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Abstract
General integral geometric invariants for convex bodies are introduced and two integral
geometric inequalities for them are established. The equality cases for the inequalities are
kinematic formulas, which are characterizations of integral geometric valuations. Those char-
acterizations are analogues of Hadwiger’s characterization theorem.
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1 Introduction

The principal kinematic formula is one of cornerstones in the classical integral geometry,
which is now associated with the names of Blaschke, Santaló and Chern. It deals with integral
mean values for distinguished geometric functionals with respect to the invariant measure
on the group of proper rigid motions in the Euclidean space Rn . When restricted to convex
bodies, that is, compact convex sets with nonempty interiors, it involves the intrinsic volumes
Vj ( j ∈ {0, . . . , n}). To be more specific, letGn denote the motion group ofRn , and let dg be
the invariant measure ofGn whose restriction to the rotation group is the invariant probability
measure and the restriction to the translation group is the Lebeguemeasure. Then the principal
kinematic formula says that (see [16])

∫
Gn

Vj (K ∩ gM)dg =
n∑

k= j

ck, j Vk(K )Vn−k+ j (M), (1.1)
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where K , M are in K, the class of convex bodies in R
n , and the constant
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is expressed in terms of specific values of the Gamma function.
Related to the kinematic formula is the Crofton formula, which involves an integration

over G̃k,n , the affine Grassmann manifold of k-dimensional planes in R
n . Then for K ∈ K

(see [16]) ∫
G̃k,n

Vj (K ∩ ξk)dξk = ck, j Vn−k+ j (K ), (1.2)

where k ∈ {0, . . . , n} and j ∈ {0, . . . , k}, dξk of G̃k,n is normalized so thatωn−k , the volume
of the (n− k)-dimensional unit ball, is the measure of the set of k-dimensional planes hitting
the unit ball B in R

n .
For the principal kinematic formula and the Crofton formula, there are different versions,

such as differential-geometric versions [15], versions for support and curvature measures
[17].

The following important formula is closely related to (1.2), which is involved in the
integrals of square of volumes of higher dimensional sections of convex bodies, and was
shown by Blaschke and Varga [3] in R

3 and by Zhang [21] in R
n

∫
G̃k,n

Vk(K ∩ ξk)
2dξk = ωn

k + 1

∫
G̃1,n

V1(K ∩ ξ1)
k+1dξ1, (1.3)

where ωn denotes the volume of the unit ball inRn , ξ1 denotes a random line and Vk(K ∩ ξk)

denotes the k-dimensional volume of the intersection K ∩ ξk .
The right-hand side of (1.3) leads us to the frequently studied random chords of convex

bodies, which are known as chord power integrals with the definition

Ip(K ) = 2αn−1

n

∫
G̃1,n

V1(K ∩ ξ1)
pdξ1, p ≥ 0. (1.4)

The chord power integrals are fundamental geometric invariants. They are generations of
the surface area S(K ) and the volume V (K ) of convex body K (see [21]). The inequalities of
chord power integrals are important topics in convex geometry which imply the relationship
among some important geometric invariants. Let K be a convex body of fixed volume in Rn ,
then for 1 < p < n + 1, the ball maximizes the chord power integrals, that is,

Ip(K ) ≤ bpV (K )(n+p−1)/n, (1.5)

while for 0 ≤ p < 1 or p > n + 1, the ball minimizes the chord power integrals, that is,

Ip(K ) ≥ bpV (K )(n+p−1)/n, (1.6)

where bp is a sharp constant which can be computed as Ip(B)/ω
(n+p−1)/n
n , where B is the

unit ball. Each equality holds if and only if K is a ball.
The classical isoperimetric inequality involving the surface area and the volume of K in

R
n is a special case p = 0 of (1.6). When p is the positive integer, then (1.5) and (1.6) are

due to Ren [14]. Zhang [18] generalized the inequalities to any positive real number p.
Making the critical use of chord power integrals, Zhang [19] established the reverse Petty

projection inequality, which is now known as the Zhang projection inequality (see [16]).
In [21], Zhang established dual kinematic formulas for chord power integrals by using the
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dual quermassintegrals which generalized the famous Crofton-Hadwiger formula. The rapid
developments of these integral formulas aremotivated by their wide applications in stochastic
geometry [17], geometric probabilities [15] and projection functions [17]. See [4,18,20] for
more applications.

The theory of valuations on convex sets, with traditionally strong relations to integral
geometry, has been an active and prominent part of mathematics (see [5,9]). A real function
ϕ : K → R is called a valuation if

ϕ(K ) + ϕ(L) = ϕ(K ∪ L) + ϕ(K ∩ L),

whenever K , L, K ∪ L, K ∩ L ∈ K. Probably the most famous result on valuations is the
following Hadwiger’s characterization theorem.

Hadwiger’s characterization theorem If the functionϕ : K → R is a valuation, continuous,
and invariant under rigid motions, then

ϕ(K ) = c0V0(K ) + c1V1(K ) + · · · + cnVn(K ) (1.7)

with constants c0, . . . , cn .
The first proof of Hadwiger’s characterization theorem has been given in [7], then a

brief one was presented by Klain [11]. Hadwiger’s characterization theorem was the starting
point for many results in the modern theory of valuations. For example, Alesker established
a complete classification of continuous and merely translation invariant valuations, which
laid the foundation for a new theory of algebraic integral geometry (see [1,2]). Ludwig
and Reitzner [12] established an affine version of Hadwiger’s characterization theorem, and
they also established a complete classification of SL(n) invariant valuations and asked for
a centro-affine version in a landmark work [13], which was completely solved by Haberl
and Parapatits [6]. Besides, Hadwiger’s characterization theorem and its generalizations lead
to effortless proofs of numerous results in integral geometry, including various kinematic
formulas and the mean projection formulas for convex bodies (see [8,9,15–17]).

The intrinsic volumes are valuations which induce the following important integral geo-
metric invariants mentioned above∫

G̃k,n

Vj (K ∩ ξk)dξk and
∫
Gn

Vj (K ∩ gM)dg. (1.8)

They are special integral geometric valuations, which can be formulated by the linear com-
bination of the intrinsic volumes from Hadwiger’s characterization theorem.

Motivated by the fact that (1.8) are valuations, it is very interesting to know whether the
following intrinsic volumes power integrals are valuations or not∫

G̃k,n

Vj (K ∩ ξk)
pdξk and

∫
Gn

Vj (K ∩ gM)pdg, p ≥ 0. (1.9)

The classical integral geometry mainly studies kinematic formulas and valuations, and
they rarely involve inequality. However, (1.3), (1.4) and (1.5) yield the inequality∫

G̃k,n

Vk(K ∩ ξk)
2dξk ≤ b̃k+1V (K )(n+k)/n, (1.10)

where b̃k+1 = bk+1/(2k + 2) is a constant, with equality if and only if K is a ball.
(1.10) is an important inequality with the integrals of square of the volume of intersections

which inspires us to consider the inequality with the integrals of higher power of intrinsic
volumes of intersections, such as the integrals of p-th power of intrinsic volumes in (1.9), or
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we consider the following more general integral geometric invariants. That is, suppose K , M
are convex bodies in R

n and function f : [0,∞) −→ [0,∞) is right continuous at 0, then
we define Ik, j ( f ; K ) and I j ( f ; K , M) as

Ik, j ( f ; K ) =
∫
G̃k,n

f
(
Vj (K ∩ ξk)

)
dξk, (1.11)

and

I j ( f ; K , M) =
∫
Gn

f
(
Vj (K ∩ gM)

)
dg, (1.12)

where k ∈ {0, . . . , n} and j ∈ {0, . . . , k}.
It is impossible to obtain general kinematic formulas for Ik, j ( f ; K ) and I j ( f ; K , M). But

there are probably integral geometric inequalities for them. Furthermore, a natural question
to ask is

Problem Are the general integral geometric invariants Ik, j ( f ; K ) and I j ( f ; K , M), respec-
tively, are valuations? How are these general integral geometric invariants related to
fundamental invariants Vj and kinematic formulas?

Let f : [0,∞) −→ [0,∞) be convex or concave and right continuous at 0, for K , M ∈ K,
we then prove that Ik, j ( f ; K ) and I j ( f ; K , M) are both valuations if and only if f (x) is linear
in an interval. It follows immediately that the chord power integrals Ip(K ) are valuations if
and only if p = 0, 1.

Then the following theorems give some answers to the Problem, each of them contains
integral geometric inequality, kinematic formula and integral geometric valuation character-
ization.

Theorem 1.1 Let f : [0,∞) −→ [0,∞) be convex and right continuous at 0, and let K be
a convex body in R

n and m1 = max{Vj (K ∩ ξk) : ξk ∈ G̃k,n}. Then
Ik, j ( f ; K ) ≥ ck, j f

′(0)Vn−k+ j (K ) + ck,0 f (0)Vn−k(K ), (1.13)

with equality if and only if Ik, j ( f ; K ) is a valuation, in this case, if and only if f (x) is linear
in the interval [0,m1].
Theorem 1.2 Let f : [0,∞) −→ [0,∞) be convex and right continuous at 0, and let K , M
be convex bodies in R

n and m2 = max{Vj (K ∩ gM) : g ∈ Gn}. Then

I j ( f ; K , M) ≥
n∑

k= j

ck, j f
′(0)Vk(K )Vn−k+ j (M) +

n∑
k=0

ck,0 f (0)Vk(K )Vn−k(M), (1.14)

with equality if and only if I j ( f ; K , M) is a valuation in the variable M, in this case, if and
only if f (x) is linear in the interval [0,m2].

It should be noticed that the classical kinematic formulas are the equality cases in Theo-
rems 1.1 and 1.2. To be more specific, the Crofton formula (1.2) and its special case j = 0
characterize the integral geometric valuation Ik, j ( f ; K ), and the principal kinematic formula
(1.1) and its special case j = 0 characterize the integral geometric valuation I j ( f ; K , M).
Those characterizations are analogues of Hadwiger’s characterization theorem with certain
coefficients, which can not be induced directly by Hadwiger’s characterization theorem.

If the function f : [0,∞) → [0,∞) is concave and right continuous at 0, then (1.13) and
(1.14) hold with the inequalities sign reversed. However, for general function f in (1.11) and
(1.12), under what conditions Ik, j ( f ; K ) and I j ( f ; K , M) are valuations and their specific
forms of Hadwiger’s characterization theorem are unknown.
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2 Preliminaries

As a rule, let B be the unit ball in R
n and its boundary is denoted by Sn−1. We write ωn

and αn−1 for the volume of B and the surface area of Sn−1 in R
n , respectively, with the

representation

ωn = 2πn/2

n�(n/2)
,

where �(·) is the Gamma function, and αn−1 = nωn .
A convex body is a compact convex subset of Rn with non-empty interiors. The set of

convex bodies in R
n is denoted by K. For K ∈ K, we denote by V (K ) the volume and by

S(K ) the surface area of K . If K is a Borel subset ofRn and it is contained in an k-dimensional
affine subspace of Rn but in no affine subspace of lower dimensional, the Vk(K ) will denote
the k-dimensional Lebesgue measure of K . In this paper, for K , L ∈ K, we always assume
that K ∪ L ∈ K.

If K , L are compact convex sets in Rn and λ ≥ 0, theMinkowski sum K + λL is defined
by

K + λL = {x + λy : x ∈ K and y ∈ L}.
For ε ≥ 0, the volume V (K + εB) is given by Steiner formula

V (K + εB) =
n∑
j=0

ω j Vn− j (K )ε j , ε ≥ 0.

For j ∈ {0, . . . , n}, the coefficients Vj (K ) depend only on K and are called j-th intrinsic
volumes of K . In particular, V0(K ) is the Euler characteristic (that is, V0(K ) = 1 for K 
= ∅
and V0(∅) = 0), and

Vn−1(K ) = 1

2
S(K ), Vn(K ) = V (K ),

and Vj (K ) is homogeneous of degree j , that is, for α > 0,

Vj (αK ) = α j V j (K ).

The intrinsic volumes have the monotope property, for K ⊆ L , then

Vj (K ) ≤ Vj (L). (2.1)

We need the following kinematic formulas, the special cases j = 0 of (1.1) and (1.2),
respectively, (see [15,16])

∫
Gn

χ(K ∩ gM)dg =
n∑

k=0

ck,0Vk(K )Vn−k(M), (2.2)

and ∫
G̃k,n

χ(K ∩ ξk)dξk = ck,0Vn−k(K ). (2.3)

The formula (2.2) is called the fundamental kinematic formula. Its differential-geometric
version is due to Chern (see [15]) and its dual form is estabished by Zhang [21].
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The investigation of convex sets is closely tied up with convex functions. A function
f : R −→ R is called convex if

f ((1 − λ)x1 + λx2) ≤ (1 − λ) f (x1) + λ f (x2),

for x1, x2 ∈ R and λ ∈ [0, 1] and with equality if and only if all x are equal or f (x) is linear
in an interval including all the x . (see [10, p. 75]). A function f is concave if − f is convex.
Here we say a linear function if it is of the form

f (x) = ax + b,

where a and b are constants, and a is frequently referred to as the slope of the line.

3 Two auxiliary inequalities

In this section we prove two elemental inequalities that will be needed in the following
sections. Throughout the paper, we always assume f (0) ∈ R.

Lemma 3.1 Let f : [0,∞) −→ R be convex and right continuous at 0, then for real numbers
a, b, c ≥ 0 and c ≤ min{a, b}, we have

f (a + b − c) + f (c) ≥ f (a) + f (b), (3.1)

with equality if and only if f (x) is linear in an interval including all the x or a = b = c.

Proof For convenience, we always asume that a ≤ b. From the assumption we have c ≤ a ≤
b ≤ a + b − c. There exists λ ∈ [0, 1] such that

a = λc + (1 − λ)b.

The previous formula can be written as

b = (1 − λ)a + λ(a + b − c).

By the convexity of f we have

f (a) = f (λc + (1 − λ)b)

≤ λ f (c) + (1 − λ) f (b)

= λ f (c) − λ f (b) + f ((1 − λ)a + λ(a + b − c))

≤ λ f (c) − λ f (b) + (1 − λ) f (a) + λ f (a + b − c).

This yields the desired.
If a = b = c or f (x) is a linear function in an interval including all the x , it is easy to

see that the equality in (3.1) holds. Conversely, if the equality in (3.1) holds, then we have
a = b = c, or f (x) is a linear function in an interval including all the x which follows from
the equality condition of convex function. 
�
Lemma 3.2 Let f : [0,∞) −→ R be convex and right continuous at 0, then

f (x) ≥ f ′(0) x + f (0), (3.2)

with inequality if and only if f (x) is linear in an interval including all the x.
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Proof Let x, y ∈ (0,∞) and y ≤ x , by the convexity of f , we have

f (y) = f

(
x − y

x
0 + y

x
x

)
≤ x − y

x
f (0) + y

x
f (x), (3.3)

hence

f (y) − f (0)

y
≤ f (x) − f (0)

x
.

Let y −→ 0 and then

f ′(0) ≤ f (x) − f (0)

x
,

for x ∈ (0,∞). That’s the desired inequality.
With equality holds in (3.2) if and only if the equality holds in (3.3), then f (x) must be

a linear function in an interval including all the x which follows from the equality condition
of convex function. 
�

4 Valuation and inequality for Ik,j(f;K)
Let f : [0,∞) −→ [0,∞) be convex and right continuous at 0, then a functional Ik, j ( f ; ·) :
K → R is given by

Ik, j ( f ; K ) =
∫
G̃k,n

f (Vj (K ∩ ξk))dξk, (4.1)

where k ∈ {0, . . . , n}, j ∈ {0, . . . , k} and K ∈ K. Recall that Vk(K ∩ ξk) and V0(K ∩ ξk)

are the k-dimensional volume and Euler characteristic of K ∩ ξk , respectively.
Let

m1 = max{Vj (K ∩ ξk) : K ∈ K, ξk ∈ G̃k,n}.
Then we have the following theorems.

Theorem 4.1 Let K ∈ K and f : [0,∞) −→ [0,∞) be convex and right continuous at 0,
then Ik, j ( f ; K ) is a valuation if and only if f (x) is linear on [0,m1].
Proof Let K , L ∈ K. Recall that K ∪ L ∈ K, then K ∩ ξk, L ∩ ξk, (K ∩ L)∩ ξk, (K ∪ L)∩ ξk
are convex bodies in ξk . By the fact that the intrinsic volumes are valuations in ξk , we have

Vj ((K ∪ L) ∩ ξk) + Vj ((K ∩ L) ∩ ξk) = Vj (K ∩ ξk) + Vj (L ∩ ξk) . (4.2)

Since ((K ∩ L) ∩ ξk) ⊆ (K ∩ ξk) and ((K ∩ L) ∩ ξk) ⊆ (L ∩ ξk), by (2.1) we get

Vj ((K ∩ L) ∩ ξk) ≤ min{Vj (K ∩ ξk) , Vj (L ∩ ξk)},
with equality if and only if K ⊆ L or L ⊆ K .

From Lemma 3.1 we have

f
(
Vj (K ∩ ξk) + Vj (L ∩ ξk) − Vj ((K ∩ L) ∩ ξk)

)
+ f

(
Vj ((K ∩ L) ∩ ξk)

) ≥ f
(
Vj (K ∩ ξk)

) + f
(
Vj (L ∩ ξk)

)
.

By (4.2), the previous formula can be rewritten as

f
(
Vj ((K ∪ L) ∩ ξk)

) + f
(
Vj ((K ∩ L) ∩ ξk)

)
≥ f

(
Vj (K ∩ ξk)

) + f
(
Vj (L ∩ ξk)

)
.
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Via the definition of Ik, j ( f ; K ) we have

Ik, j ( f ; K ∪ L) + Ik, j ( f ; K ∩ L) ≥ Ik, j ( f ; K ) + Ik, j ( f ; L).

From equality condition in Lemma 3.1 we have

Ik, j ( f ; K ∪ L) + Ik, j ( f ; K ∩ L) = Ik, j ( f ; K ) + Ik, j ( f ; L),

if and only if f (x) is a linear function on [0,m1]. 
�
Let f (t) = t p (p ≥ 0) in (4.1), then

Ik, j;p(K ) =
∫
G̃k,n

Vj (K ∩ ξk)
pdξk, 0 ≤ p < ∞. (4.3)

From Theorem 4.1, we get the following corollary immediately.

Corollary 4.2 For K ∈ K, then Ik, j;p(K ) is a valuation if and only if p = 0, 1.

Finally, we get an analog of Hadwiger characterization theorem.

Theorem 4.3 Let f : [0,∞) −→ [0,∞) be convex and right continuous at 0, for K ∈ K
we have

Ik, j ( f ; K ) ≥ ck, j f
′(0)Vn−k+ j (K ) + ck,0 f (0)Vn−k(K ), (4.4)

with equality if and only if Ik, j ( f ; K ) is a valuation, in this case, if and only if f (x) is linear
in the interval [0,m1].
Proof From f : [0,∞) −→ [0,∞) is convex and right continuous at 0, let x = Vj (K ∩ ξk)

in Lemma 3.2 we then have

f (Vj (K ∩ ξk)) ≥ f ′(0)Vj (K ∩ ξk) + f (0). (4.5)

This along with the definition (4.1), we have

Ik, j ( f ; K ) =
∫
G̃k,n

f (Vj (K ∩ ξk))dξk

≥ f ′(0)
∫
G̃k,n

Vj (K ∩ ξk)dξk + f (0)
∫
G̃k,n

χ(K ∩ ξk)dξk .

By (1.2) and (2.3) we thus get

Ik, j ( f ; K ) ≥ f ′(0)ck, j Vn−k+ j (K ) + f (0)ck,0Vn−k(K ).

The equality condition in (4.4) is equivalent to that in (4.5), that is, f (x) is a linear function
on [0,m1]. From Theorem 4.1 we know that Ik, j ( f ; K ) must be a valuation. 
�

5 Valuation and inequality for Ij(f;K,M)

Let f : [0,∞) −→ [0,∞) be convex and right continuous at 0, then we fix a convex body
K ∈ K and define a functional by

I j ( f ; K , M) =
∫
Gn

f
(
Vj (K ∩ gM)

)
dg, (5.1)

for j ∈ {0, . . . , n} and M ∈ K.
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Let

m2 = max{Vj (K ∩ gM) : K , M ∈ K, g ∈ Gn}.
Theorem 5.1 Let K , M ∈ K and f : [0,∞) −→ [0,∞) be convex and right continuous at
0, then I j ( f ; K , M) is a valuation in the variable M if and only if f (x) is linear on [0,m2].
Proof For convex bodies K , L ∈ K such that K ∪ L ∈ K, then we have [16, p. 140]

K + L = (K ∪ L) + (K ∩ L). (5.2)

Then, for K , M, N ∈ K and M ∪ N ∈ K, (5.2) implies

(K ∩ M) + (K ∩ N ) = ((K ∩ M) ∪ (K ∩ N )) + ((K ∩ M) ∩ (K ∩ N ))

= (K ∩ (M ∪ N )) + (K ∩ (M ∩ N )).

Since the intrinsic volumes are valuations, then

Vj (K ∩ M) + Vj (K ∩ N ) = Vj (K ∩ (M ∪ N )) + Vj (K ∩ (M ∩ N )).

This leads to

Vj (K ∩ (M ∩ N )) ≤ min{Vj (K ∩ M), Vj (K ∩ N )}.
By Lemma 3.1 again we get

f
(
Vj (K ∩ (M ∪ N ))

) + f
(
Vj (K ∩ (M ∩ N ))

)
≥ f

(
Vj (K ∩ M)

) + f
(
Vj (K ∩ N )

)
.

Integrating both sides over Gn , we have∫
Gn

f
(
Vj (K ∩ g(M ∪ N ))

)
dg +

∫
Gn

f
(
Vj (K ∩ g(M ∩ N ))

)
dg

≥
∫
Gn

f
(
Vj (K ∩ gM)

)
dg +

∫
Gn

f
(
Vj (K ∩ gN )

)
dg.

That is

I j ( f ; K , M ∪ N ) + I j ( f ; K , M ∩ N ) ≥ I j ( f ; K , M) + I j ( f ; K , N ).

Therefore, by equality condition in Lemma 3.1 we get

I j ( f ; K , M ∪ N ) + I j ( f ; K , M ∩ N ) = I j ( f ; K , M) + I j ( f ; K , N ),

only and if only f (x) is linear on [0,m2]. 
�
Let f (t) = t p (p ≥ 0) in (4.1), then

I j;p(K ; M) =
∫
Gn

Vj (K ∩ gM)pdg, 0 ≤ p < ∞, (5.3)

From Theorem 5.1, we get the following corollary.

Corollary 5.2 For K , M ∈ K, then I j;p(K ; M) be a valuation in the variable M if and only
if p = 0, 1.
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Theorem 5.3 Let f : [0,∞) −→ [0,∞) be convex and right continuous at 0, for K , M ∈ K
we have

I j ( f ; K , M) ≥
n∑

k= j

ck, j f
′(0)Vk(K )Vn−k+ j (M) +

n∑
k=0

ck,0 f (0)Vk(K )Vn−k(M),

with equality if and only if I j ( f ; K , M) is a valuation in the variable M, in this case, if and
only if f (x) is linear in the interval [0,m2].
Proof Let f : [0,∞) −→ [0,∞) be convex and right continuous at 0, and let x =
Vj (K ∩ gM) in Lemma 3.2, we have

f (Vj (K ∩ gM)) ≥ f ′(0)Vj (K ∩ gM) + f (0).

By the definition (5.1), we have

I j ( f ; K , M) =
∫
Gn

f
(
Vj (K ∩ gM)

)
dg

≥ f ′(0)
∫
Gn

Vj (K ∩ gM)dg + f (0)
∫
Gn

χ(K ∩ gM)dg.

The previous formula combines with (1.1) and (2.2), we have

I j ( f ; K , M) ≥ f ′(0)
n∑

k= j

ck, j Vk(K )Vn−k+ j (M) + f (0)
n∑

k=0

ck,0Vk(K )Vn−k(M).

The equality condition follows from Lemma 3.2 and Theorem 5.1. 
�
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