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Abstract
Let (V , 0) be an isolated hypersurface singularity defined by the holomorphic function
f : (Cn, 0) → (C, 0). In our previous work, we introduced a series of novel Lie alge-
bras associated to (V , 0), i.e., k-th Yau algebra Lk(V ), k ≥ 0. It was defined to be the Lie
algebra of derivations of the k-th moduli algebras Ak(V ) = On/( f ,mk J ( f )), k ≥ 0, where
m is the maximal ideal ofOn . I.e., Lk(V ) := Der(Ak(V ), Ak(V )). The dimension of Lk(V )

was denoted by λk(V ). The number λk(V ), which was called k-th Yau number, is a sub-
tle numerical analytic invariant of (V , 0). Furthermore, we formulated two conjectures for
these k-th Yau number invariants: a sharp upper estimate conjecture of λk(V ) for weighted
homogeneous isolated hypersurface singularities (see Conjecture 1.2) and an inequality con-
jecture λ(k+1)(V ) > λk(V ), k ≥ 0 (see Conjecture 1.1). In this article, we verify these two
conjectures when k is small for large class of singularities.
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1 Introduction

For any isolated hypersurface singularity (V , 0) ⊂ (Cn, 0) defined by the holomorphic

function f : (Cn, 0) → (C, 0), one has the moduli algebra A(V ) := On/
(
f , ∂ f

∂x1
, . . . ,

∂ f
∂xn

)

which is finite dimensional. Its dimension τ(V ) is called Tyurina number. The order of the
lowest non-vanishing term in the power series expansion of f at 0 is called the multiplicity
(denoted by mult( f )) of the singularity (V , 0). A polynomial f ∈ C[x1, . . . , xn] is said to
be weighted homogeneous if there exist positive rational numbers w1, . . . , wn (weights of
x1, . . . , xn) and d such that,

∑
aiwi = d for each monomial

∏
xaii appearing in f with

nonzero coefficient. The number d is called weighted homogeneous degree (w-degree) of
f with respect to weights w j . The weight type of f is denoted as (w1, . . . , wn; d). By a
beautiful result of Saito [19], we shall always assume without loss of generality that 2wi ≤ d
for all 1 ≤ i ≤ n. Without loss of generality, we can assume that w-deg f = 1. and wi ≤ 1

2 .
The well-known Mather–Yau theorem [17] stated that: Let V1 and V2 be two isolated

hypersurface singularities and, A(V1) and A(V2) be the moduli algebras, then (V1, 0) ∼=
(V2, 0) ⇐⇒ A(V1) ∼= A(V2). Motivated from the Mather–Yau theorem, the second
author introduced the Lie algebra of derivations of moduli algebra A(V ), i.e., L(V ) =
Der(A(V ), A(V )). The finite dimensional Lie algebra L(V ) was called Yau algebra and its
dimension λ(V ) was called Yau number in [26]. The Yau algerba plays an important role in
singularity theory (cf. [11,21]). Yau and his collaborators have been systematically studying
the Yau algebras of isolated hypersurface singularities begin from eighties [1,2,4–7,13,21–
25,27,28]. In particular, Yau algebras of simple singularities and simple elliptic singularities
were computed and a number of elaborate applications to deformation theory were presented
in [1,21]. However, the Yau algbra can not characterize the simple singularties completely. In
[8], it was shown that if X and Y are two simple singularities except the pair A6 and D5, then
L(X) ∼= L(Y ) as Lie algebras if and only if X and Y are analytically isomorphic. Therefore,
a natural question is to find new Lie algebras which can be used to distinguish singularities (at
least for the simple singularities) completely. In our previous work [14], we introduced the
series of new k-th Yau algebra associated to isolated hypersurface singularities. We defined
this new k-th Yau algebra as follows.

Recall that we have the following theorem.

Theorem 1.1 [10, Theorem 2.26] Let f , g ∈ m ⊂ On. The following are equivalent:

(1) (V ( f ), 0) ∼= (V (g), 0).
(2) For all k ≥ 0, On/( f ,mk J ( f )) ∼= On/(g,mk J (g)) as C-algebra.
(3) There is some k ≥ 0 such thatOn/( f ,mk J ( f )) ∼= On/(g,mk J (g)) asC-algebra, where

J ( f ) = (
∂ f
∂x1

, . . . ,
∂ f
∂xn

).

In particular, if k = 0 and k = 1 above, and f , g define isolated singularities, then the
claim of the equivalence of 1) and 3) is exactly the same as the Mather–Yau theorem.

Based on Theorem 1.1, it is natural for us to introduce the new series of k-th Yau algebras
Lk(V ) which are defined to be the Lie algebra of derivations of the k-th moduli algebra
Ak(V ) = On/( f ,mk J ( f )), k ≥ 0, i.e., Lk(V ) = Der(Ak(V ), Ak(V )). Its dimension is
denoted as λk(V ). This number λk(V ) is a new numerical analytic invariant of a singularity.
We call it k-th Yau number. In particular, L0(V ) is exactly the Yau algebra, thus L0(V ) =
L(V ), λ0(V ) = λ(V ).

On the one hand, since L(V ) can not characterize the simple singularities completely,
so there is a natural question: whether these simple singularities (or which classes of more
general singularities) can be characterized completely by the Lie algebra Lk(V ), k ≥ 1? In
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[16], we have proven that the simple singularities V can be characterized completely using
the L1(V ).

Theorem 1.2 [16] If X andY are two simple hypersurface singularities, then L1(X) ∼= L1(Y )

as Lie algebras, if and only if X and Y are analytically isomorphic.

We believe Theorem 1.2 is also true for Lk(V ), k > 1. Therefore the k-th Yau algebra
Lk(V ), k ≥ 1, is more subtle comparing to the Yau algebra L(V ) in some sense.

Furthermore, since derivations of moduli algebras are analogs of vector fields on smooth
manifolds, such direction of research is in the spirit of the classical theorem of Pursell and
Shanks stating that the Lie algebra of smooth vectors fields on a smooth manifold determines
the diffeomorphism type of the manifold [18]. It is interesting to investigate the structure of
k-th Yau algebras and find out, for which classes of singularities those Lie algebras determine
the analytic or topological structures of singularities by analogy with the mentioned result
of Pursell and Shanks. In fact, Theorem 1.2 yields a similar for the simple singularities.

On the other hand, it is well known that finite dimensional Lie algebras are semi-direct
product of the semi-simple Lie algebras and solvable Lie algebras. Brieskorn gave the con-
nection between simple Lie algebras and simple singularities. Simple Lie algebras have been
well understood, but not the solvable (nilpotent) Lie algebras. It is extremely important to
establish connections between singularities and solvable (nilpotent) Lie algebras. In fact
Lk(V ) are finite dimensional solvable (nilpotent) Lie algebras naturally from isolated hyper-
surface singularities. These objects Lk(V ) help us to understand the solvable (nilpotent) Lie
algebras from the geometric point of view. Moreover, it is known that the classification of
nilpotent Lie algebras in higher dimensions (> 7) remains to be a vast open area. There
are one-parameter families of non-isomorphic nilpotent Lie algebras (but no two-parameter
families) in dimension seven. Dimension seven is the watershed of the existence of such
families. It is well-known that no such family exists in dimension less than seven, while it
is hard to construct one-parameter family in dimension greater than seven. However, such
examples are hard to construct [20].

Recall that Griffiths has studied the Torelli problem when a family of complex projective
hypersurfaces inCPn is given and his school asks whether the period map is injective on that
family, i.e., whether the family of complex hypersurfaces can be distinguished by means of
theirHodge structures.Acomplexprojective hypersurface inCPn canbeviewed as a complex
hypersurfacewith isolated singularity inCn+1. Let V = {z ∈ C

n+1 : f (z) = 0} be a complex
hypersurface with isolated singularity at the origin. Seeley and Yau [21] investigated the
family of isolated complex hypersurface singularities using Yau algebras L(V ) and obtained
two strong Torelli-type theorems for simple elliptic singularities Ẽ7 and Ẽ8. We obtained the
following similar result for Lk(V ).

Theorem 1.3 [16] L2(Ẽ6), L1(Ẽ7), L2(Ẽ7), L1(Ẽ8) and L2(Ẽ8) are non-trivial one-
parameter families. Thus the weak Torelli-type theorems hold for simple elliptic singularities
Ẽ6, Ẽ7 and Ẽ8.

The second author [23] showed that the Yau algebra L(V ) of the family Ẽ6 is constant,
i.e., it does not depend on the parameter. In a recent paper [12], we have shown that the first
Yau algebra L1(V ) is also constant,. However, the strong Torelli-type theorem holds for Ẽ6

using k-th Yau algebra Lk(V ), k ≥ 2.

Theorem 1.4 [12] Let {Vt } represent a family of simple elliptic singularities Ẽ6. If k ≥ 2,
then Lk

t and Lk
s are isomorphic as Lie algebras if and only if Vt is biholomorphic to Vs.
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As a corollary of Theorems 1.3 and 1.4, we can obtain many non-trivial one-parameter
families of solvable (nilpotent) Lie algebras in dimension greater than seven.

Since the k-th Yau algebras Lk(V ) are more subtle invariants than the Yau algebras, we
believe that these new Lie algebras Lk(V ) and numerical invariants λk(V ) will also play an
important role in the study of singularities.

In this paper, we investigate the new analytic invariants λk(V ). A natural question arises:
are there any numerical relations between the invariants λk(V ), k ≥ 0? We proposed the
following conjecture:

Conjecture 1.1 [15] With the above notations, let (V , 0) be an isolated hypersurface singu-
larity defined by f ∈ On, n ≥ 2, and mult( f ) ≥ 3. Then

λ(k+1)(V ) > λk(V ), k ≥ 0.

TheConjecture 1.1 has already been verified for binomial singularities (see Definition 2.4)
when k = 0, 1, and trinomial singularities (see Definition 2.4) when k = 0 by the authors in
[15]. In this paper we shall prove this conjecture for trinomial singularities when k = 1 (see
Theorem A).

It is also interesting to bound the k-th Yau number of weighted homogeneous singularities
with a number that depends on weight type. In Yau and Zuo [28] firstly proposed the sharp
upper estimate conjecture that bound the Yau number. They also proved that this conjecture
holds in the case of binomial isolated hypersurface singularities. Furthermore, in [13], this
conjecture was verified for trinomial singularities. We proposed the following sharp upper
estimate conjecture which is a generalization of the conjecture in [28].

Conjecture 1.2 [14] Assume that λk({xa11 + · · · + xann = 0}) = hk(a1, . . . , an), (k ≥ 0).
Let (V , 0) = {(x1, x2, . . . , xn) ∈ C

n : f (x1, x2, . . . , xn) = 0}, (n ≥ 2) be an isolated
singularity defined by the weighted homogeneous polynomial f (x1, x2, . . . , xn) of weight
type (w1, w2, . . . , wn; 1). Then λk(V ) ≤ hk(1/w1, . . . , 1/wn).

The Conjecture 1.2 tells, when fixing a weight type, the Brieskorn singularity xa11 +· · ·+ xann
has maximal k-th Yau number. It has already been verified for binomial singularities and
trinomial singualrities when k = 0 in [13,28] respectively and when k = 1 [14]. In this paper
we shall prove this conjecture for binomial singularities and trinomial singualrities when
k = 2 (see Theorems B, C and D). We obtain the following main results.

Theorem A Let (V , 0) be a fewnomial singularity defined by the weighted homogeneous
polynomial f (x1, x2, x3) (see Proposition 2.2) with mult( f ) ≥ 3, then

λ2(V ) > λ1(V ).

Theorem B Let (V , 0) be a binomial singularity defined by the weighted homogeneous poly-
nomial f (x1, x2) (see Corollary 2.1) with weight type (w1, w2; 1) and mult( f ) ≥ 3, then

λ2(V ) ≤ h2

(
1

w1
,
1

w2

)
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2
w1w2

− 3
(

1
w1

+ 1
w2

)
+ 17; w1 ≤ 1

5 , w2 ≤ 1
5

3
w2

+ 5; w1 = 1
3 , w2 ≤ 1

4

13; w1 = 1
3 , w2 = 1

3

5
w2

+ 4; w1 = 1
4 , w2 ≤ 1

5

23; w1 = 1
4 , w2 = 1

4 .
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Remark 1.1 Ifmult f (x1, x2)) = 2, then f (x1, x2) is contact equivalent [10] to x21 +xb2 where
b ≥ 2. Thus our Conjecture 1.2 is obviously true for this case. Therefore in Theorem B, we
only need to consider mult( f ) ≥ 3.

Theorem C Let (V , 0) be a fewnomial singularity defined by theweighted homogeneous poly-
nomial f (x1, x2, x3) (seeProposition 2.2) withweight type (w1, w2, w3; 1) andmult( f ) ≥ 3,
then

λ2(V ) ≤ h2

(
1

w1
,
1

w2
,
1

w3

)
= 3

w1w2w3
+ 5

(
1

w1
+ 1

w2
+ 1

w3

)

− 4

(
1

w1w2
+ 1

w1w3
+ 1

w2w3

)
+ 34, w1 ≤ 1

3
, w2 ≤ 1

3
, w3 ≤ 1

3
.

Theorem D Let (V , 0)be a fewnomial singularity defined by theweighted homogeneous poly-
nomial f (x1, x2, x3) (see Proposition 2.2) with weight type (w1, w2, w3; 1) andmult( f ) = 2
(see Remark 1.2), then

λ2(V ) ≤ h2

(
1

w1
,
1

w2
, 2

)
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2
w1w2

− 3
(

1
w1

+ 1
w2

)
+ 36; w1 ≤ 1

5 , w2 ≤ 1
5

3
w2

+ 22; w1 = 1
3 , w2 ≤ 1

4

30; w1 = 1
3 , w2 = 1

3

5
w2

+ 23; w1 = 1
4 , w2 ≤ 1

5

42; w1 = 1
4 , w2 = 1

4 .

Remark 1.2 If f (x1, x2, x3) is fewnomial and mult( f (x1, x2, x3)) = 2, then f (x1, x2, x3)
is contact equivalent to one of the following cases:

Case 1 (A) xa11 + xa22 + x23 , a1, a2 ≥ 3; (B) xa11 x2 + xa22 + x23 , a1 ≥ 2, a2 ≥ 3; (C)
xa11 x2 + xa22 x1 + x23 , a1, a2 ≥ 2;
Case 2 (A) xa11 + x22 + x23 , a1 ≥ 2.

The Conjecture 1.2 is true for case 2. Thus in Theorem D, we only need to verify the
Conjecture 1.2 for case 1.

2 Generalities on derivation lie algebras of isolated singularities

In this section, we shall briefly define the basic definitions and important results that are
helpful to solve the problem. The following basic concepts and results will be used to compute
the derivation Lie algebras of isolated hypersurface singularities.

Let A, B be associative algebras over C. The subalgebra of endomorphisms of A gen-
erated by the identity element and left and right multiplications by elements of A is called
multiplication algebra M(A) of A. The centroidC(A) is defined as the set of endomorphisms
of A which commute with all elements of M(A). Obviously, C(A) is an unital subalgebra of
End(A). The following statement is a particular case of a general result from Proposition 1.2
of [3]. Let S = A ⊗ B be a tensor product of finite dimensional associative algebras with
units. Then

DerS ∼= (DerA) ⊗ C(B) + C(A) ⊗ (DerB).
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We will only use this result for commutative associative algebras with unit, in which case
the centroid coincides with the algebra itself and one has following result for commutative
associative algebras A, B:

Theorem 2.1 [3] For commutative associative algebras A, B,

DerS ∼= (DerA) ⊗ B + A ⊗ (DerB). (1)

We shall use this formula in the sequel.

Definition 2.1 Let J be an ideal in an analytic algebra S. Then DerJ S ⊆ DerCS is Lie
subalgebra of all σ ∈ DerCS for which σ(J ) ⊂ J .

We shall use the following well-known result to compute the derivations.

Theorem 2.2 [28] Let J be an ideal in R = C{x1, . . . , xn}. Then there is a natural isomor-
phism of Lie algebras

(DerJ R)/(J · DerCR) ∼= DerC(R/J ).

Recall that a derivation of commutative associative algebra A is defined as a linear endo-
morphism D of A satisfying the Leibniz rule: D(ab) = D(a)b + aD(b). Thus for such an
algebra A one can consider the Lie algebra of its derivations Der(A, A) with the bracket
defined by the commutator of linear endomorphisms.

Definition 2.2 Let f (x1, . . . , xn) be a complex polynomial and V = { f = 0} be a germ of
an isolated hypersurface singularity at the origin inCn . Let Ak(V ) = On/( f ,mk J ( f )), 1 ≤
k ≤ n be a moduli algebra. Then Der(Ak(V ), Ak(V )) defined the derivation Lie algebras
Lk(V ). The λk(V ) is the dimension of derivation Lie algebra Lk(V ).

It is noted that when k = 0, then derivation Lie algebra is called Yau algebra.

Definition 2.3 A polynomial f ∈ C[x1, x2, . . . , xn] is called quasi-homogeneous (or
weighted homogeneous) if there exist positive rational numbers w1, . . . , wn (called weights

of indeterminates x j ) and d such that, for each monomial
∏

x
k j
j appearing in f with non-

zero coefficient, one has
∑

w j k j = d . The number d is called the quasi-homogeneous
degree (w-degree) of f with respect to weights w j and is denoted deg f . The collection
(w; d) = (w1, . . . , wn; d) is called the quasi-homogeneity type (qh-type) of f .

Definition 2.4 An isolated hypersurface singularity inCn is fewnomial if it can be defined by
a n-nomial in n variables and it is a weighted homogeneous fewnomial isolated singularity if
it can be defined by a weighted homogeneous fewnomial. 2-nomial (resp. 3-nomial) isolated
hypersurface singularity is also called binomial (resp. trinomial) singularity.

Proposition 2.1 Let f be a weighted homogeneous fewnomial isolated singularity with
mult( f ) ≥ 3. Then f analytically equivalent to a linear combination of the following three
series:

Type A. xa11 + xa22 + · · · + xan−1
n−1 + xann , n ≥ 1,

Type B. xa11 x2 + xa22 x3 + · · · + xan−1
n−1 xn + xann , n ≥ 2,

Type C. xa11 x2 + xa22 x3 + · · · + xan−1
n−1 xn + xann x1, n ≥ 2.

Proposition 2.1 has an immediate corollary.
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Corollary 2.1 Each binomial isolated singularity is analytically equivalent to one from the
three series: (A) xa11 + xa22 , (B) xa11 x2 + xa22 , (C) xa11 x2 + xa22 x1.

Wolfgang and Atsushi [9] give the following classification of weighted homogeneous
fewnomial singularities.

Proposition 2.2 [9] Let f (x1, x2, x3) be a weighted homogeneous fewnomial isolated singu-
larity with mult( f ) ≥ 3. Then f is analytically equivalent to following five types:

Type 1. xa11 + xa22 + xa33 ,
Type 2. xa11 x2 + xa22 x3 + xa33 ,
Type 3. xa11 x2 + xa22 x3 + xa33 x1,
Type 4. xa11 + xa22 + xa33 x2,
Type 5. xa11 x2 + xa22 x1 + xa33 .

In order to prove the Theorem A, we need to use the following propositions.

Proposition 2.3 [14] Let (V , 0) be a fewnomial surface isolated singularity of type 1 which
is defined by f = xa11 + xa22 + xa33 (a1 ≥ 3, a2 ≥ 3, a3 ≥ 3) with weight type ( 1

a1
, 1
a2

, 1
a3

; 1).
Then

λ1(V ) = 3a1a2a3 + 5(a1 + a2 + a3) − 4(a1a2 + a1a3 + a2a3) + 6.

Proposition 2.4 [14] Let (V , 0) be a fewnomial surface isolated singularity of type 2 which
is defined by f = xa11 x2 + xa22 x3 + xa33 (a1 ≥ 2, a2 ≥ 2, a3 ≥ 3) with weight type
( 1−a3+a2a3

a1a2a3
, a3−1
a2a3

, 1
a3

; 1). Then

λ1(V ) =

⎧
⎪⎪⎨
⎪⎪⎩

4a1a3 − 2a1 − 3a3 + 11; a1 ≥ 3, a2 = 2, a3 ≥ 3
5a3 + 7; a1 = 2, a2 = 2, a3 ≥ 3
3a1a2a3 − 2a1a2 − 2a1a3
−4a2a3 + 2a1 + 2a2 + 6a3 + 5; Otherwise.

Proposition 2.5 [14] Let (V , 0) be a fewnomial surface isolated singularity of type 3 which
is defined by f = xa11 x2 + xa22 x3 + xa33 x1 (a1 ≥ 2, a2 ≥ 2, a3 ≥ 2) with weight type

(
1 − a3 + a2a3
1 + a1a2a3

,
1 − a1 + a1a3
1 + a1a2a3

,
1 − a2 + a1a2
1 + a1a2a3

; 1
)

.

Then

λ1(V ) =
⎧⎨
⎩
24; a1 = 2, a2 = 2, a3 = 2
3a1a2a3 + 2(a1 + a2 + a3)

−2(a1a2 + a1a3 + a2a3) + 11; Otherwise.

Proposition 2.6 [14] Let (V , 0) be a fewnomial surface isolated singularity of type 4 which is
defined by f = xa11 +xa22 +xa33 x2 (a1 ≥ 3, a2 ≥ 3, a3 ≥ 2) withweight type ( 1

a1
, 1
a2

, a2−1
a2a3

; 1).
Then

λ1(V ) =
⎧⎨
⎩
5a1a2 − a1 − 7a2 + 15; a1 ≥ 3, a2 ≥ 3, a3 = 3
3a1a2a3 − 4a1a2 − 3a1a3

−4a2a3 + 8a1 + 5a2 + 5a3 − 1; Otherwise.
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Proposition 2.7 [14] Let (V , 0) be a fewnomial surface isolated singularity of type 5 which
is defined by f = xa11 x2 + xa22 x1 + xa33 (a1 ≥ 2, a2 ≥ 2, a3 ≥ 3) with weight type
( a2−1
a1a2−1 ,

a1−1
a1a2−1 ,

1
a3

; 1). Then

λ1(V ) =
⎧⎨
⎩
4a2a3 − 6a2 + 12; a1 = 2, a2 ≥ 2, a3 ≥ 3
3a1a2a3 − 4a1a2 − 2a2a3

−2a1a3 + 2a1 + 2a2 + 6a3 + 6; Otherwise.

3 Proof of main theorems

Proposition 3.1 Let (V , 0) be a weighted homogeneous fewnomial isolated singularity of
type A which is defined by f = xa11 + xa22 (a1 ≥ 2, a2 ≥ 2) with weight type ( 1

a1
, 1
a2

; 1).
Then

λ2(V ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

2a1a2 − 3(a1 + a2) + 17; a1 ≥ 5, a2 ≥ 5
3a2 + 5; a1 = 3, a2 ≥ 4
13; a1 = 3, a2 = 3
5a2 + 4; a1 = 4, a2 ≥ 5
23; a1 = 4, a2 = 4
a2 + 5; a1 = 2, a2 ≥ 3
6; a1 = 2, a2 = 2.

Proof It follows that the generalized moduli algebra

A2(V ) = C{x1, x2}/( f ,m2 J ( f )),

has dimension a1a2 − (a1 + a2) + 6 and has a monomial basis of the form:

(1) if a1 ≥ 3,
{
xi11 xi22 , 1 ≤ i1 ≤ a1 − 2; 0 ≤ i2 ≤ a2 − 2; xa1−1

1 ; xa1−1
1 x2; x1xa2−1

2 ;
xi22 , 0 ≤ i2 ≤ a2

}
, (2)

(2) if a1 = 2, a2 ≥ 3,
{
xi22 , 0 ≤ i2 ≤ a2; x1x2; x1

}
, (3)

(3) if a1 = 2, a2 = 2, {1; x1; x1x2; x2; x22 }, (4)

(4) if a1 = 1, a2 ≥ 1, {1; x2}, (5)

with the following relations:

xa1+1
1 = 0, (6)

xa1−1
1 x22 = 0, (7)

xa11 x2 = 0, (8)

x21 x
a2−1
2 = 0, (9)

xa2+1
2 = 0, (10)

x1x
a2
2 = 0. (11)

In order to compute a derivation D of A2(V ) it suffices to indicate its values on the generators
x1, x2 which can be written in terms of the basis (2), (3), (4) or (5). Without loss of generality,

123



Geometriae Dedicata (2021) 212:57–71 65

we write

Dx j =
a1−2∑
i1=1

a2−2∑
i2=0

c ji1,i2 x
i1
1 xi22 + c ja1−1,0x

a1−1
1 + c ja1−1,1x

a1−1
1 x210

+ c j1,a2−1x1x
a2−1
2 +

a2∑
i2=0

c j0,i2 x
i2
2 , j = 1, 2.

Using the relations (6)–(11) one easily finds the necessary and sufficient conditions defining
a derivation of A2(V ) as follows:

c10,0 = c10,1 = · · · = c10,a2−4 = 0; (12)

c20,0 = c21,0 = · · · = c2a1−4,0 = 0; (13)

a1c
1
1,0 = a2c

2
0,1. (14)

Using (12)–(14) we obtain the following description of the Lie algebras in question. The
following derivations form a basis of DerA2(V ):

xi11 xi22 ∂1, 1 ≤ i1 ≤ a1 − 2, 1 ≤ i2 ≤ a2 − 2; xa1−1
1 x2∂1; x1xa2−1

2 ∂1; xi22 ∂1, a2 − 3 ≤ i2 ≤ a2;
xi11 ∂1, 2 ≤ i1 ≤ a1 − 1; xi22 ∂2, 2 ≤ i2 ≤ a2; xi11 ∂2, a1 − 3 ≤ i1 ≤ a1 − 1;
xi11 xi22 ∂2, 1 ≤ i1 ≤ a1 − 2, 1 ≤ i2 ≤ a2 − 2; xa1−1

1 x2∂2;
x1x

a2−1
2 ∂2; x1∂1 + a1

a2
x2∂2.

Therefore we have the following formula

λ2(V ) = 2a1a2 − 3(a1 + a2) + 17.

In case of a1 = 3, a2 ≥ 4, we have following derivations form a basis of DerA2(V ):

x1x
i2
2 ∂1, 1 ≤ i2 ≤ a2 − 1; x21 x2∂1; x21∂1; xi22 ∂1, a2 − 2 ≤ i2 ≤ a2;

x1x
i2
2 ∂2, 1 ≤ i2 ≤ a2 − 1; x21 x2∂2; x21∂2; xi22 ∂2, 2 ≤ i2 ≤ a2; x1∂1 + 3

a2
x2∂2.

Therefore we have the following formula

λ2(V ) = 3a2 + 5.

In case of a1 = 3, a2 = 3, we have following derivations form a basis of DerA2(V ):

x22∂1; x32∂1; x1x2∂1; x1x22∂1; x21∂1; x21 x2∂1; x22∂2; x32∂2; x1x2∂2; x1x22∂2; x21∂2; x21 x2∂2; x1∂1 + x2∂2.

In case of a1 = 4, a2 ≥ 5, we have following derivations form a basis of DerA2(V ):

x
i2
2 ∂1, a2 − 3 ≤ i2 ≤ a2; x1∂1 + 4

a2
x2∂2; xi11 x2∂1, 1 ≤ i1 ≤ 2, 1 ≤ i2 ≤ a2 − 2; x1xa2−1

2 ∂1; x21∂1; x31∂1;

x31 x2∂1; xi22 ∂2, 2 ≤ i2 ≤ a2; xi11 x
i2
2 ∂2, 1 ≤ i1 ≤ 2, 1 ≤ i2 ≤ a2 − 2; x1xa2−1

2 ∂2; x21∂2; x31∂2; x31 x2∂2.

Therefore we have the following formula

λ2(V ) = 5a2 + 4.
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In case of a1 = 4, a2 = 4, we have following derivations form a basis of DerA2(V ):

x22∂1; x32∂1; x42∂1; x1∂1 + x2∂2; x1x2∂1; x1x22∂1; x1x32∂1; x21∂1; x21 x2∂1; x21 x22∂1; x31
∂1; x31 x2∂1; x22∂2; x32∂2;
x42∂2; x1x2∂2; x1xi22 ∂2; x1x32∂2; x21∂2; x21 x2∂2; x21 x22∂2; x31∂2; x31 x2∂1.

Therefore we have the following formula

λ2(V ) = 23.

In case of a1 = 2, a2 ≥ 3, we have following derivations which form a basis of L2(V ) :
xi22 ∂1, a2 − 1 ≤ i2 ≤ a2; x1∂1 + 2

a2
x2∂2; x1x2∂1; xi22 ∂2, 2 ≤ i2 ≤ a2; x1∂2; x1x2∂2.

Therefore we get following formula

λ2(V ) = a2 + 5.

In case of a1 = 2, a2 = 2, we have following derivations which form a basis of L2(V ) :
x2∂1 + x1∂2; x22∂1; x1∂1 + x2∂2; x1x2∂1; x22∂2; x1x2∂2.

Therefore we get following formula

λ2(V ) = 6.

�
For the proofs of Propositions 3.2–3.11, we skip the details due to space constraints.

Interested readers can find all the detailed proofs in a longer version of this paper at http://
archive.ymsc.tsinghua.edu.cn/pacm_download/89/11687-HYZ2020.pdf.

Proposition 3.2 Let (V , 0) be a binomial isolated singularity of type B which is defined by
f = xa11 x2 + xa22 (a1 ≥ 1, a2 ≥ 2) with weight type ( a2−1

a1a2
, 1
a2

; 1). Then

λ2(V ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2a1a2 − 2a1 − 3a2 + 20; a1 ≥ 5, a2 ≥ 5
5a2 + 12; a1 = 4, a2 ≥ 5
31; a1 = 4, a2 = 4
4a1 + 7; a1 ≥ 3, a2 = 3
2a1 + 5; a1 ≥ 2, a2 = 2
a2 + 11; a1 = 2, a2 ≥ 4
13; a1 = 2, a2 = 3
6; a1 = 1, a2 ≥ 2.

Furthermore, we need to show that when a1 ≥ 5, a2 ≥ 5, then 2a1a2 − 2a1 − 3a2 + 20 ≤
2a1a22
a2−1 − 3( a1a2

a2−1 + a2) + 17.

Proposition 3.3 Let (V , 0) be a binomial isolated singularity of type C which is defined by
f = xa11 x2 + xa22 x1 (a1 ≥ 1, a2 ≥ 1) with weight type ( a2−1

a1a2−1 ,
a1−1
a1a2−1 ; 1). Then

λ2(V ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

2a1a2 − 2(a1 + a2) + 21; a1 ≥ 4, a2 ≥ 4
4a2 + 13; a1 = 3, a2 ≥ 4
2a2 + 10; a1 = 2, a2 ≥ 3
23; a1 = 3, a2 = 3
13; a1 = 2, a2 = 2
6; a1 = 1, a2 ≥ 1.
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Furthermore, we need to show that when a1 ≥ 5, a2 ≥ 5, then 2a1a2 −2(a1 +a2)+21 ≤
2(a1a2−1)2

(a1−1)(a2−1) − 3( a1a2−1
a2−1 + a1a2−1

a1−1 ) + 17.

Proposition 3.4 Let (V , 0) be a fewnomial surface isolated singularity of type 1 which is
defined by f = xa11 + xa22 + xa33 (a1 ≥ 3, a2 ≥ 3, a3 ≥ 3) with weight type ( 1

a1
, 1
a2

, 1
a3

; 1).
Then

λ2(V ) = 3a1a2a3 + 5(a1 + a2 + a3) − 4(a1a2 + a1a3 + a2a3) + 34.

Proposition 3.5 Let (V , 0) be a fewnomial surface isolated singularity of type 2 which
is defined by f = xa11 x2 + xa22 x3 + xa33 (a1 ≥ 2, a2 ≥ 2, a3 ≥ 3) with weight type
( 1−a3+a2a3

a1a2a3
, a3−1
a2a3

, 1
a3

; 1). Then

λ2(V ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3a1a2a3 + 2a1 + 2a2 + 6a3
−4a2a3 − 2a1a2 − 2a1a3 + 37; a1 ≥ 3, a2 ≥ 3, a3 ≥ 3

4a2 + 42; a1 = 2, a2 ≥ 3, a3 = 3
2a2a3 − 2a2 + 2a3 + 38; a1 = 2, a2 ≥ 3, a3 ≥ 4
4a1a3 − 3a3 − 2a1 + 42; a1 ≥ 3, a2 = 2, a3 ≥ 4
5a3 + 35; a1 = 2, a2 = 2, a3 ≥ 4
46; a1 = 2, a2 = 2, a3 = 3
10a1 + 32; a1 ≥ 3, a2 = 2, a3 = 3.

Furthermore, we need to show that when a1 ≥ 3, a2 ≥ 3, a3 ≥ 3, then 3a1a2a3 −
2a1a2−2a1a3−4a2a3+2a1+2a2+6a3+37 ≤ 3

a1a22a
3
3

(1−a3+a2a3)(a3−1) −4(
a1a22a

3
3

(1−a3+a2a3)(a3−1) +
a1a2a23

1−a3+a2a3
+ a2a23

a3−1 ) + 5( a1a2a3
1−a3+a2a3

+ a2a3
a3−1 + a3) + 34.

Proposition 3.6 Let (V , 0) be a fewnomial surface isolated singularity of type 3 which is
defined by f = xa11 x2 + xa22 x3 + xa33 x1 (a1 ≥ 2, a2 ≥ 2, a3 ≥ 2) with weight type

(
1 − a3 + a2a3
1 + a1a2a3

,
1 − a1 + a1a3
1 + a1a2a3

,
1 − a2 + a1a2
1 + a1a2a3

; 1
)

.

Then

λ2(V ) =
⎧
⎨
⎩
3a1a2a3 + 2(a1 + a2 + a3)

−2(a1a2 + a1a3 + a2a3) + 43; a1 ≥ 3, a2 ≥ 3, a3 ≥ 3
4a2a3 − 2(a2 + a3) + 46; a1 = 2, a2 ≥ 3, a3 ≥ 3.

Furthermore, we need to show that when a1 ≥ 3, a2 ≥ 3, a3 ≥ 3, then 3a1a2a3 +
2(a1 + a2 + a3) − 2(a1a2 + a1a3 + a2a3) + 43 ≤ 3(1+a1a2a3)3

(1−a3+a2a3)(1−a1+a1a3)(1−a2+a1a2)
+

5( 1+a1a2a3
1−a3+a2a3

+ 1+a1a2a3
1−a1+a1a3

+ 1+a1a2a3
1−a2+a1a2

)−4( (1+a1a2a3)2

(1−a3+a2a3)(1−a1+a1a3)
+ (1+a1a2a3)2

(1−a1+a1a3)(1−a2+a1a2)
+

(1+a1a2a3)2

(1−a3+a2a3)(1−a2+a1a2)
) + 34.

Proposition 3.7 Let (V , 0) be a fewnomial surface isolated singularity of type 4 which is
defined by f = xa11 +xa22 +xa33 x2 (a1 ≥ 3, a2 ≥ 3, a3 ≥ 2) withweight type ( 1

a1
, 1
a2

, a2−1
a2a3

; 1).
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Then

λ2(V ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

7a1a3 − 6a1 − 10a3 + 48; a1 ≥ 3, a2 = 3, a3 ≥ 3
5a2a3 − 7a2 − 4a3 + 53; a1 = 3, a2 ≥ 4, a3 ≥ 3
3a1a2a3 + 6a1 + 5a2 + 2a3
−4a2a3 − 4a1a2 − 2a1a3 + 35; a1 ≥ 4, a2 ≥ 4, a3 ≥ 3
11a1a2 − 3a1 − 15a2 + 41; a1 ≥ 4, a2 ≥ 4, a3 = 5
46; a1 = 3, a2 = 3, a3 = 2
2a1a2 + 2a1 − 3a2 + 36; a1 ≥ 4, a2 ≥ 4, a3 = 2
3a2 + 40; a1 = 3, a2 ≥ 4, a3 = 2
8a1 + 26; a1 ≥ 4, a2 = 3, a3 = 2

Furthermore, we need to show that when a1 ≥ 4, a2 ≥ 4, a3 ≥ 3, then 3a1a2a3 + 6a1 +
5a2+2a3−4a2a3−4a1a2−2a1a3+35 ≤ 3a1a22a3

a2−1 +5(a1+a2+ a2a3
a2−1 )−4(a1a2+ a1a2a3

a2−1 +
a22a3
a2−1 ) + 34.

Proposition 3.8 Let (V , 0) be a fewnomial surface isolated singularity of type 5 which
is defined by f = xa11 x2 + xa22 x1 + xa33 (a1 ≥ 2, a2 ≥ 2, a3 ≥ 3) with weight type
( a2−1
a1a2−1 ,

a1−1
a1a2−1 ,

1
a3

; 1). Then

λ2(V ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3a1a2a3 − 4a1a2 − 2a2a3
−2a1a3 + 2a1 + 2a2 + 6a3 + 36; a1 ≥ 4, a2 ≥ 4, a3 ≥ 3

7a2a3 − 10a2 + 40; a1 = 3, a2 ≥ 3, a3 ≥ 3
4a2a3 − 6a2 + 39; a1 = 2, a2 ≥ 4, a3 ≥ 4
8a3 + 26; A1 = 2, a2 = 2, a3 ≥ 4
46; a1 = 2, a2 = 2, a3 = 3
12a3 + 21; a1 = 2, a2 = 3, a3 ≥ 4
55; a1 = 2, a2 = 3, a3 = 3

Furthermore, we need to show that when a1 ≥ 4, a2 ≥ 4, a3 ≥ 3, then 3a1a2a3−4a1a2−
2a2a3 − 2a1a3 + 2a1 + 2a2 + 6a3 + 36 ≤ 3(a1a2−1)2

(a1−1)(a2−1)a3 + 5( a1a2−1
a1−1 + a1a2−1

a2−1 + a3) −
4( (a1a2−1)2

(a1−1)(a2−1) + a1a2−1
a2−1 a3 + a1a2−1

a1−1 a3) + 34.

Proposition 3.9 Let (V , 0) be aweighted homogeneous fewnomial isolated singularity which
is defined by f = xa11 + xa22 + x23 (a1 ≥ 3, a2 ≥ 3) with weight type ( 1

a1
, 1
a2

, 1
2 ; 1). Then

λ2(V ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2a1a2 − 3(a1 + a2) + 36; a1 ≥ 5, a2 ≥ 5
3a2 + 22; a1 = 3, a2 ≥ 4
30; a1 = 3, a2 = 3
5a2 + 23; a1 = 4, a2 ≥ 5
42; a1 = 4, a2 = 4.

Furthermore, when a1 ≥ 2, a2 = 2 then

λ2(V ) =
{
a1 + 19; a1 ≥ 3,
19; a1 = 2.

Proposition 3.10 Let (V , 0) be a weighted homogeneous fewnomial isolated singularity
which is defined by f = xa11 x2+xa22 +x23 (a1 ≥ 2, a2 ≥ 3) with weight type ( a2−1

a1a2
, 1
a2

, 1
2 ; 1).
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Then

λ2(V ) =

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

2a1a2 − 2a1 − 3a2 + 39; a1 ≥ 5, a2 ≥ 5
5a2 + 31; a1 = 4, a2 ≥ 5
50; a1 = 4, a2 = 4
4a1 + 24; a1 ≥ 3, a2 = 3
a2 + 28; a1 = 2, a2 ≥ 4
30; a1 = 2, a2 = 3.

Furthermore, we need to show that when a1 ≥ 5, a2 ≥ 5, then 2a1a2 − 2a1 − 3a2 + 39 ≤
2a1a22
a2−1 − 3( a1a2

a2−1 + a2) + 36.

Proposition 3.11 Let (V , 0) be a weighted homogeneous fewnomial isolated singularity
which is defined by f = xa11 x2 + xa22 x1 + x23 (a1 ≥ 2, a2 ≥ 2) with weight type
( a2−1
a1a2−1 ,

a1−1
a1a2−1 ,

1
2 ; 1). Then

λ2(V ) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2a1a2 − 2(a1 + a2) + 40; a1 ≥ 4, a2 ≥ 4
4a2 + 32; a1 = 3, a2 ≥ 4
2a2 + 27; a1 = 2, a2 ≥ 3
42; a1 = 3, a2 = 3
30; a1 = 2, a2 = 2.

Furthermore, we need to show that when a1 ≥ 5, a2 ≥ 5, then 2a1a2 −2(a1 +a2)+40 ≤
2(a1a2−1)2

(a1−1)(a2−1) − 3( a1a2−1
a2−1 + a1a2−1

a1−1 ) + 36.

4 Proof of Theorem A

Proof Let f ∈ C{x1, x2, x3} be a weighted homogeneous fewnomial isolated singularity.
Then f can be classified into the following five types:

Type 1. xa11 + xa22 + xa33 ,
Type 2. xa11 x2 + xa22 x3 + xa33 ,
Type 3. xa11 x2 + xa22 x3 + xa33 x1,
Type 4. xa11 + xa22 + xa33 x2,
Type 5. xa11 x2 + xa22 x1 + xa33 .

It is easy to see from Propositions 2.3, 2.4, 2.5, 2.6, 2.7, 3.4, 3.5, 3.6, 3.7 and 3.8, the
conjecture λ(k+1)(V ) > λk(V ), k = 1 holds. Hence Theorem A is proved. �

5 Proof of Theorem B

Proof Let f ∈ C{x1, x2} be a weighted homogeneous fewnomial isolated singularity. Then
f can be classified into the following three types:

Type A. xa11 + xa22 ,
Type B. xa11 x2 + xa22 ,
Type C. xa11 x2 + xa22 x1.

It is easy to see from Propositions 3.1, 3.2 and 3.3, the conjecture λ2(V ) ≤ h2(
1

w1
, 1

w2
),

holds. Hence Theorem B is proved. �
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6 Proof of Theorem C

Proof Let f ∈ C{x1, x2, x3} be a weighted homogeneous fewnomial isolated singularity.
Then f can be classified into the following five types:

Type 1. xa11 + xa22 + xa33 ,
Type 2. xa11 x2 + xa22 x3 + xa33 ,
Type 3. xa11 x2 + xa22 x3 + xa33 x1,
Type 4. xa11 + xa22 + xa33 x2,
Type 5. xa11 x2 + xa22 x1 + xa33 .

It is easy to see from Propositions 3.4, 3.5, 3.6, 3.7 and 3.8, the conjecture λ2(V ) ≤
h2(

1
w1

, 1
w2

, 1
w3

), holds. Hence Theorem C is proved. �

7 Proof of TheoremD

Proof It is easy to see from Propositions 3.9, 3.10 and 3.11, the following three cases:

(i) xa11 + xa22 + x23 ; a1, a2 ≥ 3,
(ii) xa11 x2 + xa22 + x23 ; a1 ≥ 2, a2 ≥ 3,
(iii) xa11 x2 + xa22 x1 + x23 ; a1, a2 ≥ 2,

satisfy the conjecture λ2(V ) ≤ h2(
1

w1
, 1

w2
, 2). Hence Theorem D is proved. �
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