ORIGINAL PAPER

On open flat sets in spaces with bipolar comparison

Nina Lebedeva[1](http://orcid.org/0000-0001-7163-7269)

Received: 23 September 2018 / Accepted: 7 March 2019 / Published online: 19 March 2019 © Springer Nature B.V. 2019

Abstract

We show that if a Riemannian manifold satisfies (3,3)-bipolar comparisons and has an open flat subset then it is flat. The same holds for a version of MTW where the perpendicularity is dropped. In particular we get that the $(3,3)$ -bipolar comparison is strictly stronger than the Alexandrov comparison.

Keywords Metric geometry · Optimal transport · Differential geometry · Rigidity · Comparison geometry

1 Introduction

We say that a metric space *X* satisfies the (k, l) -*bipolar comparison* if for any a_0, a_1, \ldots, a_k ; $b_0, b_1, \ldots, b_l \in X$ there are points $\hat{a}_0, \hat{a}_1, \ldots, \hat{a}_k, \hat{b}_0, \hat{b}_1, \ldots, \hat{b}_l$ in the Hilbert space $\mathbb H$ such that

$$
|\hat{a}_0 - \hat{b}_0|_{\mathbb{H}} = |a_0 - b_0|_X, \quad |\hat{a}_i - \hat{a}_0|_{\mathbb{H}} = |a_i - a_0|_X, \quad |\hat{b}_i - \hat{b}_0|_{\mathbb{H}} = |b_i - b_0|_X
$$

for any *i*, *j* and

$$
|\hat{x} - \hat{y}|_{\mathbb{H}} \geq |x - y|_{X}
$$

for any $x, y \in \{a_0, a_1, \ldots, a_k, b_0, b_1, \ldots, b_l\}.$

This definition was introduced in [\[5](#page-4-0)]. The class of compact length metric spaces satisfying $(k, 0)$ -bipolar comparison with $k \geq 2$ coincide with the class of Alexandrov spaces with nonnegative curvature, (for $k = 2$ it is just one of the equivalent definitions, for arbitrary *k* see [\[1\]](#page-4-1), [\[3](#page-4-2)]). In general (k, l) -bipolar comparisons (with *k* or $l \ge 2$) for length metric spaces are stronger conditions than nonnegative curvature condition and they describe some new interesting classes of spaces. In particular, we prove in [\[5](#page-4-0)] that for Riemannian manifolds (4, 1)-bipolar comparison is equivalent to the conditions related to the continuity of optimal transport. Also in [\[5\]](#page-4-0) we together with coauthors describe classes of Riemannian

B Nina Lebedeva lebed@pdmi.ras.ru

Partially supported by RFBR Grant 17-01-00128.

¹ Steklov Institute, 27 Fontanka, St., Petersburg, Russia 191023

manifolds satisfying (k, l) –bipolar comparisons for almost all k, l excepting $(2, 3)$ and $(3, 3)$ – bipolar comparisons. In particular it was not known if (3, 3)-bipolar comparison differs from Alexandrov's comparison. In this note the affirmative answer is obtained as a corollary of some rigidity result for spaces with $(3, 3)$ -bipolar comparison. To formulate exact statements we need some definitions and notations.

Let *M* be a Riemannian manifold and $p \in M$. The subset of tangent vectors $v \in T_p$ such that there is a minimizing geodesic $[p q]$ in the direction of v with length $|v|$ will be denoted as $\overline{\text{TL}}_p$. The interior of $\overline{\text{TL}}_p$ is denoted by TL_p ; it is called *tangent injectivity locus* at p. If at TIL_p is convex for any $p \in M$, then *M* is called CTIL.

Riemannian manifold *M* satisfies MTW if the following holds. For any point $p \in M$, any *W* ∈ TIL_{*p*} and tangent vectors *X*, *Y* ∈ T_{*p*}, such that *X* ⊥ *Y* we have

$$
\frac{\partial^4}{\partial^2 s \ \partial^2 t} \left| \exp_p(s \cdot X) - \exp_p(W + t \cdot Y) \right|^2_M \leq 0 \tag{1}
$$

at $t = s = 0$.

This definition was introduced by Xi-Nan Ma, Neil Trudinger and Xu-Jia Wang in [\[7\]](#page-4-3), Cedric Villani studied a synthetic version of this definition ([\[9](#page-4-4)]). If the same inequality holds without the assumption *X* \perp *Y* Riemannian manifold *M* satisfies MTW^{\perp} [\[2](#page-4-5)].

MTW and CTIL are necessary condition for TCP (transport continuity property). In [\[2\]](#page-4-5), Alessio Figalli, Ludovic Rifford and Cédric Villani showed that a strict version of CTIL and MTW provide a sufficient condition for TCP. A compact Riemannian manifold *M* is called TCP if for any two regular measures with density functions bounded away from zero and infinity the generalized solution of Monge–Ampère equation provided by optimal transport is a genuine (continuous) solution.

Let us denote by $\mathcal{M}_{(k,l)}$ the class of smooth complete Riemannian manifolds satisfying (k, l) –bipolar comparison and by $M_{\geq 0}$ the class of complete Riemannian manifolds with nonnegative sectional curvature.

It was mentioned above, that

$$
\mathcal{M}_{\geqslant 0}=\mathcal{M}_{(k,0)}
$$

for $k \geqslant 2$ and it is obvious from definition, that

$$
\mathcal{M}_{(k',l')}\subset \mathcal{M}_{(k,l)}
$$

if $k' \ge k$ and $l' \ge l$. It is proven in [\[5](#page-4-0)] that

$$
\mathcal{M}_{\geqslant 0}=\mathcal{M}_{(2,2)}=\mathcal{M}_{(3,1)}
$$

and

$$
\mathcal{M}_{(4,1)} = \mathcal{M}_{(k,l)}
$$

for $k \geq 4$ and $l \geq 1$. The most interesting fact proven in [\[5\]](#page-4-0) is that

$$
\mathcal{M}_{(4,1)} = \mathcal{M}_{CTIL} \cap \mathcal{M}_{MTW^{\perp}},
$$

where M_{CTIL} , $M_{MTW\text{-}l}$ are classes of smooth Riemannian manifolds satisfying CTIL and MTW[⊥] correspondingly. In particular this implies that $\mathcal{M}_{(4,1)} \neq \mathcal{M}_{\geq 0}$.

In this paper we prove the following two results.

Theorem 1.1 *Let M be a complete Riemannian manifold that satisfies (3,3)-bipolar comparison and contains a nonempty open flat subset. Then M is flat.*

Theorem 1.2 *Let M be a complete Riemannian manifold that satisfies MTW[⊥] and contains a nonempty open flat subset. Then M is flat.*

Corollary 1.3 *We have that* $M_{(3,3)} \neq M_{\geq 0}$ *.*

Theorem [1.1](#page-1-0) follows from Proposition [2.2](#page-3-0) and Theorem [1.2](#page-1-1) follows from Proposition [2.3,](#page-3-1) proved in the next section.

As a related result we would like to mention a rigidity result for manifolds with nonnegative sectional curvature with flat open subsets by Dmitri Panov and Anton Petrunin [\[8\]](#page-4-6).

2 Proofs

For points *a*, *b*, *c* in a manifold we denote by $\angle[a^b]$ the angle at *a* of the triangle [*abc*].

Key lemma 2.1 *Let M be a complete Riemannian manifold that satisfies (3,3)-bipolar comparison. Assume that for the points* x_p *,* p *,* q *,* x_q *<i>in M there is a triangle* [$\tilde{p}\tilde{q}\tilde{x}$] *in the Euclidean plane* E² *such that*

$$
|x_p - p|_M = |\tilde{x} - \tilde{p}|_{\mathbb{E}^2}, \quad |p - q|_M = |\tilde{p} - \tilde{q}|_{\mathbb{E}^2}, \quad |q - x_q|_M = |\tilde{q} - \tilde{x}|_{\mathbb{E}^2}
$$

and moreover a neighborhood $N ⊂ \mathbb{E}^2$ *of the base* [$\tilde{p}\tilde{q}$] *admits a globally isometric embedding i into M* such that $\iota([\tilde{p} \tilde{x}] \cap N) \subset [px_p]$ and $\iota([\tilde{q} \tilde{x}] \cap N) \subset [qx_q]$ *. Then* $x_p = x_q$ and *the triangle* [*pqx ^p*] *can be filled by a flat geodesic triangle.*

Proof Set $p_-=p$ and $q_-=q$.

Choose points $p_0, p_+ \in [p_-, x_p] \cap \iota(N)$ so that the points p_-, p_0, p_+, x_p appear in the same order on $[p_-, x_p]$. Analogously, choose points $q_0, q_+ \in [q_-, x_q] \cap N$ so that the points *q*−, *q*₀, *q*+, *x*_{*p*} appear in the same order on [*q*−, *x_q*]. Denote by \tilde{p} −, \tilde{p} ₀, \tilde{p} ₊, \tilde{q} [−], \tilde{q} ₀, \tilde{q} ⁺ the corresponding points on the sides of triangle $[\tilde{p}\tilde{q}\tilde{x}]$; so \tilde{p} [−] = \tilde{p} and \tilde{q} [−] = \tilde{q} .

Applying the comparison to $a_0 = p_0$, $a_1 = p_-, a_2 = p_+, a_3 = x_p$; $b_0 = q_0$, $b_1 =$ *q*−, *b*₂ = *q*+, *b*₃ = *x_q*, we get a model configuration \hat{p}_0 , \hat{p}_- , \hat{p}_+ , \hat{x}_p , \hat{q}_0 , \hat{q}_- , \hat{q}_+ , \hat{x}_q in the Hilbert space H.

Note that from the comparison it follows that the quadruple \hat{p}_- , \hat{p}_0 , \hat{p}_+ , \hat{x}_p lies on one line and the same holds for the quadruple \hat{q} _−, \hat{q}_0 , \hat{q}_+ , \hat{x}_q .

Since

$$
|\hat{p}_0 - \hat{q}_+|_{\mathbb{H}} \geqslant |p_0 - q_+|_M = |\tilde{p}_0 - \tilde{q}_+|_{\mathbb{E}^2}, \quad |\hat{p}_0 - \hat{q}_0|_{\mathbb{H}} = |p_0 - q_0|_M = |\tilde{p}_0 - \tilde{q}_0|_{\mathbb{E}^2},
$$

$$
|\hat{q}_0 - \hat{q}_+|_{\mathbb{H}} = |q_0 - q_+|_M = |\tilde{q}_0 - \tilde{q}_+|_{\mathbb{E}^2},
$$

we have $\angle [\hat{q}_0 \frac{\hat{p}_0}{\hat{q}_+}] \ge \angle [\tilde{q}_0 \frac{\hat{p}_0}{\hat{q}_+}].$ The same way we get that $\angle [\hat{q}_0 \frac{\hat{p}_0}{\hat{q}_-}] \ge \angle [\tilde{q}_0 \frac{\hat{p}_0}{\hat{q}_-}].$ Since the sum of adjacent angles is π , these two inequalities imply that

$$
\measuredangle[\hat{q}_0\,{}^{\hat{p}_0}_{\hat{q}_\pm}]=\measuredangle[\tilde{q}_0\,{}^{\tilde{p}_0}_{\tilde{q}_\pm}].
$$

 \mathcal{L} Springer

The same way we get that

$$
\measuredangle[\hat{p}_0 \frac{\hat{q}_0}{\hat{p}_\pm}] = \measuredangle[\tilde{p}_0 \frac{\tilde{q}_0}{\tilde{p}_\pm}].
$$

From the angle equalities, we get that

$$
|\hat{p}_- - \hat{q}_+|_{\mathbb{H}} \le |\tilde{p}_- - \tilde{q}_+|_M \tag{1}
$$

and the equality holds if the points \hat{p} _−, \hat{q} ⁺ lie in one plane and on the opposite sides from the line $\hat{p}_0 \hat{q}_0$. By (3,3)-bipolar comparison the equality in [1](#page-3-2) indeed holds.

It follows that configuration \hat{p}_0 , \hat{p}_- , \hat{p}_+ , \hat{x}_p , \hat{q}_0 , \hat{q}_- , \hat{q}_+ , \hat{x}_q is isometric to the configuration \tilde{p}_0 , \tilde{p}_- , \tilde{p}_+ , \tilde{x} , \tilde{q}_0 , \tilde{q}_- , \tilde{q}_+ , \tilde{x} ; in particular, $\hat{x}_q = \hat{x}_p$.

By (3,3)-bipolar comparison $|x_p - x_q|_M \leq \frac{\hat{x}_q - \hat{x}_p}{\text{H}}$; therefore $x_p = x_q$; so we can set further $x = x_p = x_q$.

Note that we also proved that the angles at p and q in the triangle $[pqx]$ coincide with their model angles; that is,

$$
\measuredangle[p_x^q] = \measuredangle[\tilde{p}_{\tilde{x}}^{\tilde{q}}], \quad \measuredangle[q_x^p] = \measuredangle[\tilde{q}_{\tilde{x}}^{\tilde{p}}].
$$

By the lemma on flat slices (see for example Lemma 2.1 in [\[4](#page-4-7)]), there is a global isometric embedding *i*' of the solid model triangle $[\tilde{p}\tilde{q}\tilde{x}]$ to *M* which sends $[\tilde{p}\tilde{q}]$ to $[pq]$ and $[\tilde{p}\tilde{x}]$ to [*px*]. Note that ι' has to coincide with ι on *N*. It follows that ι' maps [$\tilde{q} \tilde{x}$] to [qx], which finishes the proof. \Box

Theorems [1.1](#page-1-0) and [1.2](#page-1-1) follow from the propositions below.

Proposition 2.2 *Let M be a complete Riemannian manifold that satisfies (3,3)–bipolar comparison. Then any point x* ∈ *M admits a neighborhood U x such that if U contains a nonempty open flat subset, then U is flat.*

Proof Given a point *p* consider a convex neighborhood $U \ni p$ such that injectivity radius at any point of *U* exceeds the diameter of *U*; in particular any two points $p, q \in U$ are connected by unique minimizing geodesic $[pq]$ which lies in *U*. Denote by *F* an open flat subset in *U*: we can assume that *F* is convex. subset in *U*; we can assume that *F* is convex.

Note that by the key lemma we have the following:

Claim *For any* $x \text{ ∈ } U$ *and any* $p, q \text{ ∈ } F$ *the triangle* [pqx] *admits a geodesic isometric filling by a flat triangle.*

Indeed, set $x_p = x$. Consider a plane triangle $[\tilde{p}\tilde{q}\tilde{x}]$ that has the same angle at \tilde{p} and the same adjacent sides as the triangle $[pqx]$. Since *F* is flat and convex there is a flat open geodesic surface Σ containing [*pq*] and a part of [*px*] near *p*. Choose a direction at *q* that runs in Σ at the angle $\angle [\tilde{q} \tilde{p}^{\tilde{p}}]$ to [*qp*]. Consider the geodesic in this direction of the length $|\tilde{q}\tilde{x}|$. Since diameter of *U* exceeds the injectivity radius at *q*, this geodesic is minimizing. It remains to apply the key lemma.

From the claim, it follows that the sectional curvature $\sigma_X(X, Y)$ vanishes for any point $x \in U$ and any two velocity vectors $X, Y \in T_x$ of minimizing geodesics from *x* to *F*. Since the set of such sectional directions is open, curvature vanish at *; hence the result.*

Proposition 2.3 *Let M be a complete Riemannian manifold that satisfies MTW*[⊥]*. Then any point p* ∈ *M admits a neighborhood U p such that if U contains a nonempty open flat subset, then U is flat.*

Proof For a given $p \in M$ let us take a neighborhood $U \ni p$ as in the proof of the previous proposition. The same proof as (Thm 1.2 [\[5](#page-4-0)]) shows that *U* satisfies (4, 1)-bipolar comparison (CTIL condition is not necessary, because we stay away from the cut-locus). Again, same proof as (the Thm 1.2 [\[5](#page-4-0)]) shows that inside this neighborhood $(4, 1)$ -bipolar comparison is equivalent to (4, 4)-bipolar comparison. Further note that (4, 4)-bipolar comparison implies (3, 3)-bipolar comparison. Now we can follow the same lines as in the proof of Proposition [2.2,](#page-3-0) because (3, 3)-bipolar comparison is used only locally in the proof. \square

References

- 1. Alexander, S., Kapovitch, V., Petrunin, A.: Alexandrov meets Kirszbraun. In: Proceedings of the Gökova Geometry-Topology Conference: 88–109, p. 2011. Press, Somerville, MA, Int (2010)
- 2. Figalli, A., Rifford, L., Villani, C.: Necessary and sufficient conditions for continuity of optimal transport maps on Riemannian manifolds. Tohoku Math. J. **2**, 63 (2011)
- 3. Lang, U., Schroeder, V.: Kirszbraun's theorem and metric spaces of bounded curvature. Geom. Funct. Anal. **7**(3), 535–560 (1997)
- 4. Lebedeva, N.: Alexandrov spaces with maximal number of extremal points Geom. Topol. **19**(3), 1493–1521 (2015)
- 5. Lebedeva, N., Petrunin, A., Zolotov, V.: Bipolar comparison. (2017) [arXiv:1711.09423](http://arxiv.org/abs/1711.09423)
- 6. Loeper, G.: On the regularity of solutions of optimal transportation problems. Acta Math. **202**(2), 241–283 (2009)
- 7. Ma, X.-N., Trudinger, N., Wang, X.-J.: Regularity of potential functions of the optimal transportation problem. Arch. Ration. Mech. Anal. **177**(2), 151–183 (2005)
- 8. Panov, Dmitri: Petrunin, Anton Sweeping out sectional curvature. Geom. Topol. **18**(2), 617–631 (2014)
- 9. Villani, C.: Stability of a 4th-order curvature condition arising in optimal transport theory. J. Funct. Anal. **255**(9), 2683–2708 (2008)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.