hyperbolic
automorphism of a nilpotent manifold. In this paper, we show that any closed 4-manifold
that carries a Thurston geometry and is not finitely covered by a product of two aspherical
surfaces does not support (transitive) Anosov diffeomorphisms.
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1 Introduction

Let M be a closed oriented smooth n-dimensional manifold. A diffeomorphism f : M → M
is called Anosov if there exists a d f -invariant splitting T M = Es ⊕ Eu of the tangent bundle
of M , together with constants μ ∈ (0, 1) and C > 0, such that for all positive integers m

‖d f m(v)‖ ≤ Cμm‖v‖, if v ∈ Es,

‖d f m(v)‖ ≤ C−1μ−m‖v‖, if v ∈ Eu .

The invariant distributions Es and Eu are called the stable and unstable distributions.
An Anosov diffeomorphism f is said to be of codimension k if Es or Eu has dimension
k ≤ [n/2], and it is called transitive if there exists a point whose orbit is dense in M .

One of themost influential conjectures in dynamics, dating back toAnosov andSmale [23],
is that any Anosov diffeomorphism f of a closed manifold M is finitely covered by a dif-
feomorphism which is topologically conjugate to a hyperbolic automorphism of a nilpotent
manifold. In this paper we prove the following:

Theorem 1.1 If M is a closed 4-manifold that carries a Thurston geometry other than R
4,

H
2 × R

2 or the reducible H
2 × H

2 geometry, then M does not support transitive Anosov
diffeomorphisms.
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Some cases have already been studied in arbitrary dimensions,most notably the hyperbolic
geometries. In many of the other cases, our proof will rely on certain properties of the
fundamental groups of manifolds modeled on specific geometries. We will show existence
of a degree one cohomology class u ∈ H1(M; Z) that is fixed under an iterate of any
diffeomorphism f : M → M . Then we will be able to exclude the possibility for f being
Anosov by exploiting Hirsch’s study [10] on those cohomology classes; cf. Theorems 4.1
and 4.6. Hirsch’s work has already been applied in certain cases, such as on mapping tori
of hyperbolic automorphisms of the torus of any dimension or products of such mapping
tori with a torus of any dimension [10]. In dimension four, these manifolds correspond (up
to finite covers) to the geometries Sol40 , Sol

4
m �=n or Sol3 × R. Among the most interesting

remaining examples include, on the one hand, manifolds with virtually infinite first Betti
numbers, such as manifolds modeled on the geometry S̃L2 × R, and, on the other hand,
certain polycyclic manifolds; in fact, the case of Nil3 × R indicates an error in the proof
of [10, Theorem 9(a)]; see Remark 5.2.

We should point out that the transitivity assumption in Theorem 1.1 is mild and will
only be used when M is virtually an S2-bundle over an aspherical surface �h , i.e. of genus
h ≥ 1. Franks [5] and Newhouse [18] proved that a codimension one Anosov diffeomor-
phism exists only on manifolds which are homeomorphic to tori. It will therefore suffice to
examine the existence of codimension two Anosov diffeomorphisms. For a transitive Anosov
diffeomorphism f : M → M of codimension k, Ruelle–Sullivan [20] exhibit a cohomology
class α ∈ Hk(M; R) such that f ∗(α) = λ ·α, for some positive λ �= 1 (which depends on the
topological entropy of f ). In the light of the latter, wewill rule out codimension two transitive
Anosov diffeomorphisms on products of type S2 × �h , where h ≥ 1. The non-existence of
transitive Anosov diffeomorphisms on sphere bundles over surfaces is also part of a more
general study of Gogolev–Rodriguez Hertz using cup products [6].

Recall that a manifold modeled on R
4 is finitely covered by the 4-torus and a manifold

modeled on the H
2 × R

2 geometry or the reducible H
2 × H

2 geometry is finitely covered
by the product of the 2-torus with a hyperbolic surface or the product of two hyperbolic
surfaces respectively. Thus, Theorem 1.1 excludes transitiveAnosov diffeomorphisms on any
geometric 4-manifold which is not finitely covered by a product of surfaces �g ×�h , where
g, h ≥ 1. Clearly T 4 = T 2 × T 2 (i.e. when g = h = 1) admits Anosov diffeomorphisms.
However, the case of �g × �h , where at least one of g or h is ≥ 2, seems to be more subtle:

Problem 1.2 (Gogolev–Lafont [7, Sect. 7.2]). Does the product of two closed aspherical
surfaces at least one of which is hyperbolic admit an Anosov diffeomorphism?

Outline

In Sect. 2 we enumerate the Thurston geometries in dimensions up to four and gather some
preliminaries. In Sects. 3, 4 and 5 we prove Theorem 1.1.

2 Thurston geometries and finite covers

We begin our discussion by recalling the classification of the Thurston geometries in dimen-
sion four, as well as some simple general facts about Anosov diffeomorphisms and of their
finite covers.

Let X
n be a complete simply connected n-dimensional Riemannian manifold. A closed

manifold M carries the X
n geometry or it is an X

n-manifold in the sense of Thurston, if it is
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Table 1 Finite covers of Thurston geometric closed 3-manifolds

Geometry X
3 M is finitely covered by...

H
3 A mapping torus of a hyperbolic surface with pseudo-Anosov monodromy

Sol3 A mapping torus of the 2-torus T 2 with hyperbolic monodromy

S̃L2 A non-trivial circle bundle over a hyperbolic surface

Nil3 A non-trivial circle bundle over T 2

H
2 × R a product of the circle with a hyperbolic surface

R
3 The 3-torus T 3

S2 × R The product S2 × S1

S3 The 3-sphere S3

Table 2 The 4-dimensional Thurston geometries with compact representatives

Type of the geometry Geometry X
4

Hyperbolic H
4, H

2(C)

Solvable non-product Nil4,Sol4m �=n , Sol
4
0 ,Sol

4
1

Compact non-product S4, CP
2

Product R
4, Nil3 × R, S2 × S2, S2 × H

2, S2 × R
2, S3 × R, H

3 × R,

H
2 × R

2, H
2 × H

2, Sol3 × R, S̃L2 × R

diffeomorphic to a quotient of X
n by a lattice � (the fundamental group of M) in the group

of isometries Isom(Xn) (acting effectively and transitively). We say that two geometries X
n

and Y
n are the same if there exists a diffeomorphism ψ : X

n → Y
n and an isomorphism

Isom(Xn) → Isom(Yn)whichmaps each element g ∈ Isom(Xn) toψ◦g◦ψ−1 ∈ Isom(Yn).
In dimension one, the circle is the only closed manifold and it is a quotient of the real line

R by Z. In dimension two, a closed surface carries one of the geometries S2, R
2 or H

2 and
(virtually) it is respectively S2, T 2 or a hyperbolic surface�g (of genus g ≥ 2). In dimension
three, Thurston [24] proved that there exist eight homotopically unique geometries, namely
H

3, Sol3, S̃L2, H
2 × R, Nil3, R

3, S2 × R and S3. In Table 1, we list the finite covers
for manifolds in each of those geometries (see [1,21,24]), as we will use several of those
properties in our proofs.

The 4-dimensional geometries were classified by Filipkiewicz in his thesis [4]. According
to that classification, there are eighteen geometrieswith compact representatives, and an addi-
tional geometry which is not realizable by a compact 4-manifold. The list with the eighteen
geometries is given in Table 2, and it is arranged so that it serves as an organising principle
for the forthcoming sections. (Note that nineteen geometries appear, because Sol3 ×R is the
geometry Sol4m,n when m = n.) The individual characteristics of each geometry needed for
our proofs will be given when dealing with each geometry. As pointed out in the introduction,
among the most mysterious geometries with respect to Anosov diffeomorphisms isH

2×H
2.

Manifolds modeled on this geometry are divided into the “reducible” and “irreducible” ones,
and different phenomena occur depending on where they belong.
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The virtual properties of geometric 4-manifolds will be used extensively in our study.
We thus end this preliminary section with the following general lemmas (see [7] and [6]
respectively):

Lemma 2.1 Let M be a closed manifold and p : M → M be a finite covering. If f : M → M
is a diffeomorphism, then there is anm ≥ 0 such that f m lifts to a diffeomorphism f m : M →
M, i.e. the following diagram commutes.

M

p

f m
M

p

M
f m

M

Lemma 2.2 If f : M → M is a transitive Anosov diffeomorphism and there is a lift f : M →
M of f for some cover M of M, then f is transitive.

3 Hyperbolic geometries

We now begin the proof of Theorem 1.1. We first deal with the hyperbolic geometries.
The real and complex hyperbolic geometries, H

4 and H
2(C) respectively, are gener-

ally among the less understood of the eighteen geometries in dimension four. However, the
machinery developed for hyperbolic manifolds in general suffices to rule out Anosov diffeo-
morphisms on 4-manifolds carrying one of those geometries. The following theorem is now
well-known to experts, but nevertheless we give a proof for the sake of completeness and in
order to include some useful facts about Anosov diffeomorphisms which will be used below
as well, such as properties of their Lefschetz numbers.

Theorem 3.1 ([7,25]) If M is a negatively curved manifold, then M does not support Anosov
diffeomorphisms.

Proof The first proof due to Yano [25] rules out the existence of transitive Anosov diffeo-
moprhisms. Let M be negatively curved and suppose f : M → M is a transitive Anosov
diffeomorphism. Since codimension one Anosov diffeomorphisms exist only on tori [5,18],
we can clearly assume that the dimension of M is at least four and the codimension k of f
is at least two. By Ruelle–Sullivan [20], the transitivity assumption implies the existence of
a homology class a ∈ Hl(M; R) such that f∗(a) = λ · a for some λ > 1, where l = k > 1
or l = dim(M) − k > 1. This means that the simplicial �1-semi-norm of a is zero which is
impossible because M is negatively curved [8,11].

An argument that rules out the existence of any Anosov diffeomorphism on a negatively
curvedmanifoldM of dimension≥ 3was given byGogolev–Lafont [7], using the fact that the
outer automorphismgroupOut(π1(M)) is finite (the latter canbederivedbycombining results
of Paulin [19], Bestvina–Feighn [2] and Bowditch [3]; see [7, Corollary 4.5]). The finiteness
of Out(π1(M)) and the asphericity of M (being negatively curved) implies that an iterate
f l of (a finite covering of) f induces the identity on cohomology. (One already concludes
that M does not support transitive Anosov diffeomorphisms by Ruelle–Sullivan [20] or
Shiraiwa [22]). Thus the Lefschetz numbers 	 (i.e. the sum of indices of the fixed points)
of all powers of f l are uniformly bounded, which is in contrast with the growth of periodic
points of f l , because of the equation

|	( f m)| = |Fix( f m)| = remhtop( f ) + o(emhtop( f )), m ≥ 1, (1)
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where htop( f ) is the topological entropy of f and r is the number of transitive basic sets
with entropy equal to htop( f ); see [7, Lemma 4.1] for details. ��

We immediately obtain:

Corollary 3.2 Closed 4-manifolds modeled on the geometry H
4 or H

2(C) do not support
Anosov diffeomorphisms.

Remark 3.3 As observed in [7], the finiteness of the outer automorphism group of the fun-
damental group of every negatively curved manifold of dimension ≥ 3 caries over the outer
automorphism group of the fundamental group of a finite product M1 × · · · × Ms of neg-
atively curved manifolds Mi of dimensions ≥ 3. Thus M1 × · · · × Ms does not support
Anosov diffeomorphisms. However, this obstruction does not apply anymore if one of the
Mi is 2-dimensional, i.e. a hyperbolic surface. In [16, Theorem 1.4 and Example 4.3] we
ruled out Anosov diffeomorphisms on products of a hyperbolic surface with certain higher
dimensional negatively curved manifolds. It seems that an alternative method is required in
general in order to rule out Anosov diffeomorphisms on product of two surfaces at least one
of which is hyperbolic (those manifolds correspond to the geometryH

2×R
2 or the reducible

H
2 × H

2 geometry); cf. Problem 1.2 and [7, Sect. 7.2] for further discussion.

4 Non-product, solvable and compact geometries

In this section, we deal with the geometries Nil4, Sol4m �=n , Sol
4
0 , Sol

4
1 , S

4 and CP
2.

4.1 Solvable non-product geometries

4.1.1 The geometry Nil4.

Let M be a closed 4-manifold modeled on the geometry Nil4. Then (a finite index subgroup
of) the fundamental group of M has a presentation

π1(M)=〈x, y, z, t | t xt−1 = x, t yt−1 = xk yzl , t zt−1= z, [x, y]= z, xz= zx, yz= zy〉,
k ≥ 1, l ∈ Z, with center C(π1(M)) = 〈z〉. The quotient of π1(M) by its center is given by

π1(M)/〈z〉 = 〈x, y, t | [t, y] = xk, xt = t x, xy = yx〉;
see [15, Prop. 6.10] and [9, Sect. 8.7] for details. We moreover observe that π1(M) is an
extension Z

3
�θ Z = 〈z, x, t〉 �θ 〈y〉, where the automorphism θ : Z

3 → Z
3 is given by

⎛
⎝
1 −1 −l
0 1 −k
0 0 1

⎞
⎠ .

Let f : M → M be a diffeomorphism. Then f� : π1(M) → π1(M) induces an automor-
phism of π1(M)/〈z〉, because f�(〈z〉) = 〈z〉. Since C(π1(M)/〈z〉) = 〈x〉, we deduce that
f�(x) = znxm , for some n,m ∈ Z, m �= 0. Now, the relation t xt−1 = x is mapped to
f�(t)xm f�(t)−1 = xm , thus, by [x, y] = z, the image f�(t) does not contain any powers of
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y. Combining all together, we conclude, using the commutative diagram

π1(M)

h

f�
π1(M)

h

H1(M; Z)
f∗

H1(M; Z),

where h : π1(M) → H1(M; Z) = π1(M)/[π1(M), π1(M)] denotes the Hurewicz homo-
morphism, that the induced isomorphism inhomology f∗ maps t̄ ∈ H1(M; Z)/Tor H1(M; Z)

to amultiple of itself. The induced automorphismon H1(M; Z)/Tor H1(M; Z) = 〈t̄〉×〈ȳ〉 =
Z × Z implies in fact that f∗(t̄) = t̄ and thus f cannot be Anosov by Lemma 2.1 and the
following result of Hirsch:

Theorem 4.1 ([10, Theorem 1]). Let f : M → M be an Anosov diffeomorphism and a non-
trivial cohomology class u ∈ H1(M; Z) such that ( f ∗)m(u) = u, for some positive integer
m. Then the infinite cyclic covering of M corresponding to u has infinite dimensional rational
homology.

Remark 4.2 The infinite cyclic covering of M corresponding to u is the covering whose
fundamental group is given by the kernel of the composition

π1(M)
h−→ H1(M)

<u,·>−−−→ Z,

where h is the Hurewitz homomorphism as above and < u, · > the Kronecker product. Note
that Hirsch’s result amounts again to the fact that finite dimensional rational homology of the
above infinite cyclic covering would imply vanishing of the Lefschetz number of (an iterate
of) f , which is impossible for an Anosov diffeomorphism.

Remark 4.3 As we conclude from our proof, the induced automorphism

f∗ : H1(M; R) → H1(M; R)

has a root of unity as eigenvalue. Then [10, Corollary 2] implies that f is not Anosov (as
an application of Theorem 4.1). For a manifold M with polycyclic fundamental group and
whose universal covering has finite dimensional rational homology, [10, Theorem 4] tells
us that a diffeomorphism f : M → M is not Anosov if there is a root of unity among the
eigenvalues of f∗ : H1(M; R) → H1(M; R). Also, note that [13] determineswhich nilpotent
manifolds admit Anosov diffeomorphism up to dimension six, hence also covers the case of
the Nil4 geometry. In our proof we did not (explicitly) use the fact that π1(M) is polycyclic,
but we rather exhibited a cohomology class satisfying Theorem 4.1.

4.1.2 The geometries Sol4m �=n, Sol
4
0 and Sol

4
1

For the geometries Sol4m �=n , Sol
4
0 and Sol

4
1 a weaker statement (Theorem 4.6 below) than that

of Theorem 4.1, based on the first Betti number, suffices to rule out Anosov diffeomorphisms.
We begin by recalling the model spaces of those geometries:

Suppose m and n are positive integers, a > b > c reals such that a + b + c = 0 and
ea, eb, ec are roots of the polynomial Pm,n(λ) = λ3 − mλ2 + nλ − 1. For m �= n, the Lie
group Sol4m �=n is defined as a semi-direct product R

3
� R, where R acts on R

3 by

t �→
⎛
⎝
eat 0 0
0 ebt 0
0 0 ect

⎞
⎠ .
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Note that the case m = n gives b = 0 and corresponds to the product geometry Sol3 × R.
If two roots of the polynomial Pm,n are required to be equal, then we obtain the model

space of the Sol40 geometry, again defined as a semi-direct product R
3

� R, where now the
action of R on R

3 is given by

t �→
⎛
⎝
et 0 0
0 et 0
0 0 e−2t

⎞
⎠ .

Closed manifolds modeled on the geometries Sol4m �=n and Sol40 have the following prop-
erty:

Theorem 4.4 ([9, Corollary 8.5.1]) Every closed manifold carrying one of the geometries
Sol40 or Sol4m �=n is a mapping torus of a hyperbolic automorphism of the 3-torus.

Finally, the Lie group Sol41 is defined as a semi-direct product Nil3 � R, where R acts on
the 3-dimensional Heisenberg group

Nil3 =
{⎛
⎝
1 x z
0 1 y
0 0 1

⎞
⎠

∣∣∣∣ x, y, z ∈ R

}

by

t �→
⎛
⎝
1 e−t x z
0 1 et y
0 0 1

⎞
⎠ .

Closed manifolds modeled on the geometry Sol41 can be described as follows:

Theorem 4.5 ([9, Theorem 8.9]) A closed oriented manifold carrying the geometry Sol41 is
a mapping torus of a self-homeomorphism of a Nil3-manifold.

Using this, one can moreover derive that every closed Sol41-manifold is a virtually non-
trivial circle bundle over a Sol3-manifold [15, Prop. 6.15].

Thedescriptions of the fundamental groups ofmanifolds carryingoneof the above solvable
geometries suffice to exclude Anosov diffeomorphisms on them by the following result of
Hirsch, which is a consequence of the more general Theorem 4.1:

Theorem 4.6 ([10, Theorem 8]). Suppose M is a compact manifold such that

(a) π1(M) is virtually polycyclic;
(b) the universal covering of M has finite dimensional rational homology;
(c) H1(M; Z) ∼= Z.

Then M does not support Anosov diffeomorphisms.

Corollary 4.7 Closed 4-manifolds modeled on one of the geometries Sol40 , Sol
4
m �=n or Sol41

do not support Anosov diffeomorphisms.

Proof After passing to a finite covering we may assume that M is oriented.
If M carries one of the geometries Sol40 or Sol4m �=n , then by Theorem 4.4

π1(M) ∼= π1(T
3) �θM 〈t〉,
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where π1(T 3) = Z
3 = 〈x1, x2, x3| [xi , x j ] = 1〉 and the automorphism θM : Z

3 → Z
3

is hyperbolic. Thus, H1(M; Z) ∼= Z, and since M is aspherical and π1(M) polycyclic,
Theorem 4.6 and Lemma 2.1 tell us that M cannot support Anosov diffeomorphisms.

If M carries the geometry Sol41 , then by Theorem 4.5 (see also [15, Prop. 6.15]) a
presentation of its fundamental group is given by

π1(M) = 〈x, y, z, t |t xt−1 = xa yczk, t yt−1 = xb yd zl , t zt−1 = z,

[x, y] = z, xz = zx, yz = zy〉,
where k, l ∈ Z and the matrix

(
a b
c d

)
∈ SL2(Z)

has no roots of unity. The abelianization of π1(M) implies H1(M; Z) ∼= Z. Since moreover
M is aspherical and π1(M) is polycyclic, we deduce by Theorem 4.6 and Lemma 2.1 that
M does not support Anosov diffeomorphisms. ��
Remark 4.8 Note that Theorem 4.6 is not applicable to a Nil4 manifold M (cf. Sect. 4.1.1),
because H1(M; Z) ∼= Z

2.

4.2 Compact non-product geometries

Among the simplest cases are the compact geometries S4 and CP
2.

4.2.1 The geometry S4

The only closed oriented 4-manifold modeled on S4 is S4 itself [9, Sect. 12.1]. Clearly, any
orientation preserving diffeomorphism f of S4 induces the identity on H∗(S4), and as we
have seen this makes it impossible for f to be Anosov (cf. Eq. 1).

4.2.2 The geometryCPCPCP
2

Similarly to the geometry S4, the only closed oriented 4-manifold modeled on CP
2 is CP

2

itself [9, Sect. 12.1]. Suppose

f : CP
2 → CP

2

is a diffeomorphism. The cohomology groups of CP
2 are Z in degrees 0, 2 and 4 and trivial

otherwise. So, after possibly passing to an iterate of f , we observe, by the naturality of the
cup product, that f must induce the identity on cohomology. Thus f cannot be Anosov.

5 Product geometries

In order to complete the proof of Theorem 1.1, we need to examine the product geometries
that are not excluded by the statement of Theorem 1.1, i.e. the geometries H

3 ×R, Sol3 ×R,
S̃L2 × R, Nil3 × R, the irreducible H

2 × H
2 geometry, S2 × H

2, S2 × R
2, S3 × R and

S2 × S2.
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5.1 Products with a compact factor

5.1.1 The geometry S2 × S2

The question of whether S2×S2 supports Anosov diffeomorphismswas asked byGhys in the
1990’s and, although it has a quite straightforward solution using the intersection form, was
only recently answered byGogolev andRodriguezHertz [6]. Suppose f : S2×S2 → S2×S2

is a diffeomorphism (or, more generally, a map of degree ±1). The Künneth formula gives

H2(S2 × S2) = (H2(S2) ⊗ H0(S2)) ⊕ (H0(S2) ⊗ H2(S2)).

Let ωS2 × 1 ∈ H2(S2) ⊗ H0(S2) and 1 × ωS2 ∈ H0(S2) ⊗ H2(S2) be the corresponding
cohomological fundamental classes. After possibly replacing f by f 2, we can assume that
deg( f ) = 1. The effect of f on the above classes is given by

f ∗(ωS2 × 1) = a · (ωS2 × 1) + b · (1 × ωS2), a, b ∈ Z,

and

f ∗(1 × ωS2) = c · (ωS2 × 1) + d · (1 × ωS2), c, d ∈ Z.

Thus, by the naturality of the cup product we obtain

ad + bc = 1. (2)

Also, since the cup product of ωS2 × 1 with itself vanishes, we obtain

0 = f ∗((ωS2 × 1) ∪ (ωS2 × 1)) = f ∗(ωS2 × 1) ∪ f ∗(ωS2 × 1) = 2ab · (ωS2×S2),

and so
ab = 0. (3)

Similarly, since (1 × ωS2) ∪ (1 × ωS2) = 0, we obtain

cd = 0. (4)

If a = 0, then (2), (3) and (4) imply b = c = ±1 and d = 0. If b = 0, then again by the same
equations we obtain a = d = ±1 and c = 0. Thus, after possibly replacing f by f 2, we
deduce that f induces the identity in cohomology. Therefore, the Lefschetz numbers of all
powers of f are uniformly bounded, and so f cannot be Anosov diffeomorphism (cf. Eq. 1).

Remark 5.1 Alternatively to the above argument, note that, since f is a diffeomorphism, the
matrix for the induced action on H2 lies in GL2(Z), hence ad − bc = ±1. Combining this
with Eq. (2), we can find the two possible integer solutions as above.

5.1.2 The geometry S2 × R
2

In that case, M is (finitely covered by) S2 × T 2 [9, Theorem 10.10]. Since every map
S2 → T 2 has degree zero, if f : S2 × T 2 → S2 × T 2 is a diffeomorphism, then the
effect of f on the cohomological fundamental classes ωS2 × 1 ∈ H2(S2) ⊗ H0(T 2) and
1 × ωT 2 ∈ H0(S2) ⊗ H2(T 2) is given by

f ∗(ωS2 × 1) = a · (ωS2 × 1) + b · (1 × ωT 2), a, b ∈ Z,
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and

f ∗(1 × ωT 2) = d · (1 × ωT 2), d ∈ Z;
see [14] for details. As before, we assume that deg( f ) = 1, and so the naturality of the cup
product yields

ad = 1. (5)

In particular, a = d = ±1. Also, b = 0 by the vanishing of the cup product of ωS2 × 1 with
itself.

Recall that, by Franks [5] and Newhouse [18], if a manifold admits a codimension one
Anosov diffeomorphism, then it must be homeomorphic to a torus. Thus, if f is Anosov,
then we may assume that it has codimension two. In that case, Ruelle–Sullivan’s work [20]
gives us a class α ∈ H2(S2 × T 2; R) such that f ∗(α) = λ · α for some positive real λ �= 1.
We have

α = ξ1 · (ωS2 × 1) + ξ2 · (1 × ωT 2), ξ1, ξ2 ∈ R,

and so f ∗(α) = λ · α yields
λξ1 = aξ1 = ±ξ1 (6)

and
λξ2 = dξ2 = ±ξ2. (7)

If ξ1 �= 0, then (6) becomes λ = ±1, which is impossible. If ξ1 = 0, then ξ2 �= 0 and (7)
yields again the absurd conclusion λ = ±1.

This shows that S2 × T 2 does not support transitive Anosov diffeomorphisms.

5.1.3 The geometry S2 × HHH
2

If M is modeled on the geometry S2 × H
2, then M is virtually an S2-bundle over a closed

hyperbolic surface �h [9, Theorem 10.7]. The case of S2 × �h can be treated using the
same argument as for S2 × T 2. More generally, Gogolev–Rodriguez Hertz showed that
a fiber bundle S2n → E → B, where B is 2n-dimensional, does not support transitive
Anosov diffeomorphisms [6, Theorem 1.1], which covers as well the geometry S2 × R

2.
Their argument uses again Eq. 1 and cup products via the Gysin sequence

0 −→ H2n(B; Z) −→ H2n(E; Z) −→ H0(B; Z) −→ 0.

Note that in our case, 2n = 2 is the only case of interest for the codimension; we refer to [6]
for the complete argument.

5.1.4 The geometry S3 × RRR

A closed 4-manifold modeled on the geometry S3 × R is virtually a product S3 × S1 [9, Ch.
11], which clearly does not support Anosov diffeomorphisms because H2(S3 × S1) = 0 and
H1(S3 × S1) = Z.

5.2 The irreducibleHHH
2 × HHH

2 geometry

Similarly to the hyperbolic geometries, if M is an irreducible manifold modeled on the
geometry H

2 × H
2, then π1(M) has finite outer automorphism group by the strong rigidity

123



Geometriae Dedicata (2021) 213:325–337 335

of Mostow, Prasad and Margulis. Thus the proof of Theorem 3.1 implies that M does not
support Anosov diffeomorphisms.

5.3 Aspherical products with a circle factor

Finally, we deal with the product geometries H
3 × R, Sol3 × R, S̃L2 × R and Nil3 × R.

5.3.1 The geometries ˜SL2 × RRR and Nil3 × RRR

Let M be a closed 4-manifold modeled on the geometry S̃L2 ×R or the geometry Nil3 ×R.
Then M is finitely covered by a product N × S1, where N is an S̃L2-manifold or a Nil3-
manifold respectively [9]. We can moreover assume that N is a non-trivial circle bundle
over a surface �g of genus g, where g ≥ 2 if N is an S̃L2-manifold and g = 1 if N is a
Nil3-manifold; cf. Table 1. In particular, the center of π1(N × S1) has rank two. Since (a
finite power of) the generator of the fiber of N vanishes in H1(N ), we deduce that, for any
diffeomorphism f : N × S1 → N × S1 the generator of H1(S1) maps to a power of itself
(modulo torsion). That is, in cohomology

f ∗(1 × ωS1) = a · (1 × ωS1), a ∈ Z.

Moreover, because N does not admit maps of non-zero degree from direct products [12] and
the degree three cohomology of N × S1 is

H3(N × S1) ∼= H3(N ) ⊕ (H2(N ) ⊗ H1(S1)),

we obtain

f ∗(ωN × 1) = b · (ωN × 1), b ∈ Z;
see [14, Proof of Theorem 1.4] for further details. Since deg( f ) = ±1, we deduce that
a, b ∈ {±1}. Thus, after possibly replacing f by f 2, we may assume that

f ∗(1 × ωS1) = 1 × ωS1 .

Now Theorem 4.1 and Lemma 2.1 imply that f cannot be Anosov.
Alternatively, since the generator of H1(S1) maps to (a power of) itself, we can conclude

that f is not Anosov by [10, Corollary 2], again as an application of Theorem 4.1.

Remark 5.2 An example of a Nil3 manifold is given by the mapping torus MA of T 2 with
monodromy

A =
(
1 1
0 1

)
.

As we have seen above, MA × S1 does not support Anosov diffeomorphisms. Now, clearly

Am �= I2 =
(
1 0
0 1

)
for all m �= 0 and, moreover,

π1(MA) = 〈x, y, z | [x, y] = z, xz = zx, yz = zy〉,
which has non-trivial center C(π1(MA)) = 〈z〉. Therefore, in the proof of [10, Theorem
9(a)]—which asserts that for anymonodromy A : T n → T n such that Am �= In for allm �= 0,
the productMA×S1 does not support Anosov diffeomorphisms—the claim that the generator
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of H1(S1) maps to a power of itself is derived by the invalid conclusion that C(π1(MA)) is
trivial. (We remark that this error does not affect the aforementioned Theorems 4.1 and 4.6
from the same paper.)

5.3.2 The geometriesHHH
3 × RRR and Sol3 × RRR

Aclosed 4-manifoldM modeled on the geometryH
3×R or the geometry Sol3×R is virtually

a product N × S1, where N is a hyperbolic 3-manifold or a Sol3-manifold respectively [9].
In particular, the fundamental group π1(N × S1) has infinite cyclic center generated by the
circle factor [21]; let us denote this by π1(S1) = 〈z〉.

Suppose f : N × S1 → N × S1 is a diffeomorphism. Then f�(〈z〉) = 〈z〉, and therefore
f∗(ωS1) = ωS1 (up to taking f 2 if necessary) as in the above subsection (because N does
not admit maps of non-zero degree from direct products [12]) or alternatively because the
center and the commutator of π1(N × S1) intersect trivially. We deduce that f cannot be
Anosov by Theorem 4.1 and Lemma 2.1.

Alternatively for the case of hyperbolic N , the main result of [7] implies that N × S1 does
not support Anosov diffeomorphisms, because Out(π1(N )) is finite and π1(N ) is Hopfian
and has trivial intersection of maximal nilpotent subgroups. In fact, as shown in [17], the
only properties needed to exclude Anosov diffeomorphisms on N × S1 is that Out(π1(N ))

is finite and π1(N ) has trivial center.
The proof of Theorem 1.1 is now complete.
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