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Abstract
In this paper, it is proved that a connected 3-dimensional Riemannian manifold or a closed
connected semi-Riemannian manifold Mn (n > 1) admitting a projective vector field with a
non-linearizable singularity is projectively flat.
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1 Introduction

Let ∇ be a torsion-free affine connection on a manifold Mn . The projective class [∇] for
∇ consists of the torsion-free affine connections on M having the same unparametrized
geodesics as ∇. There is an equivalence of categories between projective classes and normal
projective Cartan geometries on M introduced by Kobayashi and Nagano in [1], see Sect. 2.1
for details. We say [∇] is flat, if locally around any point x ∈ M , there exists a neighborhood
Ux of x and ∇′ ∈ [∇|Ux ] with ∇′ having zero curvature. The projective structure [∇] is
metrizable if there is a Levi-Civita connection, induced by some metric g, contained in it.
Two metrics on Mn are projectively equivalent if their Levi-Civita connections are in the
same projective class. It is well known that

∇ ∈ [∇] ⇐⇒ ∇ = ∇ + η ⊗ I d + I d ⊗ η, η ∈ Γ (T ∗M). (1)

Affine connections are not torsion-free in general, but for any affine connection ∇, we can
always find a torsion-free connection with the same unparametrized geodesics. The torsion

Tor of ∇ is a section of ∧2T ∗M ⊗ T M . Then (∇ − 1

2
Tor) is a torsion-free connection

defining the same unparametrized geodesics as ∇. Hence, there is no loss in generality to
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work only with torsion-free affine connections, whose projective equivalence is characterized
by Eq. (1).

Let X be a vector field on M . Let φt be the flow generated by X . Then X is a projective
vector field for ∇ if φt preserves the unparametrized geodesics defined by ∇. Denote LX∇
the Lie derivative of ∇ with respect to X . Then this is equivalent to:

Trace free part(LX∇) = 0.

The projective vector field X is a f f ine for ∇ if LX∇ = 0. It is essential if it is not affine
for any connection in [∇].

It is a classical topic to study projective structures induced by Levi-Civita connections.
Some classical results have been obtained by mathematicians like Dini, Levi-Civita, Weyl,
and Solodovnikov. One can refer to Theorems 7–10 from [2] for their results. The local
description of projectively equivalent metrics is well understood by Bolsinov and Matveev
in [3,4] in terms of BM structures.

Given a projective structure [∇] on some manifold Mn , how its projective transforma-
tion group or Lie algebra determines the projective structure [∇] has been an interesting
topic. For example, we may ask what additional assumption on the projective transformation
group or algebra is necessary to deduce that the projective structure is flat on the mani-
fold or some special subsets. Sometimes it turns out [∇] is determined by assumptions less
than expected. Concerning the global theory of projective structures, we have the following
projective Lichnerowicz–Obata conjecture:

Conjecture 1.1 Let G be a connected Lie group acting on a complete connected or closed
connected semi-Riemannian manifold (Mn, g) by projective transformations. Then either
G acts on M by affine transformations, or (Mn, g) is Riemannian with positive constant
sectional curvature.

The conjecture above implies non-affine complete projective vector fields cannot exist for
non-flat projective structures induced by closed or complete connected (Mn, g). The open
cases for this conjecture are when g is an indefinite metric, and D(Mn, g) is precisely two,
where D(Mn, g) is the degree of mobility of g on M defined in Definition 2.4. (In addition to
the Riemannian case, this conjecture has also been proved for the case (M, g) being a closed
connected Lorentzian manifold, see [5].) One may refer to the main theorems in [2,5,6] for
details. In the local theory of projective structures, whether there is a result analogous to the
conjecture above for locally defined metrizable projective structures is still open in general.

Let [∇] be a metrizable projective structure admitting a projective vector field X with a
non-linearizable singularity x . This means X is not linear in any coordinate system around
x . In this paper, we give proofs to Theorems 1.3 and 1.4, which concern the rigidity of
such projective structures. The assumptions in these theorems arise from the generalization
of results obtained for projective geometries in [7] by Nagano and Ochiai, and analogous
results for conformal geometries by Frances and Melnick in [8,9]. Let X be a vector field on
M . We say X vanishes exactly at order 2 at x ∈ M , denoted by O(X , x) = 2, if X has a zero
1-jet and a non-zero 2-jet at x . In [7], the following theorem is proved.

Theorem 1.1 (Nagano andOchiai [7])Let X beaprojective vector field for a closed connected
Riemannian manifold (Mn, g) with n ≥ 3. Suppose there exists x ∈ M such that O(X , x) =
2. Then there exists some constant c > 0 such that (Mn, cg) is isometric to either S

n or RP
n

with their respective standard metrics.

One may ask whether a generalization of this theorem will hold for semi-Riemannian
closed connected manifolds, with the weaker assumption that X is non-linearizable at x .
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Obviously, this generalization of Theorem 1.1 follows from the projective Lichnerowicz–
Obata conjecture.

The dynamics of a projective vector field near its singularity can lead to theorems on the
rigidity of projective structures. For example, if a torsion-free affine connection∇ defined on
Mn with n ≥ 2 admits a projective vector field X such that O(X , x) = 2 at some x ∈ Mn ,
then [∇] is projectively flat on some open set containing x , see Theorem 3.1 of [10] by Čap
and Melnick .

Suppose that x is a non-linearizable singularity of a projective vector field X . Then on
some special subsets containing x , the flow φt generated by X admits dynamics similar to
the case O(X , x) = 2. This may imply X admits a non-linearizable singularity at x is a good
substitution for the assumption O(X , x) = 2.

Projective and conformal structures are both |1|-graded parabolic geometries in terms of
Cartan geometries. In conformal geometries we have the following result from [9].

Theorem 1.2 (Frances and Melnick [9]) Let X be a conformal vector field for a semi-
Riemannian manifold (Mn, g) with n ≥ 3 with a singularity x. If the 1-parameter group
{(Dφt

X )x : t ∈ R} is bounded, one of the following is true:

– There exists a neighbourhood V of x on which X is complete and generates a bounded
flow. In this case, it is linearizable.

– There is an open set U0 ⊂ M, with x ∈ U0 such that g is conformally flat on U0.

In terms of the local theory of projective structures, one can expect a statement analogous
to Theorem 1.2 to hold for projective geometries. Let X be a projective vector field for [∇]
vanishing at x . The minimal conditions for the projective class [∇] being flat near x are still
open.

In this paper, the following theorem on projective geometries induced by Riemannian
metrics is proved.

Theorem 1.3 Let (Mn, g) with n ≥ 3 be a connected Riemannian manifold admitting a
projective vector field X. Suppose X vanishes at o ∈ M, and X is not linearizable at o. We
have D(Mn, g) is at least 3. When n = 3, this implies g has constant sectional curvature.

For closed and connected manifolds, the following generalization of Theorem 1.1 by Nagano
and Ochiai is proved.

Theorem 1.4 Let (Mn, g) with n > 1 be a closed connected semi-Riemannian manifold.
Suppose X is a projective vector field for (M, g) vanishing at o ∈ M. If X is not linearizable
at o, then g is Riemannian with constant positive sectional curvature.

After deriving the proof, we discovered that the part of the proof of Theorem 1.4 in Sect. 4.2
is analogous to Section 9.2 of [11].

Note that Theorem1.4 is just a sub-case of the projectiveLichnerowiczConjecture.Wewill
show in Proposition 2.1, if X has a non-linearizable singularity, then the flow φt generated
by X acts on (Mn, g) by non-affine transformations. Thus if the projective Lichnerowicz
Conjecture is true, Theorem 1.4 follows trivially from it.

2 Preliminaries and backgrounds

2.1 General theory for projective structures in the view of Cartan geometries

The definition of a Cartan geometry is given below, since it is important for this paper. Let Ĝ
be a Lie group, andG ′ is a closed subgroup of Ĝ. Denote ĝ, g′ their Lie algebras, respectively.
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The definition of a Cartan geometry modelled on (ĝ, g′) with the structure group G ′ is as
follows.

Definition 2.1 A Cartan geometry modelled on (ĝ, g′) with the structure group G ′ is a triple
(M, B, ω). Here B is a G ′ principal bundle over M , and ω a Cartan connection, that is a
ĝ-valued 1-form satisfying the following conditions:

– ∀b ∈ B, the map ωb : TbB → ĝ is an isomorphism.
– ∀g ∈ G ′, R∗gω = Ad(g−1)ω. Here Rg is the right translation of the principal G ′-bundle

B by g.

– ∀b ∈ B, ∀g̃ ∈ g′, we have ω

(
d

dt
|t=0b exp(t g̃)

)
= g̃.

We have κ = dω + 1

2
[ω,ω] is the curvature of this Cartan geometry. The Cartan geometry

is flat if κ vanishes. Let ωĜ be the Maurer-Cartan form on Ĝ (Refer to Page 98 of [12] for

the definition). The triple (Ĝ/G ′, Ĝ, ωĜ) defines a flat Cartan geometry. This is a flat model
for (ĝ, g′) with the structure group G ′. If (M, B, ω) is flat, then it is locally isomorphic to
(Ĝ/G ′, Ĝ, ωĜ), see Theorem 6.1 of Chapter 3 of [12].

We give the definition of exponential maps in Cartan geometries.

Definition 2.2 Suppose (M, B, ω) is aCartan geometrymodelled on (ĝ, g′). Given any v ∈ ĝ,
we have ω−1(v) is a vector field on B. Denote Φv the flow generated by ω−1(v). The
exponential map of ω at b ∈ B is defined as expb(v) = Φv(1, b), wherever it is well
defined. Thus expb gives a local diffeomorphism between a neighbourhood of 0 of ĝ and a
neighbourhood of b.

The projective classes on M can be described in terms of Cartan geometries by the following.
The group G = PGL(n+1, R) acts on RP

n transitively. Choose e0 = [1, 0, . . . , 0] ∈ RP
n ,

and let H be its stabilizer. Denote g, h the Lie algebras of G and H , respectively. Then we
have the following identification (see Page 234 of [7]):

sl(n + 1, R) = g = g−1 ⊕ g0 ⊕ g1 � R
n ⊕ GL(n, R)⊕ (Rn)∗, h = g0 ⊕ g1. (2)

Note that the standardEuclideanmetric gives an identificationR
n � (Rn)∗. The identification

is given by

u ⊕ A ⊕ v∗ �→
⎡
⎢⎣−

1

n + 1
Tr(A) vT

u A − 1

n + 1
Tr(A) · I d

⎤
⎥⎦ ∈ sl(n + 1, R). (3)

The following is the standard chart of RP
n near e0:

i0 : [x0, . . . , xn] �→
(
x1
x0

, . . . ,
xn
x0

)

In this chart i0, any h ∈ H is a local diffeomorphism at 0 ∈ R
n with h(0) = 0 . If f is a

local diffeomorphism at 0 ∈ R
n with f (0) = 0, let J k( f )(0) be its k-jet at the origin. Define

Gk(n) to be the k-jet at 0 of all such functions. Clearly elements in Gk(n) form a group.
Since every h ∈ H is such a diffeomorphism in the standard chart i0, define the subgroup
H2(n) of G2(n):

H2(n) = {J 2(h)(0) : h ∈ H}.
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The above in fact gives an identification H ∼= H2(n) ∼= GL(n, R) � R
n . Since G1(n) ∼=

GL(n, R) is induced by invertible linear maps, we can identify G1(n) with the subgroup
GL(n, R) of H2(n). Let Fk(M) be the kth order frame bundle of M , which is a Gk(n)

principal bundle. We have F2(M) is a G2(n) principal bundle. We can take F2(M) as a sub-
bundle of F1(F1(M)). Denote θ the canonical form on F1(F1(M)), which is a gln(R)

⊕
R
n

valued 1-form. It follows that θ |F2(M) has the following decomposition:

θ = θi + θ ij , θi ∈ Γ (Hom(T (F2M), R
n)), θ ij ∈ Γ (Hom(T (F2M), gln(R))).

Here θ = θi + θ ij is the canonical form on F2(M). One can refer to Page 224 of [1] for a
more precise definition.

A projective Cartan geometry on M is a Cartan geometry (M, B, ω) modelled on the
pair (g, h). It is normal if the components of its curvature κ satisfy Equation (2) and (3) of
[1]. Under the identification given by Eqs. (2) and (3), we have by Proposition 3 of [1], on
any H2(n) sub-bundle P of F2(M), there is a unique normal projective Cartan connection
ω = ωi +ωi

j +ωi with ωi = θi , and ωi
j = θ ij . We call this connection the normal projective

Cartan connection associated to P .
Now we show how the H2(n) and GLn reductions of F2(M) correspond exactly to

projective structures and torsion-free affine connections on M , respectively.
First we give the following way of identifying torsion-free affine connections on Mn with

GLn sub-bundles of F2(M).
Given a torsion-free affine connection∇, ∀x ∈ M , the exponential map of∇ at x , denoted

as exp∇x , is a map:

exp∇x : U ⊂ TxM → M, 0 �→ x

Here U is an open set of TxM containing the origin.
We define a bundle inclusion i∇ : F1(M) → F2(M) as follows. Any p ∈ F1(M) in the

fibre of x can be uniquely identified with a linear map p̃ : Rn → TxM . Then we define

i∇(p) = J 2(exp∇x ◦ p̃)(0), ∀p ∈ F1(M).

Let F2
1 (M) = F2(M)/GLn(R), and π2

1 : F2(M) → F1(M) be the canonical projection.
Then the G1(n) reductions of F2(M) correspond exactly to sections of F2

1 (M). Notice that
every section Γ of F2

1 (M) induces a unique natural bundle inclusion:

γΓ : F1(M) → F2(M), π2
1 ◦ γΓ = id.

The identification ∇ �→ i∇ in fact gives a 1–1 correspondence between torsion-free affine
connections on M and GLn reductions of F2(M) by the following summary of Proposition
10 and 11 of [1].

Theorem 2.1 (Nagano and Kobayashi [1]) There is a 1–1 correspondence between torsion-
free affine connections on M and reductions from F2(M) to F1(M) given by the mapping
∇ �→ i∇ . Let θ = θi + θ ij be the canonical form on F2(M) as usual. For a torsion-free
connection ∇, the following holds:

– (i∇)∗θ i is the canonical form on F1(M).
– (i∇)∗θ ij is the connection form for ∇.

The 1–1 correspondence between the projective structures on M and H2(n) reductions of
F2(M) is given by the following: For every torsion-free connection∇ onM , themap i∇ gives
a GLn reduction of the G2(n)-principal bundle F2(M). Since GLn(R) � R

n ∼= H2(n) ≤
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G2(n), it induces a H2(n) sub-bundle P(∇) of F2(M). From Proposition 12 of [1], we have
P(∇) = P(∇) if and only if ∇ and ∇ are projectively equivalent. Here P(∇), along with
its associated normal projective Cartan connection, is called the projective Cartan geometry
associated to [∇].

2.2 Dynamics of projective vector fields near singularities

Every projective vector field X on M for ∇ can be uniquely lifted to a vector field X̃ on
P = P(∇) such that LX̃ω = 0.

Definition 2.3 Let (M, B, ω) be a Cartan bundle. If X̃ ∈ χ(B) is the lift of some vector field
X on M such that LX̃ω = 0, then X̃ is called an infinitesimal automorphism of the Cartan
bundle.

For the flat model (RP
n,G, ωG), the infinitesimal automorphisms are just right invariant

vector fields on G.
Given any torsion-free connection ∇ on Mn , set P = P(∇), and let ω be the normal

projective Cartan connection associated to P . Denote π : P → M the standard projection.
If a projective vector field X vanishes at o ∈ M , we have ∀p ∈ π−1(o), ω(X̃)(p) ∈ h. We
can prove the following local result:

Proposition 2.1 Let X be a projective vector field for (M,∇). Assume Xo = 0 for some
o ∈ M. Then the following are equivalent:

– X is linearizable at o.
– There exist a neighbourhood U of o and a torsion-free affine connection ∇′ ∈ [∇|U ]

such that X is an affine vector field for ∇′.
To prove the proposition above,we need the following.Denoteω the normal projectiveCartan
connection associated to P = P(∇) as before. Fix any p in the fibre of o, and let expp be the
exponential map of ω at p. Then there is a small neighbourhood U of 0 ∈ g−1 � R

n such
that σp = π ◦ expp : U → M gives a local coordinate of M at o. We call such coordinates
the projective normal coordinates of P(∇) at o with respect to p. The local section expp(U )

gives a GLn sub-bundle of P over σp(U ). Then it induces an affine connection ∇U ∈ [∇|U ]
near o. By Theorem 2.1, σp is also a normal coordinate for the affine connection∇U ∈ [∇|U ]
at o.

Lemma 2.1 Suppose X is a projective vector field for∇ such that Xo = 0. Let P = P(∇), and
define ω on P as before. Choose any p ∈ π−1(o), then in the projective normal coordinate
σp of P with respect to p, the form of φt in the local coordinate σp is uniquely determined
by the value of ω(X̃)(p) in the following sense:
For any torsion-free affine connection ∇̂ admitting a projective vector field Y vanishing at ô,
denote ω̂ the associated normal projective Cartan connection of P(∇̂). If ∃ p̂ ∈ π−1(ô) such
that ω(X̃)(p) = ω̂(Ỹ )( p̂) ∈ h, then the flow φt

Y in the coordinate σ p̂ has the same form as
φt in σp.

Proof Let X̃ be the lift of X to P such thatLX̃ω = 0. Because Xo = 0, we have ω(X̃)(p) =
vh ∈ h. Define the following identification along fibres over o:

Δ : H → pH , h �→ ph.
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It follows that Δ∗ω|π−1(o) is the Maurer-Cartan form ωH on H , by Definition 2.1. Let Xh

be a right-invariant vector field on G with ωG(Xh)(1) = vh . Note that ωG(Xh)|H ∈ h, and
LXhωG = 0. It follows that Δ∗(Xh) = X̃ |π−1(o).

Denote Φ the flow generated by X̃ on P , so Φ projects to a flow φt on M fixing o. We
have Φ(t, p) = ph(t), where the function h(t) = exp(tvh). It is evident the function h(t)
depends only on vh . Fix any t0 ∈ R and v ∈ g−1 = R

n , and define the curve l(s) = expp(sv).
Note that π ◦ l(s) is a geodesic of [∇]. Because LX̃ω = 0, we have the following:

lt0(s) := Φ(t0, l(s)) = expph(t0)(sv).

We also obtain

φt0 ◦ π ◦ l = π ◦ lt0 = π ◦ Rh(t0)−1 ◦ lt0 .
By the axioms of the Cartan connections, we get

Rh(t0)−1 ◦ lt0(s) = expp(s(Ad(h(t0)(v)))).

Define v′ = Ad(h(t0)(v)), then v′ is totally determined by value of v and h(t0). We define
the curve

f (s) := Rh(t0)−1 ◦ lt0 .
Because π ◦ l(s) is geodesic of [∇], one has π ◦ f (s) is also a geodesic of [∇]. Denote v′−1
the g−1 component of v′. One has π ◦ f (s) and π ◦ expp(sv′−1) are geodesics for [∇] with
the same initial condition. It follows that on a small interval I containing 0, f (s) : I → P
can be written in the following form:

f (s) = expp(r(s)v
′−1)g(s), r(s) : I → R, g(s) : I → H .

r(0) = 0, g(0) = 1.

Differentiating the equation, we obtain

v′ = ω

(
d f

ds

)
= Ad(g(s)−1)(r ′(s)v′−1)+ ωH (g′(s)).

Given a pair of functions {r(s), g(s)}, whether it is a solution to this equation depends only
on v′, independent of the connection ω. On the other hand, the definition of the exponential
map implies that the solution {r(s), g(s)} satisfying the condition g(0) = 1 and r(0) = 0 is
unique. Note that v′ and v′−1 only depend on v and h(t0). It follows from the uniqueness that
{r(s), g(s)} depends only on v and h(t0). In particular, the functions r(t) and v′ ∈ R

n depend
only on the parameters v, vh, t0, regardless of the connection ω. Given any two projective
connections ω and ω′ on the H2(n) bundle P , as long as the parameters v, vh, t0 are the
same, we get the same the function r(t) and v′ ∈ R

n . It follows that φt0 in the projective
normal coordinates of P with respect to p depends only on h(t0). Let Y be a projective
vector field for ∇̂ vanishing at ô as in Lemma2.1. Hence, there exists p̂ ∈ π−1(ô) such that
ω(X̃)(p) = ω̂(Ỹ )( p̂) implies φt

Y in σ p̂ has the same form as φt in σp . This completes the
proof. ��
Suppose X is a projective vector field for (M,∇) vanishing at o, and fix any p ∈ π−1(o). As
before, choose some right invariant vector field Ỹ on G such that ωG(Ỹ )(1) = ω(X̃)(p) ∈ h,
and let Y be the projection of Ỹ on RP

n . Then X in the projective normal coordinates of
P with respect to p has the same form of Y in the projective normal coordinates of the flat
model with respect to 1 ∈ G. Note the algebra of the projective vector fields has maximal
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dimension on the flat model. Thus by computations on the flat model, we obtain all possible
forms of projective vector fields with a singularity at o in the projective normal coordinates
of P with respect to p.

Lemma 2.2 Let X be a projective vector field for (M,∇) with Xo = 0. For any p ∈ π−1(o),
X has the following form in the projective normal coordinates of P(∇) with respect to p.

Xx = Ax + 〈w, x〉x, A ∈ Mn(R), w ∈ R
n .

In addition, X is linearizable if and only if w ∈ ImAT .

Proof Let X be a projective vector field for (M,∇) such that Xo = 0, and choose any
p ∈ π−1(o). First we show X has the form: Xx = Ax + 〈w, x〉x in the projective normal
coordinates of P(∇) with respect to p. By Lemma2.1 and the argument in the previous
paragraph, we only need to show for the flat bundle P = (RP

n,G, ωG), X is in this form in
the projective normal coordinates with respect to p = 1 ∈ G. In this case, the exponential
map expp gives the canonical coordinate i

−1
0 of RP

n at e0 defined on Page 5. The projective
vector fields fixing o = e0 ∈ RP

n are induced by linear vector fields in R
n+1 fixing the line

e0. Projecting these vector fields to RP
n , we get X has the form Xx = Ax + 〈w, x〉x in the

projective normal coordinates with respect to p.
Next we show X in this form is linearizable if and only if w ∈ ImAT . If w /∈ ImAT , we

have w = wk + w′ with wk �= 0, where wk ∈ KerA and w′ ∈ ImAT . Denote φt the flow
generated by X as usual. In the projective normal coordinates of P(∇) with respect to p, for
some small interval I containing 0, we have

φt (swk) = s

1+ tas
wk, s ∈ I , a �= 0.

Note that Dφt (o)(wk) = wk �= 0. Without loss of generality, we can assume a > 0. For

s > 0, we have
s

1+ tas
→ 0 as t → +∞. Then X is not linearizable by Lemma 4.6 of

[8]. Conversely, if w ∈ ImAT , the calculation in Remark 2.1 below shows that one can find
p′ ∈ π−1(o) such that Xx = (Ap′)x in the projective normal coordinates with respect to p′.
Hence it is linearizable. ��

Remark 2.1 To simply the calculations later, suppose X vanishes at o. Note that for any A ∈
Mn(R), we can writeR

n = Im(AT )
⊕

KerA. Then for any p ∈ π−1(o), this decomposition
of R

n gives

Sp = ω(X̃)(p) =
[−b wT

i A + wT
k

0 B

]
∈ sln+1(R).

A = B + b · I d, wk ∈ KerA.

DefineC =
[
1 −wT

i
0 I d

]
, we haveCSpC−1 =

[−b wT
k

0 B

]
. In other words, given any local

coordinate σ̃ : U ⊂ R
n → M , with σ̃ (0) = o, we can choose some p̃ ∈ π−1(o) such that

the projective normal coordinate σ p̃ with respect to p̃ of P satisfies:

J 1(σ̃ )(0) = J 1(σ p̃)(0), ((σ−1p̃ )∗X)x = Ax + 〈w, x〉x, w ∈ KerA.

With the results above, we can prove Proposition2.1.
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Proof (Proof of Proposition 2.1) By Remark 2.1, we can always choose some p ∈ π−1(o)
such that in the projective normal coordinate σp of P(∇) with respect to p, X has the
following form:

Xx = Ax + 〈w, x〉x, w ∈ KerA.

If X is linearizable at o, we have w ∈ ImAT by Lemma2.2. It follows that w = 0, then X
is linear in σp and ω(X̃)(p) ∈ g0. According to Theorem 2.1 by Nagano and Kobayashi,
the GLn sub-bundle P1 of F2(M) induced by the local section expp(g−1) corresponds to
a connection ∇′ projectively equivalent to ∇ locally defined near o. Then P1 ⊂ P(∇) is
invariant by the flow of X̃ because ω(p)(X̃) ∈ g0. We have

X̃ |P1 ⊂ T P1, LX̃θ ij |P1 = LX̃ωi
j |P1 = 0.

Hence, X is affine for ∇′ by the last statement of Theorem2.1. The converse is trivial as
affine vector fields of ∇′ vanishing at o are clearly linear in the normal coordinates of ∇′ at
o. ��
Suppose that X is a non-linearizable projective vector field for (M,∇) vanishing at o ∈ M .
For each a > 0, we can choose a neighbourhood Ua of o such that φt is well defined on Ua

for t ∈ I = [−a, a]. One has on Ua , ∇t = φt∗∇ is projectively equivalent to ∇ for t ∈ I .
If γ (s) is a geodesic segment for ∇ contained in φt0(Ua) with t0 ∈ I , then φ−t0 ◦ γ (s) is a
geodesic segment on Ua for ∇t0 . This leads to the following:

Corollary 2.1 Let X be a projective vector field for (M,∇) admitting a non-linearizable
vanishing point o ∈ M. Then for each t �= 0, we have

∇t = ∇ + ηt ⊗ I d + I d ⊗ ηt , (ηt )o �= 0.

Proof Suppose that ηt0(o) = 0 for some t0 �= 0. The connection∇ induces aGLn sub-bundle
P1 of P(∇). Choose p ∈ π−1(o) ∩ P1. Since X is non-linearizable at o, in the coordinate
σp , we may write

Xx = Ax + 〈w, x〉x, 0 �= w /∈ ImAT .

Let ∇p be the connection induced by the local section expp(g−1) at p. Then the type (2,1)-
tensor (∇p −∇) vanishes at o. Thus we can assume that ∇ is ∇p in this proof. In the normal

coordinates of∇ at o, denote Γ k
i, j and Γ k

i, j the Christoffel symbols of∇ and∇t0 , respectively.

It follows that Γ k
i, j (o) = Γ k

i, j (o) = 0, because of (ηt0)o = 0. By calculations of the proof of
Theorem2.1 of Nagano and Kobayashi in [1], the exponential maps of ∇ and ∇t0 at o have

the same 2-jet. Denote exp∇o and exp
∇t0
o the exponential maps of∇ and ∇t0 at o, respectively.

Note σp is a normal coordinate of ∇ at o. In the coordinate σp , choose wk ∈ KerA with
〈wk, w〉 �= 0. Then in the coordinate σp , the curve γ (s) = swk is a non-trivial parametrized
geodesic of ∇. Then There exists some s0 > 0 such that γ t0(s) = φ−t0 ◦γ (s) is well defined
for |s| < s0. Note thatwk ∈ KerA implies the flow φt preserves the unparametrized geodesic
γ . Because 〈w,wk〉 �= 0, we have in σp:

γ t0(s) = φ−t0 ◦ γ (s) = s

1+ as
wk, a �= 0.

Then near s = 0, we can define the function

f (s) := (γ−1 ◦ γ t0)(s) = s

1+ as
.
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It is a local diffeomorphism fixing 0 ∈ R. The map φ−t0 takes geodesics of ∇ to geodesics
of ∇t0 , so γ t0(s) is a geodesic for ∇t0 such that

(γ t0)′(0) = (γ )′(0) = wk .

Near s = 0, we have

γ (s) = exp∇o (swk), γ t0(s) = exp
∇t0
o (swk).

The exponential maps ∇ and ∇t0 have the same 2-jets at o, so γ (s) and γ t0(s) have the same
2-jets at s = 0. This implies the function f (s) has a trivial 2-jet at s = 0. But we have

d2

ds2

∣∣∣∣
s=0

f (s) = −2a �= 0.

Thus we have a contradiction. ��

2.3 BM-structures and degree of mobility

In general, there is an affine bijection between the elements in a given projective class [∇]
on the manifold Mn and the 1-forms on Mn . The latter is an infinite dimension vector space,
and is hard to analyse. So our focus is to study the metrizable elements of [∇], where ∇ is a
Levi-Civita connection. From now on, let g be a semi-Riemannian metric on Mn , and denote
∇ its Levi-Civita connection.

For any metric g on M , the g-strength of g is defined to be the (1,1)-tensor Kg such that

g(u, v) = g

(
K−1g

|det(Kg)| · u, v

)
.

Wedefine amapρ(g) from the space ofmetrics onM to the space of non-degenerate g-adjoint
(1,1)-tensors on M as follows:

ρ(g)(g) = Kg.

Clearlyρ(g) is a bijection from themetrics onM to the non-degenerate g-adjoint (1,1)-tensors
on M .

Let f : Mn → Nn be a smooth embedding. Fixmetrics g1 onM and g2 on N , respectively.
We define the linear map ρ f (g1, g2) : T 1,1N → T 1,1M by

ρ f (g1, g2)(T ) = f∗T ◦ (ρ(g1)( f
∗g2)).

Analogous to Fact 2.1 of [11], if g′2 is a metric on N , we have

ρ f (g1, g2)(ρ(g2)(g
′
2)) = ρ(g1)( f

∗g′2).

The map defined above is multiplicative in the following sense: Let f1 : N1 → N2, and
f2 : N2 → N3 be smooth embeddings. Fix metrics gi on Ni , then we have

ρ f1◦ f2(g1, g3) = ρ f1(g1, g2) ◦ ρ f2(g2, g3). (4)

To proceed, we need the following definitions from Section 2 of [2]:
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Definition 2.4 Suppose g is a metric on Mn , the space of BM-structures on M for g, denoted
as B(M, g), is the space of g-adjoint (1,1)-tensors on M satisfying the following linear PDE,
∀u, v, w ∈ TxM, ∀x ∈ M :

g((∇wK )u, v) = 1

2
(d(tr K )(u)g(v,w)+ d(tr K )(v)g(u, w)). (5)

The degree of mobility of g on Mn , denoted as D(Mn, g), is the dimension of the vector
space B(Mn, g).

According to Equation (7)–(9) of [6], the non-degenerate elements of B(M, g) are exactly
the g-strength of the metrics projectively equivalent to g on M . Equation (5) is finite-type
by Remark 5 of [6], so the solutions on each connected component are uniquely determined
by the k-th jet at a single point for some k ∈ N. Then we always have D(Mn, g) < ∞. In
fact, according to Section 3 of [13] , [∇] defines a linear connection on some vector bundle
V M � ⊙2 T M ⊕ T M ⊕ C∞(M). By Theorem 3.1 of [13], solutions to Eq. (5) are 1–1
correspondencewith parallel sections on V M . Hence, ifMn is connected, we have D(Mn, g)
is at most the rank of V M :

D(Mn, g) ≤ (n + 1)(n + 2)

2
.

We give a brief review of the Splitting Lemma used later in this paper. Given any K ∈
B(Mn, g), denote χ(t) its characteristic polynomial in t . We say χ(t) admits an admissible
factorization at x ∈ M , if χ(x)(t) = χ1(x)(t) · χ2(x)(t), where χ1(x)(t) and χ2(x)(t) are
non-constant polynomials in t such that χ1(x)(t) = 0 and χ2(x)(t) = 0 have no common
root. Since the eigenfunctions of K can be chosen continuously, we have χ(t) admits such
an admissible factorization on some neighbourhood Ux of x . Then the following Splitting
Lemma from [4] allows us to write the pair (g, K ) in block diagonal forms on Ux .

Lemma 2.3 (Matveev and Bolsinov [4]) Suppose the characteristic polynomial χ(t) of K ∈
B(Mn, g) admits an admissible factorization χ(t) = χ1(t)χ2(t) on some neighbourhood
Ux of x. Then there are local coordinates (x1, . . . , xr , y1, . . . , yn−r ) at x such that the pair
(g, K ) can written in the following block diagonal form:

g =
[
h1χ2(K1) 0

0 h2χ1(K2)

]
, K =

[
K1 0
0 K2

]
,

where the pairs (h1, K1) and (h2, K2) depend only on the xi and y j coordinates, respectively.
In addition, let E1 and E2 be distributions spanned by {∂xi }ri=1 and {∂ y j }n−rj=1, respectively.
Then Ki is a BM-structure with the characteristic polynomial χi (t) for hi on each integral
submanifold of Ei , respectively.

From now, assume M is connected. Let U be an open subset of M . Then ∀K ∈ B(M, g),
we have K |U ∈ B(U , g). The following restriction map is injective, since M is connected.

RU : B(M, g)→ B(U , g), K �→ K |U .

We can view B(M, g) as a linear subspace of B(U , g). Suppose X is a projective vector field
for (Mn, g), and denote φt the flow generated by X . Further assume that ∃a > 0 such that
φt (x) is defined for ∀x ∈ U , and ∀t ∈ I = [−a, a]. Then the flow φt induces a well defined
1-parameter family of maps Lt : B(M, g) → B(U , g) for t ∈ I as follows. Fix any x ∈ U
and t ∈ I . Suppose g is a metric defined on some neighbourhood Vt of φt (x) such that g and
g are projectively equivalent on Vt . Near x , we have (φt )∗g is a metric projectively equivalent
to g. Denote Kt the g-strength of (φt )∗g, so it is well defined on U . Then near x , the tensor
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ρφt
(g, g)(Kg) = φt∗(Kg)◦Kt is a solution to Eq. (5). For any y ∈ M , we can always choose a

neighbourhoodUy of y such that B(Uy, g) has a basis consisting of non-degenerate elements.
This implies for each t ∈ I , ρφt

(g, g) defines a linear map Lt : B(M, g) → B(U , g) by
Lt (K ′) = ρφt

(g, g)(K ′).
If we further assume that D(U , g) = D(M, g), every K ′ ∈ B(U , g) can be uniquely

extended to an element in B(M, g). To simplify the notation, define B = B(M, g). Then
one can take Lt as a map Lt : B → B for each t ∈ I . A natural question to ask is whether Lt

can be extended to a 1-parameter subgroup of GL(B). This leads to the following lemma.

Lemma 2.4 Let (Mn, g) be connected with a projective vector field X. Suppose X vanishes
at o ∈ M. Assume that U with D(U , g) = D(M, g) is a connected open set containing o
such that φt is defined on U for t ∈ I = [−a, a] for some a > 0. Then the map Lt : B → B
defined in the previous paragraph satisfies the following:

– Lt+s = Lt ◦ Ls for t, s, t + s ∈ I .
– The representation Lt : I → GL(B) is continuous in t.

In other words, Lt can be extended to a 1-parameter subgroup of GL(B).

Proof Fix any K ′ ∈ B = B(M, g). For any t ∈ I , Lt (K ′) is the unique element in B(M, g)
such that:

Lt (K
′)|U = φt∗(K ′) ◦ Kt ∈ B(U , g).

Note that given the embedding φt : U → M , we have on U :

Lt (K
′)|U = ρφt

(g, g)(K ′).

The embedding φs : U → M gives

Ls(Lt (K
′))|U = ρφs

(g, g)(Lt (K
′)).

Because X vanishes at o, there is some neighbourhoodUo of o such that φs(Uo) ⊂ U . Then
we get the following sequence of embeddings:

Uo
φs

−→ U
φt

−→ M .

Because t, s, t + s ∈ I , by Eq. (4), we have on Uo:

Ls(Lt (K
′))|Uo =

(
ρφs

(g, g) ◦ ρφt
(g, g)

)
(K ′), (6)

= ρφt+s
(g, g)(K ′), (7)

= Lt+s(K ′)|Uo . (8)

Since U is connected, any BM-structure on U is uniquely determined by its k-th jet at o for
some k ≥ 0. Then Lt+s(K ′) = Ls ◦ Lt (K ′) onUo implies Lt+s(K ′) = Ls ◦ Lt (K ′) on Mn .

Next we show the representation Lt : I → GL(B) is continuous in t . Because Lt is linear
for each t and B is a finite dimensional vector space, it is sufficient to show for any fixed
K ′ ∈ B, Lt (K ′) is continuous in t . Fix a compact neighbourhood Vo ⊂ U of o and a basis
{K i } for B. Then we can write Lt (K ′) =∑

ci (t)K i , where ci : I → R. Since (5) is of finite
type, {K i } are linearly independent over Vo. We have on U ⊃ Vo, Lt (K ′) = φt∗(K ′) ◦ Kt .
Then for any fixed t0 ∈ I , as t → t0, we have Lt (K ′)→ Lt0(K

′) uniformly on V0. Then for
each i , as t → t0, we have ci (t) → ci (t0). This proves the continuity of Lt : I → GL(B).
This implies Lt can be extended to a continuous map defined on R with Lt ◦ Ls = Lt+s .
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Hence the image ofR
2 under the map (Lt , I d) is a closed subgroup inGL(B)×R. It follows

that Lt can be extended to a 1-parameter subgroup of GL(B). ��
The following shows the neighbourhood U in Lemma2.4 always exists.

Lemma 2.5 Let (Mn, g) be a connected manifold. Suppose X is a projective vector field for
g vanishing at o ∈ M. Then there exists a connected open set U containing o such that
D(U , g) = D(Mn, g), and ∃a > 0 such that φt is well defined on U for t ∈ I = [−a, a].
Proof Define the following sets:

Si =
{
x ∈ M : φt (x) is well defined for t ∈

[
−1

i
,
1

i

]}
.

Without loss of generality, we can assume o ∈ I nt(Si ) for all i . Let Ui be the component of
I nt(Si ) containing o. Since each Ui is open and connected, it is also path connected. Given
any x ∈ Ui , let γx be a curve in Ui joining o and x . Then clearly γx ⊂ I nt(Si+1). It follows
thatUi ⊂ Ui+1. Similarly, given any x ∈ M , we can choose a curve γ ′x in M joining o and x .
Then there exists ε > 0 and a neighbourhoodUε of γ ′x such that φt is well defined onUε for
t ∈ [−ε, ε]. It follows that x ∈ Ui for some i , hence

⋃∞
i=1Ui = M . We have an increasing

sequence of open sets containing o:

o ∈ U1 ⊂ U2 ⊂ · · · ,

∞⋃
i=1

Ui = M .

Because eachUi is connected, the restriction map gives a sequence of injective linear maps:

B(U1, g)
r1←− B(U2, g)

r2←− · · ·
We have D(Ui , g) ≥ D(M, g), and D(U1, g) < ∞. It follows that there exists some i0
such that r j : B(Uj+1, g) → B(Uj , g) are linear isomorphisms for all j ≥ i0. Then any
K̃ ∈ B(Ui0 , g) can be uniquely extended to an element in B(Uj , g) for all j ≥ i0. Because a
BM-structure on a connected manifold is uniquely determined by its finite jet at some point,
we have K̃ can be extended to an element in B(M, g). Then we get D(Ui0 , g) = D(M, g).
This completes the proof. ��
Let U be constructed by the lemma above. The map Lt can be extended to a 1-parameter
subgroup ofGL(B), also denoted as Lt . By the following, this construction is in fact coherent.

Corollary 2.2 Let X be a projective vector field for (M, g) vanishing at o. Suppose M is
connected. Let U,I , and Lt be constructed as above. Given any t0 ∈ R, there exists some
neighbourhood Vt0 of o such that φ

t is well defined for |t | ≤ |t0|, and Lt0(K
′)|Vt0 = φ

t0∗ (K ′)◦
Kt0 on Vt0 .

Proof Without loss of generality, assume t0 > 0. LetU , I be the same as in Lemma 2.4, and
t0 = nt1 with t1 ∈ I . Given any K ′ ∈ B � B(U , g) and t ∈ I , there is some neighbourhood
Vt of o such that φt (Vt ) ⊂ U . In particular, we have Lt1(K

′)|Vt1 = φ
t1∗ (K ′) ◦ Kt1 . Assume

there is some neighbourhood Vmt1 ⊂ U of o such thatφs(Vmt1) is defined for s ∈ [−mt1,mt1]
such that

Lmt1(K
′)|Vmt1

= φmt1∗ (K ′) ◦ Kmt1 .
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We can choose some V(m+1)t1 such that

o ∈ V(m+1)t1 ⊂ Vmt1 ⊂ U , φt ′(V(m+1)t1) ⊂ Vmt1 f or t ′ ∈ I .

Then φs is well defined on V(m+1)t1 for s ∈ [−(m+1)t1, (m+1)t1]. This implies on V(m+1)t1 :

L(m+1)t1(K ′)|V(m+1)t1 = Lt1(Lmt1(K
′))|V(m+1)t1 , (9)

= φt1∗ (Lmt1(K
′)) ◦ Kt1 , (10)

= φt1∗ (φmt1∗ (K ′) ◦ Kmt1) ◦ Kt1 , (11)

= φ(m+1)t1∗ (K ′) ◦ K(m+1)t1 . (12)

By induction, we have on Vt0 = Vnt1 , Lt0(K
′)|Vt0 = φ

t0∗ (K ′) ◦ Kt0 . ��

3 Local results and general theory whenD(M,g) is 2

Let (Mn, g) be a connected manifold with D(M, g) = 2. Let X be a projective vector field
for g with a singularity o. Denote φt the flow generated by X . Suppose X is not linearizable
at o. Then Lt is a 1-parameter subgroup of GL(B) � GL2(R). By Corollary 2.2, for any
fixed t ∈ R, on some neighbourhood Vt of o, we have

Lt (K
′) = φt∗(K ′) ◦ Kt .

In particular on Vt , we have Lt (I d) = Kt . By Corollary2.1, for any t �= 0, the metrics gt and
g are not affine equivalent on any neighbourhood of o. This implies the eigenfunctions of Kt

are not all constant on any neighbourhood of o. Otherwise by Eq. (5), we get ∇Kt = 0 near
o, then gt and g are affine equivalent near o. The group Lt is elliptic if and only if its action
on P(B) is periodic. Suppose Lt is elliptic, then ∃t0 �= 0 such that Kt0 = Lt0(I d) = r I d
with r �= 0. Thus Lt cannot be an elliptic 1-parameter subgroup of GL(B). We can prove
Lt is in fact parabolic:

Theorem 3.1 Let (Mn, g) be a connected semi-Riemannian manifold with D(M, g) = 2. Let
X be a projective vector field for g vanishing at o. Suppose X is not linearizable at o ∈ M,
then Lt is a 1-parameter parabolic subgroup of GL(B).

The idea of the proof of Theorem 3.1 follows from [11] by Zeghib. Before proving the
theorem, we make the following observation. Let U , I , Lt be as before. Fix any t0 �= 0, we
have {Lt0(I d), I d} is a basis for B. Write K for Lt0(I d) for simplicity. Analogous to Section
4.2.1 of [11], we can write

Lt0(K ) = αK + β I d, Lt0(I d) = K . (13)

As in Section 4.2 of [11], define the associated Mobius map

T : Ĉ → Ĉ, T (z) = αz + β

z
.

Now further assume t0 ∈ I , then we have K |U = Kt0 . Thus for x ∈ U , we have

(αK + β I d)x =
(
Lt0(K )

)
x = (φt0∗ (K ) ◦ Kt0)x = (φt0∗ (K ))x ◦ K x . (14)

For x ∈ U , we have det(K x ) = det((Kt0)x ) �= 0. This give the following:

(φt0∗ (K ))x = (Dφt0
x )−1K φt0 (x)Dφt0

x = (α I d + βK
−1

)x .
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Note the right hand side is (T (K ))x . It follows that K φt0 (x) and (T (K ))x have the same
Jordan form. For x ∈ U , we get

T (Spec(K x )) = Spec
(
K φt0 (x)

)
. (15)

To prove Theorem 3.1, we also need the following lemma.

Lemma 3.1 Suppose Lt is induced by a projective vector field admitting a non-linearizable
vanishing point o ∈ M. Fix any t0 �= 0, and define K and T as before. Then Lt defines a
non-trivial 1-parameter parabolic or hyperbolic subgroup of PGL(B) acting on P(B). Its
fixed set on P(B) is exactly the following:

Do = {[K − r I d] : r ∈ Spec((K )o) ∩ R}
Moreover, the fixed set of the Mobius map T on Ĉ is exactly Spec(Ko).

Proof As we have already noted in the first paragraph of this section Lt is either hyperbolic
or parabolic. Then for any t0 �= 0, the fixed set of Lt0 on P(B) is the fixed set of Lt on P(B).
It is clearly non-empty. For any fixed t0 �= 0, by Corollary 2.2, there is a neighbourhood V
of o such that

Lt0(K
′)|V = φt0∗ (K ′) ◦ Kt0 , ∀K ′ ∈ B.

Then (Lt0(K
′))o is degenerate if and only if (K ′)o is degenerate. For K ∈ B, we have

K ∈ Do if and only if K is degenerate at o. This implies Lt0 takes Do ⊂ P(B) to itself.
Because Do is a finite discrete subset of P(B), we have Lt fixes all elements in Do.

Suppose that there is some [K − r0 I d] /∈ Do fixed by Lt , and we seek a contradiction.
Let K 1 = K − r0 I d , then Lt (K 1) = ect K 1, for some c ∈ R. Note K 1 is non-degenerate
near o. Then K 1 defines a metric gK 1 projectively equivalent to g on some neighbourhood
Vo ⊂ U of o. Because Lt (K 1)|U = φt∗(K 1)◦Kt for t ∈ I , we have X is a homothetic vector
field for gK 1 . This is impossible. Also note that Lt does not fix the line [I d], otherwise X is
a homothetic vector field for g. This proves the fixed set of Lt on P(B) is exactly Do

For any fixed t0 �= 0, the associated Mobius map is of the form T (z) = αz + β

z
. Under

the basis {K , I d}, Lt0 has the following matrix representation:[
α 1
β 0

]
.

Denote F(T ) the fixed set of T on Ĉ. Then Lt0 fixes exactly Do implies F(T )∩R is exactly
Spec(Ko)∩R. Because Lt0 is non-elliptic, it fixes some line [K −r0 I d] ∈ Do. It follows that
β = −r0(α− r0) with r0 ∈ R. Then the equation z2 = αz+β has 1 or 2 distinct real root. In
either case, we have F(T ) is a subset of R, so F(T ) = Spec(Ko)∩R. In addition, the finite
subsets of Ĉ preserved by T are subsets of F(T ). According to Eq. (15), we have Spec((K )o)

is a finite set preserved by T . It follows that F(T ) = Spec((K )o). This completes the proof.
��

Now we can prove Theorem 3.1.

Proof (Proof of Theorem 3.1) The general scheme of this proof is as follows. First, we use
the normal form of X given in Lemma 2.2 to obtain the dynamics of φt on some special
geodesic curve γ . Assume Lt is hyperbolic and fix some t0 �= 0. The Splitting Lemma
allows us to write (g, Kt0) in block diagonal forms. Using this and the hyperbolicity of T ,
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we study the behaviour of the eigenfunctions of Kt0 along γ . The dynamics of φt0 along γ

and the dynamics of the associated Mobius map T are related by eigenfunctions of Kt0 as in
Eq. (15). We use this to derive a contradiction.

By Lemma 3.1, Lt is either hyperbolic or parabolic. Suppose Lt is hyperbolic. Choose
0 �= t0 ∈ I , then Kt0 is the g-strength of gt0 onU . Denote∇ the Levi-Civita connection for g.
Let P = P(∇) be the projective Cartan bundle for ∇. Then ∇ induces a GLn sub-bundle Γ

of P . Choose p ∈ Γ ∩π−1(o). The section given by expp(g−1) locally defines a torsion-free
affine connection ∇ ∈ [∇|V ] on some neighbourhood V of o. Let σp be a projective normal
coordinate of P with respect to p. Clearly by Theorem 2.1, σp is a normal coordinate of ∇
at o. Because X is not linearizable at o, by Lemma 2.2, (σp)

−1∗ X has the following form:

Xx = Ax + 〈w, x〉x, w /∈ Im(AT ).

Choose v ∈ KerA such that 〈w, v〉 �= 0. In the local coordinate σp , there exists a �= 0 and
ε > 0 such that

φt (yv) =
(

y

1+ tay

)
v, y ∈ (−ε, ε), t ∈ I . (16)

Let γ (s) and γ (s(y)) be geodesics with initial vector (σp)∗v for ∇ and ∇, respectively.
Denote E : ToM → M and E : ToM → M the exponential maps for ∇ and ∇ at o,
respectively. From Theorem 2.1 by Nagano and Kobayashi, we have J 2(E)(0) = J 2(E)(0),
because p ∈ Γ ∩ π−1(o). Then we obtain

ds

dy
(0) = 1,

d2s

dy2
(0) = 0. (17)

Note that φt preserves the unparametrized geodesic given by γ . Then for small s, define a
parametrized family of functions τt with τt (0) = 0 for t ∈ I by the following:

φt ◦ γ (s) = γ (τt (s)).

Let τ = τt0 for simplicity. From Eq. (16), we also have
dτ

ds
(0) = 1. As in Equation (5) of

[6], define the function:

ψ(s) = −1

2
log(det(Kt0))(γ (s)).

Then for small s, we have by Equation (2) and (3) of [6]:

dψ

ds
= 1

2

d

ds

(
log

(
dτ

ds

))
.

It follows that
dψ

ds
(0) = 1

2

d2τ

ds2
(0). According to Lemma 3.1, Spec((Kt0)o) = {λu, λb} ⊂ R.

Here λu, λb are the unstable and stable fixed point of the associated Mobius map T (z) =
αz + β

z
, respectively. We can apply the Splitting Lemma (Lemma2.3). On some neighbour-

hood V ′ ⊂ V of o, there is a smooth local coordinate in which Kt0 can be written in the
following block-diagonal form:

Kt0 =
[
Ku 0
0 Kb

]
, Spec((Ku)o) = {λu}, Spec((Kb)o) = {λb}.
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We may choose V ′ small enough so that Spec(Ku)|V ′ ⊂ Du , and Spec(Kb)|V ′ ⊂ Db. Here
Du, Db are 2 disjoint disks in C centered at λu, λb, respectively. It follows that

ψ(s) = −1

2
(log(det(Ku))(γ (s))+ log(det(Kb))(γ (s))) . (18)

Define fu(s) = det(Ku)(γ (s)), and fb(s) = det(Kb)(γ (s)). Without loss of generality, let
us assume t0a > 0. From Eq. (16), for small s > 0, we have τ(s) < s, and φmt0(γ (s)) → o
as m → +∞. If we choose the eigenfunctions of Ku and Kb to be continuous on V ′, then
it can be shown that the eigenfunctions of Ku have to be constant on γ (s) for small s > 0.
Suppose this is not the case. Let k̃u be an eigenfunction of Ku , and write ku(s) = k̃u(γ (s)).
Then there is some s0 > 0 such that γ ([0, s0]) ⊂ V ′, ku(s0) �= λu .

γ ([0, s0]) ⊂ V ′ ⊂ V  ⇒ φt0 ◦ γ ([0, s0]) ⊂ γ ([0, s0]).
The map T is continuous on Ĉ. Therefore, Tm ◦ ku : [0, s0] → Ĉ is a continuous map for
each m. For large m, we have Tm(ku(s0)) ∈ Db. On the other hand, for any s′ ∈ [0, s0] we
have

Tm(ku(s
′)) ∈ Spec

(
(Kt0)(φ

mt0 ◦ γ (s′))
) ⊂ Du ∪ Db.

Because Tm(ku(0)) = λu for all m, we have Tm ◦ ku([0, s0]) is not connected for large m.
This contradicts the continuity.

The above implies fu(s) is constant for small s ≥ 0. Similarly, we can prove fb(s) is

constant for small s ≤ 0. From Eq. (18), we have
dψ

ds
(0) = 0. It follows that

d2τ

ds2
(0) = 0.

Define the Mobius map T̂ (y) = y

1+ t0ay
. From Eq. (16), we have near 0:

τ ◦ s(y) = s ◦ T̂ (y).

By Eq. (17), we have J 2(τ )(0) = J 2(T̂ )(0). This gives
d2

dy2
(T̂ )(0) = 0, which is clearly

impossible because t0a �= 0. We obtain a contradiction. Hence Lt can only be a 1-parameter
parabolic subgroup of GL(B). ��

4 Global results when (Mn,g) is closed or Riemannian

4.1 Result for the case g is Riemannian, proof of Theorem 1.3

In this section, we give the proof of Theorem 1.3 stated in the introduction.
Before we prove the theorem, we make the following observations. Let (Mn, g) with

n ≥ 3 be a connected Riemannian manifold with D(Mn, g) = 2. Then ∀K ′ ∈ B(M, g),
K ′ is real diagonalizable, because it is a self-adjoint operator for the Riemannian metric g.
Let U , I , Lt be as before. We know from Theorem 3.1 that Lt is a 1-parameter parabolic
subgroup. Fix any 0 �= t0 ∈ I , by Lemma 3.1, (Kt0)o has only 1 real eigenvalue λ > 0.
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We have (Kt0)o = λI d . Because X is not linearizable at o, by Lemma 2.2, (Dφt )o fixes
some non-zero v ∈ ToM . It follows that

g(v, v) = gt0(v, v) = 1

det((Kt0)o)
g((Kt0)

−1
o v, v).

Then we have λ = 1, and (Kt0)o = I d . By Lemma3.1, the associated Mobius map for Lt0

is T (z) = 2z − 1

z
.

Now we are ready to prove Theorem 1.3.

Proof (Proof of Theorem 1.3) First we prove D(Mn, g) ≥ 3. Suppose D(M, g) = 2, and
we try to obtain a contradiction.

Let U , I , Lt be constructed as before. Fix some 0 < t0 ∈ I . We have (φt )∗g(o) = g(o)
for all t ∈ I . This implies (Dφt )o is a 1-parameter subgroup of SO(g) at o. By Remark2.1,
we can choose p ∈ π−1(o) such that in the projective normal coordinate σp of P = P(∇)

with respect to p, X has the following form:

Xx = Ax + 〈w, x〉x, A ∈ so(n), w = −e1 ∈ KerA.

Then in this local coordinate σp , the flow φt of X has the following form:

φt (x) = 1

1+ t x1

(
et Ax

)
, x = (x1, . . . , xn). (19)

Choose a convex neighbourhood C of o which lies in the image of the local coordinate σp .
By Corollary 3 of [2], for all i ∈ {1, . . . , n − 1}, the eigenfunctions λi of Kt0 are globally
ordered on C in the following sense:

– λi (x) ≤ λi+1(y) for all x, y ∈ C .
– If ∃x ∈ C such that λi (x) < λi+1(x), then λi (y) < λi+1(y) for almost all y ∈ C .

At o, we have λi (o) = 1 for all i . Note that n ≥ 3 implies λ2 = · · · = λn−1 ≡ 1 on C .
Indeed it follows that for n ≥ 3, λ1(x) ≤ λ2(x) = 1, and λn(x) ≥ λn−1(x) = 1 for all
x ∈ C . We can show all eigenfunctions λi have to be constant on C . In the coordinate σp ,
define the following subsets of C :

C+ = {x ∈ C : x1 > 0}, C− = {x ∈ C : x1 < 0}.
If ∃x1 ∈ C such thatλ1(x1) < 1,we can find x0 ∈ C+ such thatλ1(x0) < 1, andφt (x0) ∈ C+
for all t ≥ 0. Denote D the closure of the integral curve of φt (x0) for t ≥ 0, then clearly
D ⊂ C . From Eq. (19), we can see D is compact and connected. Hence λ1(D) is an interval
I1 = [d, 1]with d < 1. The eigenfunctions of Kt0 are all positive onU , sowe have 0 < d < 1

and 0 < λ1(x) ≤ 1 ∀x ∈ D . Because T (z) = 2z − 1

z
is monotonically increasing on R

+,
we have T (λ1(x)) = λ1(φ

t0(x)) for all x ∈ D . It follows that

T ([d, 1]) = T (λ1(D)) = λ1(φ
t0(D)) ⊂ λ1(D) = [d, 1], 0 < d < 1.

This is clearly impossible for the Mobius map T (z) = 2z − 1

z
as T (d) < d for 0 < d < 1.

Hence λ1 ≡ 1 on C . Replacing C+ with C−, and T with T−1, respectively, we can show
λn ≡ 1 on C . It follows that all eigenfunctions of Kt0 are constant on C .

If all eigenfunctions of Kt0 are constant on C , the metrics gt0 and g are affine equivalent
on C . This is clearly impossible by Corollary 2.1. It follows that D(M, g) �= 2.
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Since X is a projective vector field for (Mn, g), according to Section 2.1 of [2], we have

K ′ = g−1LX g − 1

n + 1
Tr(g−1LX g) · I d ∈ B(M, g).

Then D(M, g) = 1 implies that X is a homothetic vector field for g, which is impossible.
Hence we have D(M, g) ≥ 3.

When n = 3, by Section 1.2 of [14], the maximum degree of mobility of a 3-dimensional
connected Riemannian manifold with non-constant curvature is 2. This completes the proof.

��
Remark 4.1 The conditions n ≥ 3, and g is Riemannian are necessary in the proof. If n = 2,
one may end up with λ1 = 1 on C+, λ1 < 1 on C−, together with λ2 = 1 on C−, λ2 > 1
on C+. If g is not Riemannian, (Kt0)o may not be the identity matrix. Besides, the global
ordering of eigenfunctions of BM-structures can only be applied for Riemannian metrics

4.2 Global results when (Mn, g) is closed, proof of Theorem 1.4

In this section, we give the proof of Theorem 1.4 stated at the end of the introduction.

Proof (Proof of Theorem 1.4) Since X is not linearizable at o, we have D(M, g) ≥ 2. First
suppose D(M, g) = 2, then Lt is a 1-parameter parabolic subgroup by Theorem 3.1. This is
in fact impossible by the following (We discovered that the argument below is analogous to
part of Section 9.2 of [11]).

Because Lt is parabolic, there exists K ∈ B = B(M, g) such that

Lt (I d) = etb(t K + I d), b ∈ R.

X is complete because M is compact. Just fix t = 1, then L1(I d) = eb(K + I d) is the g-
strength of (φ1)∗g on M . Because M is closed and connected, according to Theorem 6 of [3],
all non-real eigenfunctions of L1(I d) are constant. It follows that all non-real eigenfunctions
of K are constant on M . On the other hand, all real eigenfunctions of K are identically zero.
Otherwise, ∃t0 ∈ R such that Lt0(I d) = Kt0 is degenerate. Then all eigenfunctions of K are
constant. This implies gt and g are affine equivalent for all t ∈ R, which is impossible.

From above we have D(M, g) ≥ 3. According to Corollary 5.2 of [15], we have g is
Riemannian with positive constant sectional curvature. ��
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