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Abstract
A Riemannian manifold is called almost positively curved if the set of points for which all
2-planes have positive sectional curvature is open and dense. We find three new examples of
almost positively curvedmanifolds: Sp(3)/Sp(1)2, and twocircle quotients of Sp(3)/Sp(1)2.
We also show the quasi-positively curved metric of Tapp (J Differ Geom 65:273–287, 2003)
on Sp(n + 1)/Sp(n − 1)Sp(1) is not almost positively curved if n ≥ 3.
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1 Introduction

There are few known examples of simply connected compact manifolds admitting metrics
of positive sectional curvature. In fact, other than the rank one symmetric spaces, there are
only two infinite families known (one in dimension 7 [1,12], the other in 13 [3,4]) and seven
other examples: two in dimension 6, two in dimension 7, and single examples in dimension
12 and 24 [4,7,12,16,28].

Despite the paucity of examples, there are few obstructions distinguishing compact mani-
folds admitting metrics of non-negative curvature from those admitting metrics with positive
curvature. Further, all known obstructions vanish on compact simply connected manifolds,
that is, there is no known example of a compact simply connected non-negatively curved
Riemannian manifold which does not admit a positively curved metric.

As a means to understand the difference between manifolds admitting non-negative cur-
vature from those admitting positive curvature, much work has gone into understanding two
classes of Riemannianmanifolds which lie in between- the quasi-positively curvedmanifolds
and the almost positively curved manifolds. Recall that a Riemannian manifold is said to be
quasi-positively curved if it is everywhere non-negatively curved and has a point p (and
therefore an open neighborhood) for which the sectional curvatures of all 2-planes at p are
positive. A manifold is said to be almost positively curved if it has an open dense subset of
points for which all sectional curvatures are positive.
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Examples with these weaker curvature notions are much more abundant than in the case
of strictly positive curvature [8–11,14,15,19–21,23,26,29,30]. The main constructions are
due to Wilking [30] and Tapp [26]. In [21], Kerr and Tapp classify so-called positive triples,
spaces for which the metrics constructed in [26] are quasi-positively curved with a point
of positive curvature arbitrarily close to the identity coset. In particular, they show that
Mn := Sp(n + 1)/Sp(n − 1)Sp(1) admits a Riemannian metric of quasi-positive curvature.
Here, Sp(1) × Sp(n − 1) is embedded into Sp(n + 1) via the block embedding. The metric
Kerr and Tapp use admits two different free isometric Sp(1) actions. Quotienting by one
gives the homogeneous space Sp(n + 1)/Sp(n − 1)Sp(1)2, and quotienting by the other
gives the biquotient ΔSp(1)\Sp(n + 1)/Sp(n)Sp(1), where ΔSp(1) indicates the block
embedding Sp(1) → Sp(n + 1) with q �→ diag(q, q, . . . , q). Wilking [30] has shown both
of these Sp(1) quotients of Mn admit metrics of almost positive curvature. When n = 2,
the homogeneous space Sp(3)/Sp(1)3 admits a homogeneous metric with strictly positive
curvature [28].

If we restrict the above Sp(1) actions to S1 ⊆ Sp(1), we obtain manifolds Qn := Sp(n +
1)/Sp(n − 1)Sp(1)S1 and Rn := ΔS1\Sp(n + 1)/Sp(n − 1)Sp(1). It immediately follows
fromO’Neill’s formulas [22] that each Qn and Rn admits ametric of quasi-positive curvature.
Thus, one is naturally led to wonder which of the Mn, Qn, and Rn admit metrics of almost
positive curvature.

Theorem 1.1 The homogeneous spaces Sp(3)/Sp(1)2, Sp(3)/Sp(1)2S1 and the biquotient
ΔS1\Sp(3)/Sp(1)2 each admit Riemannian metrics of almost positive curvature.

The cohomology rings of Q2 and R2 are isomorphic, but their Pontryagin classes distin-
guish them up to homotopy, see Propositions 5.4 and 5.6. The space M2 is a parallelizable
S4 bundle over S11, with cohomology ring isomorphic to that of S4 × S11. Nonetheless,
we show it is not even homotopy equivalent to S4 × S11, being distinguished by their 10th
homotopy groups (Proposition 5.1).

In contrast with Theorem1.1, we show that Tapp’smetrics are not always almost positively
curved.

Theorem 1.2 Tapp’s metrics on Sp(n+1)/Sp(n−1)Sp(1) for n ≥ 3 are not almost positively
curved.

Instead of working with Tapp’s construction, we use Wilking’s construction [30] which
gives, up to scale, an isometric metric [26]. That is, we express each of the manifolds as
a biquotient of the form ΔG\G × G/U . Beginning with a bi-invariant metric on G × G,
we Cheeger deform each metric to find a new non-negatively curved left invariant metric
on G × G which has fewer zero-curvature planes, but for which U still acts isometrically.
The metric on ΔG\G × G/U is the induced metric coming from the canonical submersion
G × G → ΔG\G × G/U .

Ourmain tool for proving Theorems 1.1 and 1.2 is identifying an explicit two-dimensional
disk in Mn which intersects every orbit of the isometry group of Mn , see Proposition 2.5 and
Lemma 2.7. This reduces the computations to a two-dimensional set of points, a considerable
simplification.

The outline of the paper is as follows. In Sect. 2, after covering the necessary background
information, we define the metrics on Mn and prove that the action of the isometry group is
of cohomogeneity two, that is, that the quotient Mn/I so(Mn) is two-dimensional. In Sect. 3,
we prove Theorem 1.1. In Sect. 4, we determine an open set of points of Mn where each point
has an infinite number of distinct zero-curvature planes, proving Theorem 1.2. In Sect. 5, we
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compute the topology of M2, Q2, and R2, showing that these examples are distinct, up to
homotopy, from any previously known example with almost positive curvature.

2 Biquotients and their geometry

In this section, we first recall the relevant information about the geometry of biquotients, and
then apply it to our specific examples.

2.1 Background

Given a compact Lie group G and a subgroup U ⊆ G × G, there is a natural action of U
on G given by (u1, u2) ∗ g = u1gu−1

2 . The action is effectively free iff whenever u1 and u2

are conjugate, we have u1 = u2 ∈ Z(G). When the action is effectively free, the orbit space
G//U naturally has the structure of a manifold such that π : G → G//U is a submersion. The
orbit space is called a biquotient. When U ⊆ {e} × G ⊆ G × G, the action is automatically
free and the quotient is the homogeneous space G/U .

Suppose U acts on G effectively freely. If G is equipped with any U -invariant metric,
then G//U inherits a unique Riemannian metric for which the projection is a Riemannian
submersion. We will sometimes refer to this Riemannian metric on G//U as the metric
induced from the Riemannian metric on G. By equipping G with a bi-invariant metric,
we see, via O’Neill’s formulas [22], that every biquotient admits a metric of non-negative
sectional curvature.

To find metrics on G//U with fewer zero-curvature planes, two main techniques are used:
Cheeger deformations andWilking’s doubling trick.We now focus on Cheeger deformations.

The idea of a Cheeger deformation is to shrink a left G-invariant Riemannian metric on
Lie group in the direction of a subgroup. If the original Riemannian metric is non-negatively
curved, then the deformed metric is also non-negatively curved. In addition, the deformed
metric tends to have fewer zero-curvature planes than the original metric, but it also tends
to have a smaller isometry group. The precise versions of these statements can be found in
[12]; we describe them below in order to set up notation.

Let K be a closed subgroup of G and equip G with left G-invariant, right K -invariant
Riemannian metric 〈·, ·〉0 of non-negative sectional curvature. For example, 〈·, ·〉0 could be
a bi-invariant metric on G. For each t > 0, we equip G × K with the product Riemannian
metric 〈·, ·〉0 + t〈·, ·〉0|K . Then, for each t , K acts freely and isometrically on G × K via
k ∗ (g1, k1) = (g1k−1, kk1). The quotient G ×K K , which is diffeomorphic to G via the
diffeomorphism [(g1, k1)] �→ g1k1, thus inherits a unique Riemannian metric for which the
submersion G × K → G ×K K ∼= G is a Riemannian submersion. We denote this induced
Riemannian metric on G by 〈·, ·〉1, and we call it the Cheeger deformation of 〈·, ·〉0 in the
direction of K . We note that the metric on G × K is a product of non-negatively curved
metrics, so is non-negatively curved. It follows from O’Neill’s formulas for a submersion
[22] that 〈·, ·〉1 is also non-negatively curved.

The isometry group of 〈·, ·〉1 is large, though, in general, it is smaller than that of 〈·, ·〉0.
Specifically, the action of G × K on itself given by (g, k) ∗ (g1, k1) = (gg1, k1k−1) is
isometric and commutes with the free K action above, so descends to an isometric action
on G ×K K ∼= G. In particular, 〈·, ·〉1 is a left G-invariant, right K -invariant non-negatively
curved metric. As the left G-action is transitive, we can reduce all curvature computations
to a single point, the identity e ∈ G.
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Writing g = TeG for the Lie algebra of G and k for the Lie algebra of K , we get
a decomposition g = k ⊕ p, orthogonal with respect to 〈·, ·〉0. Then, one can show (see
e.g. [14]) that for X , Y ∈ g, 〈X , Y 〉1 = 〈φ(X), Y 〉0, where φ : g → g is defined by
φ(X) = Xp + t

t+1 Xk.
Writing sec1 for sectional curvature with respect to the metric 〈·, ·〉1, Eschenburg [13]

proved the following proposition.

Proposition 2.1 If 〈·, ·〉0 is a bi-invariant metric and (G, K ) is a symmetric pair, then
sec1(φ−1X , φ−1Y ) = 0 iff [X , Y ] = [Xk, Yk] = [Xp, Yp] = 0.

We recall that for a bi-invariant metric 〈·, ·〉0, that sec0(X , Y ) = 0 iff [X , Y ] = 0. Thus,
Proposition 2.1 indicates that, in general, 〈·, ·〉1 has fewer zero-curvature planes than 〈·, ·〉0.

Wilking’s doubling trick is based up an observation of Eschenburg, that the map ψ :
G × G → G given byψ(g1, g2) = g−1

1 g2 induces a diffeomorphismψ : ΔG\G × G/U →
G//U , where ΔG × U acts on G × G via (g, (u1, u2)) ∗ (g1, g2) = (gg1u−1

1 , gg2u−1
2 ).

Wilking [30] noticed that one can choose a Cheeger deformed Riemannian metric on each
factor, giving a larger class of natural metrics of non-negative curvature. Tapp [26] has shown
that his metrics are, up to scale, isometric to those of Wilking’s where one uses the same
metric on both factors.

Suppose 〈·, ·〉1 is obtained from a bi-invariant metric 〈·, ·〉0 on G by Cheeger deforming
in the direction of K ⊆ G. If U ⊆ K × K ⊆ G, then U acts isometrically on G × G
equipped with the product metric 〈·, ·〉1 + 〈·, ·〉1; let 〈·, ·〉2 denote the induced metric on
G//U , that is 〈·, ·〉2 is the unique Riemannian metric on G//U for which the submersion
G × G → ΔG\(G × G)/U ∼= G//U is a Riemannian submersion. We wish to understand
when a 2-plane σ in G//U has zero sectional curvature with respect to 〈·, ·〉2. By O’Neill’s
formula, if σ has zero sectional curvature with respect to 〈·, ·〉2, then the horizontal lift of
σ must have zero-curvature. Thus, we must determine the horizontal distribution on G × G
with respect to 〈·, ·〉1 + 〈·, ·〉1.

It is clear that every orbit of theΔG ×U action passes through a point of the form (g1, e),
where e ∈ G is the identity element, so we may focus on determining the horizontal space at
points of this form. Further, since 〈·, ·〉1 + 〈·, ·〉1 is left G × G-invariant, the curvature of a
2-plane at T(g1,e)G × G is the same as the curvature of its left translations. Thus, instead of
directly computing the vertical space Vg1 and horizontal space Hg1 at the point (g1, e), we
use the left translations of these subspaces to (e, e) ∈ G × G.

As is shown in, e.g. [20], the vertical subspace Vg1 at (g1, e) ∈ G × G, translated to (e, e)
using left translation, is

(Lg−1
1

)∗Vg1 = {((Adg−1
1

X) − U1, X − U2)| X ∈ g and (U1, U2) ∈ u}
where u ⊆ g ⊕ g is the Lie algebra of U .

Proposition 2.2 With respect to 〈·, ·〉1, the horizontal space (Lg−1
1

)∗Hg1 at the point (g1, e),

left translated to (e, e), is

{(φ−1(−Adg−1
1

X), φ−1(X)) :
X ∈ g and 〈X , Adg1U1 − U2〉0 = 0 for all (U1, U2) ∈ u}.

Proof Consider the linear map ρg1 : u → gwith ρg1(U1, U2) = Adg1U1−U2. If (U1, U2) ∈
ker ρg1 , then (U1, U2) = (U1, Adg1U1) ∈ u, so (u1, g1u1g−1

1 ) := exp(U1, Adg1U1) ∈
U . Then, recalling the biquotient action of U on G, we see (u1, g1u1g−1

1 ) ∗ g−1
1 =
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u1g−1
1 (g1u1g−1

1 )−1 = g−1
1 , that is, (u1, g1u1g−1

1 ) ∈ U fixes g−1
1 ∈ G. Since the U biquo-

tient action on G is free, we conclude that u1 = exp(U1) = e. Repeating this argument for
every real multiple of (U1, U2), we deduce that exp(sU1) = e for all s ∈ R. Thus, U1 = 0
and U2 = Adg1U1 = 0 as well. That is, ker ρg1 = {0}.

It follows that (ρg1(u))
⊥ = {X ∈ g : 〈X , ρg1(u)〉0 = 0} has dimension dim G − dimU ,

the same dim(Lg−1
1

)∗Hg1 . So, to establish the proposition, it is sufficient to show each

(φ−1(−Adg−1
1

X), φ−1(X)) with X ∈ (ρg1(u))
⊥ is an element of (Lg−1

1
)∗Hg1 .

So, consider the element (φ−1(−Adg−1
1

X), φ−1(X)) with X ∈ (ρg1(u))
⊥. Because Adg1

is an isometry of 〈·, ·〉0, we compute

〈φ−1(−Adg−1
1

X), Adg−1
1

Y 〉1 + 〈φ−1(X), Y 〉1 = 〈−Adg−1
1

X , Adg−1
1

Y 〉0 + 〈X , Y 〉0
= −〈X , Y 〉0 + 〈X , Y 〉0
= 0

Similarly, we see

〈φ−1(−Adg−1
1

X), U1〉1 + 〈φ−1X , U2〉1 = −〈Adg−1
1

X , U1〉0 + 〈X , U2〉0
= −〈X , Adg1U1〉0 + 〈X , U2〉0
= 0

since X ∈ (ρg1(u))
⊥.

Thus, we conclude (φ−1(−Adg−1
1

X), φ−1(X)) ∈ (Lg−1
1

)∗Hg1 . The proposition now fol-
lows. �

Since 〈·, ·〉1+〈·, ·〉1 is a product of non-negatively curvedmetrics, we obtain the following
corollary.

Corollary 2.3 Suppose span{(φ−1(−Adg1−1 X), φ−1X), (φ−1(−Adg1−1Y ), φ−1Y )} is hori-
zontal and has zero-curvature. Then the 2-planes

span{φ−1(Ad−1
g1 X), φ−1(Ad−1

g1 Y )} and span{φ−1(X), φ−1(Y )}
both have zero-curvature with respect to 〈·, ·〉1.

We now assume (G, K ) is a symmetric pair, so Proposition 2.1 applies to both planes
given in Corollary 2.3. In particular both

[Adg−1
1

X , Adg−1
1

Y ] = [(Adg−1
1

X)k, (Adg−1
1

Y )k] = [(Adg−1
1

X)p, (Adg−1
1

Y )p] = 0

and

[X , Y ] = [Xk, Yk] = [Xp, Yp] = 0.

However, some of these conditions are redundant. Indeed, since (G, K ) is symmetric,
then with respect to an 〈·, ·〉0-orthogonal decomposition g = k ⊕ p, we have [p, p] ⊆ k.
Then, under the assumption [X , Y ] = 0, it follows easily that [Xk, Yk] = 0 iff [Xp, Yp] = 0.
Further, since Adg1 is a Lie algebra isomorphism, [X , Y ] = 0 iff [Adg1 X , Adg1Y ] = 0.

It follows that the 2-planes

span{φ−1(Ad−1
g1 X), φ−1(Ad−1

g1 Y )} and span{φ−1(X), φ−1(Y )}
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both have zero-curvature with respect to 〈·, ·〉1 iff
[X , Y ] = [Xp, Yp] = [(Ad−1

g1 X)p, (Ad−1
g1 Y )p] = 0.

We note that these conditions on X and Y really only depend on span{X , Y }.
With nicer assumptions on U , K , and G, even more is true.

Proposition 2.4 Suppose (G, K ) is a symmetric pair with U ⊆ K and suppose that a bi-
invariant metric 〈·, ·〉0 on G induces a positively curved metric on G/K and that its restriction
〈·, ·〉|K induces a positively curved metric on K/U. Suppose 〈·, ·〉1 is obtained by Cheeger
deforming 〈·, ·〉0 in the direction of K . Then, with respect to the Riemannian submersion
metric 〈·, ·〉2 on G/U ∼= ΔG\(G × G, 〈·, ·〉1 + 〈·, ·〉1)/U, there is a zero-curvature plane
at the point [(g1, e)] ∈ ΔG\G × G/U iff there are non-zero vectors X = Xk, Y = Yp ∈ g

satisfying each of the following three conditions.

〈X , u〉0 = 0 (Condition A)

[X , Y ] = 0 (Condition B)

(Adg−1
1

X)p and (Adg−1
1

Y )p are dependent over R. (Condition C)

Proof First, assume there is a zero-curvature plane at [(g1, e)] ∈ G/U . From O’Neill’s
formula [22], there must be a horizontal zero-curvature plane at (g1, e) ∈ G × G. By
Proposition 2.2, Corollary 2.3, and the following discussion, there are vectors

(φ−1(−Adg−1
1

X), φ−1(X)) and (φ−1(−Adg−1
1

Y ), φ−1(Y )) ∈ (Lg−1
1

)∗Hg1

(so both X and Y are 〈·, ·〉0-orthogonal to u) which satisfy

[X , Y ] = [Xp, Yp] = [(Adg−1
1

X)p, (Adg−1
1

Y )p] = 0.

In particular, Condition A and Condition B follow.
Recall that the curvature of a normal homogeneous space G/K is given by sec(X , Y ) =

1
4‖[X , Y ]p‖2 + ‖[X , Y ]k‖2 with g = k ⊕ p (see, e.g. [6, Corollary 3.33]). In particular,
sec(X , Y ) = 0 iff [X , Y ] = 0.

Applying this to Xp and Yp, interpreted as elements of TeK G/K , we see that [Xp, Yp] = 0
iff Xp and Yp are linearly dependent over R. This same argument also applies to (Adg−1

1
X)p

and (Adg−1
1

Y )p, giving Condition C. By subtracting an appropriate multiple of Y from X ,

we find a vector X ′ = X ′
k for which span{X , Y } = span{X ′, Y }.

Similarly, since both X ′ and Y are 〈·, ·〉0-orthogonal to u, we may interpret X ′ = X ′
k, Yk

as elements of TeU K/U . In particular, [X ′, Yk] = 0 iff X ′ and Yk are linearly dependent over
R. Then, by subtracting an appropriate multiple of X ′ from Y , we find a new vector Y ′ = Y ′

p
for which span{X , Y } = span{X ′, Y ′}. Then X ′ ∈ k, Y ′ ∈ p, and X ′ and Y ′ satisfy Condition
A, Condition B, and Condition C.

Conversely, assume there is an X = Xk and Y = Yp satisfying all three conditions. Note
that Y is automatically 〈·, ·〉0-orthogonal to u because u ⊆ k and p is 〈·, ·〉0-orthogonal to k.

It follows that the vectors

(φ−1(−Adg−1
1

X), φ−1(X)) and (φ−1(−Adg−1
1

Y ), φ−1(Y ))

are elements of Hg1 and from Proposition 2.1, that they span a horizontal zero-curvature
plane in G × G. Finally, Tapp [27] has shown that in this setup, a horizontal zero curvature
plane projects to a zero-curvature plane in G/U . �
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All of the hypothesis of Proposition 2.4 will apply to the Mn examples.

2.2 Applications to our examples

In this section, we apply the discussion in the previous section to define the metrics on Mn =
Sp(n + 1)/Sp(n − 1)Sp(1). We also show that the isometry group acts by cohomogeneity
two, finding a nice section for the action.

We let G = Sp(n + 1) denote the group of (n + 1) × (n + 1) unitary matrices over H.
We let K = Sp(n) × Sp(1) block embedded into G and we set U ∼= Sp(n − 1) × Sp(1),
embedded in G via (A, q) ∈ U �→ diag(A, 1, q). We will also consider the subgroup
N ⊆ K with N = {diag(A, q1, q2) : (A, q2) ∈ U , q1 ∈ Sp(1)}. Note that N normalizes
U , so N/U ∼= Sp(1) acts on G/U , and this action is isometric as N ⊆ K . However, we
stress that N does not normalize Sp(n − 1)S1Sp(1), and K does not normalize ΔS1, so the
following arguments do not apply to the two circle quotients Qn and Rn of Mn .

The inner product on g given by 〈X , Y 〉 = −Re T r(XY ) is AdG invariant, so extends to a
unique bi-invariant Riemannianmetric 〈·, ·〉0 on G.WeCheeger deform 〈·, ·〉0 in the direction
of K and call the resulting metric 〈·, ·〉1. Equipping G × G with the product metric 〈·, ·〉1 +
〈·, ·〉1, the natural action byΔG × K × N given by (g, k, n)∗ (g1, g2) = (g g1 k−1, g g2n−1)

is isometric and the restriction of the action to ΔG × {1} × U is free. We give the quotient
ΔG\G × G/U , which is canonically diffeomorphic to G/U , the submersion metric 〈·, ·〉2,
as in the previous section.

We now show the isometry group acts with a two dimensional quotient space. To do so,
we use the following notation. For any g ∈ G = Sp(n + 1), we let v(g) denote the last
column of g, interpreted as an element of S4n+3 ⊆ H

n+1. We also use v0(g) to denote the
first n − 1 entries of v(g), vn(g) to denote the second to last entry of v(g), and vn+1(g) to
denote the last entry of v(g).

Proposition 2.5 Consider the ΔG × K × N action on G × G given by (g, k, n) ∗ (g1, g2) =
(gg1k−1, gg2n−1). Then (g1, g2) and (h1, h2) are in the same orbit iff |vi (g

−1
2 g1)| =

|vi (h
−1
2 h1)| for each of i = 0, n, n + 1.

Proof Let (g1, g2) ∈ G × G. For any h ∈ N , we set g = hg−1
2 , so (g, k, h) ∗ (g1, g2) =

(h g−1
2 g1 k−1, e). Thus, we need only show that g1, g2 ∈ G are equivalent under the N × K

on G given by (h, k) ∗ g = hgk−1 iff |vi (g1)| = |vi (g2)| for i = 0, n, n + 1.
Now, let g ∈ G. Then, for h = diag(A, q1, q2) ∈ N , it is easy to verify that

v0(hg) = Av0(g), vn(hg) = q1vn(g), and vn+1(hg) = q2vn+1(g). Since left multiplication
by elements of Sp(n −1) and Sp(1) preserves lengths, it now follows that |vi (hg)| = |vi (g)|
for i = 0, n, n + 1.

Likewise, for an element k = diag(B, q) ∈ K = Sp(n) × Sp(1), we have vi (gk−1) =
vi (g)q−1, so |vi (gk−1)| = |vi (g)| for i = 0, n, n+1. This establishes the fact that the N × K
action preserves each |vi (g)|. We now show that these are the only invariants.

To that end, first note that for Sp(n) × {1} ⊆ K , G/Sp(n) ∼= S4n+3, with the diffeomor-
phism induced by mapping g ∈ G to v(g). Thus, the orbit through g is determined by v(g).
In fact, since left multiplication on Sp(n − 1) (resp. Sp(1)) is transitive on the unit sphere in
H

n−1 (resp. H), for each g ∈ G, there is an h = diag(A, q1, q2) ∈ N for which v(hg) has
entries which are all zero, except for the last three which are the non-negative real numbers
|vi (hg)| for i = 0, n, n + 1. This shows that the orbit through g is completely determined by
|vi (g)| for i = 0, n, n + 1. �
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Given any column vector w = (w1, w2, w3)
t ∈ R

3 with unit length, there is a matrix
A ∈ SO(3) for which A12 = 0 and for which the last column of A is w. To see this, note that
w⊥ ∩ {(0, x2, x3)t } ⊆ R

3 has dimension at least one, so we can pick a non-zero element of
the intersection to use as the second column of A. In fact, we can pick this non-zero vector
to have a non-negative second entry. The first column must then be the cross product of the
second and third.

We let

F = {A ∈ SO(3) : A12 = 0, Ai j ≥ 0 for (i, j) ∈ {(2, 2), (1, 3), (2, 3), (3, 3)}}.
We will identify F with the subset {diag(I , A) ∈ G : A ∈ F} of G.

Thus, as a corollary to Proposition 2.5, every g ∈ G is in the same orbit as p =
diag(I , A) ∈ G where I is the (n − 2) × (n − 2) identity matrix, A ∈ F and where
the last column of A is (|v0(g)|, |vn(g)|, |vn+1(g)|)t .

In other words, the orbit of the set F ⊆ G × G under the ΔG × K × N action is all
of G × G. It follows easily that the orbit of a dense subset of F is dense in G × G. Since
π : G × G → ΔG\G × G/U is a submersion, π maps open dense sets to open dense sets.
It follows that if we show the set of points in F which project to positively curved points
in G/U is dense, that G/U is almost positively curved. We summarize this in the following
proposition.

Proposition 2.6 Consider the set of points p ∈ F which project to points in G/U for which
every 2-plane has positive sectional curvature. If this set is dense in F , then G/U is almost
positively curved.

To actually compute, we use the following paramaterization of points in F .

Lemma 2.7 Suppose A ∈ F . Then there are unique θ, α ∈ [0, π/2] with

A =
⎡
⎣

cos θ 0 sin θ

− cosα sin θ sin α cosα cos θ

− sin α sin θ − cosα sin α cos θ

⎤
⎦ .

Proof Because the first row has length one and the last entry of the first row is non-negative,
the first row has the form (± cos θ, 0, sin θ) for a unique θ ∈ [0, π/2]. Orthogonality of
the last two columns, together with the fact that each entry in the last column of A and
A22 are all non-negative, implies A32 ≤ 0. Thus, the middle column of A has the form
(0, sin α,− cosα)t for some unique α ∈ [0, π/2].

Now the form of last column of A is determined using the fact that the entries are non-
negative, and that is has unit length and is orthogonal to the second column. Specifically, since
it is unit length, we have A2

23 + A2
33 = cos2 θ , so A23 = cos θ cos η and A33 = cos θ sin η

for some η ∈ [0, 2π). Non-negativity then forces η ≤ π/2. Orthogonality with the second
column shows tan α = tan η; the bounds on α and η now imply η = α, as claimed.

Finally, the cross product of the second and third columns gives the first. In particular,
A11 = cos θ . �

Finally, in order to use Proposition 2.4, we must argue that both G/K and K/U are
positively curved if G is given a bi-invariant metric. For G/K ∼= HPn , the only G-invariant
metric is, up to scaling, the Fubini-Study metric, so is positively curved. On the other hand,
K/U ∼= S4n−1 admits many K -invariant metrics, and the normal homogeneous metric is
not the round metric on S4n−1. Nonetheless, the bi-invariant metric on G restricts to a bi-
invariant metric on K , and the following lemma shows the induced metric on K/U ∼= S4n−1

is positively curved. Hence Proposition 2.4 applies to all of these spaces.
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Lemma 2.8 The bi-invariant metric 〈·, ·〉0 on Sp(n) induces a positively curved metric on
Sp(n)/Sp(n − 1) ∼= S4n−1.

Proof It is well known (see, e.g., [6, Corollary 3.33]) that the curvature of a normal homo-
geneous space G/U is given by sec(X , Y ) = 1

4‖[X , Y ]q‖2 + ‖[X , Y ]u‖2 with g = u ⊕ q.
In particular, sec(X , Y ) = 0 iff [X , Y ] = 0.

Now, suppose for a contradiction that σ ⊆ TeSp(n−1)Sp(n)/Sp(n − 1) is a 2-plane with
zero sectional curvature, where Sp(n−1) is embedded into Sp(n) as top left (n−1)×(n−1)
block. We let {X , Y } denote a basis of σ . We may interpret X , Y ∈ q = sp(n −1)⊥ ⊆ sp(n).
Since the adjoint action of Sp(n − 1) on q splits as a sum of the standard representation
(which acts transitively on the unit sphere) and three trivial representations, we may assume

without loss of generality that X has the form X =

⎡
⎢⎢⎢⎢⎢⎣

0 0 . . . 0 x1
0 0 . . . 0 0
...

...
. . .

...
...

0 0 . . . 0 0
−x1 0 . . . 0 xn

⎤
⎥⎥⎥⎥⎥⎦
with x1 ∈ R

and xn ∈ Im(H).
Now, the action by any matrix in {1} × Sp(n − 2) ⊆ Sp(n − 1) fixes X . Using

this action, we may assume without loss of generality that Y has the form Y =⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 . . . 0 y1
0 0 0 . . . 0 y2
0 0 0 . . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . 0 0
−y1 −y2 0 . . . 0 yn

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
with y1 ∈ H, y2 ∈ R and yn ∈ Im(H).

Now we compute [X , Y ] = XY − Y X to be

⎡
⎢⎢⎢⎣

−x1y1 −x1y2 0 . . . x1yn

0 0 0 . . . 0
...

...
...

. . .
...

−xn y1 −xn y2 0 . . . −x1y1 + xn yn

⎤
⎥⎥⎥⎦ −

⎡
⎢⎢⎢⎣

−y1x1 0 . . . y1xn

−y2x1 0 . . . y2xn
...

...
. . .

...

−x1yn 0 . . . −y1x1 + yn xn

⎤
⎥⎥⎥⎦

so vanishes iff

2x1 Im(y1) = 0

x1y2 = 0

x1yn − y1xn = 0

y2xn = 0

−2x1 Im(y1) + [xn, yn] = 0.

Assume initially that xn = 0, so x1 �= 0. Then the first equation implies y1 ∈ R. The
second equation implies y2 = 0 and the third implies yn = 0. Thus X and Y are linearly
dependent, giving a contradiction.

Thus, we must have xn �= 0. The first and fifth equations taken together imply that xn and
yn are linearly dependent over R. By subtracting an appropriate multiple of X from Y , we
may assume yn = 0. Then the third equation implies y1 = 0. Finally, the fourth equation
gives y2 = 0 so Y = 0 and {X , Y } is not linearly independent, a contradiction. �
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3 Almost positive curvature onM2 and the two circle quotients.

In this section, we show themetrics constructed in Sect. 2.2 are almost positively curved in the
case of M2 = Sp(3)/Sp(1) × Sp(1) and the two circle quotients R2 = ΔS1\Sp(3)/Sp(1)2

and Q2 = Sp(3)/Sp(1)2S1. FromO’Neill’s formulas, it is enough to show that M2 is almost
positively curved.

We denote G = Sp(3), K = Sp(2) × Sp(1), and U = Sp(1) × {1} × Sp(1) ⊆ K , with
Lie algebras g = sp(3), etc. Let p ∈ F . By Proposition 2.6, M2 is almost positively curved
if the set of points in F for which all 2-planes are positively curved is dense in F .

So, assume [(p, e)] ∈ G/U ∼= ΔG\G × G/U has at least one zero-curvature plane. As
verified in Sect. 2.2, the metrics on G/K ∼= HP2 and K/U ∼= S7 satisfy the hypothesis of
Proposition 2.4, so we assume X = Xk and Y = Yp are linearly independent vectors in g

which satisfy all the conditions of Proposition 2.4.
A simple calculation shows that X = Xk satisfying Condition A has the form

X =
⎡
⎣

0 a 0
−a b 0
0 0 0

⎤
⎦

where a ∈ H and b ∈ ImH. Likewise, since Y ∈ p, Y has the form

Y =
⎡
⎣

0 0 c
0 0 d

−c −d 0

⎤
⎦

with c, d ∈ H.
The form of X and Y are further constrained by Condition B.

Proposition 3.1 The vectors X and Y satisfy Condition B iff a = d = 0.

Proof We compute 0 = [X , Y ] =
⎡
⎣

0 0 ad
0 0 −ac + bd

−da ca + db 0

⎤
⎦ which vanishes iff

[
ad

−ac + bd

]
= 0. If a �= 0, then the first entry forces d = 0, and then the second entry

forces c = 0, that is, Y = 0. Since {X , Y } is linearly independent, this is a contradiction, so
we must have a = 0, and thus, b �= 0. Then the second entry gives bd = 0, so d = 0. �

To apply condition Condition C, we first compute Adp−1 X = p−1X p and Adp−1Y =
p−1Y p. We recall we are assuming p ∈ F , so p is a 3 × 3 matrix with entries as in Lemma
2.7. To aid the calculation, we note the entries of p are real, so commute with the entries of
X and Y . Then a simple calculation shows that

Adp−1 X = b

⎡
⎣

cos2 α sin2 θ − cosα sin α sin θ − cos2 α sin θ cos θ

− cosα sin α sin θ sin2 α cosα sin α cos θ

− cos2 α cos θ sin θ cosα sin α cos θ cos2 α cos2 θ

⎤
⎦

and that Adp−1Y is given by
⎡
⎣

c sin α cos θ sin θ − c sin α cos θ sin θ −c cosα cos θ c sin α sin2 θ + c sin α cos2 θ

c cosα cos θ 0 c cosα sin θ

−c sin α sin2 θ − c sin α cos2 θ −c cosα sin θ −c sin α cos θ sin θ + c sin α cos θ sin θ

⎤
⎦ .

123



Geometriae Dedicata (2021) 212:281–298 291

So, Condition C is satisfied iff

V :=
[−b cos2 α cos θ sin θ

b cosα sin α cos θ

]
and W :=

[
c sin α sin2 θ + c sin α cos2 θ

c cosα sin θ

]

are linearly dependent over R.
Recalling that α, θ ∈ [0, π/2], we note that V is identically zero for some non-zero

b ∈ ImH iff α = π/2, or θ = π/2, or θ = α = 0. Clearly, if one of the conditions is
satisfied, then, from Proposition 2.4, there are zero-curvature planes at p. Similarly, W is
identically zero for some non-zero c ∈ H iff α = π/2 and θ = π/4, or if α = θ = 0, and
again, there will be zero-curvature planes at a point p satisfying one of these conditions. For
the remainder of this section, we assume that θ, α ∈ (0, π/2) and that θ �= π/4, so that, in
particular, V and W are non-zero vectors for any non-zero choices of b and c. Clearly, there
is an open dense subset F1 ⊆ F for which this condition on θ and α holds. Because V and
W are non-zero, Condition C is satisfied iff V = W for some 0 �= b ∈ ImH and 0 �= c ∈ H.

We are now in a position to show that M2 has an open dense set of points for which all
2-planes are positively curved.

Proposition 3.2 Suppose there are non-zero b ∈ ImH and c ∈ H for which V = W . Then

tan2 α = sin2 θ

cos2 θ−sin2 θ

Proof First, we rewrite the first entry of W as sin α(Re(c) + (cos2 θ − sin2 θ) Im(c)). Since
b ∈ ImH, the equation

− cos2 α cos θ sin θb = sin α(Re(c) + (cos2 θ − sin2 θ) Im(c)),

which comes from the first component of the equation V = W , implies that c is purely
imaginary. So we may now rewrite the first entry of W as sin α(cos2 θ − sin2 θ)c. Thus, we
see

− cos2 α cos θ sin θb = sin α(cos2 θ − sin2 θ)c,

so

b = sin α(cos2 θ − sin2 θ)

− cos2 α cos θ sin θ
.

Substituting this into the second component of the equationV = W , noting that y = Im(y)

implies y = −y, and canceling c, we obtain the equation

cosα sin α cos θ
sin α(cos2 θ − sin2 θ)

− cos2 α cos θ sin θ
= − cosα sin θ.

This simplifies to tan2 α = sin2 θ

cos2 θ−sin2 θ
, as claimed. �

If we let F2 ⊆ F1 be the subset of of F1 with tan2 α �= sin2 θ

cos2 θ−sin2 θ
, then F2 consists of

points p ∈ F which project to points in M2 for which every 2-plane has positive sectional
curvature. Clearly, F2 is an open dense subset of both F1 and F . Thus, from Proposition 2.6,
M2 is almost positively curved. This completes the proof of Theorem 1.1.
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4 Open sets of zero-curvature points onMn for n ≥ 3

In this section, we show Tapp’s metrics [26] are not always almost positively curved. More
specifically, we show that Tapp’s quasi-positively curvedmetrics on Mn = Sp(n+1)/Sp(n−
1)Sp(1) with n ≥ 3 are not almost positively curved. We let G = Sp(n + 1) and U =
Sp(n − 1) × Sp(1), with U embedded in G as (A, q) �→ diag(A, 1, q).

In [26], Tapp shows his metrics are, up to scaling, isometric to those defined in Sect. 2.2,
with K = Sp(n)×Sp(1). Proposition 2.5 applies in this case, so every point inΔG\G×G/U
is isometrically equivalent to a point in F .

We now find an open subset of G/U for which every point has infinitely many zero-
curvature planes.

To that end, given A ∈ F (so A has the form given by Lemma 2.7), we make the following
definitions:

μ =
√
tan2 θ csc2 α − 1 and η = 1

μ

sin θ(cos2 θ − sin2 θ)

cosα sin2 α cos3 θ

We let Z ⊆ F denote the open set of points for whichμ > 0 and η is defined, that is, where
the denominator of η is non-zero. Since the orbit through a point (g1, g2) ∈ G × G under
the natural ΔG × K × N action is determined by the lengths |vi (g

−1
2 g1)| for i = 0, n, n + 1

(Proposition 2.5), we see that the set of points in G × G whose orbits pass through Z × {1}
is open in G × G. In particular, if we can show that for every p = diag(I , A) with A ∈ Z ,
that the point [(p, e)] ∈ ΔG\G × G/U has at least one zero-curvature plane, then Theorem
1.2 must be true.

Proposition 4.1 Suppose A ∈ Z and p = diag(I , A) ∈ G. Then there are infinitely many
zero-curvature planes at the point [(p, e)] ∈ ΔG\G × G/U ∼= G/U.

Proof Fix any purely imaginary unit length quaternion b. We set X ∈ g = sp(n + 1)
to the matrix which is zero everywhere except the bottom right 4 × 4 block, where it is

X0 :=

⎡
⎢⎢⎣

0 0 1 0
0 0 μb 0

−1 μb ηb 0
0 0 0 0

⎤
⎥⎥⎦. Note that X = Xk.

Likewise, we define Y ∈ g to be the matrix which is zero everywhere except the bottom

right 4× 4 block, where it is Y0 :=

⎡
⎢⎢⎣

0 0 0 1
0 0 0 − b

μ

0 0 0 0
−1 − b

μ
0 0

⎤
⎥⎥⎦. Note that Y = Yp. We claim that

X and Y satisfy all the conclusions of Proposition 2.4, so there is a zero curvature plane at
[(p, e)] ∈ G/U .

Clearly, both X and Y are orthogonal to u, so we may focus on Condition B. Because of
the block form of X and Y , we see that [X , Y ] = 0 iff [X0, Y0] = 0. Computing the latter,
the only potentially non-zero entries are [X0, Y0]3,4 = −1 − b2 and [X0, Y0]4,3 = 1 + b2.
Since b is a purely imaginary unit length quaternion, b2 = −1, so Condition B is satisfied.

In order to verify Condition C, we compute Adp−1 X and Adp−1Y . Due to the block form
of X , Y , and p, it follows that outside of the bottom right 4 × 4 block, every entry of both
Adp−1 X and Adp−1Y vanishes. Further, the bottom right 4 × 4 block of Adp−1 X is equal
to Addiag(1,A)−1 X0, and likewise for Y . A simple calculation now gives the last column of
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Addiag(1,A)−1 X0 and Addiag(1,A)−1Y0 as

⎡
⎢⎢⎣

cosαcosθ
μb cosα(cos2 θ − sin2 θ) − ηb cos2 α cos θ sin θ

μb sin α sin θ + ηb cosα sin α cos θ

μb cosα cos θ sin θ + ηb cos2 α cos2 θ

⎤
⎥⎥⎦ and

⎡
⎢⎢⎢⎣

sin α cos θ
b
μ
sin α(sin2 θ − cos2 θ)

b
μ
cosα sin θ

−2 b
μ
sin α cos θ sin θ

⎤
⎥⎥⎥⎦

respectively. In particular, the non-zero entries of the p components of Adp−1 X and Adp−1Y
can be identified with the vectors

V :=
⎡
⎣

cosαcosθ
μb cosα(cos2 θ − sin2 θ) − ηb cos2 α cos θ sin θ

μb sin α sin θ + ηb cosα sin α cos θ

⎤
⎦

and

W :=
⎡
⎢⎣

sin α cos θ
b
μ
sin α(sin2 θ − cos2 θ)

b
μ
cosα sin θ

⎤
⎥⎦

respectively.
Now, Condition C is verified iff V and W are linearly dependent. The fact that μ and η

are defined means that the first entry of both V and W is non-zero, so Condition C is verified
iff V = cot αW . Since μ and b are both non-zero, V = cot αW iff μ

b V = μ
b cot αW . The

second and third entries of the equation μ
b V = μ

b cot αW are
{

μ2 cosα(cos2 θ − sin2 θ) −ημ cos2 α cos θ sin θ = cosα(sin2 θ − cos2 θ)

μ2 sin α sin θ +ημ cosα sin α cos θ = cos2 α sin θ
sin α

.

According to Lemma 4.2 below, V and W are linearly dependent iff

μ2 = tan2 θ csc2 α − 1 and ημ = sin θ(2 cos2 θ − 1)

cosα sin2 α cos3 θ
.

From the definition ofμ and η above, V and W are linearly dependent, so [(p, e)] ∈ ΔG\G×
G/U has zero-curvature planes.

Since b was an arbitrary unit length quaternion, this gives infinitely many zero-curvature
planes at p ∈ Z . �

So, establishing the following Lemma completes the proof of Theorem 1.2.

Lemma 4.2 The solution to the system
{

μ2 cosα(cos2 θ − sin2 θ) −ημ cos2 α cos θ sin θ = cosα(sin2 θ − cos2 θ)

μ2 sin α sin θ +ημ cosα sin α cos θ = cos2 α sin θ
sin α

is given by μ2 = tan2 θ csc2 α − 1 and ημ = sin θ(2 cos2 θ−1)
cosα sin2 α cos3 θ

.

Proof Viewing the systemas a linear system in the variablesμ2 andημ, we solve viaCramer’s
rule. The denominator is given by

cosα(cos2 θ − sin2 θ) cosα sin α cos θ + sin α sin θ cos2 α cos θ sin θ

= cos2 α sin α cos θ(cos2 θ − sin2 θ + sin2 θ)

= cos2 α sin α cos3 θ.
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For μ2, the numerator is given by

cosα(sin2 θ − cos2 θ) cosα sin α cos θ + cos2 α sin θ

sin α
cos2 α cos θ sin θ

= cos2 α sin α cos θ(sin2 θ(1 + cot2 α) − cos2 θ)

= cos2 α sin α cos θ(sin2 θ csc2 α − cos2 θ).

Thus,

μ2 = cos2 α sin α cos θ(sin2 θ csc2 α − cos2 θ)

cos2 α sin α cos3 θ

= tan2 θ csc2 α − 1

Similarly, the numerator of ημ is given by

cosα(cos2 θ − sin2 θ)
cos2 α sin θ

sin α
− sin α sin θ cosα(sin2 θ − cos2 θ)

= cosα sin θ(cos2 θ − sin2 θ)

(
cos2 α

sin α
+ sin2 α

sin α

)

= cot α sin θ(cos2 θ − sin2 θ).

Thus,

ημ = cot α sin θ(cos2 θ − sin2 θ)

cos2 α sin α cos3 θ

= sin θ(cos2 θ − sin2 θ)

cosα sin2 α cos3 θ

�

5 The topology ofM2,Q2, and R2

We now compute the cohomology rings and characteristic class of M2 = Sp(3)/Sp(1)2

and the two circle quotients R2 = Sp(3)/Sp(1)2S1 and Q2 = ΔS1\Sp(3)/Sp(1)2.
Singhof and Wemmer [25] have shown Sp(3)/Sp(1)2 is parallelizable. To compute the
cohomology ring of the homogeneous space Sp(3)/Sp(1)2, we consider the chain of sub-
groups Sp(1)2 → Sp(2) → Sp(3), where the embedding Sp(2) → Sp(3) is given by
[

a b
c d

]
�→

⎡
⎣

a 0 b
0 1 0
c 0 d

⎤
⎦. The one has the homogeneous fibration

S4 ∼= Sp(2)/Sp(1)2 → Sp(3)/Sp(1)2 → Sp(3)/Sp(2) ∼= S11

showing Sp(3)/Sp(1)2 is an S4 bundle over S11. The Gysin sequence associated to this fiber
bundle and Poincaré duality then imply the integral cohomology ring is isomorphic to that
of S4 × S11.

As Kamerich [18] showed in his thesis, Sp(3)/Sp(1)2 and S4 × S11 are not homotopy
equivalent. We provide a short proof below for the convenience of the reader.

Proposition 5.1 The homotopy groups π10(S4 × S11) and π10(M2) are not isomorphic, so
S4 × S11 and M2 are not homotopy equivalent.
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Proof We first note that π10(Sp(3)) is in the stable range, so is given by Bott periodicity.
Thus, π10(Sp(3)) = 0. Recall ([17, p. 399]) π10(S4 × S11) ∼= π10(S4) ∼= Z24 ⊕ Z3 and
π9(S3) = Z3.

Now, a portion of the long exact sequence of homotopy groups associated to the fibration
Sp(1)2 → Sp(3) → Sp(3)/Sp(1)2 is

0 = π10(Sp(3)) → π10(Sp(3)/Sp(1)2) → π9(Sp(1)2) → . . .

But Z24 ⊕ Z3 cannot inject into Z3 ⊕ Z3. �
Wenow show Q2 and R2 have isomorphic cohomology rings, but that their first Pontryagin

class mod 24 are different. Since this is a homotopy invariant [2], this implies Q2 and R2 are
homotopically distinct.

To do this, we first view both as biquotients in the form Hi\G/Ki :

Q2 = {e}\Sp(3)/Sp(1)2 × S1 and R2 = ΔS1\Sp(3)/Sp(1)2

defined by two inclusions Hi × Ki → G × G:

for Q2, (q1, q2, z) → (I , diag(q1, z, q2))

and

for R2, (q1, q2, z) → (diag(z, z, z), diag(q1, 1, q2)) ,

where qi ∈ Sp(1) and z ∈ S1.
Letting BG denote the classifying space of G, the quotient of a contractible space EG by

a free action of G, the inclusion Hi × Ki → G ×G induces a map B Hi × BKi → BG × BG.

Using this map, Singhof [24] proves the following theorem.

Theorem 5.2 (Singhof) If the rank of H × K is equal to the rank of G, and if
H∗(B H), H∗(BK ), and H∗(BG) are all torsion free, then as algebras,

H∗(G//(H × K )) ∼= H∗(B H) ⊗H∗(BG) H∗(BK ).

In order to determine the maps H∗(BG) → H∗(B H) and H∗(BG) → H∗(BK ), we
use a theorem of Borel [5].

Theorem 5.3 (Borel) The inclusion map of a maximal torus T → Sp(n) induces an injective
map

H∗(BSp(n)) → H∗(BT ) ∼= Z[x1, . . . , xn], with |xi | = 2

with image generated by the elementary symmetric polynomials in the squares of the xi

variables.

Then, using the commutative diagram

H∗(BG) � H∗(B H)

H∗(BTG)

�
� H∗(BTH )

�

induced from the natural inclusions, we compute the top map by computing the bottom map
and restricting, and similarly for H∗(BG) → H∗(BK ).
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We now carry this out for the more difficult case of R2.
We identify H∗(BTG) with Z[x1, x2, x3] where xi ∈ H2(BTG) are the transgressions of

the generators of the usual basis of H1(TG) in the spectral sequence associated to TG →
ETG → BTG , and we similarly identify H∗(BTK ) ∼= Z[y1, y2] and H∗(BTH ) ∼= Z[u].

Then, Proposition 5.3 identifies H∗(BG) with Z[σ1(x2i ), σ2(x2i ), σ3(x2i )] and identifies
H∗(BK ) with Z[y21 , y22 ]. Of course, since H = TH , H∗(B H) ∼= H∗(BTH ) ∼= Z[u].

The map H∗(BTG) → H∗(BTK ) maps x1 to y1, x2 to 0, and x3 to y2. Thus, the map
H∗(BG) → H∗(BK ) is given as follows:

σ1(x2i ) = x21 + x22 + x23 �→ y21 + y22
σ2(xi )

2 = x21 x22 + x21 x23 + x22 x23 �→ y21 y22
σ3(xi )

2 = x21 x22 x23 �→ 0.

Similarly, the function H∗(BTG) → H∗(BTH ) maps xi to u for all i , and thus, the map
H∗(BG) → H∗(B H) is given by σ1(x2i ) �→ 3u2, σ2(x2i ) �→ 3u4, and σ3(x2i ) �→ u6.

Thus, Theorem 5.2 implies

H∗(R2) ∼= Z[y21 , y22 , u]/I

where yi and u both have degree 2 and I the ideal generated by y21 + y22 − 3u2, y21 y22 − 3u4,
and u6. One sees easily that this is isomorphic to Z[y21 , u]/I2 where I2 is generated by
3u4 − 3y21u2 + y41 and u6.

In a similar fashion, Theorem 5.2 can be used to show

H∗(Q2) ∼= Z[y21 , y22 , u]/J

where J is the ideal generated by y21 + y22 + u2, y21 y22 + (y21 + y22 )u
2, and y21 y22u2, which is

clearly isomorphic to Z[y21 , u]/J2 where J2 is generated by y41 + y21u2 + u4 and u6.

Proposition 5.4 The cohomology rings Z[y21 , u]/I2 and Z[y21 , u]/J2 are isomorphic.

Proof Consider the function φ : Z[y21 , u] → Z[y21 , u] given by φ(u) = u and φ(y21 ) =
u2 − y21 . It is easy to verify that φ2 is the identity function.

Also, since φ(u6) = u6 ∈ J2 and

φ(3u4 − 3y21u2 + y41 ) = 3u4 − 3(u2 − y21 )u
2 + (u2 − y21 )

2

= 3u4 − 3u4 + 3y21u2 + u4 − 2u2y21 + y41

= y41 + y21u2 + u4

∈ J2,

φ(I2) ⊆ J2, so φ induces a map from Z[y21 , u]/I2 to Z[y21 , u]/J2. In a similar manner, it is
easy to verify that φ(y41 + y21u2 + u4) = y41 − 3y21u2 + 3u4 ∈ I2, so φ induces a map from
Z[y21 , u]/J2 to Z[y21 , u]/I2. Since φ2 is the identity, these induced maps are inverses of each
other, so they are both isomorphisms. �

We now set up notation in order to compute the first Pontryagin classes of Q2 and R2. For
T ⊆ G a torus, we may use transgressions of generators of H1(T ) in the spectral sequence
T → ET → BT as generators of H2(BT ). Since a weight of a representation of G is
an element of the weight lattice ker exp with exp : t → T the group exponential map,
this allows us to interpret weights of a representation as elements of Hom(ker exp,Z) ∼=
Hom(π1(T ),Z) ∼= H1(T ), which may then be interpreted, via transgressions, as elements
of H2(BT ).
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Using this notation, Singhof [24] proves the following theorem, adapted to the full rank
case.

Theorem 5.5 (Singhof) Let Δ+
G denote the set of positive roots of G, interpreted as elements

of H2(BTG) and similarly for Δ+
H and Δ+

K . Then the isomorphism in Theorem 5.2 gives an
identification

p(H\G/K ) =
∏

β∈Δ+
G

(1 + β2)
∏

γ∈Δ+
H

(1 + γ 2)−1
∏

δ∈Δ+
K

(1 + δ2)−1.

We may now distinguish Q2 and R2.

Proposition 5.6 The manifolds Q2 and R2 have distinct homotopy types.

Proof In the notation of the previous computation of H∗(R2), the positive roots of Sp(3)
are 2xi and xi ± x j for 1 ≤ i < j ≤ 3, while for Sp(1) × Sp(1), they are 2y1 and
2y2. Of course, a circle S1 has no positive roots. Using the notation (x1 ± x2)2 to mean
(x1 + x2)2 + (x1 − x2)2 = 2(x21 + x22 ), it follows from Theorem 5.5 that

p1 =
∑

β2 −
∑

γ 2 −
∑

δ2

=4(x21 + x22 + x23 ) + (x1 ± x2)
2 + (x1 ± x3)

2 + (x2 ± x3)
2

− 4y21 − 4y22

=8(x21 + x22 + x23 ) − 4(y21 + y22 ).

Now, via the inclusion B H → BG, we see σ1(x2i ) = x21 + x22 + x23 maps to 0 for Q2

and to 3z2 for R2. Since y21 + y22 = −z2 in H∗(Q2) and y21 + y22 = 3z2 in H∗(R2), we
see that p1(Q2) = 4z2 while p1(R2) = 24z2 − 12z2 = 12z2. Now, one easily checks
that H4(Q2;Z24)/p1 = Z24 ⊕ Z6 while H4(R2;Z24)/p1 = Z24 ⊕ Z2. Thus, there is no
isomorphism H4(Q2;Z24) → H4(R2;Z24) which preserves p1. Since this is a homotopy
invariant [2], it follows that Q2 and R2 are not homotopy equivalent. �

The only previously known examples of simply connected almost positively curved mani-
folds in dimension 14 and 15 are due toWilking [30]. In dimension 15, they are T 1S8 and the
homogeneous spaceU (5)/U (3)S1

kl , while in dimension 14, they areΔSO(2)\SO(9)/SO(7)
and PCT 1

CP4, the projectivized unit tangent bundle to CP4.
Now, T 1S8 is 6-connected, while π2(U (5)/U (3)S1

kl)
∼= Z. On the other hand, π4(M2) ∼=

Z while π2(M2) = 0, so the 15 dimensional example is distinct up to homotopy from the
previously known examples.

Further, ΔSO(2)\SO(9)/SO(7) is a circle quotient of SO(9)/SO(7) ∼= T 1S8, so again
has π4 trivial, while both Q2 and R2 have π4 isomorphic to Z. Finally, PCT 1

CP4 fits into
a fiber bundle S1 → T 1

CP4 → PCT 1
CP4, so π2(PCT 1

CP4) ∼= Z
2, while π2(Q2) ∼=

π2(R2) ∼= Z. So the two 14-dimensional examples are distinct up to homotopy from the
previously known examples as well.

Acknowledgements Theorem 1.1 was originally proven in the author’s thesis. He is greatly indebted to
Wolfgang Ziller for helpful comments.
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