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Abstract
Unless another thing is stated one works in the C∞ category and manifolds have empty
boundary. Let X and Y be vector fields on a manifold M . We say that Y tracks X if [Y , X ] =
f X for some continuous function f : M → R. A subset K of the zero set Z(X) is an essential
block for X if it is non-empty, compact, open in Z(X) and its Poincaré-Hopf index does not
vanishes. One says that X is non-flat at p if its ∞-jet at p is non-trivial. A point p of Z(X) is
called a primary singularity of X if any vector field defined about p and tracking X vanishes
at p. This is our main result: consider an essential block K of a vector field X defined on
a surface M . Assume that X is non-flat at every point of K . Then K contains a primary
singularity of X . As a consequence, if M is a compact surface with non-zero characteristic
and X is nowhere flat, then there exists a primary singularity of X .
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1 Introduction

Whether a family of vector fields has a common singularity is a classical issue in dynamical
systems. For instance, on a compact surface with non-vanishing Euler characteristic there
always exists a common zero provided that the vector fields commute (Lima [10]) or if they
span a finite-dimensional nilpotent Lie algebra (Plante [11]). On the existence of a common
singularity for a family of commuting vector fields in dimension ≥ 3 several interesting
results are due to Bonatti [2] (analitic in dimension 3 and 4) and Bonatti and De Santiago
[3] (dimension 3). For a complementary discussion on the existence of a common zero the
reader is referred to the introduction of [6].

In this paper one shows that on surfaces every essential block of a nowhere flat vector field
X includes a point at which all vector fields tracking X vanish (see Theorem 1.1 below).

Throughout this work manifolds (without boundary) and their associated objects are real
C∞ unless another thing is stated. Consider a tensor T on a manifold P . Given p ∈ P the
principal part of T at p means j npT if jn−1

p T = 0 but jnpT �= 0, or zero if j∞p T = 0. The
order of T at p is n in the first case and ∞ in the second one. One will say that T is flat at
p if its order at this point equals ∞, and non-flat otherwise.

In coordinates about p the principal part is identified to the first significant term of the
Taylor expansion of T at p. Given a function f such that f (p) �= 0, the principal part of f T
at p equals that of T multiplied by f (p).

Z(T ) denotes the set of zeros of T and Zn(T ), where n ∈ N
′ and N

′ := N ∪ {∞}, the set
of zeros of order n. (Here N is the set of positive integers.) Notice that Z(T ) = ⋃

k∈N′ Zn(T )

where the union is disjoint.
Consider a vector field Y on P . Y tracks T provided LYT = f T for some continuous

function f : P → R, referred to as the tracking function. (When T is also a vector field this
means [Y , T ] = f T .) A set A of vector fields on P tracks T provided each element of A
tracks X .

A point p ∈ Z(T ) is a primary singularity of T if every vector field defined about p that
tracks T vanishes at p. Obviously isolated singularities are primary. The notion of primary
singularity is the fundamental new concept of this work.

Let X be a vector field on P . Consider an open set U of P with compact closure U such
that Z(X) ∩ (U\U ) = ∅. The index of X on U , denoted by i(X ,U ) ∈ Z, is defined as the
Poincaré-Hopf index of any sufficiently close approximation X ′ to X |U (in the compact open
topology) such that Z(X ′) is finite. Equivalently: i(X ,U ) is the intersection number of X |U
with the zero section of the tangent bundle (Bonatti [2]). This number is independent of the
approximation, and is stable under perturbation of X and replacement of U by smaller open
sets containing Z(X) ∩U .

A compact set K ⊂ Z(X) is a block of zeros for X (or an X-block) provided K is non-
empty and relatively open in Z(X), that is to say provided K is non-empty and Z(X)\K is
closed in P . Observe that a non-empty compact K ⊂ Z(X) is a X -block if and only if it has a
precompact open neighborhoodU ⊂ P , called isolating for (X , K ), such that Z(X)∩U = K
(manifolds are normal spaces). This implies i(X ,U ) is determined by X and K , and does
not depend on the choice ofU . The index of X at K is iK (X) := i(X ,U ). The X -block K is
essential provided iK (X) �= 0, which implies K �= ∅, and inessential otherwise.

If P is compact, it is isolating for every vector field on P and its set of zeros. Therefore,
in this case, iZ(X)(X) = i(X , P) = χ(P).

This is our main result, which will be proved in the Sect. 2.1.
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Theorem 1.1 Consider an essential block K of a vector field X defined on a surface M.
Assume that X is non-flat at every point of K . Then K contains a primary singularity of X.

As a straightforward consequence:

Corollary 1.2 On a compact connected surface M with χ(M) �= 0 consider a vector field X.
Assume that X is nowhere flat. Then there exists a primary singularity of X.

Moreover, four examples illustrating these results are given in Sect. 3.

Remark 1.3

(a) The hypothesis on the non-flatness of Theorem 1.1 and Corollary 1.2 cannot be omit-
ted as the following example shows. On S2 ⊂ R

3 consider the vector field X =
ϕ(x3)(−x2∂/∂x1 + x1∂/∂x2) where ϕ(0) = 1 and ϕ(R\(−1/2, 1/2)) = 0. Then the
vector fields Y = −x2∂/∂x1 + x1∂/∂x2 and V = ψ(x3)(−x3∂/∂x1 + x1∂/∂x3) where
ψ(1) = ψ(−1) = 1 and ψ([−3/4, 3/4]) = 0 track X and Z(Y ) ∩ Z(V ) = ∅. Therefore
X has no primary singularity.

(b) Two particular cases of Theorem 1.1 were already known, namely: if X and K are as in
the foregoing theorem and G is a finite-dimensional Lie algebra of vector fields on M
that tracks X , then the the elements of G have a common singularity in K provided that
G is supersolvable (Theorem 1.4 of [5]) or G and X are analytic (real case of Theorem
1.1 of [6]). Thus these two results are generalized here.

For general questions on Differential Geometry readers are referred to [9], and for those
on Differential Topology to [4].

2 Other results

One will need:

Lemma 2.1 On a manifold P of dimension m ≥ 1 consider a vector field X of finite order
n ≥ 1 at a point p. Then for almost every v ∈ Tp P there exists a vector field U defined
around p such that U (p) = v and the n-times iterated bracket [U , [U , . . . [U , X ] . . . ]] does
not vanish at p.

Proof It suffices to prove the result for 0 ∈ R
m and a non-vanishing n-homogeneous poly-

nomial vector field X = ∑m
�=1 Q�∂/∂x�. Up to a change of the order of the coordinates, we

may suppose Q1 �= 0.
Given a = (a1, . . . , am) ∈ R

m set Ua : = ∑m
�=1 a�∂/∂x�. It suffices to show that for

almost any a ∈ R
m − {0} one has (Ua · · ·Ua · Q1)(0) �= 0, which is equivalent to show that

the restriction of Q1 to the vector line spanned by a does not vanish identically. But this last
assertion is obvious. �


Given a vector field V on a manifold P , a set S ⊂ P is V -invariant if it contains the orbits
under V of its points.

Proposition 2.2 Consider two vector fields X , Y on a surface M. Assume that Y tracks X
with tracking function f . Then each set Zn(X), n ∈ N

′, is Y -invariant.
Moreover f is differentiable on the open set

[M\Z(X)] ∪ [(Z(X)\Z∞(X)) ∩ (M\Z(Y ))].
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This result is a consequence of the following two lemmas.

Lemma 2.3 Under the hypotheses of Proposition 2.2 consider p ∈ Zn(X), n < ∞, such that
Y (p) �= 0. One has:

(a) f is differentiable around p.
(b) Let γ : (a, b) → M be an integral curve of Y with γ (t0) = p for some t0 ∈ (a, b). Then

there exists ε > 0 such that γ (t0 − ε, t0 + ε) ⊂ Zn(X).

Proof Around p consider a vector fieldU as in Lemma 2.1 such thatU (p), Y (p) are linearly
independent. Then there are coordinates (x1, x2) about p ≡ 0, whose domain D can be
identified to a product of two open intervals J1 × J2, such that Y = ∂/∂x1 and U =
∂/∂x2 + x1V .

Let X = g1∂/∂x1 + g2∂/∂x2. Then

∂gk
∂x1

= f gk, k = 1, 2.

Since f is continuous the general solution to the equation above is:

gk(x) = hk(x2)e
ϕ, k = 1, 2,

where ∂ϕ/∂x1 = f and ϕ({0} × J2) = 0.
From the Taylor expansion at p of X and U it follows that

[U , [U , . . . [U , X ] . . . ]](0) =
[

∂

∂x2
,

[
∂

∂x2
, . . .

[
∂

∂x2
, X

]

. . .

]]

(0)

for the n-times iterated bracket.
Note that

[
∂

∂x2
,

[
∂

∂x2
, . . .

[
∂

∂x2
, X

]

. . .

]]

(0) = ∂ng1
∂xn2

(0)
∂

∂x1
+ ∂ng2

∂xn2
(0)

∂

∂x2
.

Since on {0} × J2 each gk = hk finally one has

∂nh1
∂xn2

(0)
∂

∂x1
+ ∂nh2

∂xn2
(0)

∂

∂x2
= [U , [U , . . . [U , X ] . . . ]](0) �= 0,

which implies the existence of two diferentiable functions h̃1(x2) and h̃2(x2) such that hk =
xn2 h̃k(x2), k = 1, 2, and h̃21(0) + h̃22(0) > 0.

Therefore by shrinking D if necessary, we may suppose that at least one of these function,
say h̃�, does not have any zero. Observe that f will be differentiable if h̃�eϕ is differentiable
because h̃� is differentiable without zeros and ∂ϕ/∂x1 = f .

As g� = xn2 · (h̃�eϕ), it follows that g� is divisible by 1, x2, . . . , xn2 and the respective
quotient functions are at least continuous. Moreover g�/xr , r = 1, . . . , n − 1, vanish if
x2 = 0, that is to say on J1 × {0}.

The Taylor expansion of g� transversely to J1 × {0} leads

g� =
n−1∑

r=0

xr2μr (x1) + xn2μn(x1, x2)

where each μk , k = 1, . . . , n is differentiable.
Now since g�(J1 × {0}) = 0 one has μ0 = 0.
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In turn as g�/x2 equals zero on J1 ×{0} it follows μ1 = 0, and so one. Hence μ0 = · · · =
μn−1 = 0, which implies g� = xn2μn(x1, x2). Therefore h̃�eϕ = μn is differentiable, which
proves (a).

On the other hand, as eϕ is differentiable and positive, X and

X ′ : = e−ϕX = xn2

(

h̃1
∂

∂x1
+ h̃2

∂

∂x2

)

have the same order everywhere. Thus X has order n at every point of J1 × {0} and (b)
becomes obvious. �

Lemma 2.4 Under the hypotheses of Proposition 2.2 consider p ∈ Z∞(X) with Y (p) �= 0.
Let γ : (a, b) → M be an integral curve of Y passing through p for some t0 ∈ (a, b). Then
there exists ε > 0 such that γ (t0 − ε, t0 + ε) ⊂ Z∞(X).

Proof Around p ≡ 0 consider coordinates (y1, y2), whose domain E can be identified to a
product of two open intervals K1 × K2, such that Y = ∂/∂ y1 and X = a1(y2)eρ∂/∂ y1 +
a2(y2)eρ∂/∂ y2 where ∂ρ/∂ y1 = f and ρ({0} × K2) = 0. These coordinates exist by the
same reason as in the proof of Lemma 2.3.

Assume the existence of a q ∈ K1 × {0} of finite order n.
Since p ∈ Z∞ and eρ equals 1 on {0} × K2, it follows that j∞0 a1 = j∞0 a2 = 0. There-

fore ak(y2) = yn+1
2 bk(y2), k = 1, 2, where each bk is differentiable. Hence there exists a

continuous vector field Xn such that X = yn+1
2 Xn ; that is to say X is continuously divisible

by yn+1
2 .

In turn one can find coordinates (x1, x2) around q ≡ 0 whose domain D can be identify
to J1 × J2 as in the proof of Lemma 2.3, which implies that

X = xn2 e
ϕ

(

h̃1(x2)
∂

∂x1
+ h̃2(x2)

∂

∂x2

)

where h̃1∂/∂x1 + h̃2∂/∂x2 has no zero on D.
By shrinking D if necessary, we may suppose D ⊂ E . Then, regarded both sets in M ,

J1×{0} is a subset of K1×{0} since they are traces of integral curves of Y with q as common
point.

On the other hand as y2 vanishes on K1 × {0} but its derivative never does, on D one has
y2 = x2c(x1, x2)where c has no zero. This fact implies that X on D is continuously divisible
by xn+1

2 because it was continuously divisible by yn+1
2 .

But clearly from the expression of X in coordinates (x1, x2) it follows the non-divisibility
by xn+1

2 , contradiction. In short the order of X at each point of K1 × {0} is infinite. �

Remark 2.5 Under the hypotheses of Proposition 2.2 the tracking function f can be not
differentiable around a flat point. For instance, on R

2 set Y = x41∂/x1 + ∂/∂x2 and X =
g(x1)∂/x1, where g(x1) = e−1/x1 if x1 > 0, g(x1) = e−1/x21 if x1 < 0 and g(0) = 0. Then
f (x) = x21 − 4x31 if x1 > 0, f (x) = 2x1 − 4x31 if x1 < 0 and f ({0} × R) = 0, which is not
differentiable on {0} × R.

Proof of Proposition 2.2 Let us proves the first assertion. Consider a non-constant integral
curve of Y (the constant case is clear) γ : (a, b) → M . By Lemmas 2.3 and 2.4, γ −1(Z(X))

is open in (a, b). As this set is closed too one has γ −1(Z(X)) = ∅ or γ −1(Z(X)) = (a, b).
The first case is obvious; in the second one (a, b) = ⋃

n∈N′ γ −1(Zn(X)) where each term of
this union is open. Therefore a single term of this disjoint union is non-empty since (a, b) is
connected.
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For the second assertion apply (a) of Lemma 2.3 taking into account that f is always
differentiable on M\Z(X) because, on this set, the quotient [Y , X ]/X has a meaning. �

Proposition 2.6 On a surface M consider a vector field X such that Z(X) �= ∅ but Z∞(X) =
∅. Then at least one of the following assertions holds:

(1) Z(X) is a regular (embedded) 1-submanifold.
(2) There exists a primary singularity of X.

Proof Assume the non-existence of primary singularities.
Consider any p ∈ Z(X) and a vector field Y defined around p with Y (p) �= 0 that

tracks X. Let U be a second vector field about p as in Lemma 2.1 such that U (p), Y (p)
are linearly independent. Then there exist coordinates (x1, x2), about p ≡ 0, whose domain
D can be identified to a product of two open intervals J1 × J2 such that Y = ∂/∂x1 and
U = ∂/∂x2 + x1V .

The same reasoning as in the proof of Lemma 2.3 allows to suppose that

X = xn2 e
ϕ

(

h̃1
∂

∂x1
+ h̃2

∂

∂x2

)

with h̃21 + h̃22 > 0 everywhere.
Therefore Z(X)∩ D is given by the equation x2 = 0, which implies that Z(X) is a regular

1-submanifold. �

Theorem 2.7 Consider a vector field X on a surface M. Assume that:

(1) Z∞(X) = ∅.
(2) There is a connected component of Z(X) that is not included in a single Zn(X).

Then there exists a primary singularity of X.

Proof Assume there is no primary singularity. By Proposition 2.6, Z(X) is a regular 1-
submanifold of M . By hypothesis there are a connected component C of Z(X) and two
different natural numbers m and n such that C meets Zm(X) and Zn(X).

AsC is a regular 1-submanifold, Proposition 2.2 andLemma2.3 imply that eachC∩Zr (X),
r ∈ N, is open in C . Therefore C is a disjoint union of a family of non-empty open sets with
two or more elements hence not connected, contradiction. �


2.1 Proof of of Theorem 1.1

It consists of three steps.
1. Assume that there is no primary singularity in K . From Proposition 2.6 applied to an

isolating open set it follows that K is a compact 1-submanifold. Notice that at least one
of its connected component is an essential block. Therefore one may suppose that K is
diffeomorphic to S1 and, by shrinking M , that Z(X) = K .

Consider a Riemannian metric g on M . Given p ∈ K by reasoning as before one can find
coordinates (x1, x2) such that p ≡ 0 and

X = xn2 e
ϕ

(

h̃1
∂

∂x1
+ h̃2

∂

∂x2

)

where h̃1∂/∂x1 + h̃2∂/∂x2 has no zero. Therefore around p there exists an 1-dimensional
vector subbundle E of the tangent bundle that is orthogonal to X . Such a vector subbundle
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is unique because clearly it exists and is unique outside K . Thus, gluing together the local
constructions gives rise to an 1-dimensional vector subbundle E of T M that is orthogonal to
X .

2. If E is trivial there exists a nowhere singular vector field V such that g(V , X) = 0. Let
ϕ : M → R be a function with a sufficiently narrow compact support such that ϕ(K ) = 1.
Set Xδ := X + δϕV , δ > 0. Then Xδ approaches X as much as desired and Z(Xδ) = ∅, so
K is an inessential block.

3. Now assume that E is not trivial. There always exists a twofold covering spaceπ : M ′ →
M such that the pull-back E ′ ⊂ T M ′ of the vector subbundle E is trivial.

Consider the vector field X ′ on M ′ defined by π∗(X ′) = X . Then Z(X ′) = π−1(K )

and X ′ is nowhere flat. Moreover E ′ is orthogonal to X ′ with respect to the pull-back of
g. Now the same reasoning as in the foregoing step shows that iZ(X ′)(X ′) = 0. But clearly
iZ(X ′)(X ′) = 2iK (X) and hence K is inessential.

3 Examples

Example 3.1 In this example one shows two facts. First, primary singularities can exist even
if the index of X is not definable. Second, being nowhere flat is a weaker hypothesis than
being analytic.

Consider a proper closed subset C of R and a function ϕ : R → R such that ϕ−1(0) = C .
Set X := x21∂/∂x1 + x1ϕ(x2)∂/∂x2. Then Z(X) = {0}×R, Z1(X) = {0}× (R\C), Z2(X) =
{0} × C and Zn(X) = ∅ for n �= 1, 2, so X is nowhere flat. By Theorem 2.7 the vector field
X has primary singularities.

More exactly the set Sa of primary singularities of X equals {0} × (C\ ◦
C). Indeed:

(1) ϕ(x2)∂/∂x2 tracks X and does not vanish on {0} × (R\C).

(2) ∂/∂x2 tracks X on R × ◦
C .

Therefore Sa ⊂ {0} × (C\ ◦
C).

Take p = (0, c) ∈ {0} × (C\ ◦
C). Assume the existence around this point of a vector field

Y with Y (p) �= 0 that tracks X . Them from Proposition 2.2 and Lemma 2.3 it follows the
existence of ε > 0 such that the order of X at every point of {0} × (c − ε, c + ε) is constant

and hence c belongs to the interior of R\C or to that of C . Therefore c /∈ C\ ◦
C contradiction.

In short, each element of {0} × (C\ ◦
C) is a primary singularity and Sa = {0} × (C\ ◦

C).
Finally observe that if C is a Cantor set, then X is not analytic for any analytic structure

on R
2 since Z2(X) = {0} × C is never an analytic set.

Example 3.2 In this example one gives a vector field on S2, which is analytic so with no flat
points, whose zero set is a circle just with two primary singularities.

The sphere S2 can be regarded as the leaves space of the 1-dimensional foliation on
R
3\{0} associated to the vector field V = ∑3

k=1 xk∂/∂xk , while the canonical projection
π : R

3\{0} → S2 is given by π(x) = x/ ‖ x ‖.
Every linear vector fieldU ′ commutes with V and can be projected by π on a vector field

U on S2. MoreoverU (a) = 0, where a = (a1, a2, a3) ∈ S2, if and only if a is an eigenvector
of U ′ regarded as an endomorphism of R

3, that is to say if and only if
[

3∑

k=1

ak
∂

∂xk
,U ′

]

= λ

3∑

k=1

ak
∂

∂xk
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for some scalar λ.
Set X : = π∗(x1∂/∂x2). Then Z(X) = {x ∈ S2 : x1 = 0} is an essential block of index

two since χ(S2) = 2. By Corollary 1.2 the set Sa of primary singularities of X is not empty.
For determining it consider the vector field Y : = π∗(x3∂/∂x2). Then [X , Y ] = 0 because

[x1∂/∂x2, x3∂/∂x2] = 0. Moreover Z(Y ) = {x ∈ S2 : x3 = 0}.
As Y tracks X , the vector field Y is tangent to Z(X). On the other hand Z(X) ∩ Z(Y ) =

{(0, 1, 0), (0,−1, 0)}, so Sa ⊂ {(0, 1, 0), (0,−1, 0)}. Since F∗X = X , where F is the
antipodal map, one has F(Sa) = Sa and hence Sa = {(0, 1, 0), (0,−1, 0)}.
Example 3.3 Let M be a connected compact surface of non-vanishing Euler characteristic.
As it is well known, on M there always exist two vector fields X , Y with no common zero
such that [Y , X ] = X (Lima [10], Plante [11]; see [1,13] as well). Therefore there is no
primary singularity of X , but there always exists a periodic regular trajectory of Y included
in Z∞(X).

Indeed, by Corollary 1.2 and Proposition 2.2 the set Z∞(X) is non-empty and Y -invariant.
Since Z∞(X) is compact, there always exists a minimal set S ⊂ Z∞(X) of (the action of) Y .

As Z(X) ∩ Z(Y ) = ∅, a generalization of the Poincaré–Bendixson theorem [12] implies
that S is homeomorphic to a circle. In otherwords, there exists a non-trivial periodic trajectory
of Y consisting of flat points of X .

More generally, given a vector field X̂ on M letA be the real vector space of those vector
fields on M that track X̂ . Assume that Z(X̂) �= M and Z(X̂) ∩ (

⋂
V∈A Z(V )) = ∅. Then by

Corollary 1.2 the compact set Z∞(X̂) is not empty and contains a minimal set Ŝ of A (more
exactly of the group of diffeomorphisms of M spanned by the flows of the elements of A).

Clearly Ŝ is not a point. A second generalization of the Poincaré–Bendixson theorem [8]
shows that Ŝ is homeomorphic to a circle.

Even more, in our case Ŝ is a regular 1-submanifold and hence diffeomorphic to a circle.
Let us see it. Take p ∈ Ŝ; then there is V ∈ A with V (p) �= 0. Consider coordinates (x1, x2)
around p ≡ 0 whose domain D is identified in the natural way to a product (−ε, ε)× (−ε, ε)

such that V = ∂/∂x1.
Let γ : (−δ, δ) → M be an integral curve of V with initial condition γ (0) = p. Then

γ (−δ, δ) ⊂ Ŝ. Moreover, if δ is sufficiently small γ (−δ, δ) is a relatively open subset of Ŝ.
Indeed, γ : (−δ, δ) → Ŝ will be injective so open because Ŝ is a 1-dimensional topological
manifold (actually S1). Now by shrinking D and (−δ, δ) if necessary, we may suppose that
γ (−δ, δ) ⊂ D, δ = ε and γ (t) = (t, 0). Thus (−ε, ε)×{0} = γ (−δ, δ) is relatively open in
Ŝ and there exists an open set E of M such that E ∩ Ŝ = (−ε, ε) × {0}. Hence Ŝ ∩ (D ∩ E)

is defined by the equation x2 = 0 in the system of coordinates (D ∩ E, (x1, x2)).

3.1 An example from the blowup process

In this subsection one constructs a homogeneous polynomial vector field onR
2 whose trajec-

tories but a finite number, let us call them exceptional, have the origin both as α and β-limit.
Then by blowing up the origin one obtains a new vector field on a Moebius band whose
number of primary singularities equals half that of exceptional trajectories of the first vector
field.

Thus a global property on the trajectories of a vector field becomes a semi-local property
on the primary singularities of another vector field.

First some technical facts. Denote by R̃
2 the surface obtained by blowing up the origin of

R
2 and by p̃ : R̃

2 → R
2 the canonical projection. Recall that R̃

2 is a Moebius band. If X is
a vector field on R

2 that vanishes at the origin, the blowup process gives rise to a vector field
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X̃ on R̃
2 such that p̃∗ X̃ = X . When the origin is an isolated singularity of index k and the

order of X at this point is ≥ 2, then p̃−1(0) is a X̃ -block of index k − 1.
Now identify C to R

2 by setting z = x1 + i x2. Then each complex vector field zn∂/∂z,
n ≥ 2, can be considered as a vector field Xn = Pn∂/∂x1 + Qn∂/∂x2 on R

2 where zn =
(x1 + i x2)n = Pn(x1, x2) + i Qn(x1, x2). Our purpose will be to show that Z(X̃n) = p̃−1(0)
contains n − 1 primary singularities of X̃n . (Recall that the origin is a singularity of Xn of
index n and hence p̃−1(0) is a X̃n-block of index n − 1.)

3.1.1 R̃
2 from another point of view

Consider themap ϕ : R×S1 → R
2 given by ϕ(r , θ) = (rcosθ, rsinθ). Then ϕ : R+×S1 →

R
2\{0} and ϕ : R− × S1 → R

2\{0} are diffeomorphisms, and ϕ(r , θ) = ϕ(r ′, θ ′) with
(r , θ), (r ′, θ ′) ∈ (R\{0}) × S1 if and only if (r , θ) = (r ′, θ ′) or (r ′, θ ′) = (−r , θ + π).

Let ∼ be the equivalence relation on R × S1 defined by (r , θ) ∼ (r ′, θ ′) if and only if
(r , θ) = (r ′, θ ′) or (r ′, θ ′) = (−r , θ + π). Then the quotient space Ms : = (R × S1)/ ∼ is
a Moebius strip and the canonical projection p : R × S1 → Ms is a (differentiable) covering
space with two folds. Moreover the map ϕ̄ : Ms → R

2 given by ϕ̄(p(r , θ)) = ϕ(r , θ) is well
defined and differentiable.

Recall that p̃−1(0) = RP1 is the space of vector lines inR
2 and p̃ : R̃

2\ p̃−1(0) → R
2\{0}

a diffeomorphism. Now one defines � : Ms → R̃
2 as follows:

(a) �(p(r , θ)) = p̃−1(ϕ(r , θ)) if r �= 0,
(b) �(p(r , θ)) equals the vector line of R

2 spanned by (cosθ, sinθ) if r = 0.

It is easily checked that � : Ms → R̃
2 is a diffeomorphism and p̃ ◦ � = ϕ̄. Therefore

p̃ : R̃
2 → R

2 and ϕ̄ : Ms → R
2 can be identified in this way. For sake of simplicity in what

follows p̃ : R̃
2 → R

2 will replaced by ϕ̄ : Ms → R
2 in our computations. Thus if X is a

vector field on R
2 that vanishes at the origin, then X̃ will be the single vector field on Ms

such that ϕ̄∗ X̃ = X .
On the other hand X ′ will denote the pull-back by p of X̃ . Clearly ϕ∗X ′ = X . Moreover

with respect to X ′ the index of {0} × S1 and the number of primary singularities included in
it are twice those of ϕ̄−1(0) relative to X̃ .

As a consequence, in the case of Xn it will suffice to show that Z(X ′
n) = {0}× S1 contains

2n − 2 singularities of X ′
n .

3.1.2 Computation of the primary singularities of X ′
n

As ϕ : (R\{0}) × S1 → R
2\{0} is a covering space any vector field on R

2\{0} can be lifted
up. Denote by ∂ ′/∂xk , k = 1, 2, the lifted vector field of ∂/∂xk . Then

∂ ′

∂x1
= cosθ

∂

∂r
− r−1sinθ

∂

∂θ
and

∂ ′

∂x2
= sinθ

∂

∂r
+ r−1cosθ

∂

∂θ
.

Since (rcosθ + irsinθ)n = rncos(nθ) + irnsin(nθ) one has Pn ◦ ϕ = rncos(nθ) and
Qn ◦ϕ = rnsin(nθ). Observe that on (R\{0})× S1 the vector field X ′

n is the lifted one of Xn ,
so X ′

n = rncos(nθ)∂ ′/∂x1 +rnsin(nθ)∂ ′/∂x2. Finally, developing the foregoing expression
of X ′

n and extending it by continuity to R × S1 yields:

X ′
n = rn−1

(

rcos((n − 1)θ)
∂

∂r
+ sin((n − 1)θ)

∂

∂θ

)
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The vector field Y = rcos((n − 1)θ)∂/∂r + sin((n − 1)θ)∂/∂θ tracks X ′
n with tracking

function (n−1)cos((n−1)θ). Therefore the set Sa of primary singularities of X ′
n is included

in {0} × Tn where Tn : = {θ ∈ S1 : sin((n − 1)θ) = 0}.
On the other hand, the order of X ′

n at the points of {0} × (S1\Tn) is n − 1 and strictly
greater than n−1 at the points of {0}×Tn . As Tn is finite, more exactly it has 2n−2 elements,
Proposition 2.2 and Lemma 2.3 imply that all the points of {0}×Tn are primary singularities.
In short Sa = {0} × Tn and hence Z(X̃n) = p̃−1(0) contains n − 1 primary singularities.

3.1.3 The geometric meaning of the primary singularities of X̃n

When n ≥ 2 the complex flow of zn∂/∂z is

�(z, t) = z
[
(1 − n)t zn−1 + 1

] 1
1−n

with initial condition �(z, 0) = z.
(Fixed z �= 0 consider as domain of the variable t the open set Dz : = C\Rz where

Rz : = {s(n−1)−1z1−n : s ∈ [1,∞)}. Note that Dz is star shaped with respect to the origin.
Since Dz is simply connected, the initial condition �(z, 0) = z defines a single continuous
and hence holomorphic map�(z, ) : Dz → C. Thus the apparent ambiguity introduced by
the root of order n − 1 is eliminated.)

On the other hand considering, in the foregoing expression of �, real values of t only and
identifying z with (x1, x2) yield the real flow of Xn . Therefore given (x1, x2) ∈ R

2\{0} if
zn−1 = (x1 + i x2)n−1 is not a real number, its Xn-trajectory is defined for any t ∈ R and
has the origin both as α and ω-limit.

On the contrary when zn−1 = (x1+i x2)n−1 is a real number, the Xn-trajectory of (x1, x2),
as set of points, equals the open half-line spanned by the vector (x1, x2) and hence one of its
limits is the origin and the other one the infinity.

It is easily checked that the set of (x1, x2) ∈ R
2 such that (x1 + i x2)n−1 ∈ R consists of

n − 1 vector lines each of them including two exceptional trajectories. These lines regarded
as elements of RP1 = p̃−1(0) are the primary singularities of X̃n .
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