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Abstract

We show that if a Riemannian manifold satisfies (3,3)-bipolar comparisons and has an open
flat subset then it is flat. The same holds for a version of MTW where the perpendicularity
is dropped. In particular we get that the (3,3)-bipolar comparison is strictly stronger than the
Alexandrov comparison.

Keywords Metric geometry - Optimal transport - Differential geometry - Rigidity -
Comparison geometry

1 Introduction

We say that a metric space X satisfies the (k, [)-bipolar comparison if for any ag, ay, . .., ax;
by, by, ..., b € X there are points ag, di, - . ., dg, bo, b1, . . ., by in the Hilbert space H such
that

ldo — bolm = lao — bolx, |a; — dolu = la; —aolx, |bi —bolm = |bi — bolx
for any 7, j and
|X — Pl =[x — ylx

for any x, y € {ao, a1, ...,ak,bo, b1, ..., by}.

This definition was introduced in [5]. The class of compact length metric spaces satisfy-
ing (k, 0)-bipolar comparison with k > 2 coincide with the class of Alexandrov spaces with
nonnegative curvature, (for k = 2 it is just one of the equivalent definitions, for arbitrary
k see [1], [3]). In general (k, [)-bipolar comparisons (with k or / > 2) for length metric
spaces are stronger conditions than nonnegative curvature condition and they describe some
new interesting classes of spaces. In particular, we prove in [5] that for Riemannian man-
ifolds (4, 1)-bipolar comparison is equivalent to the conditions related to the continuity of
optimal transport. Also in [5] we together with coauthors describe classes of Riemannian
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manifolds satisfying (k, [)-bipolar comparisons for almost all k, / excepting (2, 3) and (3, 3)-
bipolar comparisons. In particular it was not known if (3, 3)-bipolar comparison differs from
Alexandrov’s comparison. In this note the affirmative answer is obtained as a corollary of
some rigidity result for spaces with (3, 3)-bipolar comparison. To formulate exact statements
we need some definitions and notations.

Let M be a Riemannian manifold and p € M. The subset of tangent vectors v € T, such
that there is a minimizing geodesic [ p ¢] in the direction of v with length |v| will be denoted
as TIL ,. The interior of TIL , is denoted by TIL ,; it is called tangent injectivity locus at p.
If at TIL , is convex for any p € M, then M is called CTIL.

Riemannian manifold M satisfies MTW if the following holds. For any point p € M, any
W € TIL, and tangent vectors X, Y € T, such that X | Y we have

4

m]exp,,(s-X)—exp,,(WJrr-Y)ﬁw <0 )
att =5 =0.

This definition was introduced by Xi-Nan Ma, Neil Trudinger and Xu-Jia Wang in [7],
Cedric Villani studied a synthetic version of this definition ( [9]). If the same inequality holds
without the assumption X | Y Riemannian manifold M satisfies MTW# [2].

MTW and CTIL are necessary condition for TCP (transport continuity property). In [2],
Alessio Figalli, Ludovic Rifford and Cédric Villani showed that a strict version of CTIL and
MTW provide a sufficient condition for TCP. A compact Riemannian manifold M is called
TCP if for any two regular measures with density functions bounded away from zero and
infinity the generalized solution of Monge—Ampere equation provided by optimal transport
is a genuine (continuous) solution.

Let us denote by M ;) the class of smooth complete Riemannian manifolds satisfying
(k, I)-bipolar comparison and by M the class of complete Riemannian manifolds with
nonnegative sectional curvature.

It was mentioned above, that

Mzo = M0
for k > 2 and it is obvious from definition, that

My C M
if ¥ > kand !’ > L. It is proven in [5] that

Mzo = Meo = Man

and

My = M
for k > 4 and [/ > 1. The most interesting fact proven in [5] is that

Mauy =Mcerie "Myrwi,

where Mcrir, My rwe are classes of smooth Riemannian manifolds satisfying CTIL and
MTW+ correspondingly. In particular this implies that M1 # Mxo.
In this paper we prove the following two results.

Theorem 1.1 Let M be a complete Riemannian manifold that satisfies (3,3)-bipolar compar-
ison and contains a nonempty open flat subset. Then M is flat.
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Theorem 1.2 Let M be a complete Riemannian manifold that satisfies MTWA and contains
a nonempty open flat subset. Then M is flat.

Corollary 1.3 We have that M3 3y # M>o.

Theorem 1.1 follows from Proposition 2.2 and Theorem 1.2 follows from Proposition 2.3,
proved in the next section.

As arelated result we would like to mention a rigidity result for manifolds with nonnegative
sectional curvature with flat open subsets by Dmitri Panov and Anton Petrunin [8].

2 Proofs

For points a, b, ¢ in a manifold we denote by £[a IC’ ] the angle at a of the triangle [abc].

Keylemma 2.1 Let M be a complete Riemannian manifold that satisfies (3,3)-bipolar com-
parison. Assume that for the points x ,, p, q, xq in M there is a triangle [ pgX] in the Euclidean
plane E? such that

IXp — plu =% — plgz, |p—qlu = 1P —qlg2, g —xqlm =1q — X|g2
and moreover a neighborhood N C E? of the base [ p§| admits a globally isometric embed-
ding v into M such that (([px] N N) C [pxp] and (([gX] N N) C [gxy4]. Then x), = x4 and
the triangle [ pqxp] can be filled by a flat geodesic triangle.
T
Tq Tp

p q

=
LS}

Proof Set p_ = pandg_ =gq.

Choose points pg, p+ € [p—, x,] N ¢(N) so that the points p_, po, p+, X, appear in the
same order on [p_, x,]. Analogously, choose points go, g4+ € [g—, x4] N N so that the points
q-,q0, 9+, X appear in the same order on [g_, x,]. Denote by p_, po, p+, G-, Go, G+ the
corresponding points on the sides of triangle [pgx]; so p— = p and g_ = q.

Applying the comparison to ag = pg,a; = p—,ax = P+, a3 = Xp; by = 90, by =
q-, by = q4, b3 = x4, we get a model configuration po, p—, p+, Xp, Go, §—, G+, X4 in the
Hilbert space H.

Note that from the comparison it follows that the quadruple p_, po, p+, X, lies on one
line and the same holds for the quadruple §—, go, 4+, X4.

Since

[Po — G+lm = 1po — q+Im = |Po — G+lg2,  1Po — Golm = |po — qoly = 1Po — Golg2,
Igo — g+ 11 = 1g0 — q+Im = 1o — G+|g2,

we have £[§g Zi] > 4[qo gi]. The same way we get that £[jo ,];E] > 4[qo gf]. Since the
sum of adjacent angles is 7, these two inequalities imply that

Lgo 1= <130 1.
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The same way we get that

Lo 5l = K[Po ne

From the angle equalities, we get that

|- —q+lm < |1p- — G+lm )

and the equality holds if the points p_, ¢+ lie in one plane and on the opposite sides from
the line pogo. By (3,3)-bipolar comparison the equality in 1 indeed holds.

It follows that configuration po, p—, p+, Xp, 4o, §—, G+, X4 is isometric to the configura-
tion po, p—, P+, X, 4o, 4—, 4+, X; in particular, xq = xp

By (3,3)-bipolar comparison |x, — x4|u < |X; — Xp|m; therefore x, = x4; so we can set
further x = x, = xy.

Note that we also proved that the angles at p and ¢ in the triangle [ pgx] coincide with
their model angles; that is,

Lpi=«1pl, £qf1= 371

By the lemma on flat slices (see for example Lemma 2.1 in [4]), there is a global isometric
embedding ¢’ of the solid model triangle [pgx] to M which sends [pg] to [pq] and [pX] to
[px]. Note that ¢’ has to coincide with ¢ on N. It follows that (" maps [§X] to [¢x], which
finishes the proof. O

Theorems 1.1 and 1.2 follow from the propositions below.

Proposition 2.2 Let M be a complete Riemannian manifold that satisfies (3,3 )-bipolar com-
parison. Then any point x € M admits a neighborhood U > x such that if U contains a
nonempty open flat subset, then U is flat.

Proof Given a point p consider a convex neighborhood U 3 p such that injectivity radius
at any point of U exceeds the diameter of U; in particular any two points p,q € U are
connected by unique minimizing geodesic [ pg] which lies in U. Denote by F an open flat
subset in U; we can assume that F' is convex. O

Note that by the key lemma we have the following:

Claim For any x € U and any p,q € F the triangle [ pgx] admits a geodesic isometric
filling by a flat triangle.

Indeed, set x, = x. Consider a plane triangle [pgx] that has the same angle at p and
the same adjacent sides as the triangle [ pgx]. Since F is flat and convex there is a flat open
geodesic surface ¥ containing [pg] and a part of [px] near p. Choose a direction at g that
runs in X at the angle £[g fg ] to [gp]. Consider the geodesic in this direction of the length
|gx|. Since diameter of U exceeds the injectivity radius at ¢, this geodesic is minimizing. It
remains to apply the key lemma.

From the claim, it follows that the sectional curvature o, (X, Y) vanishes for any point
x € U and any two velocity vectors X, Y € Ty of minimizing geodesics from x to F'. Since
the set of such sectional directions is open, curvature vanish at x; hence the result.

Proposition 2.3 Let M be a complete Riemannian manifold that satisfies MTW*. Then any
point p € M admits a neighborhood U > p such that if U contains a nonempty open flat
subset, then U is flat.
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Proof For a given p € M let us take a neighborhood U > p as in the proof of the pre-
vious proposition. The same proof as (Thm 1.2 [5] ) shows that U satisfies (4, 1)-bipolar
comparison (CTIL condition is not necessary, because we stay away from the cut-locus).
Again, same proof as (the Thm 1.2 [5]) shows that inside this neighborhood (4, 1)-bipolar
comparison is equivalent to (4, 4)-bipolar comparison. Further note that (4, 4)-bipolar com-
parison implies (3, 3)-bipolar comparison. Now we can follow the same lines as in the proof
of Proposition 2.2, because (3, 3)-bipolar comparison is used only locally in the proof. 0O
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