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Abstract
We discuss the fundamental (relative) 3-classes of knots (or hyperbolic links), and provide
diagrammatic descriptions of the push-forwards with respect to link-group representations.
The point is an observation of a bridge between the relative group homology and quandle
homology from the viewpoints of Inoue–Kabaya map (Geom Dedicata 171(1):265–292,
2014). Furthermore, we give an algorithm to algebraically describe the fundamental 3-class
of any hyperbolic knot.
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1 Introduction

In the study of an oriented compact 3-manifold M for which each boundary component is a
torus, for example a link complement, the (relative) fundamental homology 3-class [M, ∂ M]
in H3(M, ∂ M; Z) ∼= Z has essential information. The 3-class is analyzed quantitatively by
examining the following situation.We suppose a pair of groups K ⊂ G and a homomorphism
f : π1(M) → G, which sends every boundary-element in π1(M) to some element in K .
Then, for any relative group 3-cocycle θ ∈ H3(G, K ; A) with local coefficients [see (10)
for the explicit definition], we can consider the following pairing valued in the coinvariant
AG = H0(G; A):

〈θ, f∗[M, ∂ M]〉 ∈ AG = A/{a − g · a}a∈A, g∈G . (1)

These settings appear in topics in low dimensional topology. For example, the volumes and
the Chern–Simons invariants of hyperbolic manifolds can be described as this pairing, where
G = SL N (C) (see [12,23,32]). Furthermore, this pairing includes the triple cup products of
the form θ = a � b � c; see [22,27]. In addition, if G is of finite order, the pairing is called
the Dijkgraaf–Witten invariant [10], as a toy model of TQFT.

However, the pairing defined in the general situation is often considered to be uncom-
putable.Actually,we comeup against difficulties: First, it is troublesome to explicitly describe
a (truncated) triangulation in M , which represents the 3-class [M, ∂ M].Moreover, the 3-class
f∗[M, ∂ M] is not always unique, but depends on the choices of 2|π0(∂ M)| decorations (when
several boundary components are present), as mentioned in [32, § 5]. Next, the boundary
condition is important; when dealing with the condition, we mostly need long and verbose
explanations, as in [10,18,21,23,32] (cf. Homotopy quantum field theory [30]). In addition,
since the relative homology is defined from some projective resolution (see Sect. 3), it is
essentially a critical problem to choose an appropriate resolution and to find a presentation
of the 3-cocycle θ . Further, even if we can succeed in doing so on θ , such presentations are
quite intricate.

Nevertheless, this paper develops a diagrammatic computation of the pairing, according
to geometric structures of links. Precisely, let L ⊂ S3 be an oriented link in the 3-sphere, and
M = EL be the 3-manifold which is obtained from S3 by removing an open tubular neigh-
borhood of L , i.e., EL = S3\νL . When the fundamental group of EL is malnormal (which
is the case for a broad class of link, e.g. hyperbolic), we compute the pairing (Theorem 2.1).
In the cable cases, additional conditions are needed; see Sect. 7, cf. cabling formula [16]. As
seen in Sect. 5, the result is summarized to that, if we know the presentation of θ and the JSJ
decomposition of L , we can compute the pairing from a diagram. Here, the point is that the
construction needs no triangulation of EL .

Let us roughly explain our approach to the theorem. As seen in [8,17,24,26], quandle
theory [19] and homology [8] have advantages to some diagrammatic computation in knot
theory. Thus, inspired by the works [3,17], we will construct a bridge between the quandle
and group homologies using chain maps, in order to reduce the 3-class [M, ∂ M] to a quandle
3-class. However, for technical reasons that arise from the scissors congruence formulas of
[9,23], the bridge between these ideas factors through Hochschild relative homology [15]. It
is expressed as a zigzag sequence [Expression (5) of Sect. 3]. In Theorem 2.3, we show that
the malnormal property is a suitable condition for obtaining a quasi-inverse in the zigzag. In
Sect. 5, this case is computed based upon the work of [3,13,29], which studied malnormal
property of knots. In summary, compositions of chain maps gives the computation of the
pairing.
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In applications, we obtain four advantages from the approaches as follows. First, the above
composite gives an algorithm to describe algebraically the fundamental 3-class [M, ∂ M]
for hyperbolic links; see Sect. 5.2. Next, our results emphasize topological advantages of
the quandle cocycle invariant [8]. Especially, for malnormal pairs (G, K ), we will give a
method to produce many quandle cocycles, and obtain a simple formulation of computing
the pairing (see Theorem 2.3). The third is a result of determining the third homology of the
link quandle QL , where L is a knot or a hyperbolic link. This quandle QL which is defined
in [19] is analogous to the fundamental group of S3\L . It plays a key role in the proof of
the main theorems; details appear in “Appendix A”. The fourth one is that our theorem is a
generalization and application of the work [17]. To be precise, while the paper [17] showed
the same theorem for only G = SL2(C) and hyperbolic links, our theorem points out the
generalization applicable to groups K ⊂ G with malnormality.

This paper is organized as follows. Section2 states the theorems. Section 3 introduces
relative group homology, and Sect. 4 reviews the quandle homology [8] and Inoue–Kabaya
chain map [17]. Section5 explains the algorithm to describe [M, ∂ M], and gives an example
from the figure eight knot. Section6 proves the main theorem, and Sect. 7 discusses cable
knots. “Appendix A” computes the third homology of the link quandles QL for some links.

2 Statements; themain results

This section states the main results. For this, we fix terminology throughout this paper.
Conventional notation and assumption throughout this paper.

• By a link, L , we mean a C∞-embedding of solid tori into the 3-sphere S3 or into the
solid torus D2 × S1. We suppose an orientation of L , and denote π0(L) by #L ∈ Z.

• For short, the fundamentals group π1(S3\L) is abbreviated to πL , and the complement,
S3\L , is often denoted EL

• For each � ≤ #L , we fix a meridian-longitude pair (m�, l�) ∈ πL , and denote by P� the
subgroup generated by (m�, l�) ∈ πL , which is called a peripheral group.

• We fix a group G and subgroups K� with � ≤ #L , and suppose a homomorphism
f : π1(S3\L) → G such that f (P�) ⊂ K�.

• By A we mean a left Z[G]-module. The coinvariant A/{a − g · a}a∈A,g∈G is denoted by
AG .

In this situation, although it seems easy to define a pushforward of the 3-class
f∗([EL , ∂ EL ]) in the relative group homology H3(G, K1, . . . , K#L ; Z), it is known (see
[32, §5] or [3, §10]) that a canonical definition of such pushforwards depends on the choice
of “ f -decorations”. However, if EL is decomposed as a union of complete hyperbolic 3-
manifolds, the 3-class f∗([EL , ∂ EL ]) is known to be well-defined (see [32, §5]). Therefore,
similarly to (1), we can consider the pairing between this 3-class and a 3-cocycle of G relative
to (K�)�≤#L .

2.1 The first statement

We will set up some terminology and state Theorem 2.1. Let D denote a diagram of the link
L . Its sets of arcs ArcD and regions RedD are defined as usual. Given a map φ:RegD ×
ArcD × ArcD → A, let us consider a weight sum of the form

123



4 Geometriae Dedicata (2020) 204:1–24

Fig. 1 Positive and negative crossings with labeled regions and labeled arc

	φ(D) :=
∑

τ

ετ · φ(xτ , yτ , zτ ) ∈ A (2)

running over all the crossings τ of D, where xτ , yτ , and zτ are the region and the arcs shown
in Fig. 1, and ετ ∈ {± 1} is the sign of τ . Then, the main statement is as follows:

Theorem 2.1 (SeeSect. 6 for the proof)Assume that L is either a prime knot which is not cable
1 or a hyperbolic link. Then, for any relative group 3-cocycle θ ∈ H3(G; K1, . . . , K#L ; A),
there is a map

φθ : RegD × ArcD × ArcD −→ A,

for which the following equality holds in the coinvariant AG:

〈 θ, f∗[EL , ∂ EL ]〉 = 	φθ (D) ∈ AG . (3)

The right hand side gives a method for computing the pairing that does not depend upon
a triangulation. Here, it is important to express φθ concretely; in Sects. 5 and 6, we give
a concrete expression of φθ for such links, where the expression is based on the proof of
the theorem. However, the presentation essentially depends on the link type of L , and is not
always simple. In fact, even for the figure eight knot L , the map φθ forms a sum of many
terms; see Sect. 5.2.

Section 7 discusses the cable cases, and includes a similar statement (Theorem 7.1). Here,
we see that the statement essentially should be considered modulo some integers, and that
the pairing has no more information than the homology of cyclic groups.

2.2 The second statement frommalnormality and transfer

In contrast, wewill consider some conditions to get themapφθ and the diagrammatic descrip-
tion in a concrete way. Here, the subgroups K1, . . . , K#L ⊂ G are said to be malnormal (in
G), if they satisfy

(�) For any (i, j) ∈ {1, . . . , #L}2 and any g ∈ G with g /∈ K j , the intersection g−1Ki g∩K j

equals {1G}.
The papers [13,14] give such examples, as in Gromov hyperbolic groups. Furthermore, as in
[1,31], the malnormality plays a key role in studying the virtual Haken conjecture and “the
Malnormal Special Quotient Theorem”.

We will give a relatively simple description of the pairing, by using quandle theory. For
this, we now review a quandle and colorings. A quandle [19] is a set, X , with a binary
operation � : X × X → X such that

1 A knot K is cable, if there is a solid torus V embedded in S3 such that V contains K as the (p, q)-torus
knot for some p, q ∈ Z. Furthermore, a knot L is prime, if it cannot be written as the knot sum of two
non-trivial knots. Incidentally, the assumption in the theorems is inspired by Theorem 3.10 of [13] and the JSJ
decomposition; see Sect. 5.
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Fig. 2 The coloring conditions at each crossing τ and around each arcs

(I) The identity a�a = a holds for any a ∈ X .
(II) The map (•�a) : X → X that sends x to x�a is bijective, for any a ∈ X .
(III) The distributive identity (a�b)�c = (a�c)�(b�c) holds for any a, b, c ∈ X .

Let X be a quandle. An X -coloring of D is a map C : ArcD → X such that C(ατ )�C(βτ ) =
C(γτ ) at each crossings τ of D illustrated as Fig. 2. Further, for x0 ∈ X , a shadow coloring is
a pair of an X -coloring C and a map λ : RegD → X such that the unbounded exterior region
is assigned by x0, and if two regions R and R′ are separated by an arc δ as shown in the
right of Fig. 2, then λ(R) � C(δ) = λ(R′). Here, notice that the assignment of every region
is that of the unbounded region, by definition. Thus, from arbitrary x0 ∈ X and X -coloring,
we obtain uniquely a shadow coloring such that the unbounded region is labeled by x0.

This paper mainly deals with the following class of quandles.

Example 2.2 ([19]) This example is due to Joyce [19]. Under the above settings ( f , G, K�),
let X be the union of the left quotients (K�\G), that is,

X = #L
�=1(K�\G).

Let k� = f (m�) ∈ K�. Assume that k� commutes with all the elements of the subgroup K�.
Then, the union X is made into a quandle under the operation

[K�x] � [K�′ y] = [K −1
� xy−1k�′ y], (4)

for any x, y ∈ G. In what follows, we will write the triple (G,K) for this quandle.
Furthermore, as is known (see [26, Appendix] for the details), the homomorphism f

admits uniquely an X -coloring C with C(m�) = k� via Wirtinger presentation, where C(γ )

is defined to be f (γ )−1k� f (γ ) if γ lies in the �-the component of L . Recall the above color
x0 in the unbounded region. Hence, by applying x0 to k1, we have the associated shadow
coloring S : RegD × ColD → X .

Then, the main theorem in this subsection is stated as follows:

Theorem 2.3 Suppose that k� commutes with any elements of K�, and that L is a hyperbolic
link or a prime knot which is neither a cable knot nor a torus knot, as in Theorem 2.1.
Furthermore, assume one of the following two: (i) (G, K1, . . . , K#L) is malnormal. (ii)
K1, . . . , K#L are of finite order and and that each of the orders |Ki | is invertible in the
coefficient group A.

Then, any relative group 3-cocycle of (G, K1, . . . , K#L) is represented as a map θ : X4 →
A such that, the fundamental 3-class 〈θ, f∗[EL , ∂ EL ]〉 is equal to the sum

∑

τ

ετ

(
θ(k1, aτ , bτ , cτ ) − θ(k1, aτ � bτ , bτ , cτ ) − θ(k1, aτ � cτ , bτ � cτ , cτ )

+ θ(k1, (aτ � bτ ) � cτ , bτ � cτ , cτ )
)
.

running over the all crossings τ . Here, for the assignment (xτ , yτ , zτ ) around τ as in Fig. 1,
we define (aτ , bτ , cτ ) ∈ X3 by setting

(S(xτ ), S(yτ ), S(zτ )
)
.
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3 Relative group homology

First, we outline the proof of the theorems. The key step is to introduce three chain groups,
and two chain maps (see Sects. 3, 4). These chain maps will be summarized to

C R∗ (X)
ϕ∗−−−→ C�∗ (X; Z) ⊗Z[As(X)] Z

α←−− Cgr∗ (G,K; Z). (5)

Roughly speaking, the right hand side denominates relative groups cocycles (see Sect. 3.1),
and the left one can be diagrammatically described (see Sect. 4). Thus, if we construct a chain
map from the middle term to the right hand side, we can obtain diagrammatic computations
as in the theorems. However, as seen in Sect. 4, the existence of such a chain map depends on
some properties of knot type. Thus, in the proof, we need careful verifications to deal with
the chain maps.

To accomplish the outline in details we first introduce relative group homology in the
family version; see Sect. 3.1. After that, we will give a key Proposition 3.7, and define the
chain map α.

Throughout this section, we fix a group G and subgroups K1, . . . , K#L ⊂ G as above.
Furthermore, we denote the index set {1, . . . , #L} by I , and denote (K1, . . . , K#L ) byK, for
short.

3.1 Preliminaries; Two versions of group relative homology

The relative group homology is usually defined from a group pair K ⊂ G; see, e.g., [3, §3]
or [32]. However, this paper generalizes the relative homology into the family version so as
to deal with links.

Consider the union of the left quotients, i∈I (Ki\G), and set up the module of the form

C red
n (G, I ) := {

(a1, . . . , a#L) ∈ Z[Gn+1]#L
∣∣ ∑

i∈I

ai = 0
}
. (6)

Then, letting n = 0, we canonically have a right G-module homomorphism

PI : C red
0 (G, I ) −→ Z[i∈I (Ki\G)].

Wedefine the relative group homology of (G,K) to be the torsionTorZ[G]∗ (Coker(PI ), M),
where M is a leftZ[G]-module. Precisely, taking the augmentationmap ε : Z[Coker(PI )] →
Z with a choice of a projective resolution

P∗ : · · · ∂n+1−−−−→ Pn
∂n−−−→ · · · ∂2−→ P1

∂1−→ Coker(PI )
ε−−→ Z (exact),

as right Z[G]-modules, the relative homology is defined to be

Hn(G,K; M) := Hn(P∗ ⊗Z[Gn ] M, ∂∗).

Dually, we can define the cohomology as Ext∗
Z[G](Ker(ε), M). For enough projectivity, we

now cite an example of P∗.

Example 3.1 (Mapping cone) For any set B, we define the map ∂�
n : Z[Bn+1] → Z[Bn] by

setting

∂�
n (x0, . . . , xn) =

∑

i : 0≤i≤n

(−1)i (x0, . . . , xi−1, xi+1, . . . , xn) ∈ Z[Bn]. (7)
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According to [32, §2], for n > 1, consider the following free G-module:

Cgr
n (G, K�) := (

(Z[Gn+1] ⊗Z[G] Z) ⊕ (Z[(K�)
n] ⊗Z[K�] Z)

) ⊗Z Z[G].
Furthermore, when n = 1, we define Cgr

1 (G,K) = C1(G) = Z[G2]. Then, we can easily see
that the following assignments define a differential on these modules: ∂1 := ∂�

1 and when
n > 1,

∂n
(�g, �k�

) := (
∂�

n (�g) + (−1)nι�(�k�), ∂�
n−1(

�k�)
)

for any (�g, �k�) ∈ Gn+1 × K n
� . Here ι� is the inclusion K� ↪→ G. From the definition in (6),

it is sensible to consider a canonical inclusion

P(I )
n : C red

n (G, I ) −→
⊕

j :1≤ j≤n

Cgr
n (G, K j ). (8)

Then, we denote the cokernel of P(I )
n by the pair (Cgr

∗ (G,K), ∂∗). Thus, we define
Hgr

n (G,K; M) to be the homology of the complex (Cgr
∗ (G,K) ⊗Z[G] M, ∂∗).

Proposition 3.2 Then, the pair (Cgr∗ (G,K), ∂∗) gives a free resolution of Coker(PI ).

Proof Since the statement with |I | = 0, 1 is known (see [32, Theorem 2.1]), we may assume
|I | > 1. Then, we have two sequences with commutativity:

· · · C red
n (G, I )

P(I )
n

(∂n )m

C red
n−1(G, I )

P(I )
n−1

(∂n−1)
m

· · · C red
0 (G, ∅, I )

ε
Z (exact)

· · · ⊕
Cgr

n (G, Ki )
⊕

Cgr
n−1(G, K j ) · · · ⊕

Coker(P{ j})
ε

Z (exact)

Here, the exactness is ensured by the cases with |I | ≤ 1. The cokernel of the vertical map is
exactly the complex (Cgr∗ (G,K), ∂∗) from definitions. Hence, by the five lemma, the cokernel
gives a free resolution of Coker(PI ). �
Then, a standard discussion of mapping cones deduces the long exact sequence with n ≥ 2:

· · · → Hgr
n+1(G,K; M)

δ∗−→ ⊕ j Hgr
n (K j ; M)

⊕(ι j )∗−−−−→ Hgr
n (G; M) −→ Hgr

n (G,K; M) → · · · .

(9)

Example 3.3 As an example, let us describe 3-cocycles in the non-homogenous cochain
Coker(PI ). Specifically, a 3-cocycle of G relative to K is represented by m maps θ� : G3 →
M and η� : (K�)

2 → M satisfying the two equations

g1 · θ�(g2, g3, g4) − θ�(g1g2, g3, g4) + θ�(g1, g2g3, g4) − θ�(g1, g2, g3g4)

+ θ�(g1, g2, g3) = 0, (10)

θ�(k1, k2, k3) = k1 · η�(k2, k3) − η�(k1k2, k3) + η�(k1, k2k3) − η�(k1, k2), (11)

for any gi ∈ G and ki ∈ K�, and 1 ≤ � ≤ #L .

Remark 3.4 Here, wemention a topological meaning of the relative homology Hn(G,K; M).
Let K (K j , 1) and K (G, 1) be the Eilenberg–MacLane spaces of type (K j , 1) and of type
(G, 1), respectively. Let (ι j )∗ : K (K j , 1) → K (G, 1) be the map induced from the inclu-
sions. Then, similarly to [32, §2 and §5], we can see that Hn(G,K; M) is isomorphic to the
homology of the mapping cone of  j ι j :  j K (K j , 1) → K (G, 1) with local coefficients
M .
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8 Geometriae Dedicata (2020) 204:1–24

In anotherway,wewill introduce the relative homologyofi∈I (Ki\G),which is originally
defined by Hochschild [15]. Let Y be the union i∈I (Ki\G), and let Cpre

n (Y ) be the free
Z-module generated by (n + 1)-tuples (y0, y1, . . . , yn) ∈ Y n+1. Consider the differential
homomorphism defined by ∂�∗ as above. As is known (see [3,4,32]), the chain complex
(C�∗ (Y ), ∂�∗ ) is acyclic. From the natural action Y � G, let us equip Cpre

n (Y ) with the
diagonal action. Furthermore, as a parallel to (6), from the definition of C red

n (G, I ), we can
similarly consider a Z[G]-homomorphism Qn : C red

n (G, I ) → Cpre
n (Y ).

Definition 3.5 We define the chain complex (C�∗ (Y ), ∂�∗ ) to be the cokernel Coker(Pn),
which is diagonally acted on by G.

Furthermore, H�∗ (Y ; M) denotes the homology of the quotient complex Coker(Pn)⊗Z[G]
M . Namely, H�∗ (Y ; M) = H∗(Coker(Qn) ⊗Z[G] M).

This chain complex (Coker(Q∗), ∂�∗ ) is acyclic and is not always projective, even if |I | = 1.
However, the projectivity of P∗ admits, uniquely up to homotopy, a chain Z[G]-map

α : (P∗, ∂∗) −→ (C�∗ (Y ), ∂�∗ ). (12)

Example 3.6 When P∗ is the complex Cgr∗ (G,K) in Example 3.1, we will give an example
of α. Consider the normalized complex of Coker(Qn) subject to the submodule

Z〈(y0, . . . , yn) ∈ Y n | yi = yi+1 for some i 〉,
and denote it by CNor∗ (Y ). As usual in normalization, we note H�∗ (Y ; M) ∼= HNor∗ (Y ; M).
Then, for 1 ≤ j ≤ #L , consider the correspondence

α
pre
j : Gn+1 × (K j )

n −→ Cpre
n (K j \G); (g0, . . . , gn, k0, . . . , kn−1) �−→ (K j g0, K j g1 . . . , K j gn).

Here let us regardP∗ = Cgr∗ (G,K) as the cokernel Coker(P(I )
n ); see (8). Subject to the image

of C red
n (G, I ), the direct sum of α

pre
j yields a chain map Cgr∗ (G,K) → CNor∗ (Y ).

3.2 A key proposition frommalnormality, and some examples

Whereas this α is not always a quasi-isomorphism (see [3, §3.2] for counter-examples), we
give a criterion which is a key in this paper.

Proposition 3.7 (A modification of [3, Proposition 3.23]) The set Y = i≤#L(Ki\G) is
assumed to be of infinite order. Furthermore, the subgroups K1, . . . , K#L ⊂ G are malnor-
mal.

Then, the chain map α induces an isomorphism H�∗ (Y ; M) ∼= H∗(G,K; M) for any
coefficient M.

Proof The proof is essentially due to [3]. Consider the submodule

C �=
n (Y ) := Z{ [(y0, . . . , yn)] ∈ Coker(Qn) | If s �= t, then ys �= yt . }. (13)

Since Y is of infinite order, this C �=
n (Y ) is an acyclic subcomplex of Coker(Qn), and the

injection is quasi-isomorphic; see [3, Proposition 3.20] for the details. Furthermore, we can
easily check that, if σ · g = σ with g ∈ G and σ := (y0, . . . , yn) ∈ C �=

n (Y ), the malnormal
assumption implies g = 1G ∈ G. That is, the action is free; therefore, C �=

n (Y ) is a free
Z[G]-module. Since the above α factors through C �=

n (Y ), we have the conclusion. �
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We end this section by giving three examples satisfying the assumptions.

Example 3.8 (Hyperbolic 3-manifolds) Let N be a compact hyperbolic 3-manifold with torus
boundary ∂ N = T1  · · ·  Tm . Apply G to π1(N ) and Ki to π1(Ti ) with a choice of base
point. As is well-known as “algebraic atoroidality” in hyperbolic geometry (see [2]), the
boundary group π1(Ti ) injects π1(N ), and the malnormal condition holds. Since N is also a
K (G, 1)-space by hyperbolicity, we thus have the isomorphisms

H�∗ (Y ; Z) ∼= Hgr
∗ (G,K; Z) ∼= H∗(N , ∂ N ; Z).

Example 3.9 (Knots) Furthermore, given a non-trivial knot L in the 3-sphere S3, we replace
G by π1(S3\L) and K1 by a peripheral subgroup π1(∂(S3\L)) ∼= Z

2, which is generated
by a meridian-longitude pair (m, l). By the loop theorem of 3-manifolds, K1 injects G.
Furthermore, S3\L is basically known to be a K (G, 1)-space.

Moreover, we mention a theorem to detect the malnormality of the knot group.

Theorem 3.10 ([13,29]) Let K1 ⊂ G be as above. The pair (K1, G) is malnormal if and only
if the knot L is none of the following three cases: torus knots, cable knots, and composite
knots.

In particular, in the case, the isomorphism α : H�∗ (Y ; Z) ∼= H∗(EL , ∂ EL ; Z) holds.

Example 3.11 (Link quandles) More generally, let us consider a link L ⊂ S3 and the link
group G = πL = π1(S3\L). Let K� with 1 ≤ � ≤ #L be the abelian subgroup generated
by a meridian-longitude pair (m�, l�) with respect to the �th link component, that is, K� is a
peripheral group generated by (m�, l�). We denote �K� by ∂πL hereafter.

However, there are many links satisfying non-malnormality on (πL , ∂πL), as in the Hopf
link. More generally, malnormality for non-splittable links is completely characterized in
[13, Corollary 4].

Incidentally, the union  j (K j\πL)with the binary operation (4) is called the link quandle
[19]. We denote the link quandle by QL , since we later use it in many times.

4 Review; quandle homology and Inoue–Kabayamap

Next, regarding the middle term in the zigzag sequence (5), this section reviews the quandle
homology [7] and Inoue–Kabaya chain map [17]. As seen in [8,17,24,26], quandle theory is
useful for reducing some 3-dimensional discussions to diagrammatic objects.

We briefly explain the rack and quandle (co)homology groups [7,8]. Let X be a quandle,
and C R

n (X) be the free right Z-module generated by Xn . Namely, C R
n (X) := Z[Xn]. Define

a boundary ∂ R
n : C R

n (X) → C R
n−1(X) by

∂ R
n (x1, . . . , xn) =

∑

1≤i≤n

(−1)i ((x1�xi , . . . , xi−1�xi , xi+1, . . . , xn)

−(x1, . . . , xi−1, xi+1, . . . , xn)
)
.

Since ∂ R
n−1 ◦∂ R

n = 0 as usual, we can define the homology H R
n (X) and call it the rack homol-

ogy. Furthermore, letC D
n (X) be the submodule ofC R

n (X) generated by n-tuples (x1, . . . , xn)

with xi = xi+1 for some i ∈ {1, . . . , n − 1}. One can easily see that this C D
n (X) is a sub-

complex of C R
n (X). Then, the quandle homology, H Q

n (X), is defined to be the homology of
the quotient complex C R

n (X)/C D
n (X). In general, it is not easy to compute these homology

groups.
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In addition, we will review the Inoue–Kabaya map whose codomain is the Hochschild
complex in Definition 3.5. For this, we need some notation. A map f : X → X ′ between
quandles is a quandle homomorphism, if f (a�b) = f (a)� f (b) for any a, b ∈ X . Given a
quandle X , the associated group AS(X) is given via the presentation

As(X) := 〈 ex (x ∈ X) | e−1
x�y · e−1

y · ex · ey (x, y ∈ X) 〉.
We call As(X) the associated group. There is a right action of AS(X) on X defined by
x · ey := x � y, where x, y ∈ X . Let O(X) be the orbit set of X � As(X). With respect
to i ∈ O(X), we fix xi ∈ X in the orbit. As in Example 2.2, denoting Stab(xi ) ⊂ As(X) by
Ki , we can consider the setting

X = Y = i∈O(X)(Ki\G) with G = As(X).

Furthermore, we set up the following set consisting of some maps:

Jn := {
ι : {2, 3, . . . , n} −→ {0, 1} }

,

which is of order 2n−1. Moreover, given a tuple (x1, . . . , xn) ∈ Xn and each ι ∈ Jn , we
define x(ι, i) ∈ X by the formula

x(ι, i) := xi · (
eι(i+1)

xi+1
· · · eι(n)

xn

)
.

Then, with a choice of an element p ∈ X , we define a homomorphism

ϕn : C R
n (X) −→ Cpre

n (X) ⊗Z[As(X)] Z

by setting

ϕn(x1, . . . , xn) :=
∑

ι∈Jn

(−1)ι(2)+ι(3)+···+ι(n)
(
x(ι, 1), . . . , x(ι, n), p

)
.

Here are the descriptions of ϕ∗ of lower degree:

ϕ2(a, b) = (a, b, p) − (a � b, b, p),

ϕ3(a, b, c) = (a, b, c, p) − (a � b, b, c, p) − (a � c, b � c, c, p) + ((a � b) � c, b � c, c, p).

Then, it is shown [17, §4] that this ϕn is a chain map, i.e., ∂�
n ◦ ϕn = ϕn−1 ◦ ∂ R

n , and that
if n ≤ 3, the image of the subcomplex C D

n (X) is nullhomotopic. Hence, the map ϕ3 with
n = 3 induces a homomorphism

(ϕ3)∗ : H Q
3 (X) −→ H�

3 (X; Z).

We refer the reader to several studies on the chain map; see [17,18,24–26].
Next, we review the quandle cocycle invariant. Given a shadow coloring S of a link

diagram D, the fundamental 3-class of S, denoted by [S], is defined to be the sum

[S] :=
∑

τ

ετ

(
λ(xτ ), C(yτ ), C(zτ )

) ∈ C Q
3 (X)

running over all the crossings τ , where the triple (xτ , yτ , zτ ) are the three assignments
around τ illustrated in Fig. 1, and ετ ∈ {± 1} is the sign of τ . Then, we can easily see that
[S] is a quandle 3-cycle in C Q

3 (X); see [8]. If we have a quandle 3-cocycle φ : X3 → A, the
pairing 〈φ, [S]〉 ∈ A is called the quandle cocycle invariant of S. Here, a map φ : X3 → A
is a quandle 3-cocycle, if the followings hold by definition:
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φ(x, z, w) − φ(x � y, z, w) − φ(x, y, w) + φ(x � z, y � z, w)

= φ(x � w, y � w, z � w) − φ(x, y, z),

φ(x, x, y) = φ(y, z, z) = 1, for any x, y, z, w ∈ X .

For calculating the invariant 〈φ, [S]〉, it is important to find explicit formulas of quandle
3-cocycles φ, although it is difficult in general.

Example 4.1 Let X be the link quandle QL of a link; see Example 3.11. Consider the identity
πL → πL , which induces idQL : QL → QL . Then, we obtain from Example 2.2 the QL -
coloring SidQL

, together with the associated 3-class [SidQL
]. This homology 3-class plays a

key role later.

Example 4.2 In the hyperbolic case, Inoue and Kabaya obtained a 3-cocycle from the
chain map ϕ∗, with a relation to the Chern–Simons invariant. Let X be the quotient set
C
2\{(0, 0)}/ ∼ subject to the relation (a, b) ∼ (−a,−b). Equip X with a quandle operation

(
a b

)
�

(
c d

) = (
a b

) (
1 + cd d2

−c2 1 − cd

)
.

One can easily verify that X is isomorphic to the triple (G, K , k0) as in Example 2.2, where

G is P SL2(C) and K is the unipotent subgroup of the form
{(

1 a
0 1

)∣∣∣ a ∈ C

}
, and k0 =

(
1 1
0 1

)
.

Although this (G, K ) is not malnormal, the paper [3, §4] showed that the chain map α in
(12) is a quasi-isomorphism, which ensures a quasi-inverse β. Furthermore, Neumann [23]
and Zickert [32] described the Chern–Simons 3-class as a relative group 3-cocycle

CS ∈ C3
gr(P SL2(C), K ; C/π2

Z), (14)

together with a cocycle presentation (see [32] for the detail). As a consequence, we concretely
get a quandle 3-cocycle ϕ∗ ◦ β∗(CS).

Furthermore, let us consider a hyperbolic link L and explain (15) below. From the view-
point of Example 2.2, the associated holonomy representation ρ : πL → P SL2(C) is
regarded as a shadow X -coloring Sρ . Then, Inoue and Kabaya [17, Theorem 7.3] showed
the equality

〈ρ∗(CS), [EL , ∂ EL ]〉 = 〈(β ◦ ϕ3)
∗(CS), [Sρ]〉 ∈ C/π2

Z. (15)

Notice that, the right hand side is a quandle cocycle invariant, by definition. As a result, we
can compute the Chern–Simons invariant without triangulation; see [17] for examples.

5 Algebraic representation of the fundamental homology 3-class

In this section, we give a method to algebraically represent the fundamental 3-class
[EL , ∂ EL ], where L is either a hyperbolic link or a prime non-cable knot.

To describe this, the following plays a key viewpoint (see Sect, 6 for the proof).

Theorem 5.1 Assume that a prime knot L is neither a cable knot nor a torus knot, as in
Theorem 3.10. Then, the Inoue–Kabaya chain map ϕ3 induces an isomorphism H Q

3 (QL) →
H�
3 (QL ; Z), which is identified with idZ : Z → Z.
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Theorem A.1 says that H Q
3 (QL) is generated by some fundamental 3-class [SidQL

]. Hence,

if we can explicitly formulate a quasi-inverse β : C�∗ (QL)πL → Cgr∗ (πL , ∂πL ; Z) in (17),
then we obtain an algebraic presentation of the fundamental 3-class [EL , ∂ EL ].

We will explain the reason why we focus on only hyperbolic links in Sect. 5.2. The key
is the JSJ-decomposition of a knot (or the geometrization theorem). Precisely, as seen in [5,
Theorem 4.18] or [2,13], there exist open sets V1 ⊂ V2 ⊂ · · · ⊂ Vn ⊂ S3 satisfying the
followings:

1. The set Vi for any i ≤ n is an open solid torus in S3, and Vi contains the knot L .
2. For any i ∈ Z≥0, the difference Vi − V i−1 is homeomorphic to one of a composite knot

or a hyperbolic knot or an (ni , mi )-torus knot in the solid torus for some (ni , mi ) ∈ Z
2.

Here we denote the knot L by V0.

As is known, the decomposition is unique in some sense. Here, remark (see [5, Corollary
4.19]) that L is a cable knot if and only if a difference V1 − V0 is an (n, m)-torus knot in the
solid torus; see Fig. 5.

Following the JSJ-decomposition, let us further examine the pairing (1). Denote the inclu-
sion Vi − Vi−1 ⊂ S3 − L by ιi , and the torus-boundary Vi−1 ∩ Vi by Bi . Then, given
f : πL → G and θ as before, we have f ◦ (ιi )∗ : π1(Vi − Vi−1) → G. Let Ki ⊂ G be the
image of π1(Bi ) via f ◦ (ιi )∗, where we appropriately choose a base point. Then, we can
regard the pullback ι∗i ◦ f ∗(θ) as a relative group 3-cocycle of (G, Ki , Ki+1). Therefore, the
excision axiom on ιi ’s ensures the equality

〈 f ∗(θ), [EL , ∂ EL ] 〉 =
∑

i :1≤i≤n

〈ι∗i ◦ f ∗(θ), [Vi − Vi−1, ∂(Vi − Vi−1)] 〉. (16)

To conclude, it is reasonable to deal with the fundamental 3-classes piecewise, according to
the JSJ-decompositions of knots.

5.1 The fundamental relative 3-class of hyperbolic links

This subsection gives an explicit algorithm for describing the fundamental relative 3-class
of hyperbolic links. Here, the description is done in truncated terms (Theorem 5.3).

We begin by reviewing the truncated complex, which is defined by Zickert [32, §3]. Fix a
group G, and subgroups K1, . . . , K#L . For n ≥ 1, consider the free abelian group Z[Gn2+n],
and denote the (i j)-th generator g ∈ G by gi j with i �= j . DefineCn(G,K) by the submodule

of Z[Gn2+n] which is generated by gi j satisfying

• for any i ∈ {0, . . . , n}, there exists mi ∈ {1, . . . , #L} such that the classes of the n
elements gi0, . . . , ǧi i , . . . , gin in the coset Kmi \G are equal.

Then, right multiplication endows Cn(G,K) with a Z[G]-module structure, and the usual
simplicial boundary map gives rise to a boundary map ∂∗ on Cn(G,K). The complex
(C∗(G,K), ∂∗) is called the truncated complex of (G,K). As was similarly shown [32,
Remark 3.2 and Proposition 3.7], we can easily verify that this complex is a free resolution
of Coker(PI ) (Fig. 3).

In addition, let us examine the case where GC is P SL2(C) and every KC,� is conjugate to
the unipotent subgroup such that KC,s ∩ KC,t = {1GC

} for s �= t . Then, we have the quandle
XC, from Example 4.2, as the union of the quandles #L

�=1KC,�\GC = #L(C2\{0, 0})/ ∼.
We will describe a quasi-inverse β mentioned in Proposition 3.7. For this, consider the
following subcomplex of C�

n (XC; Z):

123



Geometriae Dedicata (2020) 204:1–24 13

Fig. 3 A geometric description of generators of the truncated 2-, 3-simplexes with G-labels

Ch �=
n (XC) = Z〈 [(a0, b0), . . . , (an, bn)] ∈ C�

n (XC; Z)
∣∣ ai b j �= a j bi for any i, j with i �= j

〉
.

Then, this complex is known to be an acyclic Z[GC]-free complex. Consider the correspon-
dence

gi j : (XC)n+1 −→ G; (
(a0, b0), (a1, b1), . . . , (an, bn)

)

�−→
(

ai bi

a j/(ai b j − a j bi ) b j/(ai b j − a j bi )

)
.

This gives rise to a homomorphism

β : Ch �=
n (XC) −→ Cn(GC,KC).

Then, Zickert [32, §3] (see also [3, Corollary 9.6]) showed that this β is a chain map and
a Z[G]-homomorphism. To summarize, this β gives a quasi-inverse of the chain map α :
Cgr

n (GC,K) → Cn(XC).
We return to the discussion of a hyperbolic link L , and state Theorem 5.3 below. Fix a

diagram D of L . Then, we have the holonomy representation ρ : πL → P SL2(C). As is
well-known, ρ is injective. Thus, it is more reasonable to use matrices in P SL2(C), than to
use (Wirtinger) group presentations of πL . Here, we should mention the following lemma
obtained from hyperbolicity.

Lemma 5.2 (see [32, §5] or [17, Lemma 7.2]) Let σ ∈ C�
3 (XC; Z) be a 3-cycle which

represents the fundamental 3-class ρ∗(EL , ∂ EL) of a hyperbolic link L. Then, this 3-cycle
σ lies in the subcomplex Ch �=

3 (XC) in (13).

In summary, we obtain the conclusion:

Theorem 5.3 Let L be a hyperbolic link with the holonomy representation ρ : πL →
P SL2(C). Let G be the image ρ(πL ), and K be the subgroups ρ(∂πL). Choose a diagram
D, and take the quandle 3-class [Sρ]; see Sect. 4. Then, the following 3-cycle represents the
fundamental 3-class in H3(EL , ∂ EL ; Z) ∼= Hgr

3 (πL , ∂πL ; Z) ∼= Z.

res(β) ◦ ϕ3([Sρ]) ∈ C3(G,K; Z).

5.2 Example; the figure eight knot

As the simplest case, we let L be the figure eight knot as in Fig. 4. By the Wirtinger presen-
tation, we have

π1(S3\L) ∼= 〈g, h | h−1gh = g−1h−1ghg−1hg〉,
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Fig. 4 The holonomy representation of 41 as an X -coloring. Here ω = (−1 + √−3)/2

where g and h are meridians derived from the arcs α1 and α2, respectively.We denote the two
classes in QL of g and h ∈ πL by a and b, respectively. Then, by definition, the fundamental
3-class [SidQL

] is given by

−(b � a, a, b) − (b � a, b, a) + ((b � a) � b, a, a � b) + (b, b, b � a) ∈ C Q
3 (QL ; Z).

Notice that the first term is sent to zero by ϕ∗. Then, ϕ∗[SidQL
] is computed as

− (b � a, a, b, p) + ((b � a) � a, a, b, p) + ((b � a) � b, a � b, b, p)

− (((b � a) � a) � b, a � b, b, p)

− (b � a, b, a, p) + ((b � a) � b, b, a, p) + ((b � a) � a, b � a, a, p)

− (((b � a) � b) � a, b � a, a, p) + ((b � a) � b, a, a � b, p)

− (((b � a) � b) � a, a, a � b, p)

− (((b � a) � b) � (a � b), a � (a � b), a � b, p)

+ ((((b � a) � b) � a) � (a � b), a � (a � b), a � b, p).

Thus, following Theorem 5.3, we consider the well-known holonomy representation ρ :
πL → P SL2(Z[ω]), where ω is (−1 + √−3)/2. This is represented by the XC-coloring C
in Fig. 4. Accordingly, if we replace a by (1, 0) and b by (0, ω), the 3-cycle ϕ∗[SidQL

] above
is reduced to

− ((−ω,ω), (1, 0), (0, ω), p
) + (

(−2ω,ω), (1, 0), (0, ω), p
)

+ (
(−ω,ω + 1), (1, ω − 1), (0, ω), p

)

− (
(−2ω,ω + 2), (1, ω − 1), (0, ω), p

)

− ((−ω,ω), (0, ω), (1, 0), p
) + (

(−ω,ω + 1), (0, ω), (1, 0), p
)

+ (
(−2ω,ω), (−ω,ω), (1, 0), p)

− (
(−2ω − 1, ω + 1), (−ω,ω), (1, 0), p

)

+ (
(−ω, 1 + ω), (0.ω), (1, ω − 1), p

) − (
(−ω, 2 + ω), (0.ω), (1, ω − 1), p

)

− (
(−2ω − 1, 4), (−ω, 1 + ω), (1, ω − 1), p

)

+ (
(−2ω − 2, 6 − ω), (−ω, 1 + ω), (1, ω − 1), p

)
.

Hence, for example, if p = (0, 1) and we apply the homomorphism β to this cycle, we can
describe explicitly the fundamental 3-class by Theorem 5.3. However, the description forms
long; we omit writing it.
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6 Proofs of themain theorems

Wewill prove the theorems in Sect. 2. If L is the trivial knot, the theorems are obvious. Thus,
we may assume that L is non-trivial in what follows. We begin by proving Theorem 2.1.

6.1 Proofs of Theorems 2.1 and 5.1

Proof of Theorems 2.1 Recall the complexes in Sects. 3 and 4. Since they are functorial by
construction, we obtain a commutative diagram:

C R∗ (QL ; Z)
ϕ∗

f∗

C�∗ (QL ; Z)

f∗ β

Cgr∗ (πL , ∂πL ; Z)

f∗

α

C R∗ (X; Z)
ϕ∗

C�∗ (X; Z) Cgr
∗ (G, K ; Z).

α

(17)

Since L is either a prime non-cable knot or a hyperbolic link by assumption, the right β

comes from the quasi-isomorphism α in Examples 3.8 and 3.9.
We will explain (18) below. Recall the quandle 3-class [SidQL

] from Example 4.1. Then,

denoting by [πL , ∂πL ] a generator of Hgr
3 (πL , ∂πL) ∼= Z, the diagram (17) admits some

NL ∈ Z such that

β ◦ ϕ3([SidQL
]) = NL [πL , ∂πL ] ∈ H�

3 (QL ; Z) ∼= Z.

Then, for every group relative 3-cocycle θ , setting φθ = (β◦ϕ3)
∗◦ f ∗(θ) yields the equalities

〈φθ , [SidQL
]〉 = 〈 f ∗(θ), β ◦ ϕ3([SidQL

])〉 = NL 〈 f ∗(θ), [πL , ∂πL ] 〉 ∈ AG . (18)

Hence, it is enough to show NL = ± 1. Actually, if NL = ± 1, we canonically obtain a
map φθ : RegD × (ArcD)2 → A from the definition of [SidQL

], which justifies the desired
equality (3).

If L is a hyperbolic link, and f is the associated holonomy πL → P SL2(C)with θ = CS,
we immediately have NL = ± 1 by (15).

It remains to work in the case where L is a knot which is neither hyperbolic nor cable.
Then, thanks to the JSJ-decomposition (16) above, there is a solid torus V1 ⊂ S3, such that
V1 contains the link L and V1\L is either hyperbolic or reducible.

In the former case, when V1\L is hyperbolic, we now give a diagram (19) below. Regard-
ing V1\L as a hyperbolic link, L ′, in the 3-sphere, we denote by K2 another subgroup of
π1(S3\L ′) arising from ∂(V1). Then, the link quandle QL ′ is bijective to K1\πL ′  K2\πL ′
by definition.We consider the homogenous quandle of the form K1\πL  K2\πL , and denote
it by QW . Then, the inclusion j : S3\L ′ ↪→ S3\L defines a quandle map j∗ : QL ′ → QW ,
and we take a canonical injection i : QL ↪→ QW . In summary, we have the commutative
diagram on the third homology groups:

H Q
3 (QL ; Z)

i Q∗

ϕ∗

H Q
3 (QW ; Z)

ϕ∗

H Q
3 (QL ′ ; Z)

j Q∗

ϕ∗

H�
3 (QL ; Z)

i∗
H�
3 (QW ; Z) H�

3 (QL ′ ; Z).
j∗

(19)
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Here, i Q∗ and j Q∗ are the induced maps on the third quandle homology from i and j , respec-
tively. In the appendix (Lemma A.3), we later show the isomorphisms H Q

3 (QW ; Z) ∼=
H Q
3 (QL ′ ; Z) ∼= Z

2, such that the matrixes of i Q∗ and j Q∗ are given by (1, 0) and
(
1 1
1 1

)
,

respectively. Hence, since the right ϕ∗ is surjective by the former discussion, the commuta-
tivity with (16) implies NL = ± 1 as desired.

Finally, we discuss the case where V1\L is reducible. For this, take a hyperbolic link L0

in V1 ∼= D2 × S1, and attach it to V1\L . Then, the situation is reduced to the above case.
Hence, the proof completes. �
Proof of Theorem 5.1 Since L is neither composite nor cable, the above discussion readily
implies the bijectivity of ϕ3. �
Remark 6.1 Wemention the assumption of hyperbolicity. As a counter example, consider the
Hopf link L . Since π1(S3\L) ∼= Z

2 and the boundary inclusions induce isomorphisms on
π1, the link quandle QL consists of two points. Hence, the chain map ϕ∗ is zero by definition.
However, the pairing 〈θ, f∗[EL , ∂ EL ]〉 is not always trivial. In summary, it is seemingly
hard to generalize the Theorem 2.1 in every link case.

6.2 Proof of Theorem 2.3; malnormality and transfer

Next, turning to malnormality and transfer, we will complete the proof of Theorem 2.3. For
this, we shall mention a key proposition obtained from transfer.

Proposition 6.2 (cf. Transfer; see [4, §III.10]) Let K1, . . . , K#L be finite subgroups of G, and
let Y be i (Ki\G) on which G has a right action. Assume that each order |Ki | is invertible
in the coefficient group A. Then, the chain map

α : (P∗ ⊗Z A, ∂∗) −→ (C�∗ (Y ) ⊗Z A, ∂∗)

with coefficients A is a quasi-isomorphism.

Proof According to the same discussion on the transfer; see [4, § III.9–10]. �
Proof of Theorem 2.3 First examine the case (i), that is, each Ki ⊂ K is amalnormal subgroup
in G. Then, Proposition 3.7 again ensures a quasi-inverse β ′ : C�∗ (X)G → Cgr

∗ (G,K),
where X = i∈I Ki\G as in Example 2.2. Then, for any group 3-cocycle θ , we set φθ =
(β ′ ◦ f∗ ◦ ϕ3)

∗(θ) ∈ A as a quandle 3-cocycle, and the group 3-cocycle θ is represented by
a map X4 → A.

We will show the equality below. Let L be a hyperbolic link or a prime non-cable knot,
which ensures the 3-class [πL , ∂πL ] by the malnormal property of L . Compute the pairing
〈φθ , [S f ]〉 as

〈φθ , [S f ]〉 = 〈 f ∗ ◦ (β ′)∗(θ), (ϕ3)∗[S f ]〉 = 〈 f ∗ ◦ (β ′)∗(θ), (α)∗[πL , ∂πL ]〉
= 〈α∗ ◦ f ∗ ◦ (β ′)∗(θ), [πL , ∂πL ]〉 = 〈 f ∗(θ), [πL , ∂πL ]〉. (20)

Here, the second equality is obtained by (18) and Proposition 3.7, and the others are done
by functoriality. From the definition of [S f ] and φθ , this equality (20) is equivalent to the
desired statement.

Finally, we turn to the assumption (ii). By Proposition 6.2, we can similarly get a quasi-
inverse β of α in the coefficient group A. Thus, the required equality is done by the same
discussion as (20); hence, the desired statement also holds in (ii). �
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6.3 Examples of 3-cocycles

Finally, we will point out that, in some cases, such group 3-cocycles θ have much simpler
expressions in terms of quandle cocycles. We end this section by giving two examples.

Example 6.3 (cf. [24]) First, we will observe some triple Massey products. This example is
essentially due to [24, §4.2]. Regard the finite field Fq as the abelian group (Z/p)m , where
q = pm and p �= 2. Consider the (nilpotent) group on the set

G := Z/2 × Fq × (Fq ∧Z Fq),

with operation

(n, a, κ) · (m, b, ν) = (n + m, (−1)ma + b, κ + ν + [(−1)ma ⊗ b]). (21)

Letting the subgroup K beZ/2×{0}×{0} ⊂ G and x0 ∈ K be (1, 0, 0), we have the quandle
of the form X = Fq × (Fq ∧Z Fq).

The cohomology H3(G; Fq) is complicated. In fact, the cohomology has 3-cocycles θ� ,
which are derived from triple Massey products (see [24, Proposition 4.8]). However, the
author [24, Lemma 4.7] showed that the pullback ϕ∗

3θ� : X3 → Fq is formulated as

(ϕ∗
3θ�)

(
(x, α), (y, β), (z, γ )

) = (x − y)q1(y − z)q2+q3 zq4 .

with some prime powers q1, q2, q3, q4 ∈ Z. Since this formula is relatively simple, we can
compute the relative fundamental 3-class in an easier way than the group-theoretic method;
see [24, §5] for a computation.

Example 6.4 Next, we focus on the quandles given in the paper [24] and show Proposition 6.7
below. The result will be useful to show theorems in [27].

Let L be a prime knot or a hyperbolic link, and O� be the set {g−1m�g}g∈πL . Fix, the
inclusion from the link quandle QL into #L

�=1O� which sends K�g to g−1m�g. Given a right
Z[πL ]-module M , we have the semi-direct product G := M �πL . Fix b1, b2, . . . , b#L ∈ M .
Then, for � ≤ #L , we fix b� ∈ M , and consider the subgroup

K� := {(
b�(1 − ms

�l
t
�), ms

�l
t
�

) ∈ M � πL
∣∣ s, t ∈ Z

2 }
.

There is a quandle X = i≤#L K�\(M � πL) that is in bijective correspondence with M ×
#L

�=1O�, and the quandle structure is equivalent to

(a, g) � (b, h) = ((a − b)h + b, h−1gh)

for a, b ∈ M and g, h ∈ #L
�=1O�. We notice two lemmas:

Lemma 6.5 If the pair (πL , ∂πL) is malnormal, so is the family K1, . . . , K#L ⊂ M � πL .

Lemma 6.6 Take a πL -invariant multi-linear map ψ : Mn → A, where πL trivially acts
on A. Let X be the quandle on the union #L

j=1K�\G. Then, the following map from the
normalized complex (see Example 3.6) is an n-cocycle.

	 : CNor
n (X)As(X) −→ A; ((a0, g0) . . . , (an, gn)) �−→ ψ(a0 − a1, a1 − a2, . . . , an−1 − an).

Next we consider the pullbacks of ϕ and α in the diagram (17) for the case n = 3. Then, as
in [25, Theorem 5.2], we can see that the pullback of the IK map ϕ is formulated by

ϕ∗
3 (	)((a1, z1), (a2, z2), (a3, z3)) = ψ

(
(a1 − a2)(1 − z2), a2 − a3, a3 − a3z−1

3 ).
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Fig. 5 The torus knot Sm,n in the solid torus, and the link diagram on R
2.

Moreover, consider another pullback by α, where we use the expression of α in Example 3.6.
Notice that the projection M � πL → M ×O� is represented by the map which takes (m, g)

to (y�g + m, g−1m�g). Then, in terms of the non-homogenous complex in Example 3.3, the
pullback, α∗(	), is represented by

θ� : (
(a1, g1), (a2, g2), (a3, g3)

) �−→ ψ
(
(a1+y�−y�·g1)g2g3, (a2+y�−y�·g2)·g3, a3+b�−b�·g3),

(22)
and η� = 0. By Theorems 2.1 and 7.1, we accordingly have the following:

Proposition 6.7 As in Theorem 2.1, let L be either a hyperbolic link or a prime knot which
is neither a cable knot nor a torus knot. Then, the pairing of the 3-cocycle α∗(	) in (22) and
[YL , ∂YL ] is equal to the quandle cocycle invariant 〈ϕ∗

3 (	), [S]〉.
Furthermore, if K is the (n, m)-torus knot, the same equality holds modulo nm.

7 Theorem for cable knots

While Theorems 2.1 and 2.3 assumed non-cabling knots, this section focuses on cable knots.
To simplify the study, consider a solid torus V ⊂ S3 such that V \L is the (m, n)-torus knot.
By the formula (16) from the JSJ-decomposition, it is sensible to consider either the torus knot
Tm,n in S3 or the solid one in V . We denote the latter by Sm,n ; Regarding S3\(L  (S3\V ))

as a link complement, the knot Sm,n admits a link-diagram in R
2; see Fig. 5.

As in the Theorems 2.1 and 2.3, we get similar results modulo some integer. Precisely,

Theorem 7.1 (cf. Theorems 2.1 and 2.3. See Sect. 7.2 for the proof) Assume that L is either
the torus knot Tm,n ⊂ S3 or Sm,n ⊂ V . Let N = n if L is Sm,n, and let N = mn if L is Tm,n.

Then, for any relative group 3-cocycle θ ∈ H3(G,K; A), there is a map φθ :
RegD × ArcD × ArcD → A for which the following equality holds in the coinvariant
AG = H0(G; A),:

〈 θ, f∗[EL , ∂ EL ]〉 = 〈φθ , [S f ]〉 ∈ AG modulo the integer N . (23)

Furthermore, if the pair (G,K) is malnormal, then there are a quandle 3-cocycle φθ and
an X-coloring S f such that 〈 θ, f∗[EL , ∂ EL ]〉 = 〈φθ , [S f ]〉 modulo the integer N.

In conclusion, we have a diagrammatic computation for cable knots, although the statement
is considered modulo some integer. In addition, we later see that the discussion to show (23)
is reduced to the homology of cyclic groups; hence, the pairing modulo N does not have
more information than cyclic groups.
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7.1 Observations on the torus knots

Before going to the proof, we show two lemmas, and observe an essential reason why the
statement is considered modulo N .

Consider the (n, m)-torus knot L in the 3-sphere S3. Let G be π1(S3\L), and let K be the
peripheral subgroup. Fix (a, b, n, m) ∈ Z

4 with an + bm = 1. According to [14, § 2],

π1(S3\Tn,m) ∼= 〈 x, y, | xn = ym 〉 ⊃ 〈xa yb, (xa yb)−nm xn〉 = K .

Then, Theorem 3.10 says that the pair (G, K ) is not malnormal. However, regarding the
center Z = 〈xn〉 ⊂ G, the quotients G/Z and K/Z are isomorphic to the free product
Z/n ∗ Z/m and Z, respectively. Then, it is known [14, §2] that the pair of the quotients
(G/Z , K/Z) is malnormal. We will show the following:

Lemma 7.2 For ∗ ≥ 2, there are isomorphisms

H�∗ (K\G; Z) ∼= H�∗ ((K/Z)\(G/Z); Z) ∼= Hgr∗ (G/Z , K/Z; Z)

∼=
⎧
⎨

⎩

Z, if ∗ = 2,
Z/nm, if ∗ is odd, and ∗ ≥ 3,
0, otherwise.

Proof Thefirst isomorphism is obtainedby the set-theoretic equality K\G = (K/Z)\(G/Z).
The second isomorphism follows from themalnormality.We explain the last one: by aMayer-
Vietoris argument, the homology of Z/n ∗ Z/m is that of the pointed sum L∞

n ∨ L∞
m , where

L∞
m is the infinite dimensional lens space with fundamental group Z/m. Hence, the long

exact sequence (9) readily leads to the conclusion. �
In summary, since the proofs in this paper often employ the Hochschild homology

H�∗ (K\G), it is reasonable to consider the pairing modulo nm.
In addition, we similarly observe another knot Sn,m in the solid torus, in details. Fix four

integers (n, m, a, b) ∈ Z
4 with an + bm = 1. Consider the following subspace

{
(z, w) ∈ C

2
∣∣ |z|2 + |w|2 = 1, |zn + wm | <

1

nmmn
, |z| <

1

3

}
.

We can easily check that the space is homeomorphic to the (n, m)-torus knot V \Tn,m . Since
the space is regarded as a restriction of aMilnor fibration over S1, it is an Eilenberg–MacLane
space. Furthermore, as in the usual computation of π1(S3\Tn,m), set up the two subsets

U1 := {
(z, w) ∈ V \Tn,m

∣∣ |z|2 ≤ 1/2
}
, U2 := {

(z, w) ∈ V \Tn,m
∣∣ |z|2 ≥ 1/2

}
.

Since U1 � S1 and U2 � S1 × S1, a van-Kampen argument (see [6, §15]) can conclude

π1(V \Tn,m) ∼= 〈 x, z′ | xm z′ = z′xm 〉.
Here, the longitude l is represented bym−nm xn , as before. In summary, we can easily obtain
the following:

Lemma 7.3 (i) The center of π1(V \Tn,m) is generated by xm and is isomorphic to Z.
(ii) The quotient group of π1(V \Tn,m) subject to the center is isomorphic to Z/m ∗ Z.

(iii) The subgroup generated by the meridian [m] is malnormal, and is isomorphic to Z.

Since Sn,m is embedded in S3, we have the link quandle QV . As a result, we similarly have

H�
k (QV ; Z) ∼= H�

k (K\G; Z) ∼= Hgr
k (Z/m ∗ Z, Z, Z; Z) ∼=

⎧
⎨

⎩

Z, if k = 2,
Z/m, if ∗ is odd, and ∗ ≥ 3.
0, otherwise.
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Finally, we mention that the inclusion j : V \Tn,m ↪→ S3\Tn,m induces H�
3 (QV ) →

H�
3 (K\G) as an injection Z/m → Z/mn.

7.2 Proof of Theorem 7.1

We will give the proof of Theorem 7.1, based on the discussion in Sect. 7.1.

Proof In this proof, we always deal with homology in torsion coefficients Z/N . Since the
latter part from malnormality can be proven in a similar way to Theorem 2.1, we will only
show the former statement.

By the above computations of homologies, the chain map α modulo N yields an iso-
morphism on H∗(•; Z/N ), which gives a quasi-inverse β : C�∗ (QV ) → Cgr∗ (πV , ∂πV ).
Furthermore, we suppose a quandle homomorphism f : QTm,n → X with X = H\G.

Similarly to (17), we have the following commutative diagram by functoriality.

H R
3 (QV ; Z/N )

ϕ∗

j∗

H�
3 (QV ; Z/N )πV

j∗ β

Hgr
3 (πV , ∂πV ; Z/N )

j∗

α

H R
3 (QTm,n ; Z/N )

ϕ∗

f∗

H�
3 (QTm,n ; Z/N )πL

f∗ β

Hgr
3 (πTm,n , ∂πTm,n ; Z/N )

f∗

α

H R
3 (X; Z/N )

ϕ∗
H�
3 (X; Z/N )G Hgr∗ (G, K ; Z/N ).

α

(24)
Here, by the above discussion, the middle j∗ is reduced to the injection Z/m → Z/nm.
Hence, if we show that all the left ϕ∗’s are surjective, then the rest of the proof runs as in the
proof of Theorems 2.1 and 2.3.

To show the surjectivity, we now set up appropriate X and f . Although there are many
choices of such X and f for the proof, this paper relies on some results in [24] as follows: Take
arbitrary prime p which divides m. Choose the minimal k ∈ N such that n is not relatively
prime to 1+ pk .We set up the semi-direct productG = (Z/p)k

�Z/(1+ pk) and the subgroup
K = Z/(1+ pk). Then, we can easily construct a group homomorphism f : Z/m∗Z/n → G
that sends the subgroup Z to K , and induces the injection f∗ : H3(Z/m ∗ Z/n; Z/p) →
H3(G; Z/p) on homology. Thus, it is enough for the surjectivity of the left ϕ∗’s to show
that the left bottom map ϕ∗ : H R

3 (X; Z/N ) → H�
3 (X; Z/N )G is injective. However, by

noticing that the binary operation on X = (Z/p)k = Fpk is x � y = ω(x − y) + y for some
ω ∈ Fpk \{0, 1} the injectivity of X is already shown in the previous paper [24, Lemmas 4.5–
4.6], which studies the chain map ϕ∗ for the quandle operation.

As a parallel discussion, whenwe choose any prime p which divides n, the same injectivity
can be shown. To summarize, since such a p is arbitrary, we have shown the surjectivity of
the left ϕ∗’s. Hence, we complete the proof. �

Finally, we give a corollary:

Corollary 7.4 Let L be the (m, n)-torus knot, and let EL be the complement space. Let K
be a malnormal subgroup of G. Then, for any relative 3-cocycle θ , the �-torsion part of the
pairing 〈 θ, f∗[EL , ∂ EL ]〉 is zero. Here � is either the prime number coprime to nm or
� = 0.
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In fact, as seen in the above proof, the fundamental 3-class of the torus knot must factor
through H�

3 (QV ; Z) ∼= Z/mn. As a result, for example, if θ is the Chern–Simon 3-class in
(14), the free (volume) part of the pairing turns out to be zero.
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A Appendix: The third quandle homology of some link quandles

The purpose of this appendix is to determine the third quandle homology of some link
quandles (Theorems A.1, A.2). In what follows, we assume the terminology in Sect. 4, and
we deal with only integral homology (so we often omit writing Z)

For the purpose, we adopt an approach on the basis of [26, § 8]. Thus, we shall review rack
spaces from a quandle X . Consider the orbit decomposition X = i∈O(X) Xi from the action
of As(X) on X . For each orbit i ∈ OX , we fix xi ∈ Xi . Let Y be either Xi or the single point
with their discrete topology. Then, let us consider a disjoint union

⊔
n≥0

(
Y × ([0, 1]× X)n

)
,

with the following two relations:

(y, t1, x1, . . . , x j−1, 0, x j , t j+1, . . . , tn, xn) ∼ (y, t1, x1, . . . t j−1, x j−1, t j+1, x j+1, . . . , tn, xn),

(y, t1, x1, . . . , t j−1, x j−1, 1, x j , t j+1, x j+1, . . . , tn, xn)

∼ (y � x j , t1, x1�x j , . . . , t j−1, x j−1�x j , t j+1, x j+1, . . . , tn, xn).

Then, the rack space B(X , Y ) is defined to be the quotient space, which is path connected.
When Y is a single point, we denote it by B X for short.

We will list some properties on the space from [11]. By observing the cellular complexes,
the following isomorphisms are known:

H R
n (X) ∼= Hn(B X; Z), H R

n+1(X) ∼=
⊕

i∈OX

H R
n (B(X , Xi ); Z). (25)

Furthermore, concerning fundamental groups, we mention the following isomorphisms [11]:

π1(B X) ∼= As(X), π1(B(X , Xi )) ∼= Stab(xi ) ⊂ As(X). (26)

It is shown [11, Proposition 5.2] that the action of π1(B X) on π∗(B X) is trivial, and the
projection p : B(X , Xi ) → B X is a covering. Therefore, we have functorially the Postnikov
tower written in

H3(Stab(xi ))

p∗

π2(B(X , Xi ))

p∗ ∼=

H2(B(X , Xi ))

p∗

Hgr
2 (Stab(xi ))

p∗

0 (exact)

H3(π1(B X)) π2(B X) H2(B X) Hgr
2 (π1(B X)) 0 (exact).

(27)
Furthermore, we mention [20, Theorem 7], which claims the isomorphisms

H R
2 (X) ∼= H Q

2 (X) ⊕ Z
⊕O(X), H R

3 (X) ∼= H Q
3 (X) ⊕ H Q

2 (X) ⊕ Z
⊕O(X)×O(X). (28)
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Using the above results, we will show the following theorem:

Theorem A.1 Let QL be the link quandle of a non-trivial knot L. Then,

H R
3 (QL) ∼= Z ⊕ Z ⊕ Z, H Q

3 (QL) ∼= Z.

Furthermore, the quandle homology H Q
3 (QL) ∼= Z is generated by the fundamental 3-class

[SidQL
] (recall Example 4.1 for the definition).

Proof Note O(X) = 1. Then,π1(B(X , X)) ∼= Stab(x0) is the peripheral group∼= Z
2. Hence,

Hgr∗ (Stab(xi )) ∼= H∗(S1 × S1; Z). Furthermore, π2(B X) ∼= Z
2 is known [11]. Hence,

the above sequence deduces H R
3 (QL) ∼= Z

3 as desired. Furthermore, since H R
2 (QL) ∼=

H1(B(QL , QL)) ∼= Hgr
1 (Stab(xi )) ∼= Z

2 (which is already known [11,28]), we have

H Q
2 (QL) ∼= Z by (26). Hence, we obviously obtain H Q

3 (QL) ∼= Z from (28).
We complete the remaining proof on the generator. Consider a chain map q : C R

n (X) →
C R

n−1(X) induced by (x1, . . . , xn) �→ (x2, . . . , xn). We can easily check that the map on the
homology level coincides with the above p∗ : Hn(B X) → Hn−1(B X). Here note the fact
[11,28] that H Q

2 (QL) ∼= Z is generated by the 2-class q∗[SidQL
]. Hence, H Q

3 (QL) must be
generated by the 3-class [SidQL

]. �
Next, wewill deal with the link case. As seen in Remark 6.1 or Seifert pieces, it is complicated
to deal with H Q

3 (QL) of every links. Let us assume a property:

The centralizer subgroup of each peripheral group Pi ⊂ πL is equal to Pi . (†).

For example, if L is hyperbolic or if the subgroups Pi are malnormal, the property holds.

Theorem A.2 Let L ⊂ S3 be a non-splitting link with the property (†). Then,

H R
3 (QL) ∼= Z

#L(#L+2), H Q
3 (QL) ∼= Z

#L .

Proof First, we show H R
2 (QL) ∼= Z

2#L . By (†), we can easily verify Stab(xi ) ∼= Z
2 and

|O(QL)| = #L . Hence, it follows from (25) that H R
2 (QL) ∼= ⊕i∈O(X) Hgr

1 (Stab(xi )) ∼= Z
2#L

as desired.
Next, we show π2(B X) ∼= Z

#L+1. Since L is non-splitting, S3\L is an Eilenberg-
MacLane space of type (πL , 1); see, e.g., [2]. Accordingly, Hgr∗ (As(QL)) ∼= H∗(S3\L).
Thus, Hgr

3 (As(QL)) ∼= 0 and Hgr
2 (As(QL)) ∼= Z

#L−1. By (27) and H2(B QL) ∼= Z
2#L , we

obviously have π2(B QL) ∼= Z
#L+1.

Next, we will complete the proof. Since π2(B(X , Xi ) ∼= Z
#L+1 and Stab(xi ) ∼= Z

2, we
have H2(B(X , Xi )) ∼= Z

#L+2 by (27). Hence, we have H R
3 (QL) ∼= Z

#L(#L+2) by (25) with

n = 2. Furthermore, regarding H Q
3 (QL), the proof is readily due to (28). �

Finally, we prove LemmaA.3which is used in Sect. 6. In what follows, we use the notation
in Sect. 6. More precisely, we should recall the associated quandles QL and QL ′ of links L
and L ′, respectively, and employ the homogenous quandle of the form QW = (K1\πL) 
(K2\πL), together with the injections i∗ : QL → QW and j∗ : QL ′ → QW ; see Sect. 6 for
the details. Furthermore, we assume L ⊂ L ′ and the hyperbolicity of S3\L \ (S3\L ′).

Lemma A.3 Assume that L ′ is a hyperbolic link. Then, H Q
3 (QW ) ∼= Z

2. Furthermore, the
induced maps on the third homology level

i Q∗ : H Q
3 (QL) −→ H Q

3 (QW ), and j Q∗ : H Q
3 (QL ′) −→ H Q

3 (QW )

are given by (1, 0) and
(
1 1
1 1

)
, respectively.
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Proof By the form of QW , we can easily show As(QW ) ∼= π1(S3\L). Further, notice the
amalgamation

πL = π1(S3\V1) ∗π1(∂(S3\V1))
π1(V1\L).

Since V1\L is hyperbolic, and S3\V1 is a knot, the centralizer of π1(∂(S3\V1)) in πL is itself
isomorphic to Z

2. Thus, Stab(xi ) ∼= Z
2 and |O(X)| = 2. Therefore, the isomorphism (25)

readily implies H R
2 (QW ) ∼= Z

4. Then, by the same discussion of Theorem A.2, we can show

H Q
3 (QW ) ∼= Z

2 .
Furthermore, by the above proofs, we already know the basis of second quandle homolo-

gies, as the stabilizer subgroups. Thus, by functoriality from boundary inclusions, we can
check the matrix presentations. �
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