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Abstract
We compare the topology of the link L0 of non-isolated singularities defined by real analytic

map-germs (Rm, 0)
h→ (Rn, 0),m > n, with that of the boundary of a local non-critical level

of h. We show that if the germ of h has an isolated critical value at 0 ∈ R
n and admits a local

Milnor-Lê fibration at 0, then there exists “a vanishing zone for h”. This is an appropriate
neighborhood of the set L0∩�, where� denotes the critical set of h, such that away from it the
topology of L0 is fully determined by the boundary of the corresponding local Milnor fibre.
We give conditions for the vanishing zone to be a fiber bundle over L0∩�. A particular class
of real singularities we envisage in this paper are those of the type f ḡ : (Cn, 0) → (C, 0)
with f , g holomorphic and satisfying certain conditions. We introduce for these a regularity
criterium for having a local Milnor-Lê fibration, and we use this to produce an example of a
real analytic singularitywhich does not have theThoma f -property and yet has a localMilnor-
Lê fibration. Throughout this work we provide explicit examples of functions satisfying the
hypothesis we need in each section.
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1 Introduction

Given an analytic map-germ (Rm, 0)
h→ (Rn, 0),m > n, with an isolated critical value at 0, a

fundamental problem is understanding the way how the non-critical levels h−1(t) degenerate
to the special fiber V := h−1(0). For instance, when h is holomorphic with values in C, the
celebrated fibration theorem of Milnor [20] (refined by Lê Dũng Tráng in [12]) says that one
has a locally trivial fibration:

h−1 (
Dη\{0}

) ∩ Bε
h−→ Dη\{0},

where Bε denotes a sufficiently small ball around the origin and Dη is a sufficiently small
disc around 0 in C. The set N (ε, η) := h−1(Dη\{0}) ∩ Bε is usually called a Milnor tube
for h, and the fibers Ft := h−1(t) ∩ Bε , t �= 0, are now called the Milnor fibers of h. A
lot of interesting work has been done studying how this degeneration process Ft � F0,
where F0 := V ∩ Bε , takes place for holomorphic map-germs. For instance, a remarkable
theorem of LêDũng Tráng [13] (see also [14]) says that when h further has an isolated critical
point, inside each Ft one has a polyhedron Pt of middle dimension, which “collapses” as we
approach the special fiber, and the complement Ft\Pt is diffeomorphic to F0\{0}.

For real analytic map-germs the problem of studying Milnor fibrations is still in its child-
hood and it is an active field of current research (see for instance [15] and the survey paper
[8]). We briefly discuss that topic below.

In this article we take an alternative viewpoint to the problem of studying how the non-
critical levels degenerate to the special fiber. This springs fromwork by Siersma [32], Michel
and Pichon [16–19], A. Nemethi and A. Szilard [21] and J. Fernándes de Bobadilla and A.
Menegon [9]. For this we recall that a real analytic map-germ h as above has its link, which
by definition is L0 := h−1(0)∩Sε , the intersection of V with a sufficiently small sphere. The
link and its embedding in Sε determine fully the topology of V at 0 and its local embedding
in the ambient space (cf. [20]).

The link is a real analytic variety, so L0 is non-singular if h has an isolated critical point
at 0. In that case L0 is a smooth manifold, isotopic to the boundary Lt of the Milnor fiber
Ft . Otherwise, when h has a non-isolated critical point on V , the variety L0 may be singular:
That is the setting we envisage in this paper.

Given an analyticmap-germ h as above, consider aMilnor tube N (ε, η) := h−1(Dη\{0})∩
Bε , and let us assume this is a fiber bundle over Dη\{0} with projection h (unlike in the
complex setting, this hypothesis is not always satisfied). The fibers Ft := h−1(t) ∩ Bε ,
t �= 0, are compact manifolds with boundary Lt . While the family {Ft } degenerates into the
special fiber F0 := h−1(t)∩Bε , one also has the corresponding family of boundaries {Lt }t �=0

degenerating to the link L0, which may be singular. The purpose of this work is to study
the topology of both Lt and L0, endowing them with a good topological structure that may
allow a further study of the degeneration process {Lt }t �=0 � L0 for both, real and complex
singularities.

This is interesting for two reasons. On the one hand the boundary of the Milnor fiber,
being a smooth manifold, is in many ways easier to handle than the link; understanding the
way how Lt degenerates into L0 throws light into the topology of the link, and hence into
that of V , just as the study of the vanishing cycles on the Milnor fiber throws light into the
topology of the special fiber. On the other hand, we can argue conversely: Understanding
the degeneration Lt � L0 allows us to re-construct Lt out from L0 itself, together with
some additional information. For instance, this was the approach followed in [9,16,18,21] to
show that in the case of holomorphic map-germs in 3 complex variables, the boundary Lt
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is a Waldhausen manifold. This was extended in [9] to map germs of the form f ḡ, that we
discuss below.

As noted by Nemethi and Szilard [21] in their interesting book, while the study of links of
isolated complex hypersurface singularities has lead to remarkable discoveries and insights
in manifolds theory, so too the boundaries of Milnor fibers of complex analytic map-germs
with non-isolated singularities provide a rich source of interesting manifolds that may bring
new insights into manifolds theory. And the case of singularities f ḡ provides an even larger
class of manifolds with a rich geometry and topology.

Our first main result in this paper (statement (i) in Theorem 2.5) says that if f : (Cn, 0) →
(C, 0) is holomorphic with a critical point at 0, then there exists a vanishing zone for it. This
means a compact regular neighborhood W of the set L(�) := � ∩ Sε in Sε , with smooth
boundary, where � is the critical set of h and Sε is a Milnor sphere for f , such that for all
t with ‖t‖ sufficiently small, one has that Lt\W̊ is diffeomorphic to L0\W̊ , where W̊ is the
interior ofW . Hence outside the vanishing zoneW , the link L0 is smooth and diffeomorphic
to that part of the boundary of the Milnor fiber which lies outside W .

Then one must focus on what happens inside the vanishing zone W . Inspired by [9,16–
19,21] we observe that under appropriate conditions, which are always satisfied if n ≥ 3
and the critical set � of f has complex dimension 1, one indeed has a good control on what
happens inside W . In fact, we prove that if the link L(�) is smooth then W can be chosen
to be a fiber bundle over L(�) with fiber an 2(n − k)-dimensional disk, where k > 0 is
the dimension of �. And if we assume further that there exists a Whitney stratification of
V := f −1(0) such that each connected component of �\{0} is a single stratum, then we
prove that the portion of L0 contained inW is a fiber bundle over L(�)with fiber V ( f )∩H ,
where H is a (n − k)-dimensional complex slice transversal to L(�). For t �= 0, the portion
of the boundary Lt contained in W is a fiber bundle over L(�) with fiber the Milnor fiber of
V ( f ) ∩ H , that is, Lt ∩ H .

In particular, if� has complex dimension 1, then L(�) is a union of circles in the (2n−1)-
sphere Sε andW is a union of products S

1×B
2n−2, since every circle in an oriented manifold

has trivial normal bundle. Moreover, both W0 and Wt are fiber bundles over the circle, with
fiber given by the central and theMilnor fiber, respectively, of the restriction of f to a generic
hyperplane section H .

As a corollary of Theorem 2.5, we get that if f is as above, then the boundary of the
Milnor fiber is not homeomorphic to the link L0. This applies, in particular, to any map-germ
C
3 → C.
The rest of this article, starting from Sect. 3, carries the previous discussion into the

real analytic setting. Besides providing information about the topology of real singularities,
which is a hard subject, this also gives, by comparison, a better understanding of the complex
setting.

In Sect. 3 we look at real analytic singularities with a Milnor-Lê fibration in a tube. This
implies that we have a family of manifolds (the Milnor fibers) degenerating into the special
fiber, while their boundaries Lt degenerate into the corresponding link L0, as in the complex
setting. We give sufficient conditions that grant the existence of a vanishing zone for such
map-germs.

In Sect. 4 we study map-germs of the type f ḡ where f and g are holomorphic functions
C
n → C. These maps provide a specially interesting class of real analytic functions which

share some properties of holomorphic map-germs and one can use complex geometry to
study them. From the viewpoint of Milnor fibrations, these have been studied mainly by
Pichon and Seade [25–29], though they appear also in previous work by A’Campo [1] and
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Lee Rudolph [30]. These are a special class of “mixed singularities”, studied by M. Oka and
others (see [22,31]).

In Sect. 4.1 we discuss the existence of Milnor-Lê fibrations for real analytic map-germs
of the form f ḡ, following [9,27]. We define, inspired by [9], a regularity condition that we
call CT-regularity, that guarantees the existence of a Milnor-Lê fibration for f ḡ (Proposition
4.2). This is very useful in practice, since it is easy to verify the condition in explicit examples.
In particular we get an example where the map f ḡ has a Milnor-Lê fibration in a tube but it
does not have the Thom a f ḡ-property, thus answering a question raised in [7, Remark 4.4]
and in [3]. We notice that this is answered too in Oka’s paper [23], as well as in the recent
paper [24] by Parameswaran and Tibăr.

The discussion in Sects. 3 and 4.1 leads to Corollary 4.7: Let f , g : (Cn, 0) → (C, 0)
be two holomorphic germs with no common irreducible component, such that f ḡ has a
Milnor-Lê fibration and �\{0} is smooth. Then there exists a vanishing zone W for f ḡ
which can be chosen to be a fiber bundle over L(�) with fiber an 2-dimensional complex
disk. If we further suppose that the Whitney stratification of V can be chosen so that �\{0}
is a non-empty single stratum, then the intersection L0 ∩ W is a bundle over L(�) with
fiber the singular variety defined by f ḡ on a transversal slice, while Lt ∩W is a bundle over
L(�) with fiber the corresponding Milnor fiber. We give examples of maps f ḡ satisfying
the hypotheses of Corollary 4.7.

As in the holomorphic case, we have as consequence (Theorem 4.11) that the boundary
Lt of the Milnor fiber of f ḡ is not homeomorphic to its link.

The authors are grateful to J. F. de Bobadilla and to R. N. A. dos Santos for helpful
discussions.

2 The holomorphic case

In this section, we consider a holomorphic function-germ f : (Cn, 0) → (C, 0). It is well-
known that f has the Thom a f -property (by [10]) and hence it has a Milnor-Lê fibration in
a Milnor tube (cf. [12,27]):

f| : f −1 (
Dη\{0}

) ∩ Bε → Dη\{0} ,

with 0 < η � ε. Set V := f −1(0) and let:

L0 := V ∩ Sε

be the link of f . We denote by:

L(�) := � ∩ Sε

the link of the critical set � of f , where Sε is a Milnor sphere for f . By Lt we denote the
boundary of a Milnor fiber Ft , so:

Lt := f −1(t) ∩ Sε ,

for t ∈ Dη\{0}. Then Lt is a smooth submanifold of Sε that degenerates to the link L0 as |t |
goes to 0.

Following [9,16,21,32], we aim to study the topology of Lt and that of L0.
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2.1 The vanishing zone

We want to define and show the existence of a vanishing zone for f . For this, our starting
point uses the idea of a cellular tube of a subvariety of a manifold M , as defined by Brasselet
in [5].

Lemma 2.1 There exists a compact regular neighborhood W of L(�) in Sε such that its
boundary ∂W is smooth and intersects L0 transversally inSε , in the stratified sense.Moreover,
if � is either a smooth submanifold or it has an isolated singularity, then W is a fiber bundle
over L(�) with fiber a 2(n − k)-dimensional ball in Sε , where k is the complex dimension
of �.

Proof Let us consider a Whitney stratification of Sε such that L0 is a union of strata, and
a triangulation (K ) of Sε such that each stratum is a union of simplices. Let (K ′) be the
barycentric decomposition of (K ). Using (K ′) one constructs the associated cellular dual
decomposition (D) of Sε as follows: Given a simplex σ in (K ) of dimension s, its dual d(σ )

is the union of all simplices τ in (K ′) whose closure meets σ exactly at its barycenter σ̂ , i.e.,

τ̄ ∩ σ = σ̂ .

This is a cell of dimension (2n − s − 1). Taking the union of all these dual cells we get
the dual decomposition (D) of (K ). By construction, each cell σ intersects its dual d(σ )

transversally. We let W be the union of cells in (D) which are dual of simplices in L(�); it
provides a cellular tube around L(�) in Sε , which means it satisfies the following properties:

(i) W is a compact neighborhood of L(�) containing L(�) in its interior, and ∂W is a
retract of W\L(�);

(ii) W retracts to L(�);
(iii) For every regular neighborhood U of L(�) in Sε , we may refine the triangulation of

Sε if necessary, so that we can assume W ⊂ U .

Now consider the sets:

• A := {σ ∈ (K )
∣∣ σ is a (1)-simplex of L0 whose closure intersects ∂W } ;

• B := {σ ∈ (K ′)
∣∣ σ is an (2n − 2) simplex in ∂W whose closure intersects L0} .

Then one can see that

B =
⋃

σ∈A

d(σ ).

Thence ∂W intersects L0 transversally. Moreover, if � is either a smooth manifold or an
isolated singularity, it follows that L(�) is a smoothmanifoldwithout boundary, and therefore
(see for instance Sect. 1.1.2 of [6]) W is a bundle over L(�) whose fibers are disks. Finally,
by a theorem of Hirsch [11] we can chooseW so that its boundary ∂W is a smooth manifold.

��
Proposition 2.2 For every t sufficiently close to 0 we have that Lt\W̊ is diffeomorphic to
L0\W̊ .

Proof The first step is to show that for every t sufficiently close to 0, one has that Lt intersects
∂W transversally in Sε . Let (pt ) be a sequence of points in f −1(Dη\{0}) ∩ ∂W , with pt ∈
Lt ∩∂W , that converges to p0 ∈ L0∩∂W . Set T := limt→0 Tpt Lt and let Reg L0 denote the
regular set of L0. Since f has the Thom a f -property, it follows that Tp0(Reg L0) ⊂ T . And
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since Tp0(Reg L0) intersects Tp0∂W transversally, by the previous lemma, it follows that T
and Tp0∂W meet transversally. Consider d a metric in the corresponding Grassmannian. As
∂W is closed, the transversality condition is an open property, thenwehave that ifd(T , Tpt Lt )

and d(Tp0∂W , Tpt ∂W ) are sufficiently small, then Tpt Lt intersects Tpt ∂W transversally in
Sε .

Now we set M = (
Sε ∩ f −1(Dη)

) \W̊ , where W̊ is the interior of W . Since 0 ∈ C is the
only critical value of f , by Ehresmann’s fibration lemma we have that the restriction:

f|M : Sε ∩ f −1 (
Dη

) \W̊ → Dη

is a fiber bundle if one has the following conditions:

(1) For all p ∈ M , D( f|M\∂M )p : Tp(Sε) → T f (p)R
2 is a surjection;

(2) For all p ∈ ∂M , D( f|∂M )p : Tp(∂M) → T f (p)R
2 is a surjection.

These conditions are equivalent to the following:

(1’) The fibers f −1(t) are transversal to Sε in R
2 at any point p ∈ M ;

(2’) The fibers f −1(t) ∩ Sε of the restriction of f to the sphere Sε are transversal to ∂M in
R
2 at any point p ∈ ∂M .

But (1′) follows from the fact that f has a Milnor-Lê fibration and (2′) follows from the fact
that Lt intersects ∂W transversally. ��

Now we may define:

Definition 2.3 A vanishing zone for f is a regular neighborhood W of L(�) in Sε with
smooth boundary such that, for every t sufficiently near 0, the smooth manifold Lt\W̊ is
diffeomorphic to L0\W̊ .

We know from Lemma 2.1 that if � has at most an isolated singularity then W can be
chosen to be a fiber bundle over L(�). In this case, we look for conditions which guarantee
that the intersections Wt := Lt ∩ W , for t ∈ Dη, are also fiber bundles over L(�). We have:

Proposition 2.4 If each connected component of �\{0} is a single stratum of a Whitney
stratification of V , then both W0 and Wt are fiber bundles over L(�).

Proof Since each connected component of �\{0} is a single stratum of a Whitney strati-
fication of V , one has that each connected component of L(�) is a single stratum of the
induced Whitney stratification of W0. Hence each connected component of W0 can be seen
as a Whitney equisingular one-parameter family of isolated singularities. ��
Thus we arrive to:

Theorem 2.5 Let f : (Cn, 0) → (C, 0) be a holomorphic function-germ with critical value
at 0. Then:

(i) There exists a compact vanishing zone W for f .
(ii) If the critical set � of f is either smooth or an isolated singularity, then W can be

chosen to be a fiber bundle over L(�) with fiber a 2(n − k)-dimensional ball, where k
is the dimension of �.

(iii) If the Whitney stratification of V can be chosen so that each connected component of
�\{0} is a single stratum, then the intersection Wt := Lt ∩ W is a fiber bundle over
L(�), for any t ∈ Dη.
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Following [32], we say that f : C
n → C is a 1-singularity if the critical locus � of f has

complex dimension one.

Example 2.6 If f is a 1-singularity then f clearly satisfies all the hypotheses of Theorem 2.5,
since � is a union of strata and the only smaller stratum contained in � has dimension zero.
In particular, if f : (C3, 0) → (C, 0) is reduced (that is, if the ideal ( f ) is radical) then it
satisfies the hypotheses of Theorem 2.5. We remark that Theorem 2.5 for 1-singularities was
already proved by Siersma in [32].

Example 2.7 Consider f : (C4, 0) → (C, 0) given by f (x, y, z, w) = w · g(x, y, z), where
g : (C3, 0) → (C, 0) is a holomorphic function-germ with no critical point. Then V =
V (w) ∪ V (g), which is (locally) analytically equivalent to (C3 × {0}) ∪ (B4 × C), where
B
4 is a 4-dimensional ball in C

3. Its critical set is given by � = V (w) ∩ V (g), which is
analytically equivalent toB

4×{0}. It is easy to see that V can be given aWhitney stratification
such that � is a single stratum.

We also have:

Theorem 2.8 Let f : (Cn, 0) → (C, 0) be a holomorphic function-germ, with n ≥ 3, such
that the critical set � of f has complex dimension (n − 2) and such that each connected
component of �\{0} is a non-empty single stratum of a Whitney stratification of V . Then the
boundary of the Milnor fiber of f is not homeomorphic to the link of f .

Proof Suppose that Lt is homeomorphic to L0. By the Excision Theorem, we have that the
homology group H∗(Wt , ∂Wt ) is isomorphic to H∗(Lt , Lt\Wt ), for any t small. Since Lt\Wt

is homeomorphic to L0\W0, it follows that H∗(Wt , ∂Wt ) is isomorphic to H∗(W0, ∂W0).
Note that W0 is a topological manifold, since we are supposing that L0 is homeomorphic to
Lt . Then we can apply the Lefschetz Duality to get that the cohomology group H∗(Wt ) is
isomorphic to H∗(W0). Since bothWt andW0 are fiber bundles over L(�)with fiber f −1

s (t)
and f −1

s (0), respectively, we have that H∗( f −1
s (t)) is isomorphic to H∗( f −1

s (0)). But since
f −1
s (t) deformation retracts to Pt,s and f −1

s (0) deformation retracts to {s}, it follows that
Pt,s is a point, for any s ∈ L(�). This means that fs is regular, that is, L(�) is the empty
set, a contradiction. ��

In particular, we have:

Corollary 2.9 The boundary of the Milnor fiber of a reduced holomorphic function-germ
f : (C3, 0) → (C, 0) is homeomorphic to its link if and only if f has isolated critical point.

3 The real analytic case

We now look at real analytic map-germs :

h : (
R
m, 0

) → (
R
n, 0

)
,

with m > n > 0. In this section we show that under certain stringent conditions, there exists
a vanishing zone for such germs, and we study its topology. The definition of a vanishing
zone in this setting will be similar to that of (Definition 2.3).

Given a Milnor tube N (ε, η) := h−1(D∗
η) ∩ Bε , where Bε ⊂ R

m is a Milnor ball for h
and D

∗
η is a punctured ball in R

n around 0, with ε � η > 0, one has the restriction:

h| : (h)−1
(
D

∗
η

)
∩ Bε → D

∗
η . (1)
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If h has an isolated critical point or if h is holomorphic with values in C, it follows from
Milnor’s work (together with [10,12]) that this is a fiber bundle (also called a locally trivial
fibration in the literature). In the general case, this may not be a fiber bundle. Following [27],
when this is a fiber bundle over its image, we call it the Milnor-Lê fibration of h.

Now suppose that h as above has an isolated critical value at 0 ∈ R
n and that its zero locus

V (h) := h−1(0) has dimension m − n > 0. It follows easily from Ehresmann’s fibration
theorem for manifolds with boundary that h has a Milnor-Lê fibration if and only if for every
t ∈ R

n sufficiently close to 0, the smooth manifold h−1(t) intersects the boundary of the
Milnor sphere Sε transversally (see for instance [7]).

Remark 3.1 Recall that the map-germ h has the Thom ah-property at 0 if there is a Whitney
stratification of a neighborhood of 0 for which V is a union of strata and such that every
limit of spaces tangent to the fibers on a sequence of regular points of h that converge to
some y ∈ V , contains the space tangent at y to the corresponding stratum. It is clear that if
h has the Thom ah-property then the fibers of h sufficiently close to the special fiber V are
transversal to the spheres, hence h has a Milnor-Lê fibration in the tube (see [27]).

Now suppose further that h has a Milnor-Lê fibration in the tube.
Set Ft := h−1(t) ∩ Bε , Lt := h−1(t) ∩ Sε and L(�) := � ∩ Sε , as before, where � is

the critical set of h. Also let k be the dimension of �.
One can easily check that with these conditions, the proofs of Lemma 2.1 and Propositions

2.2 and 2.4 go through with essentially no modification and we arrive to the following.

Proposition-Definition 3.2 Assume that the analytic map-germ h has an isolated critical
value, its zero locus V (h) := h−1(0) has dimension m − n > 0 and h has a local Milnor-Lê
fibration. Then there exists a neighborhood W of L(�) in Sε such that its boundary ∂W is
smooth, it intersects L0 transversally, and Lt\W̊ is diffeomorphic to L0\W̊ . We call W a
vanishing zone for h.

We also have that if � is either smooth or it has an isolated singularity, then W can be
chosen to be a fiber bundle over L(�) with fiber an (m − k)-dimensional disk. And if the
Whitney stratification of V can be chosen so that �\{0} is a non-empty single stratum, then
the intersections Wt := Lt ∩ W , for t ∈ Dη, are fiber bundles over L(�).

Yet, we notice that asking h to satisfy Thom’s ah-property is rather stringent, so we drop
it from in the statement below.

Theorem 3.3 Let h : (Rm, 0) → (Rn, 0), with m ≥ n, be a real analytic map-germ with an
isolated critical value such that V = V (h) has dimension m − n and such that, for every
Milnor sphere Sε , h has an associated Milnor-Lê fibration in a Milnor tube. Then:

(i) If�\{0} is a non-empty smooth submanifold of V , then there exists a compact vanishing
zone W for h and this can be chosen to be a fiber bundle over L(�) with fiber an
(m − k)-dimensional disk.

(ii) If there exists a Whitney stratification of a neighborhood of 0 in R
m for which V is

union of strata and each connected component of �\{0} is one single stratum, then the
intersection Wt := Lt ∩ W is a fiber bundle over L(�), for any t ∈ Dη.

The proof mimics that of Theorem 2.5, so we leave the details to the reader.
We now give a couple of examples that illustrate Theorem 3.3 when n ≥ 3.
Let f : (Rm, 0) → (Rk, 0), with 2 < k < m, be a real analytic map-germwith an isolated

critical point, and let g : (Rk, 0) → (Rn, 0), with 1 < n < k, be a real analytic map-germ
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with an isolated critical value. Then the composition h := g ◦ f is a real analytic map-germ
(Rm, 0) → (Rn, 0) with an isolated critical value. In fact, for any x ∈ R

m\V (h) one has
that f (x) ∈ R

k\V (g), and hence both Dfx : TxRm → T f (x)R
k and Dg f (x) : T f (x)R

k →
Th(x)R

n are surjective. Thus Dhx : TxRm → Th(x)R
n is surjective.

Now suppose further that V (g) = {0}. Then if 0 ∈ R
k is in fact a critical point of g, it

follows that the critical set of h is given by �h = V (h) = V ( f ). Moreover, we claim that h
has a Milnor-Lê fibration in a Milnor tube. In fact, let ε > 0 be a Milnor radius for both f
and h. Since f has an isolated critical point, it is well-known that there exists a positive real
number η1 > 0 sufficiently small such that f −1(s) intersects the sphere S

m−1
ε transversally,

for any s ∈ D
k
η1
. On the other hand, since V (g) = {0}, we can take η2 > 0 sufficiently small

such that g−1(t) is contained in D
k
η1

for any t ∈ D
n
η2
. But since h−1(t) = f −1

(
g−1(t)

)
it

follows that h−1(t) intersects the sphere S
m−1
ε transversally, for any t ∈ D

n
η2
.

So using Kuiper’s examples in [20] we have:

Example 3.4 Consider the map F : H
2 → H given by F(q1, q2) := q1q̄2, where H denotes

the set of the quaternions and q̄2 denotes the conjugate of the quaternion number q2. It can be
seen as a real analytic map f : R

8 → R
4 with an isolated critical point at the origin. On the

other hand, consider the mapG : C
2 → C×R given byG(z1, z2) := (z1 z̄2, ‖z2‖2−‖z1‖2),

where z̄2 denotes the complex conjugate of z2. It can be seen as a real analytic map g : R
4 →

R
3 with an isolated critical point at the origin. Moreover, we have that V (g) = {0}.
Hence the composition h := g ◦ f is a real analytic map-germ (R8, 0) → (R3, 0)

with an isolated critical value and with a Milnor-Lê fibration in a Milnor tube. Moreover,
�h = V (h) = V ( f ).

The example above is not so good to illustrate Theorem 3.3 since �h = V (h). However,
in the same vein we have:

Example 3.5 Consider the map F : O
2 → O given by F(o1, o2) := o1ō2, where O denotes

the set of the octonions and ō2 denotes the conjugate of the octonion number o2. This can
be regarded as a real analytic map f : R

16 → R
8 with an isolated critical point at the

origin. On the other hand, consider the map G : H
2 → H × R given by G(q1, q2) :=

(q1q̄2, ‖q2‖2 − ‖q1‖2), where q̄2 denotes the conjugate of the quaternion number q2. This
can be seen as a real analytic map g : R

8 → R
5 with an isolated critical point at the origin.

Moreover, we have that V (g) = {0}.
By the discussion above, the composition h := g ◦ f is a real analytic map-germ

(R16, 0) → (R5, 0) with an isolated critical value and with a Milnor-Lê fibration in a Milnor
tube, and such that �h = V (h). If we remove the last coordinate function of g we obtain
a real analytic map-germ g̃ : (R8, 0) → (R4, 0) with an isolated critical point, as well as a
real analytic map-germ h̃ = g̃ ◦ f : (R16, 0) → (R4, 0) with an isolated critical value and
a Milnor-Lê fibration in a Milnor tube (see Theorem 1.1 of [15]). Moreover, we have that
�h̃ = V ( f ) = V (h) = �h and that V (h) � V (h̃). Hence �h̃ � V (h̃).

Since �h̃ = V ( f ) and since f has an isolated critical point, it follows that �h̃ is a
non-empty smooth submanifold of V (h̃). So all the hypothesis in (i) of Theorem 3.3 are
satisfied.

It is easy to see that there exists a Whitney stratification of a neighborhood of 0 in R
16 for

which V (h̃) is union of strata and �h̃\{0} is a single stratum. In fact, we have that V (h̃) =
{ f1 = · · · = f4 = 0} ∪ { f5 = · · · = f8 = 0} and that �h̃ = { f1 = · · · = f8 = 0}. Write
A := { f1 = · · · = f4 = 0}, B := { f5 = · · · = f8 = 0} and C := { f1 = · · · = f8 = 0}.
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Note that A, B and C are smooth outside the origin, since f has an isolated critical point. So
the pairs (A\{0},C\{0}) and (B\{0},C\{0}) satisfy the Whitney conditions.

So f illustrates Theorem 3.3 when n = 4.

Note that if we now remove a coordinate function of h̃ we obtain a real analytic map-germ
(R16, 0) → (R3, 0) with the same properties, which illustrates Theorem 3.3 when n = 3.

4 Real analytic map-germs of the type f ḡ : (Cn, 0) → (C, 0)

Now consider the case of real analytic map-germs of the form:

h := f ḡ : (
C
n, 0

) → (C, 0) ,

where f ,g : (Cn, 0) → (C, 0) are holomorphic function-germs with no common irreducible
components and such that f ḡ has an isolated critical value.We give in this section a sufficient
condition, weaker than the Thom ah-property, that grants the existence of a Milnor-Lê fibra-
tion. Later we give some examples of map-germs of the type f ḡ that satisfy the hypotheses
of Theorem 3.3.

4.1 Existence of Milnor-Lê fibrations for fḡ

If n = 2 and f ḡ is as above, Pichon and Seade proved in [27] that the germ h := f ḡ has the
Thom ah-property and therefore it has a Milnor-Lê fibration in a Milnor tube.

When n > 2 it is not true that every such map f ḡ : (Cn, 0) → (C, 0) has the Thom
ah-property (see [29] for a counter-example). So we need extra conditions for f ḡ to have a
Milnor-Lê fibration.

If n = 3, Fernández de Bobadilla and Menegon proved in [9] that f ḡ : (C3, 0) → (C, 0)
has a Milnor-Lê fibration in the tube if and only if f ḡ has an isolated critical value at 0 ∈ C

and for each irreducible component �i of the intersection V ( f ) ∩ V (g), the restriction of
f ḡ to a generic hyperplane section Hi transversal to �i has isolated critical values.
We want to extend that result from [9] for n ≥ 3. For this, let f , g : (Cn, 0) → (C, 0) be

two holomorphic function-germswith no common irreducible component, such that h := f ḡ
has an isolated critical value.

Set V := V ( f g) = ( f g)−1(0) and consider a Whitney stratification Vα adapted to V .
Recall that Sε is a Milnor sphere for h if every sphere centered at 0 and of radius less than or
equal to ε meets transversally each stratum in V .

Notice that given a sphere Sε centered at 0 and a point x ∈ Sε , there is a unique complex
hyperplane TC

x (Sε) tangent to Sε at x . This complex plane has real codimension 1 in the
tangent space Tx (Sε) and the union of all these planes determines the canonical contact
structure on the sphere.

We have:

Definition 4.1 The map-germ h = f ḡ is CT-regular at 0 if for every Milnor sphere Sε and
for every x in the critical set � of V ∩ Sε one has that the restriction of f ḡ to the contact
plane TC

x (Sε) has an isolated critical value at 0.

In the notation “CT-regular”, the C stands for contact, since this is a condition that depends
on the contact planes, while T stands for tube, because this condition concerns the behavior
of f ḡ in a “tube” around V , since it only cares about critical values near 0.
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One has:

Proposition 4.2 Thom’s ah-property at 0 implies CT-regularity, and the latter implies that
we have a Milnor-Lê fibration in a tube.

Proof The first implication is immediate: We already know (see [7,27]) that Thom’s ah-
property at 0 implies that every fiber h−1(t), ‖t‖ sufficiently small, meets transversally the
sphere Sε . But in fact we know more: every limit of spaces tangent to the fibers of h contains
the space tangent to the corresponding stratum of V . The result then follows because V is
complex analytic, so the tangent bundle of each stratum is a complex vector bundle, and by
definition of a Milnor sphere, it is traversal to the contact structure on the Milnor sphere.

For the second claim, that CT-regularity implies one has a Milnor-Lê fibration, we only
need to observe that CT-regularity clearly implies that away from V , all the nearby fibers of
h are transversal to the corresponding contact planes, and therefore they are transversal to
the spheres. ��

Notice that every holomorphic map-germ with values in C is CT-regular since it has the
Thom property.

The following example shows that the reciprocal of Proposition 4.2 is false in general.
This answers a question raised in [7, Remark 4.4] and in [3], which is whether or not having
a local Milnor-Lê fibration is equivalent to having the (local) Thom ah-property.

Example 4.3 Let h = f ḡ : (C2, 0) → (C, 0) be given by f (z1, z2) = z1z2 and g(z1, z2) =
z2. Parusinski showed that there is no stratification of f g satisfying Thom’s ah condition
(see [29]). But one can show that ( f ḡ)−1(t) intersects the Milnor sphere transversally, for
t sufficiently small, and hence f ḡ has a Milnor-Lê fibration in the tube. In fact, for each
t ∈ C\{0} fixed, if we write a complex number in the form z = |z|eiθz , we have that

f ḡ(z1, z2) = z1|z2|2 = t ⇔ |z2|2 = t

z1
, which can occur if and only if θz1 = θt . One

can see then that ( f ḡ)−1(t) is a fiber bundle over R
+ with fiber S

1, which intersects the
“square Milnor ball” transversally. In order to show that this map is CT-regular we need
some considerations (see Example 4.6 below).

Remark 4.4 Given a germ f ḡ : (Cn, 0) → (C, 0) with an isolated critical value, for every
Milnor sphere Sε one has the classical Milnor map:

ψ := f ḡ

| f ḡ| : Sε\
(
V ∩ Sε

) → S
1,

which may or may not be a fiber bundle. In [7] (also in [4]) is proved that this is a fiber bundle
if and only if the map f ḡ satisfies a certain regularity condition, called d-regularity. Hence,
if the germ f ḡ is d-regular and CT-regular, then one has two local fibrations associated to the
germ f ḡ. One is the Milnor fibration ψ on the sphere, as above; the other is the Milnor-Lê
fibration on a tube, as in (1). The main result of [7] (see [8, Theorem 3.14]) implies that, just
as in the holomorphic case, these two fibrations are equivalent (a fact already known from
[2] for quasi-homogeneous germs).

Remark 4.5 In order to verify the CT-regularity, it is convenient to consider the polydisc

�ε := {(z1, . . . , zn) ∈ C
n : |z1| ≤ ε1, . . . , |zn | ≤ εn}.

Then ∂�ε is the union of the faces {|zi | = εi } for i = 1, . . . , n. We can suppose that �

intersects �ε in an union of open faces {|zi | = ε}. Then the CT-regularity is equivalent to
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the condition that f ḡ intersects each hyperplane Hi,θ := {zi = εeiθ } transversally, that is,
that the restriction of f ḡ to Hi,θ has an isolated critical value. This is very helpful in practice
because it means we only need to check finitely many conditions: one for each face of a
polydisc.

Example 4.6 Themap-germ h = z̄2(z1z2) ofExample 4.3 isCT-regular. In fact, the restriction
of h to a hyperplane section {x = x0} has an isolated critical value at 0 and the restriction of
h to a hyperplane section {y = y0} is regular.

In the sequel we give more explicit examples of map-germs f ḡ : (Cn, 0) → (C, 0)which
are CT-regular.

4.2 The vanishing zone for fḡ

Now suppose that f ḡ has an isolated critical value and the Milnor-Lê fibration in a tube:

( f ḡ)| : (
f ḡ

)−1(
D

∗
η

) ∩ Bε → D
∗
η.

We consider the sets V := ( f ḡ)−1(0) = ( f g)−1(0), Ft := ( f ḡ)−1(t) ∩ Bε and Lt :=
( f ḡ)−1(t) ∩ Sε , as in the previous section.

An easy calculation shows that (if f ḡ has an isolated critical value) one has that:

�
(
f ḡ

) = �( f ) ∪ �(g) ∪ (
V ( f ) ∩ V (g)

) = �( f g).

We shall denote this set by� and set k to be its complex dimension. Also set L(�) := �∩Sε .
Notice that the critical set of f ḡ contains the intersection V ( f )∩V (g). Hence f ḡ cannot

have an isolated critical point if n > 2. In fact, if f , g have no common factor, then the
singular set of V = V ( f g) has complex dimension n − 2.

So Theorem 3.3 gives:

Corollary 4.7 Let f , g : (Cn, 0) → (C, 0) be two holomorphic function-germs with no
common irreducible components. Suppose that the real analytic map-germ f ḡ : (Cn, 0) →
(C, 0) has an isolated critical value at 0 ∈ C and that it has a Milnor-Lê fibration in the
tube. Then:

(i) If �\{0} is a non-empty smooth submanifold, then there exists a vanishing zone W for
f ḡ which can be chosen to be a fiber bundle over L(�) with fiber a 2-dimensional
complex disk.

(ii) If the Whitney stratification of V can be chosen so that each connected component of
�\{0} is a non-empty single stratum, then the intersection Wt := Lt ∩ W is a fiber
bundle over L(�), for any t ∈ Dη.

If we further assume that n = 3 and that both f and g are reduced, the condition that
a Whitney stratification of V can be chosen so that �\{0} is a non-empty single stratum is
always satisfied, since � is a complex curve, as we have said before.

Bellow we give some examples of function-germs f ḡ : (C3, 0) → (C, 0) with f , g :
(C3, 0) → (C, 0) non-constant, holomorphic and with no common irreducible components,
such that f ḡ has an isolated critical value and the Milnor-Lê fibration in the tube:

Example 4.8 f ḡ : (C3, 0) → (C, 0) given by f (x, y, z) = x2+ y3+xz2 and g(x, y, z) = x .
It is an exercise to show that � = {x = y = 0} and that f ḡ has a Milnor-Lê fibration in the
tube.
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Example 4.9 f ḡ : (C3, 0) → (C, 0) given by g(z1, z2, z3) = zki for some i ∈ {1, 2, 3}
and k ≥ 1, and f a homogeneous polynomial of degree m �= k with ∂ f

∂zl
= 0 for some

l ∈ {1, 2, 3}, l �= i .
Consider coordinates z1, z̄1, z2, z̄2, z3, z̄3 for C

3. Then:

f ḡ = (� f ḡ,� f ḡ) = 1

2

(
f ḡ + f̄ g,

1

i

(
f ḡ − f̄ g

)
)

,

where � denotes the real part and � denotes the imaginary part of f ḡ. A straightforward
computation shows that the set of critical points of f ḡ, denoted by C , is defined by the
following equations:

– f g
(

∂ f
∂zi

∂g
∂z j

− ∂ f
∂z j

∂g
∂zi

)
= 0, for all i �= j ;

– | f ∂g
∂zi

| = |g ∂ f
∂zi

|, for all i ∈ {1, 2, 3};
– | f |2 ∂g

∂zi
∂̄g
∂z j

= |g|2 ∂ f
∂zi

¯∂ f
∂z j

, for all i �= j .

Since we are supposing that g = zki , we have that

C = { f = g = 0}
⋃

⎛

⎝
⋂

i �= j

{
∂ f

∂z j
= 0

}
∩

{∣∣∣∣ f
∂g

∂zi

∣∣∣∣ −
∣∣∣∣g

∂ f

∂zi

∣∣∣∣ = 0

}
⎞

⎠ .

Since f is a homogeneous polynomial of degree m, we have that

m f =
n∑

j=1

∂ f

∂z j
z j .

We claim that f ḡ has an isolated critical value. In fact, suppose that there exists
x = (x1, x2, x3) ∈ C with f (x) �= 0. We have that m f (x) = ∂ f

∂zi
(x)xi �= 0 and then

| f (x) ∂g
∂zi

(x)| = |g(x) ∂ f
∂xi

| implies that m|xk−1
i || f (x)| = |xki || ∂ f

∂zi
(x)| = | f (x) ∂g

∂zi
(x)| =

k|xk−1
i || f (x)|, which implies that m = k, a contradiction.
Now we will show that f ḡ is CT-regular. For each irreducible component of the intersec-

tion V ( f ) ∩ {zi = 0}, take the transversal section {z j = s}, for some small real number s,
with j �= i and j �= l. Then one can easily check that the restriction of f ḡ to such transversal
section has an isolated critical value.

Now we give an example of a map-germ f ḡ defined in C
4 that satisfies all the hypotheses

of Corollary 4.7 above:

Example 4.10 Consider f , g : (C4, 0) → (C, 0) given by f (x, y, z, w) = xa + yb + z, with
a, b > 1, and g(x, y, z, w) = w. Then the real analytic map-germ f ḡ : (C4, 0) → (C, 0)
given by

f ḡ(x, y, z, w) = w̄
(
xa + yb + z

)

has an isolated critical value and the critical set of V ( f ḡ) is given by

� = V ( f ) ∩ V (g)

and hence it is a complex 2-manifold. Since the restrictions ( f ḡ)x0 = w̄(xa0 + yb + z) and
( f ḡ)y0 = w̄(xa + yb0 + z) have isolated critical values, for any x0 and y0 fixed with |x0| = ε1
and |y0| = ε2, it follows that f ḡ is CT-regular at 0, and hence it has a Milnor-Lê fibration in
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the tube. Look at Example 2.7 to see that V can be given a Whitney stratification such that
� is a single stratum.

As a consequence, analogous to Theorem 2.8, we have:

Theorem 4.11 Let f , g : (C3, 0) → (C, 0) be reduced holomorphic function-germs with no
common irreducible component such that f ḡ has an isolated critical value at 0 and aMilnor-
Lê fibration in a tube. Then the boundary of the Milnor fiber of f ḡ is not homeomorphic to
its link.

Notice that if Corollary 3.7 holds for f ḡ, it also holds for g f̄ . In fact, the critical locus
of f ḡ equals the critical locus of g f̄ and ( f ḡ)−1(t̄) = (g f̄ )−1(t). In particular, one can
interchange the roles of f and g in the examples 3.8 to 3.10 above.
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