ORIGINAL PAPER

Primary singularities of vector fields on surfaces

M. W. Hirsch¹ · F. J. Turiel²

Received: 30 September 2018 / Accepted: 16 November 2019 / Published online: 22 November 2019 © Springer Nature B.V. 2019

Abstract

Unless another thing is stated one works in the C^{∞} category and manifolds have empty boundary. Let *X* and *Y* be vector fields on a manifold *M*. We say that *Y* tracks *X* if $[Y, X] =$ *f X* for some continuous function $f : M \to \mathbb{R}$. A subset *K* of the zero set $Z(X)$ is an essential block for *X* if it is non-empty, compact, open in $Z(X)$ and its Poincaré-Hopf index does not vanishes. One says that *X* is non-flat at *p* if its ∞ -jet at *p* is non-trivial. A point *p* of $Z(X)$ is called a primary singularity of *X* if any vector field defined about *p* and tracking *X* vanishes at *p*. This is our main result: consider an essential block *K* of a vector field *X* defined on a surface *M*. Assume that *X* is non-flat at every point of *K*. Then *K* contains a primary singularity of *X*. As a consequence, if *M* is a compact surface with non-zero characteristic and *X* is nowhere flat, then there exists a primary singularity of *X*.

Keywords Vector field · Singularity · Zero set · Essential block · Surface

Mathematics Subject Classification 20F16 · 58J20 · 37F75 · 37O25 · 54H25

Contents

 \boxtimes F. J. Turiel turiel@uma.es M. W. Hirsch

mwhirsch@chorus.net

¹ Department of Mathematics, University of Wisconsin at Madison and University of California at Berkeley, 7926 Albe Road, Cross Plains, WI 53528-9350, USA

² Geometría y Topología, Facultad de Ciencias, Campus de Teatinos, s/n, 29071 Málaga, Spain

1 Introduction

Whether a family of vector fields has a common singularity is a classical issue in dynamical systems. For instance, on a compact surface with non-vanishing Euler characteristic there always exists a common zero provided that the vector fields commute (Lima [\[10](#page-9-2)]) or if they span a finite-dimensional nilpotent Lie algebra (Plante [\[11](#page-9-3)]). On the existence of a common singularity for a family of commuting vector fields in dimension > 3 several interesting results are due to Bonatti [\[2\]](#page-9-4) (analitic in dimension 3 and 4) and Bonatti and De Santiago [\[3](#page-9-5)] (dimension 3). For a complementary discussion on the existence of a common zero the reader is referred to the introduction of [\[6\]](#page-9-6).

In this paper one shows that on surfaces every essential block of a nowhere flat vector field *X* includes a point at which all vector fields tracking *X* vanish (see Theorem [1.1](#page-1-1) below).

Throughout this work manifolds (without boundary) and their associated objects are real *C*[∞] unless another thing is stated. Consider a tensor *T* on a manifold *P*. Given $p \in P$ the *principal part* of *T* at *p* means $j_p^n T$ if $j_p^{n-1} T = 0$ but $j_p^n T \neq 0$, or zero if $j_p^\infty T = 0$. The *order* of *T* at *p* is *n* in the first case and ∞ in the second one. One will say that *T* is *flat at p* if its order at this point equals ∞ , and *non-flat* otherwise.

In coordinates about *the principal part is identified to the first significant term of the* Taylor expansion of *T* at *p*. Given a function *f* such that $f(p) \neq 0$, the principal part of fT at *p* equals that of *T* multiplied by $f(p)$.

 $Z(T)$ denotes the set of zeros of T and $Z_n(T)$, where $n \in \mathbb{N}'$ and $\mathbb{N}' := \mathbb{N} \cup \{\infty\}$, the set of zeros of order *n*. (Here N is the set of positive integers.) Notice that $Z(\mathcal{T}) = \bigcup_{k \in \mathbb{N}'} Z_n(\mathcal{T})$ where the union is disjoint.

Consider a vector field *Y* on *P*. *Y* tracks *T* provided $L_YT = fT$ for some continuous function $f: P \to \mathbb{R}$, referred to as the *tracking function*. (When T is also a vector field this means $[Y, T] = fT$.) A set *A* of vector fields on *P* tracks *T* provided each element of *A* tracks *X*.

A point $p \in Z(T)$ is a *primary singularity* of T if every vector field defined about p that tracks *T* vanishes at *p*. Obviously isolated singularities are primary. The notion of primary singularity is the fundamental new concept of this work.

Let *X* be a vector field on *P*. Consider an open set *U* of *P* with compact closure \overline{U} such that $Z(X) \cap (\overline{U}\setminus U) = \emptyset$. The *index* of *X* on *U*, denoted by $i(X, U) \in \mathbb{Z}$, is defined as the Poincaré-Hopf index of any sufficiently close approximation X' to $X|\overline{U}$ (in the compact open topology) such that $Z(X')$ is finite. Equivalently: $i(X, U)$ is the intersection number of $X|U$ with the zero section of the tangent bundle (Bonatti [\[2](#page-9-4)]). This number is independent of the approximation, and is stable under perturbation of *X* and replacement of *U* by smaller open sets containing $Z(X) \cap U$.

A compact set $K \subset Z(X)$ is a *block* of zeros for X (or an X-block) provided K is nonempty and relatively open in $Z(X)$, that is to say provided *K* is non-empty and $Z(X)\setminus K$ is closed in *P*. Observe that a non-empty compact $K \subset Z(X)$ is a *X*-block if and only if it has a precompact open neighborhood $U \subset P$, called *isolating* for (X, K) , such that $Z(X) \cap \overline{U} = K$ (manifolds are normal spaces). This implies $i(X, U)$ is determined by *X* and *K*, and does not depend on the choice of *U*. The *index of X at K* is $i_K(X) := i(X, U)$. The *X*-block *K* is *essential* provided $i_K(X) \neq 0$, which implies $K \neq \emptyset$, and *inessential* otherwise.

If *P* is compact, it is isolating for every vector field on *P* and its set of zeros. Therefore, in this case, $i_{Z(X)}(X) = i(X, P) = \chi(P)$.

This is our main result, which will be proved in the Sect. [2.1.](#page-5-0)

Theorem 1.1 *Consider an essential block K of a vector field X defined on a surface M. Assume that X is non-flat at every point of K . Then K contains a primary singularity of X.*

As a straightforward consequence:

Corollary 1.2 *On a compact connected surface M with* $\chi(M) \neq 0$ *consider a vector field X. Assume that X is nowhere flat. Then there exists a primary singularity of X.*

Moreover, four examples illustrating these results are given in Sect. [3.](#page-6-0)

Remark 1.3

- (a) The hypothesis on the non-flatness of Theorem [1.1](#page-1-1) and Corollary [1.2](#page-2-1) cannot be omitted as the following example shows. On $S^2 \subset \mathbb{R}^3$ consider the vector field $X =$ $\varphi(x_3)(-x_2\partial/\partial x_1 + x_1\partial/\partial x_2)$ where $\varphi(0) = 1$ and $\varphi(\mathbb{R}\setminus(-1/2, 1/2)) = 0$. Then the vector fields $Y = -x_2\partial/\partial x_1 + x_1\partial/\partial x_2$ and $V = \psi(x_3)(-x_3\partial/\partial x_1 + x_1\partial/\partial x_3)$ where $\psi(1) = \psi(-1) = 1$ and $\psi([-3/4, 3/4]) = 0$ track *X* and $Z(Y) \cap Z(V) = \emptyset$. Therefore *X* has no primary singularity.
- (b) Two particular cases of Theorem [1.1](#page-1-1) were already known, namely: if *X* and *K* are as in the foregoing theorem and G is a finite-dimensional Lie algebra of vector fields on M that tracks X , then the the elements of G have a common singularity in K provided that *G* is supersolvable (Theorem 1.4 of [\[5](#page-9-7)]) or *G* and *X* are analytic (real case of Theorem 1.1 of [\[6](#page-9-6)]). Thus these two results are generalized here.

For general questions on Differential Geometry readers are referred to [\[9](#page-9-8)], and for those on Differential Topology to [\[4](#page-9-9)].

2 Other results

One will need:

Lemma 2.1 *On a manifold P of dimension m* \geq 1 *consider a vector field X of finite order* $n \geq 1$ *at a point p. Then for almost every* $v \in T_pP$ *there exists a vector field U defined around p such that* $U(p) = v$ *and the n-times iterated bracket* $[U, [U, \ldots, [U, X] \ldots]]$ *does not vanish at p.*

Proof It suffices to prove the result for $0 \in \mathbb{R}^m$ and a non-vanishing *n*-homogeneous polynomial vector field $\hat{X} = \sum_{\ell=1}^{m} Q_{\ell} \partial/\partial x_{\ell}$. Up to a change of the order of the coordinates, we may suppose $Q_1 \neq 0$.

Given $a = (a_1, \ldots, a_m) \in \mathbb{R}^m$ set U_a : = $\sum_{\ell=1}^m a_\ell \partial/\partial x_\ell$. It suffices to show that for almost any $a \in \mathbb{R}^m - \{0\}$ one has $(U_a \cdots U_a \cdot Q_1)(0) \neq 0$, which is equivalent to show that the restriction of Q_1 to the vector line spanned by *a* does not vanish identically. But this last assertion is obvious.

Given a vector field *V* on a manifold *P*, a set $S \subset P$ is *V*-invariant if it contains the orbits under *V* of its points.

Proposition 2.2 *Consider two vector fields X*, *Y on a surface M. Assume that Y tracks X with tracking function f. Then each set* $Z_n(X)$, $n \in \mathbb{N}'$, *is* Y -*invariant.*

Moreover f is differentiable on the open set

$$
[M\backslash Z(X)]\cup [(Z(X)\backslash Z_{\infty}(X))\cap (M\backslash Z(Y))].
$$

 $\circled{2}$ Springer

This result is a consequence of the following two lemmas.

Lemma 2.3 *Under the hypotheses of Proposition* [2.2](#page-2-2) *consider* $p \in Z_n(X)$ *,* $n < \infty$ *, such that* $Y(p) \neq 0$. One has:

- (a) *f is differentiable around p.*
- (b) Let γ : $(a, b) \rightarrow M$ be an integral curve of Y with γ (t₀) = p for some t₀ \in (a, b) *. Then there exists* $\varepsilon > 0$ *such that* $\gamma(t_0 - \varepsilon, t_0 + \varepsilon) \subset Z_n(X)$ *.*

Proof Around *p* consider a vector field *U* as in Lemma [2.1](#page-2-3) such that $U(p)$, $Y(p)$ are linearly independent. Then there are coordinates (x_1, x_2) about $p \equiv 0$, whose domain *D* can be identified to a product of two open intervals $J_1 \times J_2$, such that $Y = \partial/\partial x_1$ and $U =$ $\partial/\partial x_2 + x_1V$.

Let $X = g_1 \partial/\partial x_1 + g_2 \partial/\partial x_2$. Then

$$
\frac{\partial g_k}{\partial x_1} = fg_k, \ k = 1, 2.
$$

Since *f* is continuous the general solution to the equation above is:

$$
g_k(x) = h_k(x_2)e^{\varphi}, \ k = 1, 2,
$$

where $\partial \varphi / \partial x_1 = f$ and $\varphi (\{0\} \times J_2) = 0$.

From the Taylor expansion at *p* of *X* and *U* it follows that

$$
[U, [U, \dots [U, X] \dots]](0) = \left[\frac{\partial}{\partial x_2}, \left[\frac{\partial}{\partial x_2}, \dots \left[\frac{\partial}{\partial x_2}, X\right] \dots\right]\right](0)
$$

for the *n*-times iterated bracket.

Note that

$$
\left[\frac{\partial}{\partial x_2}, \left[\frac{\partial}{\partial x_2}, \dots, \left[\frac{\partial}{\partial x_2}, X\right], \dots\right]\right](0) = \frac{\partial^n g_1}{\partial x_2^n}(0) \frac{\partial}{\partial x_1} + \frac{\partial^n g_2}{\partial x_2^n}(0) \frac{\partial}{\partial x_2}.
$$

Since on $\{0\} \times J_2$ each $g_k = h_k$ finally one has

$$
\frac{\partial^n h_1}{\partial x_2^n}(0)\frac{\partial}{\partial x_1} + \frac{\partial^n h_2}{\partial x_2^n}(0)\frac{\partial}{\partial x_2} = [U, [U, \dots [U, X] \dots]](0) \neq 0,
$$

which implies the existence of two diferentiable functions $\tilde{h}_1(x_2)$ and $\tilde{h}_2(x_2)$ such that $h_k =$ $x_2^n \tilde{h}_k(x_2)$, $k = 1, 2$, and $\tilde{h}_1^2(0) + \tilde{h}_2^2(0) > 0$.

Therefore by shrinking *D* if necessary, we may suppose that at least one of these function, say h_{ℓ} , does not have any zero. Observe that *f* will be differentiable if $h_{\ell}e^{\varphi}$ is differentiable because \tilde{h}_{ℓ} is differentiable without zeros and $\partial \varphi / \partial x_1 = f$.

As $g_{\ell} = x_2^n \cdot (\tilde{h}_{\ell}e^{\varphi})$, it follows that g_{ℓ} is divisible by $1, x_2, ..., x_2^n$ and the respective quotient functions are at least continuous. Moreover g_{ℓ}/x^r , $r = 1, \ldots, n - 1$, vanish if $x_2 = 0$, that is to say on $J_1 \times \{0\}$.

The Taylor expansion of g_{ℓ} transversely to $J_1 \times \{0\}$ leads

$$
g_{\ell} = \sum_{r=0}^{n-1} x_2^r \mu_r(x_1) + x_2^n \mu_n(x_1, x_2)
$$

where each μ_k , $k = 1, \ldots, n$ is differentiable.

Now since $g_{\ell}(J_1 \times \{0\}) = 0$ one has $\mu_0 = 0$.

In turn as g_{ℓ}/x_2 equals zero on $J_1 \times \{0\}$ it follows $\mu_1 = 0$, and so one. Hence $\mu_0 = \cdots =$ $\mu_{n-1} = 0$, which implies $g_\ell = x_2^n \mu_n(x_1, x_2)$. Therefore $\tilde{h}_\ell e^\varphi = \mu_n$ is differentiable, which proves (a).

On the other hand, as e^{φ} is differentiable and positive, *X* and

$$
X': = e^{-\varphi} X = x_2^n \left(\tilde{h}_1 \frac{\partial}{\partial x_1} + \tilde{h}_2 \frac{\partial}{\partial x_2} \right)
$$

have the same order everywhere. Thus *X* has order *n* at every point of $J_1 \times \{0\}$ and (b) becomes obvious. becomes obvious. 

Lemma 2.4 *Under the hypotheses of Proposition* [2.2](#page-2-2) *consider* $p \in Z_{\infty}(X)$ *with* $Y(p) \neq 0$ *. Let* γ : $(a, b) \rightarrow M$ *be an integral curve of Y passing through p for some t*₀ \in (a, b) *. Then there exists* $\varepsilon > 0$ *such that* $\gamma(t_0 - \varepsilon, t_0 + \varepsilon) \subset Z_\infty(X)$ *.*

Proof Around $p \equiv 0$ consider coordinates (y_1, y_2), whose domain *E* can be identified to a product of two open intervals $K_1 \times K_2$, such that $Y = \partial/\partial y_1$ and $X = a_1(y_2)e^{\rho}\partial/\partial y_1 +$ $a_2(y_2)e^{\rho}\partial/\partial y_2$ where $\partial \rho/\partial y_1 = f$ and $\rho({0} \times K_2) = 0$. These coordinates exist by the same reason as in the proof of Lemma [2.3.](#page-3-0)

Assume the existence of a $q \in K_1 \times \{0\}$ of finite order *n*.

Since $p \in Z_{\infty}$ and e^{ρ} equals 1 on {0} × K_2 , it follows that $j_0^{\infty} a_1 = j_0^{\infty} a_2 = 0$. Therefore $a_k(y_2) = y_2^{n+1} b_k(y_2)$, $k = 1, 2$, where each b_k is differentiable. Hence there exists a continuous vector field X_n such that $X = y_2^{n+1} X_n$; that is to say *X* is continuously divisible by y_2^{n+1} .

In turn one can find coordinates (x_1, x_2) around $q \equiv 0$ whose domain *D* can be identify to $J_1 \times J_2$ as in the proof of Lemma [2.3,](#page-3-0) which implies that

$$
X = x_2^n e^{\varphi} \left(\tilde{h}_1(x_2) \frac{\partial}{\partial x_1} + \tilde{h}_2(x_2) \frac{\partial}{\partial x_2} \right)
$$

where $h_1 \partial/\partial x_1 + h_2 \partial/\partial x_2$ has no zero on *D*.

By shrinking *D* if necessary, we may suppose $D \subset E$. Then, regarded both sets in *M*, $J_1 \times \{0\}$ is a subset of $K_1 \times \{0\}$ since they are traces of integral curves of *Y* with *q* as common point.

On the other hand as y_2 vanishes on $K_1 \times \{0\}$ but its derivative never does, on *D* one has $y_2 = x_2c(x_1, x_2)$ where *c* has no zero. This fact implies that *X* on *D* is continuously divisible by x_2^{n+1} because it was continuously divisible by y_2^{n+1} .

But clearly from the expression of *X* in coordinates (x_1, x_2) it follows the non-divisibility by x_2^{n+1} , contradiction. In short the order of *X* at each point of $K_1 \times \{0\}$ is infinite.

Remark 2.5 Under the hypotheses of Proposition [2.2](#page-2-2) the tracking function *f* can be not differentiable around a flat point. For instance, on \mathbb{R}^2 set $Y = x_1^4 \partial /x_1 + \partial / \partial x_2$ and $X =$ $g(x_1)\partial/x_1$, where $g(x_1) = e^{-1/x_1}$ if $x_1 > 0$, $g(x_1) = e^{-1/x_1^2}$ if $x_1 < 0$ and $g(0) = 0$. Then $f(x) = x_1^2 - 4x_1^3$ if $x_1 > 0$, $f(x) = 2x_1 - 4x_1^3$ if $x_1 < 0$ and $f(\{0\} \times \mathbb{R}) = 0$, which is not differentiable on $\{0\} \times \mathbb{R}$.

Proof of Proposition [2.2](#page-2-2) Let us proves the first assertion. Consider a non-constant integral curve of *Y* (the constant case is clear) γ : (*a*, *b*) \rightarrow *M*. By Lemmas [2.3](#page-3-0) and [2.4,](#page-4-0) $\gamma^{-1}(Z(X))$ is open in (a, b) . As this set is closed too one has $\gamma^{-1}(Z(X)) = \emptyset$ or $\gamma^{-1}(Z(X)) = (a, b)$. The first case is obvious; in the second one $(a, b) = \bigcup_{n \in \mathbb{N}} \gamma^{-1}(Z_n(X))$ where each term of this union is open. Therefore a single term of this disjoint union is non-empty since (a, b) is connected.

For the second assertion apply (a) of Lemma [2.3](#page-3-0) taking into account that *f* is always differentiable on $M\setminus Z(X)$ because, on this set, the quotient $[Y, X]/X$ has a meaning. \square

Proposition 2.6 *On a surface M consider a vector field X such that* $Z(X) \neq \emptyset$ *but* $Z_{\infty}(X) =$ ∅*. Then at least one of the following assertions holds:*

- (1) *Z*(*X*) *is a regular (embedded)* 1*-submanifold.*
- (2) *There exists a primary singularity of X.*

Proof Assume the non-existence of primary singularities.

Consider any $p \in Z(X)$ and a vector field Y defined around p with $Y(p) \neq 0$ that tracks X. Let U be a second vector field about p as in Lemma [2.1](#page-2-3) such that $U(p)$, $Y(p)$ are linearly independent. Then there exist coordinates (x_1, x_2) , about $p \equiv 0$, whose domain *D* can be identified to a product of two open intervals $J_1 \times J_2$ such that $Y = \partial/\partial x_1$ and $U = \partial/\partial x_2 + x_1 V$.

The same reasoning as in the proof of Lemma [2.3](#page-3-0) allows to suppose that

$$
X = x_2^n e^{\varphi} \left(\tilde{h}_1 \frac{\partial}{\partial x_1} + \tilde{h}_2 \frac{\partial}{\partial x_2} \right)
$$

with $\tilde{h}_1^2 + \tilde{h}_2^2 > 0$ everywhere.

Therefore $Z(X) \cap D$ is given by the equation $x_2 = 0$, which implies that $Z(X)$ is a regular 1-submanifold. 1-submanifold.

Theorem 2.7 *Consider a vector field X on a surface M. Assume that:*

- (1) $Z_{\infty}(X) = \emptyset$ *.*
- (2) *There is a connected component of* $Z(X)$ *that is not included in a single* $Z_n(X)$ *.*

Then there exists a primary singularity of X.

Proof Assume there is no primary singularity. By Proposition [2.6,](#page-5-1) Z(*X*) is a regular 1 submanifold of M . By hypothesis there are a connected component C of $Z(X)$ and two different natural numbers *m* and *n* such that *C* meets $Z_m(X)$ and $Z_n(X)$.

As*^C* is a regular 1-submanifold, Proposition [2.2](#page-2-2) and Lemma [2.3](#page-3-0) imply that each*C*∩Z*r*(*X*), *r* ∈ N, is open in *C*. Therefore *C* is a disjoint union of a family of non-empty open sets with two or more elements hence not connected contradiction two or more elements hence not connected, contradiction. 

2.1 Proof of of Theorem [1.1](#page-1-1)

It consists of three steps.

1. Assume that there is no primary singularity in *K*. From Proposition [2.6](#page-5-1) applied to an isolating open set it follows that K is a compact 1-submanifold. Notice that at least one of its connected component is an essential block. Therefore one may suppose that *K* is diffeomorphic to S^1 and, by shrinking M, that $Z(X) = K$.

Consider a Riemannian metric *g* on *M*. Given $p \in K$ by reasoning as before one can find coordinates (x_1, x_2) such that $p \equiv 0$ and

$$
X = x_2^n e^{\varphi} \left(\tilde{h}_1 \frac{\partial}{\partial x_1} + \tilde{h}_2 \frac{\partial}{\partial x_2} \right)
$$

where $\tilde{h}_1 \partial/\partial x_1 + \tilde{h}_2 \partial/\partial x_2$ has no zero. Therefore around *p* there exists an 1-dimensional vector subbundle $\mathcal E$ of the tangent bundle that is orthogonal to X . Such a vector subbundle is unique because clearly it exists and is unique outside *K*. Thus, gluing together the local constructions gives rise to an 1-dimensional vector subbundle $\mathcal E$ of TM that is orthogonal to *X*.

2. If $\mathcal E$ is trivial there exists a nowhere singular vector field V such that $g(V, X) = 0$. Let $\varphi: M \to \mathbb{R}$ be a function with a sufficiently narrow compact support such that $\varphi(K) = 1$. Set $X_{\delta} := X + \delta \varphi V$, $\delta > 0$. Then X_{δ} approaches *X* as much as desired and $Z(X_{\delta}) = \emptyset$, so *K* is an inessential block.

3. Now assume that $\mathcal E$ is not trivial. There always exists a twofold covering space $\pi : M' \to$ *M* such that the pull-back $\mathcal{E}' \subset TM'$ of the vector subbundle \mathcal{E} is trivial.

Consider the vector field *X'* on *M'* defined by $\pi_*(X') = X$. Then $Z(X') = \pi^{-1}(K)$ and X' is nowhere flat. Moreover \mathcal{E}' is orthogonal to X' with respect to the pull-back of *g*. Now the same reasoning as in the foregoing step shows that $i_{Z(X')}(X') = 0$. But clearly $i_{Z(X')}(X') = 2i_K(X)$ and hence *K* is inessential.

3 Examples

Example 3.1 In this example one shows two facts. First, primary singularities can exist even if the index of *X* is not definable. Second, being nowhere flat is a weaker hypothesis than being analytic.

Consider a proper closed subset *C* of $\mathbb R$ and a function $\varphi : \mathbb R \to \mathbb R$ such that $\varphi^{-1}(0) = C$. Set $X := x_1^2 \partial/\partial x_1 + x_1 \varphi(x_2) \partial/\partial x_2$. Then $Z(X) = \{0\} \times \mathbb{R}, Z_1(X) = \{0\} \times (\mathbb{R} \setminus C), Z_2(X) =$ ${0} \times C$ and $Z_n(X) = \emptyset$ for $n \neq 1, 2$, so X is nowhere flat. By Theorem [2.7](#page-5-2) the vector field *X* has primary singularities.

More exactly the set S_a of primary singularities of *X* equals $\{0\} \times (C \setminus C)$. Indeed:

(1) $\varphi(x_2)\partial/\partial x_2$ tracks *X* and does not vanish on $\{0\} \times (\mathbb{R} \setminus C)$.

(2)
$$
\partial/\partial x_2
$$
 tracks X on $\mathbb{R} \times \overset{\circ}{C}$.

Therefore $S_a \subset \{0\} \times (C \setminus C)$.

Take $p = (0, c) \in \{0\} \times (C \setminus C)$. Assume the existence around this point of a vector field *Y* with $Y(p) \neq 0$ that tracks *X*. Them from Proposition [2.2](#page-2-2) and Lemma [2.3](#page-3-0) it follows the existence of $\varepsilon > 0$ such that the order of *X* at every point of $\{0\} \times (c - \varepsilon, c + \varepsilon)$ is constant and hence *c* belongs to the interior of $\mathbb{R}\setminus C$ or to that of *C*. Therefore $c \notin C\setminus \mathring{C}$ contradiction.

In short, each element of $\{0\} \times (C \setminus C)$ is a primary singularity and $S_a = \{0\} \times (C \setminus C)$.

Finally observe that if C is a Cantor set, then X is not analytic for any analytic structure on \mathbb{R}^2 since $Z_2(X) = \{0\} \times C$ is never an analytic set.

Example 3.2 In this example one gives a vector field on $S²$, which is analytic so with no flat points, whose zero set is a circle just with two primary singularities.

The sphere S^2 can be regarded as the leaves space of the 1-dimensional foliation on $\mathbb{R}^3 \setminus \{0\}$ associated to the vector field $V = \sum_{k=1}^3 x_k \partial/\partial x_k$, while the canonical projection $\pi: \mathbb{R}^3 \setminus \{0\} \to S^2$ is given by $\pi(x) = x / ||x||$.

Every linear vector field U' commutes with V and can be projected by π on a vector field *U* on S^2 . Moreover $U(a) = 0$, where $a = (a_1, a_2, a_3) \in S^2$, if and only if *a* is an eigenvector of *U'* regarded as an endomorphism of \mathbb{R}^3 , that is to say if and only if

$$
\left[\sum_{k=1}^{3} a_k \frac{\partial}{\partial x_k}, U'\right] = \lambda \sum_{k=1}^{3} a_k \frac{\partial}{\partial x_k}
$$

 $\circled{2}$ Springer

for some scalar λ.

Set $X: = \pi_*(x_1 \partial/\partial x_2)$. Then $Z(X) = \{x \in S^2 : x_1 = 0\}$ is an essential block of index two since $\chi(S^2) = 2$. By Corollary [1.2](#page-2-1) the set S_a of primary singularities of *X* is not empty.

For determining it consider the vector field $Y: = \pi_*(x_3\partial/\partial x_2)$. Then [*X*, *Y*] = 0 because $[x_1\partial/\partial x_2, x_3\partial/\partial x_2] = 0$. Moreover $Z(Y) = \{x \in S^2 : x_3 = 0\}.$

As *Y* tracks *X*, the vector field *Y* is tangent to $Z(X)$. On the other hand $Z(X) \cap Z(Y) =$ $\{(0, 1, 0), (0, -1, 0)\}\$, so $S_a \subset \{(0, 1, 0), (0, -1, 0)\}\$. Since $F_*X = X$, where *F* is the antipodal map, one has $F(S_a) = S_a$ and hence $S_a = \{(0, 1, 0), (0, -1, 0)\}.$

Example 3.3 Let *M* be a connected compact surface of non-vanishing Euler characteristic. As it is well known, on *M* there always exist two vector fields *X*, *Y* with no common zero such that $[Y, X] = X$ (Lima [\[10\]](#page-9-2), Plante [\[11](#page-9-3)]; see [\[1](#page-9-10)[,13](#page-10-0)] as well). Therefore there is no primary singularity of *X*, *but there always exists a periodic regular trajectory of Y included in* $Z_{\infty}(X)$.

Indeed, by Corollary [1.2](#page-2-1) and Proposition [2.2](#page-2-2) the set $Z_{\infty}(X)$ is non-empty and *Y*-invariant. Since $Z_{\infty}(X)$ is compact, there always exists a minimal set $S \subset Z_{\infty}(X)$ of (the action of) *Y*.

As $Z(X) \cap Z(Y) = \emptyset$, a generalization of the Poincaré–Bendixson theorem [\[12](#page-9-11)] implies that *S* is homeomorphic to a circle. In other words, there exists a non-trivial periodic trajectory of *Y* consisting of flat points of *X*.

More generally, given a vector field \widehat{X} on M let A be the real vector space of those vector fields on *M* that track \widehat{X} . Assume that $Z(\widehat{X}) \neq M$ and $Z(\widehat{X}) \cap (\bigcap_{V \in \mathcal{A}} Z(V)) = \emptyset$. Then by Corollary [1.2](#page-2-1) the compact set $Z_{\infty}(\widehat{X})$ is not empty and contains a minimal set \widehat{S} of A (more exactly of the group of diffeomorphisms of *M* spanned by the flows of the elements of *A*).

Clearly *^S* is not a point. A second generalization of the Poincaré–Bendixson theorem [\[8\]](#page-9-12) shows that \widehat{S} is homeomorphic to a circle.

Even more, in our case \hat{S} is a regular 1-submanifold and hence diffeomorphic to a circle. Let us see it. Take $p \in \widehat{S}$; then there is $V \in \mathcal{A}$ with $V(p) \neq 0$. Consider coordinates (x_1, x_2) around $p \equiv 0$ whose domain *D* is identified in the natural way to a product $(-\varepsilon, \varepsilon) \times (-\varepsilon, \varepsilon)$ such that $V = \partial/\partial x_1$.

Let γ : ($-\delta$, δ) \rightarrow *M* be an integral curve of *V* with initial condition γ (0) = *p*. Then $\gamma(-\delta, \delta) \subset \widehat{S}$. Moreover, if δ is sufficiently small $\gamma(-\delta, \delta)$ is a relatively open subset of \widehat{S} . Indeed, $\gamma: (-\delta, \delta) \to \widehat{S}$ will be injective so open because \widehat{S} is a 1-dimensional topological manifold (actually S^1). Now by shrinking *D* and ($-\delta$, δ) if necessary, we may suppose that $\gamma(-\delta, \delta) \subset D, \delta = \varepsilon$ and $\gamma(t) = (t, 0)$. Thus $(-\varepsilon, \varepsilon) \times \{0\} = \gamma(-\delta, \delta)$ is relatively open in *S* and there exists an open set *E* of *M* such that $E \cap S = (-\varepsilon, \varepsilon) \times \{0\}$. Hence $S \cap (D \cap E)$ is defined by the equation $x_2 = 0$ in the system of coordinates $(D \cap E, (x_1, x_2))$.

3.1 An example from the blowup process

In this subsection one constructs a homogeneous polynomial vector field on \mathbb{R}^2 whose trajectories but a finite number, let us call them *exceptional*, have the origin both as α and β -limit. Then by blowing up the origin one obtains a new vector field on a Moebius band whose number of primary singularities equals half that of exceptional trajectories of the first vector field.

Thus a global property on the trajectories of a vector field becomes a semi-local property on the primary singularities of another vector field.

First some technical facts. Denote by \mathbb{R}^2 the surface obtained by blowing up the origin of \mathbb{R}^2 and by \tilde{p} : $\tilde{\mathbb{R}}^2 \to \mathbb{R}^2$ the canonical projection. Recall that $\tilde{\mathbb{R}}^2$ is a Moebius band. If *X* is a vector field on \mathbb{R}^2 that vanishes at the origin, the blowup process gives rise to a vector field \widetilde{X} on $\widetilde{\mathbb{R}}^2$ such that $\widetilde{p}_*\widetilde{X} = X$. When the origin is an isolated singularity of index *k* and the order of *X* at this point is > 2, then $\tilde{p}^{-1}(0)$ is a \tilde{X} -block of index $k - 1$.

Now identify C to \mathbb{R}^2 by setting $z = x_1 + ix_2$. Then each complex vector field $z^n \partial/\partial z$, *n* ≥ 2, can be considered as a vector field $X_n = P_n\partial/\partial x_1 + Q_n\partial/\partial x_2$ on \mathbb{R}^2 where z^n $(x_1 + ix_2)^n = P_n(x_1, x_2) + i Q_n(x_1, x_2)$. Our purpose will be to show that $Z(\widetilde{X}_n) = \widetilde{p}^{-1}(0)$ contains *n* − 1 primary singularities of \widetilde{X}_n . (Recall that the origin is a singularity of X_n of index *n* and hence $\tilde{p}^{-1}(0)$ is a \tilde{X}_n -block of index *n* − 1.)

3.1.1 R**˜ ² from another point of view**

Consider the map $\varphi : \mathbb{R} \times S^1 \to \mathbb{R}^2$ given by $\varphi(r, \theta) = (r \cos \theta, r \sin \theta)$. Then $\varphi : \mathbb{R}_+ \times S^1 \to$ $\mathbb{R}^2 \setminus \{0\}$ and $\varphi : \mathbb{R} \times S^1 \to \mathbb{R}^2 \setminus \{0\}$ are diffeomorphisms, and $\varphi(r, \theta) = \varphi(r', \theta')$ with (r, θ) , $(r', \theta') \in (\mathbb{R} \setminus \{0\}) \times S^1$ if and only if $(r, \theta) = (r', \theta')$ or $(r', \theta') = (-r, \theta + \pi)$.

Let \sim be the equivalence relation on $\mathbb{R} \times S^1$ defined by $(r, \theta) \sim (r', \theta')$ if and only if $(r, \theta) = (r', \theta')$ or $(r', \theta') = (-r, \theta + \pi)$. Then the quotient space M_s : = ($\mathbb{R} \times S^1$)/ \sim is a Moebius strip and the canonical projection $p : \mathbb{R} \times S^1 \to M_s$ is a (differentiable) covering space with two folds. Moreover the map $\bar{\varphi}$: $M_s \to \mathbb{R}^2$ given by $\bar{\varphi}(p(r,\theta)) = \varphi(r,\theta)$ is well defined and differentiable.

Recall that $\tilde{p}^{-1}(0) = \mathbb{R}P^1$ is the space of vector lines in \mathbb{R}^2 and \tilde{p} : $\tilde{\mathbb{R}}^2 \setminus \tilde{p}^{-1}(0) \to \mathbb{R}^2 \setminus \{0\}$ a diffeomorphism. Now one defines $\Psi : M_s \to \widetilde{\mathbb{R}}^2$ as follows:

(a) $\Psi(p(r, \theta)) = \tilde{p}^{-1}(\varphi(r, \theta))$ if $r \neq 0$,

(b) $\Psi(p(r, \theta))$ equals the vector line of \mathbb{R}^2 spanned by $(cos \theta, sin \theta)$ if $r = 0$.

It is easily checked that Ψ : $M_s \to \tilde{\mathbb{R}}^2$ is a diffeomorphism and $\tilde{p} \circ \Psi = \bar{\varphi}$. Therefore \tilde{p} : $\tilde{\mathbb{R}}^2 \to \mathbb{R}^2$ and $\bar{\varphi}$: $M_s \to \mathbb{R}^2$ can be identified in this way. For sake of simplicity in what follows $\tilde{p} : \tilde{\mathbb{R}}^2 \to \mathbb{R}^2$ will replaced by $\bar{\varphi} : M_s \to \mathbb{R}^2$ in our computations. Thus if *X* is a vector field on \mathbb{R}^2 that vanishes at the origin, then \widetilde{X} will be the single vector field on M_s such that $\bar{\varphi}_* \widetilde{X} = X$.

On the other hand *X'* will denote the pull-back by *p* of \widetilde{X} . Clearly $\varphi_* X' = X$. Moreover with respect to X' the index of $\{0\} \times S^1$ and the number of primary singularities included in it are twice those of $\bar{\varphi}^{-1}(0)$ relative to \tilde{X} .

As a consequence, in the case of X_n it will suffice to show that $Z(X'_n) = \{0\} \times S^1$ contains $2n - 2$ singularities of X'_n .

3.1.2 Computation of the primary singularities of *X***-** *n*

As $\varphi: (\mathbb{R}\setminus\{0\}) \times S^1 \to \mathbb{R}^2\setminus\{0\}$ is a covering space any vector field on $\mathbb{R}^2\setminus\{0\}$ can be lifted up. Denote by $\partial'/\partial x_k$, $k = 1, 2$, the lifted vector field of $\partial/\partial x_k$. Then

$$
\frac{\partial'}{\partial x_1} = \cos\theta \frac{\partial}{\partial r} - r^{-1} \sin\theta \frac{\partial}{\partial \theta} \quad \text{and} \quad \frac{\partial'}{\partial x_2} = \sin\theta \frac{\partial}{\partial r} + r^{-1} \cos\theta \frac{\partial}{\partial \theta}.
$$

Since $(r\cos\theta + i r\sin\theta)^n = r^n \cos(n\theta) + i r^n \sin(n\theta)$ one has $P_n \circ \varphi = r^n \cos(n\theta)$ and $Q_n \circ \varphi = r^n \sin(n\theta)$. Observe that on $(\mathbb{R} \setminus \{0\}) \times S^1$ the vector field X'_n is the lifted one of X_n , so $X'_n = r^n cos(n\theta) \frac{\partial^i}{\partial x_1} + r^n sin(n\theta) \frac{\partial^i}{\partial x_2}$. Finally, developing the foregoing expression of X'_n and extending it by continuity to $\mathbb{R} \times S^1$ yields:

$$
X'_{n} = r^{n-1} \left(r \cos((n-1)\theta) \frac{\partial}{\partial r} + \sin((n-1)\theta) \frac{\partial}{\partial \theta} \right)
$$

 $\circled{2}$ Springer

The vector field $Y = r\cos((n-1)\theta)\partial/\partial r + \sin((n-1)\theta)\partial/\partial \theta$ tracks X'_n with tracking function $(n-1)cos((n-1)\theta)$. Therefore the set *S_a* of primary singularities of *X'_n* is included in $\{0\} \times T_n$ where T_n : = { $\theta \in S^1$: $sin((n-1)\theta) = 0$ }.

On the other hand, the order of X'_n at the points of $\{0\} \times (S^1 \setminus T_n)$ is $n - 1$ and strictly greater than *n*−1 at the points of ${0} \times T_n$. As T_n is finite, more exactly it has $2n-2$ elements, Proposition [2.2](#page-2-2) and Lemma [2.3](#page-3-0) imply that all the points of $\{0\} \times T_n$ are primary singularities. In short $S_a = \{0\} \times T_n$ and hence $Z(\widetilde{X}_n) = \widetilde{p}^{-1}(0)$ contains *n* − 1 primary singularities.

3.1.3 The geometric meaning of the primary singularities of \tilde{X}_n

When $n > 2$ the complex flow of $z^n \partial/\partial z$ is

$$
\Phi(z, t) = z \left[(1 - n) t z^{n-1} + 1 \right]^{\frac{1}{1 - n}}
$$

with initial condition $\Phi(z, 0) = z$.

(Fixed $z \neq 0$ consider as domain of the variable *t* the open set D_z : = $\mathbb{C} \backslash R_z$ where R_z : = { $s(n-1)^{-1}z^{1-n}$: $s \in [1,\infty)$ }. Note that D_z is star shaped with respect to the origin. Since D_z is simply connected, the initial condition $\Phi(z, 0) = z$ defines a single continuous and hence holomorphic map $\Phi(z, \cdot): D_z \to \mathbb{C}$. Thus the apparent ambiguity introduced by the root of order $n - 1$ is eliminated.)

On the other hand considering, in the foregoing expression of Φ , real values of t only and identifying *z* with (x_1, x_2) yield the real flow of X_n . Therefore given $(x_1, x_2) \in \mathbb{R}^2 \setminus \{0\}$ if $z^{n-1} = (x_1 + ix_2)^{n-1}$ is not a real number, its X_n -trajectory is defined for any $t \in \mathbb{R}$ and has the origin both as α and ω -limit.

On the contrary when $z^{n-1} = (x_1 + ix_2)^{n-1}$ is a real number, the X_n -trajectory of (x_1, x_2) , as set of points, equals the open half-line spanned by the vector (x_1, x_2) and hence one of its limits is the origin and the other one the infinity.

It is easily checked that the set of $(x_1, x_2) \in \mathbb{R}^2$ such that $(x_1 + ix_2)^{n-1} \in \mathbb{R}$ consists of *n* − 1 vector lines each of them including two exceptional trajectories. These lines regarded as elements of $\mathbb{R}P^1 = \tilde{p}^{-1}(0)$ are the primary singularities of \tilde{X}_n .

References

- 1. Belliart, M.: Actions sans points fixes sur les surfaces compactes. Math. Z. **225**, 453–465 (1997)
- 2. Bonatti, C.: Champs de vecteurs analytiques commutants, en dimension 3 ou 4: existence de zéros communs. Bol. Soc. Brasil Mat. N.S. **22**, 215–247 (1992)
- 3. Bonatti, C., De Santiago, : Existence of common zeros for commuting vector fields on 3-manifolds. Ann. Inst. Fourier **67**(4), 1741–1781 (2017)
- 4. Hirsch, M.W.: Differential Topology. Springer, New York (1976)
- 5. Hirsch, M.W.: Common zeroes of families of smooth vector fields on surfaces. Geom. Dedicata **182**, 43–49 (2016)
- 6. Hirsch, M.W., Turiel, F.J.: Zero sets of Lie algebras of analytic vector fields on real and complex 2 dimensional manifolds. Ergod. Theory Dyn. Syst. **39**, 954–979 (2019)
- 7. Hirsch, M.W., Turiel, F.J.: Primary singularities of vector fields on surfaces (2018). [arXiv:1807.04533](http://arxiv.org/abs/1807.04533)
- 8. Hounie, J.: Minimal sets of families of vector fields on compact surfaces. J. Differ. Geom. **16**, 739–744 (1981)
- 9. Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry, vol. I. Wiley, New York (1963)
- 10. Lima, E.: Common singularities of commuting vector fields on 2-manifolds. Comment. Math. Helv. **39**, 97–110 (1964)
- 11. Plante, J.: Fixed points of Lie group actions on surfaces. Ergod. Theory Dyn. Syst. **6**, 149–161 (1986)
- 12. Schwartz, A.J.: A generalization of a Poincaré–Bendixson theorem to closed two-manifolds. Am. J. Math. **85**, 453–458 (1963)

13. Turiel, F.-J.: Smooth actions of $Aff^{+}(\mathbb{R})$ on compact surfaces with no fixed point: an elementary construction (2016). [arXiv:1602.05736](http://arxiv.org/abs/1602.05736)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.