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Abstract
We show that if a Riemannian manifold satisfies (3,3)-bipolar comparisons and has an open
flat subset then it is flat. The same holds for a version of MTW where the perpendicularity
is dropped. In particular we get that the (3,3)-bipolar comparison is strictly stronger than the
Alexandrov comparison.

Keywords Metric geometry · Optimal transport · Differential geometry · Rigidity ·
Comparison geometry

1 Introduction

We say that a metric space X satisfies the (k, l)-bipolar comparison if for any a0, a1, . . . , ak;
b0, b1, . . . , bl ∈ X there are points â0, â1, . . . , âk, b̂0, b̂1, . . . , b̂l in the Hilbert spaceH such
that

|â0 − b̂0|H = |a0 − b0|X , |âi − â0|H = |ai − a0|X , |b̂i − b̂0|H = |bi − b0|X
for any i, j and

|x̂ − ŷ|H � |x − y|X
for any x, y ∈ {a0, a1, . . . , ak, b0, b1, . . . , bl}.

This definition was introduced in [5]. The class of compact length metric spaces satisfy-
ing (k, 0)-bipolar comparison with k � 2 coincide with the class of Alexandrov spaces with
nonnegative curvature, (for k = 2 it is just one of the equivalent definitions, for arbitrary
k see [1], [3]). In general (k, l)-bipolar comparisons (with k or l � 2) for length metric
spaces are stronger conditions than nonnegative curvature condition and they describe some
new interesting classes of spaces. In particular, we prove in [5] that for Riemannian man-
ifolds (4, 1)-bipolar comparison is equivalent to the conditions related to the continuity of
optimal transport. Also in [5] we together with coauthors describe classes of Riemannian
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manifolds satisfying (k, l)–bipolar comparisons for almost all k, l excepting (2, 3) and (3, 3)-
bipolar comparisons. In particular it was not known if (3, 3)-bipolar comparison differs from
Alexandrov’s comparison. In this note the affirmative answer is obtained as a corollary of
some rigidity result for spaces with (3, 3)-bipolar comparison. To formulate exact statements
we need some definitions and notations.

Let M be a Riemannian manifold and p ∈ M . The subset of tangent vectors v ∈ Tp such
that there is a minimizing geodesic [p q] in the direction of v with length |v| will be denoted
as TILp . The interior of TILp is denoted by TILp; it is called tangent injectivity locus at p.
If at TILp is convex for any p ∈ M , then M is called CTIL.

Riemannian manifold M satisfies MTW if the following holds. For any point p ∈ M , any
W ∈ TILp and tangent vectors X , Y ∈ Tp , such that X ⊥ Y we have

∂4

∂2s ∂2t

∣
∣expp(s · X) − expp(W + t · Y )

∣
∣
2
M

� 0 (1)

at t = s = 0.
This definition was introduced by Xi-Nan Ma, Neil Trudinger and Xu-Jia Wang in [7],

Cedric Villani studied a synthetic version of this definition ( [9]). If the same inequality holds
without the assumption X ⊥ Y Riemannian manifold M satisfies MTW�⊥ [2].

MTW and CTIL are necessary condition for TCP (transport continuity property). In [2],
Alessio Figalli, Ludovic Rifford and Cédric Villani showed that a strict version of CTIL and
MTW provide a sufficient condition for TCP. A compact Riemannian manifold M is called
TCP if for any two regular measures with density functions bounded away from zero and
infinity the generalized solution of Monge–Ampère equation provided by optimal transport
is a genuine (continuous) solution.

Let us denote by M(k,l) the class of smooth complete Riemannian manifolds satisfying
(k, l)–bipolar comparison and by M�0 the class of complete Riemannian manifolds with
nonnegative sectional curvature.

It was mentioned above, that

M�0 = M(k,0)

for k � 2 and it is obvious from definition, that

M(k′,l ′) ⊂ M(k,l)

if k′ � k and l ′ � l. It is proven in [5] that

M�0 = M(2,2) = M(3,1)

and

M(4,1) = M(k,l)

for k � 4 and l � 1. The most interesting fact proven in [5] is that

M(4,1) = MCT I L ∩ MMTW �⊥ ,

whereMCT I L ,MMTW �⊥ are classes of smooth Riemannian manifolds satisfying CTIL and
MTW �⊥ correspondingly. In particular this implies that M(4,1) �= M�0.

In this paper we prove the following two results.

Theorem 1.1 Let M be a complete Riemannian manifold that satisfies (3,3)-bipolar compar-
ison and contains a nonempty open flat subset. Then M is flat.
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Theorem 1.2 Let M be a complete Riemannian manifold that satisfies MTW�⊥ and contains
a nonempty open flat subset. Then M is flat.

Corollary 1.3 We have that M(3,3) �= M�0.

Theorem 1.1 follows from Proposition 2.2 and Theorem 1.2 follows from Proposition 2.3,
proved in the next section.

As a related resultwewould like tomention a rigidity result formanifoldswith nonnegative
sectional curvature with flat open subsets by Dmitri Panov and Anton Petrunin [8].

2 Proofs

For points a, b, c in a manifold we denote by �[a b
c ] the angle at a of the triangle [abc].

Key lemma 2.1 Let M be a complete Riemannian manifold that satisfies (3,3)-bipolar com-
parison. Assume that for the points xp, p, q, xq in M there is a triangle [ p̃q̃ x̃] in theEuclidean
plane E2 such that

|xp − p|M = |x̃ − p̃|E2 , |p − q|M = | p̃ − q̃|E2 , |q − xq |M = |q̃ − x̃ |E2

and moreover a neighborhood N ⊂ E
2 of the base [ p̃q̃] admits a globally isometric embed-

ding ι into M such that ι([ p̃x̃] ∩ N ) ⊂ [pxp] and ι([q̃ x̃] ∩ N ) ⊂ [qxq ]. Then xp = xq and
the triangle [pqxp] can be filled by a flat geodesic triangle.

Proof Set p− = p and q− = q .
Choose points p0, p+ ∈ [p−, xp] ∩ ι(N ) so that the points p−, p0, p+, xp appear in the

same order on [p−, xp]. Analogously, choose points q0, q+ ∈ [q−, xq ]∩N so that the points
q−, q0, q+, xp appear in the same order on [q−, xq ]. Denote by p̃−, p̃0, p̃+, q̃−, q̃0, q̃+ the
corresponding points on the sides of triangle [ p̃q̃ x̃]; so p̃− = p̃ and q̃− = q̃ .

Applying the comparison to a0 = p0, a1 = p−, a2 = p+, a3 = xp; b0 = q0, b1 =
q−, b2 = q+, b3 = xq , we get a model configuration p̂0, p̂−, p̂+, x̂ p, q̂0, q̂−, q̂+, x̂q in the
Hilbert space H.

Note that from the comparison it follows that the quadruple p̂−, p̂0, p̂+, x̂ p lies on one
line and the same holds for the quadruple q̂−, q̂0, q̂+, x̂q .

Since

| p̂0 − q̂+|H � |p0 − q+|M = | p̃0 − q̃+|E2 , | p̂0 − q̂0|H = |p0 − q0|M = | p̃0 − q̃0|E2 ,

|q̂0 − q̂+|H = |q0 − q+|M = |q̃0 − q̃+|E2 ,

we have �[q̂0 p̂0
q̂+] � �[q̃0 p̃0

q̃+]. The same way we get that �[q̂0 p̂0
q̂−] � �[q̃0 p̃0

q̃−]. Since the
sum of adjacent angles is π , these two inequalities imply that

�[q̂0 p̂0
q̂±] = �[q̃0 p̃0

q̃±].
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The same way we get that

�[ p̂0 q̂0
p̂±] = �[ p̃0 q̃0

p̃±].
From the angle equalities, we get that

| p̂− − q̂+|H � | p̃− − q̃+|M (1)

and the equality holds if the points p̂−, q̂+ lie in one plane and on the opposite sides from
the line p̂0q̂0. By (3,3)-bipolar comparison the equality in 1 indeed holds.

It follows that configuration p̂0, p̂−, p̂+, x̂ p, q̂0, q̂−, q̂+, x̂q is isometric to the configura-
tion p̃0, p̃−, p̃+, x̃, q̃0, q̃−, q̃+, x̃ ; in particular, x̂q = x̂ p .

By (3,3)-bipolar comparison |xp − xq |M � |x̂q − x̂ p|H; therefore xp = xq ; so we can set
further x = xp = xq .

Note that we also proved that the angles at p and q in the triangle [pqx] coincide with
their model angles; that is,

�[p q
x ] = �[ p̃ q̃

x̃ ], �[q p
x ] = �[q̃ p̃

x̃ ].
By the lemma on flat slices (see for example Lemma 2.1 in [4]), there is a global isometric
embedding ι′ of the solid model triangle [ p̃q̃ x̃] to M which sends [ p̃q̃] to [pq] and [ p̃x̃] to
[px]. Note that ι′ has to coincide with ι on N . It follows that ι′ maps [q̃ x̃] to [qx], which
finishes the proof. �	

Theorems 1.1 and 1.2 follow from the propositions below.

Proposition 2.2 Let M be a complete Riemannian manifold that satisfies (3,3)–bipolar com-
parison. Then any point x ∈ M admits a neighborhood U 
 x such that if U contains a
nonempty open flat subset, then U is flat.

Proof Given a point p consider a convex neighborhood U 
 p such that injectivity radius
at any point of U exceeds the diameter of U ; in particular any two points p, q ∈ U are
connected by unique minimizing geodesic [pq] which lies in U . Denote by F an open flat
subset in U ; we can assume that F is convex. �	
Note that by the key lemma we have the following:

Claim For any x ∈ U and any p, q ∈ F the triangle [pqx] admits a geodesic isometric
filling by a flat triangle.

Indeed, set xp = x . Consider a plane triangle [ p̃q̃ x̃] that has the same angle at p̃ and
the same adjacent sides as the triangle [pqx]. Since F is flat and convex there is a flat open
geodesic surface � containing [pq] and a part of [px] near p. Choose a direction at q that
runs in � at the angle �[q̃ p̃

x̃ ] to [qp]. Consider the geodesic in this direction of the length
|q̃ x̃ |. Since diameter of U exceeds the injectivity radius at q , this geodesic is minimizing. It
remains to apply the key lemma.

From the claim, it follows that the sectional curvature σx (X , Y ) vanishes for any point
x ∈ U and any two velocity vectors X , Y ∈ Tx of minimizing geodesics from x to F . Since
the set of such sectional directions is open, curvature vanish at x ; hence the result.

Proposition 2.3 Let M be a complete Riemannian manifold that satisfies MTW�⊥. Then any
point p ∈ M admits a neighborhood U 
 p such that if U contains a nonempty open flat
subset, then U is flat.
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Proof For a given p ∈ M let us take a neighborhood U 
 p as in the proof of the pre-
vious proposition. The same proof as (Thm 1.2 [5] ) shows that U satisfies (4, 1)-bipolar
comparison (CTIL condition is not necessary, because we stay away from the cut-locus).
Again, same proof as (the Thm 1.2 [5]) shows that inside this neighborhood (4, 1)-bipolar
comparison is equivalent to (4, 4)-bipolar comparison. Further note that (4, 4)-bipolar com-
parison implies (3, 3)-bipolar comparison. Now we can follow the same lines as in the proof
of Proposition 2.2, because (3, 3)-bipolar comparison is used only locally in the proof. �	
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