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Abstract
For a complete noncompact connected Riemannian manifold with bounded geometry Mn ,
we prove that the isoperimetric profile function IMn is a locally (1 − 1

n )-Hölder continuous
function and so in particular it is continuous. Here for bounded geometry we mean that M
have Ricci curvature bounded below and volume of balls of radius 1, uniformly bounded
below with respect to its centers. We prove also the equivalence of the weak and strong
formulation of the isoperimetric profile function in complete Riemannian manifolds which
is based on a lemma having its own interest about the approximation of finite perimeter
sets with finite volume by open bounded with smooth boundary ones of the same volume.
Finally the upper semicontinuity of the isoperimetric profile for every metric (not necessarily
complete) is shown.
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1 Introduction

In this paper we always assume that all the Riemannian manifolds (M, g) considered are
smooths with smooth Riemannian metric g. We denote by Vg the canonical Riemannian
measure induced on M by g, and by Ag the (n − 1)-Hausdorff measure associated to the
canonical Riemannian length space metric d of M , by Pg(�, U ) the perimeter in U ⊆ M
with respect to the metric g of a finite perimeter set � ⊆ M , here U is an open set, by |Du|g
we denote the positive Radon measure represented by the total variation of the distributional
gradient of a BV -function u having domain M . For each k ∈ R we denote by M

n
k the n-

dimensional space form of constant sectional curvature equal to k. When it is already clear
from the context, explicit mention of the metric g will be suppressed. When dealing with
finite perimeter sets or locally finite perimeter sets we will denote the reduced boundary
by ∂∗�, whenever the topological boundary ∂� is smooth the reduced boundary coincides
with the topological boundary ∂�. For this reason we will denote P(�) := P(�, M) =
A(∂∗�) = A(∂�) when no confusion may rise, and for every finite perimeter set �′ we
always choose a representative � (i.e., that differs from �′ by a set of Riemannian measure
0), such that ∂� = ∂∗�, where ∂� is the topological boundary of �. At this point we give
the definition of the isoperimetric profile function which is our main object of study in this
paper.

1.1 The isoperimetric profile

Definition 1.1 Typically in the literature, the isoperimetric profile function of M (or briefly,
the isoperimetric profile) IM : [0, V (M)[→ [0,+∞[, is defined by

IM (v) := inf{A(∂�) : � ∈ τM , V (�) = v},
where τM denotes the set of relatively compact open subsets of M with smooth boundary.

However there is a more general context in which to consider this notion that will be better
suited to our purposes. Namely, we can give a weak formulation of the preceding variational
problem replacing the set τM with the family τ̃M of subsets of finite perimeter of M .

Definition 1.2 Let M be a Riemannian manifold of dimension n (possibly with infinite
volume). We denote by τ̃M the set of finite perimeter subsets of M . The function ĨM :
[0, V (M)[→ [0,+∞[ defined by

ĨM (v) := inf{P(�) : � ∈ τ̃M , V (�) = v},
is called the weak isoperimetric profile function (or shortly the isoperimetric profile) of the
manifold M . If there exists a finite perimeter set� ∈ τ̃M satisfying V (�) = v, ĨM (V (�)) =
A(∂∗�) = P(�) such an � will be called an isoperimetric region, and we say that ĨM (v) is
achieved.

There are many others possible definitions of isoperimetric profile corresponding to the
minimization over various differents sets of admissible domains, as stated in the following
definition.
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Definition 1.3 For every v ∈ [0,+∞[, let us define
I ∗

M (v) := in f {A(∂top�) : � ⊂ M, ∂top� is C∞, V (�) = v},
Ĩ ∗

M (v) := in f {PM (�) : � ⊂ M,� ∈ τ̃M , V (�) = v, diam(�) < +∞},
where diam(�) := sup{d(x, y) : x, y ∈ �} denotes the diameter of �.

Remark 1.1 Trivially one have IM ≥ I ∗
M ≥ ĨM and IM ≥ Ĩ ∗

M ≥ ĨM .

However as we will see in Theorem 1, all of these definitions are actually equivalents, in
the sense that the infimum remains unchanged, i.e., IM = ĨM .

1.2 Main results

Theorem 1 If Mn is an arbitrary complete Riemannian manifold, then IM (v) = Ĩ ∗
M (v) =

ĨM (v) = I ∗
M (v).

The proof of this fact involves actually very natural ideas. In spite of this it is technical and
we have found no written traces in the literature, unless Lemma 2 of [11] that deal with the
case of a compact domain of Rn as an ambient space. Hence we provided ourselves a proof
based on Lemma 2.3 which have an independent interest, because it gives an approximation
theorem of a finite perimeter set by open relatively compact sets with smooth boundary of
the same volume and for this constitutes a refinement of a more classical approximation
theorem of finite perimeter sets by members of τM that one can find in the literature (see for
example the books of [8], [1], or in the paper [7]). The equivalence stated in Theorem 1 allows
us to consider elements of τM or τ̃M according to what is more convenient in subsequent
arguments. This observation is used in a crucial waywhenwe prove Theorem 2 and Corollary
1. This latter could be considered as a corollary of Lemma 2.2.

Corollary 1 Let Mn be an n-dimensional Riemannian manifold (possibly incomplete, or pos-
sibly complete not necessarily with bounded geometry). Then IM is upper semicontinuous.

Definition 1.4 A complete Riemannian manifold (M, g), is said to have bounded geometry
if there exists a constant k ∈ R, such that RicM ≥ k(n − 1) (i.e., RicM ≥ (n − 1)kg in the
sense of quadratic forms) and V (B(M,g)(p, 1)) ≥ v0 for some positive constant v0, where
B(M,g)(p, r) is the geodesic ball (or equivalently the metric ball) of M centered at p and of
radius r > 0.

Theorem 2 (Local
(
1 − 1

n

)
-Hölder continuity of the isoperimetric profile) Let Mn be a

complete smooth Riemannian manifold with bounded geometry. Then there exists a pos-
itive constant C = C(n, k) such that for every v, v′ ∈]0, V (M)[ satisfying |v − v′| ≤

1
C(n,k)

min
(
v0,

(
v

IM (v)+C(n,k)

)n)
, we have

∣∣IM (v) − IM (v′)
∣∣ ≤ C(n, k)

( |v − v′|
v0

) n−1
n

. (1)

In particular IM is continuous on [0, V (M)[.
Definition 1.5 Let (X , d) a metric space, f : (X , d) → R and α ∈ [0, 1], we say that f
is locally α-Hölder continuous on X , for every z ∈ X there exist δz, Cz > 0 such that for
every x, y ∈ X satisfying |x − z|, |y − z| ≤ δz we have | f (x)− f (y)| ≤ Cz |x − y|α .We say
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that f is uniformly locally α-Hölder continuous on X , if there exist two constants δ, C > 0
such that for every x, y ∈ X satisfying d(x, y) ≤ δ we have | f (x) − f (y)| ≤ C |x − y|α .
We say that f is (globally) α-Hölder continuous on X , if there exists C > 0 such that
| f (x) − f (y)| ≤ C |x − y|α for every x, y ∈ X . We call the various constants Cz, C
appearing in this definition the Hölder constants of f .

Corollary 2 (Local n−1
n -Hölder continuity of the isoperimetric profile) Let Mn be a complete

smooth Riemannian manifold with bounded geometry and v ∈]0, V (M)[. Then there exists
positive constants δ = δ(n, k, v0, v) > 0, if k ≤ 0, δ = δ(n, k, v0, , v, V (M)), if k > 0, and
C = C(n, k) > 0, such that for every v1, v2 ∈ [v − δ, v + δ] we have

|IM (v1) − IM (v2)| ≤ C(n, k)

( |v1 − v2|
v0

) n−1
n

. (2)

Moreover, if V (M) = +∞ then IM is uniformly locally n−1
n -Hölder continuous on [v̄,+∞[,

for every v̄ > 0. If V (M) = +∞ then IM is globally n−1
n -Hölder continuous on every interval

[a, b] ⊂]0,+∞[ with Hölder constant C̄ depending on n, k, v0, a, b. If V (M) < +∞, then
IM is globally n−1

n -Hölder continuous on [v̄, V (M) − v̄], for every v̄ ∈]0, V (M)
2 [.

Remark 1.2 Unfortunately lima→0+ C̄(n, k, v, a, b) = +∞ and limb→0+ C̄(n, k, v, a, b) =
+∞.

Remark 1.3 Observe that in the statement of the preceding Corollary the Hölder constant C
does not depend on v0 and v, but just δ depends on them.

Remark 1.4 At our actual knowledge, it is still an open question wether or not we can prove
global n−1

n -Hölder continuity of IM on an arbitrary proper interval [0, b] ⊂ [0, V (M)[ or on
the entire interval [0, V (M)[, or at least unifom local n−1

n -Hölder continuity on [0, V (M)[,
when we assume the manifold M to be with bounded geometry and with V (M) = +∞.

The next fact to be observed is that it is worth to have a proof of the continuity or Hölder
continuity of the isoperimetric profile, because in general the isoperimetric profile function
of a complete Riemannian manifold is not continuous. In case of manifolds with density, in
Proposition 2 of [2] is exhibited an example of a manifold with density having discontinu-
ous isoperimetric profile. To exhibit a complete Riemannian manifold with a discontinuous
isoperimetric profile is a more subtle and difficult task that was performed by the second
author and Pierre Pansu in [13], for manifolds of dimension n ≥ 3. In spite of these quite
sophisticated counterexamples the class of manifolds admitting a continuous isoperimetric
profile is vast, for an account of the existing literature on the continuity results obtained for IM ,
one could consult the introduction of [15] and the references therein. If M is compact, clas-
sical compactness arguments of geometric measure theory combined with the direct method
of the calculus of variations provide a short proof of the continuity of IM in any dimension
n, [2] Proposition 1. Finally, if M is complete, non-compact, and V (M) < +∞, an easy
consequence of Theorem 2.1 in [16] yields the possibility of extending the same compactness
argument valid in the compact case and to prove the continuity of the isoperimetric profile,
see for instance Corollary 2.4 of [14]. A careful analysis of Theorem 1 of [12] about the
existence of generalized isoperimetric regions, leads to the continuity of the isoperimetric
profile IM in manifolds with bounded geometry satisfying some other assumptions on the
geometry of the manifold at infinity, of the kind considered by the second author and A.
Mondino in [10], i.e., for every sequence of points diverging to infinity, there exists a pointed
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smooth manifold (M∞, g∞, p∞) such that (M, g, p j ) → (M∞, g∞, p∞) in C0-topology.
This proof is independent from that of Theorem 2. This is not the case for general complete
infinite-volume manifolds M . Recently Manuel Ritoré (see for instance [15]) showed that
a complete Riemannian manifold possessing a strictly convex Lipschitz continuous exhaus-
tion function has continuous and nondecreasing isoperimetric profile ĨM . Particular cases of
these manifolds are Cartan–Hadamard manifolds and complete noncompact manifolds with
strictly positive sectional curvatures. In [15] as in our Theorem 2 the major difficulty consists
in finding a suitable way of subtracting a volume to an almost minimizing region.

The aimof this paper is to prove Theorem2 inwhichwe give a very short and quite elemen-
tary proof of the continuity of IM when M is a complete noncompact Riemannian manifold

of bounded geometry and even better we show that IM is actually a locallyC1− 1
n (]0, V (M)[)

function. The reason which allow us to achieve this goal, is that in bounded geometry it is
always possible to add or subtract to a finite perimeter set a small ball that captures a fixed
fraction of volume (depending only from the bounds of the geometry) centered at points
close to it. Corollary 1 ensures upper semicontinuity, so the problems appears when we try
to prove lower semicontinuity. To prove lower semicontinuity we need some kind of com-
pactness that is expressed here by a bounded geometry condition. Geometrically speaking
our assumptions of bounded geometry ensures that the manifold at infinity is thick enough
to permit to place a small geodesic ball B close to an arbitrary domain D in such a way
V (B ∩ D) recovers a controlled fraction of V (D) and this fraction depends only on V (D)

and the bounds on the geometry n, v0, k, see Definition 1.4 for the exact meaning of n,
v0, k. The proof that we present here uses only metric properties of the manifolds with
bounded geometry and for this reason it is still valid when suitably reformulated in the
context of metric measure spaces. One can find similar ideas already in the metric proof
of continuity of the isoperimetric profile contained in [5]. For the full generality of the
results we need that the spaces have to be doubling, satisfying a 1-Poincaré inequality and
a curvature dimension condition. This class of metric spaces includes for example mani-
folds with density as well as subRiemannian manifolds. Following the arguments contained
in [4] we can obtain another proof of the continuity of the isoperimetric profile under our
assumptions of bounded geometry but with the extra assumption of the existence of isoperi-
metric regions of every volume, which is less general of our own proof of Theorem 2,
because in Theorem 2 we do not need to assume any kind of existence of isoperimetric
regions. In spite of this the Heintze-Karcher type arguments used in [4] have an advantage
because they permits to give a uniform bound on the length of the mean curvature vector
of the generalized isoperimetric regions (i.e., left and right derivatives of IM ) with volumes
inside an interval [a, b] ⊂]0, V (M)[, depending only on a and b. Finally, we mention that
just with Ricci bounded below and existence of isoperimetric regions the arguments of [4]
fails and we cannot prove the continuity of the isoperimetric profile, for this we need a
noncollapsing condition on the volume of geodesic balls as in our definition of bounded
geometry.

Remark 1.5 It remains still an open question whether Ricci bounded below and existence
of isoperimetric regions for every volume implies continuity of the isoperimetric profile in
presence of collapsing. We are not able to extend to this setting the arguments of [4], neither
to provide a counterexample, because the manifolds with discontinuous isoperimetric profile
constructed in [13] have Ricci curvature tending to −∞.
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1.3 Plan of the article

1. Section 1 constitutes the introduction of the paper. We state the main results of the paper.
2. In Sect. 2 we prove that ĨM = IM .

3. In Sect. 3 we prove the local C1− 1
n -Hölder continuity of the isoperimetric profile in

boundedgeometry, i.e., Theorem2andCorollary 2without assuming existence of isoperi-
metric regions.

2 Equivalence of the weak and strong formulation

As the example 3.53 of [1] shows, in general we can have finite perimeter sets with positive
perimeter and void interior that are not equivalent to any other set of finite perimeter with
non void interior. So the question of putting a ball inside or outside a set of finite perimeter
is a genuine technical problem. On the other hand, following [6] Theorem 1, it is always
possible to put a small ball inside and outside an isoperimetric region. As a general remark
a result of Federer (the reader could consult [1] Theorem 3.61) states that for a given set of
finite perimeter E the density is either 0 or 1

2 or 1, Hn−1-a.e. x ∈ M , moreover points of
density 1 always exist V -a.e. inside D, because of the Lebesgue’s points Theorem applied to
the characteristic function of any V -measurable set of M . About this topic the reader could
consult the book [8] Example 5.17. Thus V (D) > 0 ensures the existence of at least one point
p belonging to D of density 1, which is enough for the aims of our proofs. In view of these
facts to prove Theorem 1 we need to make a construction which replace a finite perimeter
set by one of the same volume with a small ball inside and one outside, by adding a small
geodesic ball (with smooth boundary) to a point of density 0 and subtracting a small geodesic
ball to a point of density 1 taking care of not altering the volume. This enables us to obtain
again a finite perimeter set of the same volume with a perimeter that is a small perturbation
of the original one and that in addition have the property that we can put inside and outside
a small ball. This construction legitimate us to apply mutatis mutandis the arguments of
the proof of Lemma 1 of [11] to get the isovolumic approximation Lemma 2.3 and then to
conclude the proof of Theorem 1. Our adapted version of Lemma 1 of [11] is the following
lemma.

Lemma 2.1 Let �1 ∈ τ̃M with V (�1) < +∞, such that there exists two geodesic balls
satisfying B(x1, r1) ⊂ �1 and B(x2, r2) ∩ �1 = ∅, with 0 < r1 < in jM (x1) and 0 < r2 <

in jM (x2). We set v∗ := min
{

V (B(x1,
r1
2 )), V (B(x2,

r2
2 ))

}
. For any v ∈ [0, v∗] we denote

by Ri,v a radius such that V (B(xi , Ri,v)) = v and by S(x, r) the sphere of radius r and
center x. Let us define

f�1(v) := max

{

sup
0≤t≤R1,v

A(S(x1, t)), sup
0≤t≤R2,v

A(S(x2, t))

}

. (3)

Then for any ε > 0 and any v ∈]V (�1) − v∗, V (�1) + v∗[, there exists �2 ∈ τM such that
V (�2) = v and

P(�2) ≤ P(�1) + f�1(|v − V (�1)|) + ε

4
.

Remark 2.1 We observe that if M is noncompact and � bounded, then we always have
I nterior(�c) = ∅.
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Proof of Lemma 2.1 By the proof of the claim p. 105 of [7], there exists a sequence of BV -
functions (ul) on M such that liml ||ul − χ�1 ||1 = 0, |Dul |(M) = P(�1) and each ul has
compact support Kl . Note that we can assume that B(x1, r1) ⊂ Kl . Moreover, construction
the ul satisfy 0 ≤ ul ≤ χ�1 , which gives Kl ⊂ �1. Considering a smooth positive kernel
ρ with compact support the mollified functions u j,l = ul ∗ ρ 1

j
satisfy 0 ≤ u j,l ≤ 1,

lim j→+∞ ||u j,l − ul ||1 = 0, liml |Du j,l |(M) = |Dul |(M) and for j large enough the
support K j,l of u j,l satisfies B(x1,

r
2 ) ∩ K j,l = ∅.

Remark 2.2 As explained in [7] to perform a convolution on a manifold one have just to use
a partition of unity associated to finite sets of local charts covering the compact support of
ul and then mollify in each local chart.

By a diagonal argument we extract a subsequence vl = u j,l , satisfying 0 ≤ vl ≤ 1,
liml ||vl − χ�1 ||1 = 0, liml |Dvl |(M) = P(�1), and for l large enough the support Cl of vl

satisfies B(x1,
r1
2 ) ⊂ Cl and B(x2,

r2
2 ) ∩ Cl = ∅. Putting Fl

t := {x ∈ M : vl(x) > t} and
using the Fleming–Rishel Theorem (compare Theorem 4.3 of [3]) we have

P(�1) = lim
l

|Dvl | = lim
l

∫ 1

0
P(Fl

t )dt ≥
∫ 1

0
lim inf

l
P(Fl

t )dt .

An application of Sard’s Theorem ensures that the sets Fl
t are smooth for almost every t ∈

]0, 1[. Thus for every l we can choose a t ∈]0, 1[ (depending on l), such that lim inf l P(Fl
t ) ≤

P(�1). Moreover, we have |V (Fl
t ) − V (�1)| ≤ V (Fl

t \ �1) + V (�1 \ Fl
t ) and

V (Fl
t \ �1) ≤ 1

t
||vl − χ�1 ||1,

V (�1 \ Fl
t ) ≤ 1

1 − t
||vl − χ�1 ||1.

Since we have |v − V (�1)| < v∗, we can choose l large enough to get

|v − V (�1)| + ||vl − χ�1 ||1
t(1 − t)

< v∗,

which yields for l large enough |V (Fl
t ) − v| < v∗. Hence by subtracting B(x1, R1,V (Fl

t )−v)

or adding B(x2, R2,v−V (Fl
t )) to Fl

t , we obtain a bounded open set with smooth topological
boundary and volume v and perimeter equal to

P(Fl
t ) + A(S(xi,l , Ri,l) ≤ P(Fl

t ) + f�1(|v − V (Fl
t )|),

where Ri,l := R2,v−V (Fl
t ) if V (Fl

t ) < v and Ri,l := R1,V (Fl
t )−v , if V (Fl

t ) < v and Ri,l = 0

if V (Fl
t ) = v otherwise. We finally get�2 for any l large enough and we conclude the proof.

��
Wecan state now thenext lemmawhichpermits to approximate an arbitraryfinite perimeter

set with another one having the same volume and two holes (balls), one inside and the other
outside it. Before stating the next lemma just let usmention that for a set X inside a topological
space we denote by I nterior(X) = X̊ the set of its interior points.

Lemma 2.2 Let M be a Riemannian manifold and � ∈ τ̃M be a set of finite perimeter with
finite volume V (�) ∈]0, V (M)[. For any ε > 0, there exists a set of finite perimeter �̃ ⊆ M
and two geodesic balls B(x1, r1), and B(x2, r2) such that V (�) = V (�̃), B(x1, r1) ⊂ �1,
B(x2, r2) ∩ �̃ = ∅, and

P(�̃) ≤ P(�) + ε

4
. (4)
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Proof Consider an arbitrary set � ∈ τ̃M and take two distinct points x1 ∈ � and
x2 ∈ �c of density 
(x1, V ��) = 1 and 
(x2, V ��) = 0, where 
(p, V ��) :=
limr→0+ V (�∩B(p,r))

ωnrn , for every p ∈ M . By ωn we denote the volume of the ball of radius
1 in R

n . Consider the two continuous functions f1, f2 : I → R, where I := [0, r0[ such
that f1(r) := V (� ∩ BM (x1, r)), f2(r) := V (�c ∩ BM (x2, r)). The radius r0 could be
chosen small enough to have BM (x1, r1)∩ BM (x2, r2) = ∅ for every r1, r2 ∈ I and such that
there exist r1, r2 ∈ I satisfying the property f1(r1) = f2(r2) and ∂ BM (x1, r1), ∂ BM (x2, r2)
smooths (for this last property it is enough to take r0 less than the injectivity radius at x1 and
x2). Then we set

�̃ := [� \ BM (x1, r1)]∪̊[�c ∩ BM (x2, r2)] = [� \ BM (x1, r1)] ∪ BM (x2, r2).

As it is easy to see V (�̃) = V (�),

|P(�̃) − P(�)| ≤
2∑

i=1

[A(∂ BM (xi , ri )) + P(�, BM (xi , ri ))], (5)

V (���̃) = f1(r1) + f2(r2), (6)

˚̃
� = ∅, and I nterior(�̃c) = ∅. It is straightforward to verify that the right hand sides of (5)
and (6) converge to zero when the radii r1 and r2 go to zero and the theorem easily follows.

��

As an easy consequence of Lemmas 2.1 and 2.2 we have the following isovolumic approx-
imation lemma.

Lemma 2.3 Let � ∈ τ̃M be a finite perimeter set with V (�) < +∞, V (�), V (�c) > 0,
where �c := M \ �. Then there exists a sequence �k ∈ τM such that V (�k) = V (�) and
�k converges to � in the sense of finite perimeter sets.

Proof of Lemma 2.3 Let us assume that � ∈ τ̃M is bounded, then for any arbitrary ε > 0, the
Lemma 2.1 applied to the finite perimeter set �̃ given by Lemma 2.2 applied to �, permits
to find �̃ε ∈ τM such that V (�̃ε) = V (�̃) = V (�) and

V (�̃ε��̃) ≤ ε

2
,

|P(�̃ε) − P(�̃)| ≤ ε

2
.

These last two inequalities combined with (5) and (6) imply that

V (�̃ε��) ≤ ε, (7)

|P(�̃ε) − P(�)| ≤ ε. (8)

��

Now we are ready to prove Theorem 1.

Proof of Theorem 1 Taking into account Remark 1.1, it is easy to check that to prove the the-
orem, it is enough to show the nontrivial inequality IM (v) ≤ ĨM (v) for every v ∈ [0, V (M)[.
To this aim, let us consider ε > 0 and � ∈ τ̃M , with V (�) = v. By Lemma 2.3 there is
a sequence �k ∈ τM such that V (�k) = v, and (�k) converges to � in the sense of finite
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perimeter sets. In particular we have that limk→+∞ P(�k) = P(�). On the other hand by
definition we have that IM (v) ≤ P(�k) for every k ∈ N. Passing to limits leads to have

IM (v) ≤ P(�), (9)

for every � ∈ τ̃M with V (�) = v. Taking the infimum in (9) when � runs over τ̃M keeping
V (�) fixed and equal to v, we infer that IM (v) ≤ ĨM (v). This completes the proof. ��

In the remaining part of this section we prove Corollary 1.

Proof of Corollary 1 In view of Theorem 1we actually prove that ĨM is upper semicontinuous.
For any v ∈]0, V (M)[ and any ε > 0, consider a finite perimeter set � such that V (�) = v

and P(�) ≤ ĨM (v) + ε
4 . We then apply Lemma 2.2 to it, which gives us �1 such that

V (�1) = v, P(�1) ≤ ĨM (v) + ε
2 , and a v̄ = v̄�1,ε such that for any w ∈]v − v̄, v + v̄[ there

exists �2 ∈ τM satisfying V (�2) = w and P(�2) ≤ IM (v) + f (|w − v|) + 3ε
4 , where f is

given by (3). By the very definition of isoperimetric profile we have immediately that

IM (w) ≤ IM (v) + f (|w − v|) + 3ε

4
.

Now, the function f depends only on �1, satisfies f (0) = 0 and is continuous at 0. So there
exists v1 ∈]0, v̄[ such that f (|w − v|) ≤ ε

4 for every w ∈]v − v1, v + v1[, which gives the
upper semicontinuity in v. By the arbitrariness of v the corollary readily follows. ��

3 Local Hölder continuity of IM in bounded geometry

For the needs of the proof of Theorem 2 we restate here a version of Lemma 2.5 of [12] that
we will use in the sequel.

Lemma 3.1 (Lemma 2.5 of [12]) There is a constant c = c(n, k), with 0 < c < 1 such that
for any Riemannian manifold Mn with bounded geometry, any radius 0 < r ≤ 1, any set
D ∈ τ̃M with V (D) < +∞, there is a point p ∈ M such that

V (B(p, r) ∩ D) ≥ cmin

{
v0rn,

(
V (D)

P(D)

)n}
. (10)

The proof of the preceding Lemma is essentially the same as in Lemma 2.5 of [12].
Now we can start the proof of Theorem 2.

Proof of Theorem 2 As a preliminary remarkwe observe that it is enough to prove the theorem
thinking to the definition of ĨM when it is more useful for our reasoning. Let ε ∈]0, 1]. By
Theorem 1 we can get � ∈ τM with V (�) = w and P(�) ≤ IM (w) + ε. When M is
not compact, there exists a ball B(x2, 1) not intersecting � (that could be chosen compact).
Then for every v′ ∈]w,w + v0[ there exists rv′ ≤ 1 such that �1 = �∪̊BM (x2, rv′) satisfies
V (�1) = v′ and

IM (v′) ≤ P(�1) ≤ P(�) + P(BM (x2, rv′)) ≤ IM (w) + ε + C(n, k)rn−1
v′ , (11)

where the last inequality comes from the spherical Bishop–Gromov’s theorem (which asserts
thatwhen Ricg ≥ (n−1)kg the area of spheres are less than the area of corresponding spheres
in space form of constant curvature k) and from the value of the area of the spheres in constant
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curvature. Since by Bishop–Gromov’s Theorem we have
v0rn

v′
C1(n,k)

≤ V (B(x2, rv′) = v′ − w,
Inequality (11) gives us

IM (v′) ≤ IM (v) + ε + C2(n, k)

(
v′ − w

v0

) n−1
n

. (12)

The case v′ ≤ v needsmorework. Let us applyLemma3.1 to�, we get for any v′ ∈]v−v1, v[,
where v1 = cmin

{
v0,

(
v

IM (v)+ε

)n}
, then we have

V

(

� ∩ B

(

p,

(
v − v′

cv0

) 1
n
))

≥ min

{
v − v′, c

(
v

IM (v) + ε

)n}
= v − v′, (13)

and so there exists a rv′ ≤
(

v−v′
cv0

) 1
n
such that �2 := � \ B(p, rv′) has volume v′ and so, by

the spherical Bishop–Gromov’s Theorem, we get

IM (v′) ≤ P(�2) ≤ P(�) + P(BM (p, rv′)) ≤ IM (v) + ε + C2(n, k)

(
v′ − v

v0

) n−1
n

. (14)

Now, we can let ε tends to 0 in (12) and (14). If we have v′ ≤ v, then we get the result
combining (14) and (12) where we exchange v and v′. If v ≤ v′, we first control IM (v′)
by IM (v) using (12) and then apply (14) with v and v′ exchanged. Combined with (12) we
conclude the proof in the case V (M) = +∞. If V (M) < +∞ we can just take as � an
isoperimetric region of volume v (which exists always), then apply the arguments leading to
(14) to M \ � and consider as a competitor the finite perimeter set �′ := � ∪ BM (p, rv′),
then it is straightforward to adapt the preceding arguments to conclude the proof. ��

At this point, we are ready to prove Corollary 2.

Proof Lemma 3.5 [9] states that whenever (M, g) have Ricg ≥ (n − 1)k then the perimeter
of a geodesic ball in M enclosing volume v, have no more perimeter than a geodesic ball
inMn

k enclosing the same volume, this is used to prove Proposition 3.2 of [10] which states
that if (Mn, g) is a complete Riemannian manifold with Ricg ≥ (n − 1)k, then IM ≤ IMn

k
.

But we know a lot about IMn
k
, for example that it is a continuous strictly increasing function

and that for every w > 0, IMn
k
(w) is achieved by a geodesic ball enclosing volume w and

we will use these informations several times in the sequel. For each v ∈]0, V (M)[ it is a
trivial matter to determine ηv > 0 such that [v − ηv, v + ηv] ⊂]0, V (M)[ (for example to
put ηv = min( v

2 ,
V (M)−v

2 ) it is sufficient for our purposes). Put

δ := 1

2
min

{

ηv,
1

C(n, k)
min

(

v0,

(
v − ηv

IMn
k
(v + ηv) + C(n, k)

)n)}

.

It is easy to check that δ = δ(n, k, v0, V (M), v). Using Theorem 2 we obtain the validity
of (2) for every v1, v2 ∈]v − δ, v + δ[. To show the local uniform n−1

n -Hölder continuity
away from zero we set δ′ := infv∈[v̄,V (M)[{δ(n, k, v0, v)} = δ′(n, k, v0). It is easy to see that
δ′ > 0 because v �→ δ(n, k, v0, v) is a continuous function of v. Readily follows that (2)
holds for every v1, v2 ∈ [v̄, V (M)[ satisfying |v1 − v2| ≤ δ′. Furthermore, if we assume that
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V (M) < +∞ we can divide the interval [v̄, V (M) − v̄] in a finite number of interval whose
length is less that δ′. Then it is straightforward to prove that for all v1, v2 ∈ [v̄, V (M) − v̄]
we have

|IM (v1) − IM (v2)| ≤
([

V (M) − 2v̄

δ′

]
+ 1

)
C(n, k)

( |v1 − v2|
v0

) n−1
n

.

To finish the proof it is enough to remark that for every v ∈ [a, b] it holds

δv > δ(n, k, v0, a, b) = 1

C(n, k)
min

(

v0,

(
a

IMn
k
(b) + C(n, k)

)n)

> 0,

which ensures that IM is uniformly locally continuous on [a, b]. With this in mind it is a
standard task to conclude the global n−1

n -Hölder continuity of IM and to complete the proof.
��
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