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Abstract
We classify a class of 2-step nilpotent Lie algebras related to the representations of the
Clifford algebras in the following way. Let J : Cl(Rr ,s) → End(U ) be a representation of
the Clifford algebra Cl(Rr ,s) generated by the pseudo Euclidean vector space R

r ,s . Assume
that the Clifford module U is endowed with a bilinear symmetric non-degenerate real form
〈· , ·〉U making the linear map Jz skew symmetric for any z ∈ R

r ,s . The Lie algebras and the
Clifford algebras are related by 〈Jzv,w〉U = 〈z, [v,w]〉Rr,s , z ∈ R

r ,s , v,w ∈ U . We detect
the isomorphic and non-isomorphic Lie algebras according to the dimension of U and the
range of the non-negative integers r , s.

Keywords Clifford module · Nilpotent 2-step Lie algebra · Pseudo H -type Lie algebras ·
Lie algebra isomorphism · Scalar product · Involution
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1 Introduction

The present work is a continuation of [18] and it studies 2-step nilpotent graded Lie alge-
bras associated to the representations of Clifford algebras. Let Clr ,s be the Clifford algebra
generated by the pseudo Euclidean vector space R

r ,s and let J : Clr ,s → End(U ) be its
representation. Assume that there exists a non-degenerate symmetric bilinear form 〈· , ·〉U on
the Clifford module U such that 〈Jzx, y〉U + 〈x, Jz y〉U = 0 for all z ∈ R

r ,s and x, y ∈ U .
The pair (U , 〈· , ·〉U ) is called an admissible module. The set U ⊕ R

r ,s , endowed with the
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Lie bracket defined by 〈z, [x, y]〉Rr,s = 〈Jzx, y〉U for x, y ∈ U and zero otherwise, is called
a pseudo H-type Lie algebra and is denoted by Nr ,s(U ). The pseudo H -type Lie algebras
Nr ,0(U ) were introduced in [23] and their generalizations Nr ,s(U ) appeared in [11,19].
The pseudo H -type Lie algebras were actively studied for instance in [5,12,17,18,24]. They
provide a setting for the study of sub-elliptic, hypo-elliptic and Grushin type operators, see
for instance [9,10] and it is an important particular case of the extended Poincaré Lie super
algebras [1,2]. The Lie groups of pseudo H -type Lie algebras constitute a source of inter-
esting examples of sub-Riemannian manifolds [7,20], nil-manifolds [14,26], iso-spectral but
non-diffeomorphic manifolds [6], Damek–Ricci harmonic spaces [8], symmetric spaces of
rank one [13,30].

The authors considered in [18] the classification of pseudo H -type Lie algebras whose
constructions are based on the minimal dimensional admissible modules V r ,s

min . It has been

shown that two Lie algebras Nr ,s(V
r ,s
min) and Nr̃ ,s̃(V

r̃ ,s̃
min) are never isomorphic unless r = r̃

and s = s̃, or r = s̃ and s = r̃ . Among the couples Nr ,s(V
r ,s
min) and Ns,r (V

s,r
min) there are

isomorphic and non-isomorphic Lie algebras.
The present paper is a continuation of [18] and it finishes the classification of the pseudo

H -type Lie algebras Nr ,s(U ), where U is not necessary minimal dimensional admissible
module. The first step of the classification depends on the fact whether the Clifford algebra
Clr ,s is simple or not. If the Clifford algebra Clr ,s is simple, then the Lie algebra Nr ,s(U )

for r �= 3 (mod 4) is uniquely defined by the dimension of the admissible module U and
does not depend on the choice of the scalar product on U . As a consequence in this case we
obtain that the Lie algebras Nr ,s(U ) and Ns,r (Ũ ) are isomorphic if dim(U ) = dim(Ũ ). If
r = 3 (mod 4) then the Lie algebra Nr ,s(U ) depends on the choice of the scalar product
on each minimal dimensional component (V r ,s

min)i in the decomposition U = ⊕(V r ,s
min)i . If

r − s = 3 (mod 4), then Clifford algebras Clr ,s are not simple and the classification is more
complicate. Recall, that the Lie algebras Nr ,0(U ) for r = 3 (mod 4) are defined only by
number of non-equivalent irreducible terms in the decomposition of U into the direct sum
of irreducible submodules and any irreducible Clifford module is actually an admissible
module, see [8,13]. For the pseudo H -type Lie algebrasNr ,s(U ), s > 0, and r = 3 (mod 4)
the classification is more subtle and depends not only on the number of different minimal
dimensional modules, but also on the choice of the scalar product on them. These phenomena
come from the signature of the scalar product restricted to the “common 1-eigenspace” of
a set of maximal number of mutually commuting symmetric isometric involutions of the
Clifford action on the minimal dimensional module. It is also closely related to the existence
or non-existence of a special type of an automorphism of the Lie algebra Nr ,s(U ) which is
identity on the centre.

The structure of the paper is the following. We recall basic properties of Clifford algebras,
such as, periodicity, the system of involutions, the structure of admissible modules, and
other information needed to complete classification of pseudo H-type Lie algebras in Sect. 2.
Section 3 is dedicated to the description of pseudo H-type Lie algebras and the structure
of their isomorphisms and automorphisms. The main result is contained in Theorems 4.1–
4.3, see Sect. 4. In Sect. 5, we present Tables 4, 5, 6 and 7 needed to determine important
properties of minimal admissible modules for basic cases (2.8), which are summarized in
Table 1 in Sect. 2.5.
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2 Clifford algebras and admissible modules

In the sectionwe collect the information about Clifford algebras and their admissiblemodules
that we need for the classification of pseudo H -type Lie algebras.

2.1 Definitions of Clifford algebras

Wedenote byR
r ,s the spaceR

k , r+s = k, with the non-degenerate quadratic form Qr ,s(z) =∑r
i=1 z

2
i − ∑s

j=1 z
2
r+ j , z ∈ R

k , of the signature (r , s). The non-degenerate bilinear form
obtained from Qr ,s by polarization is denoted by 〈· , ·〉r ,s . We call the form 〈· , ·〉r ,s a scalar
product. A vector z ∈ R

r ,s is called positive if 〈z, z〉r ,s > 0, negative if 〈z, z〉r ,s < 0, and
null if 〈z, z〉r ,s = 0. We constantly use the orthonormal basis {z1, . . . , zr , zr+1, . . . , rr+s}
for R

r ,s , where the basis vectors z1, . . . , zr are positive and zr+1, . . . , zr+s are negative.
Let Clr ,s be the real Clifford algebra generated by R

r ,s , that is the quotient of the tensor
algebra

T (Rr+s) = R ⊕ (
R
r+s)⊕

(
2⊗ R

r+s
)

⊕
(

3⊗ R
r+s
)

⊕ · · · ,

divided by the two-sided ideal Ir ,s generated by the elements of the form z ⊗ z + 〈z, z〉r ,s1,
z ∈ R

r+s . The explicit determination of the Clifford algebras is given in [3] and they are
isomorphic to matrix algebras R(n), R(n) ⊕ R(n), C(n), H(n) or H(n) ⊕ H(n) where the
size n is determined by r and s, see [28].

Given an algebra homomorphism Ĵ : Clr ,s → End(U ), we call the space U a Clifford
module and the operator Jφ aClifford action or a representation map of an element φ ∈ Clr ,s .
If there is a map

J : R
r ,s → End(U )

z 	→ Jz,

satisfying J 2z = −〈z, z〉r ,s IdU for an arbitrary z ∈ R
r ,s , then J can be uniquely extended

to an algebra homomorphism Ĵ by the universal property, see, for instance [21,27,28]. Even
though the representation matrices of the Clifford algebras Clr ,s , and the Clifford modulesU
are given over the fields R, C or H, we refer to Clr ,s as a real algebra and U as a real vector
space. The dimension of U is a multiple of n over the corresponding fields R, C or H. For
a systematic and thorough treatment of Clifford algebras for indefinite quadratic forms over
R see [22].

If r−s �≡ 3 (mod 4), thenClr ,s is a simple algebra. In this case there is only one irreducible
moduleU = V r ,s

irr of dimension n. If r − s ≡ 3 (mod 4), then the algebra Clr ,s is not simple,
and there are two non-equivalent irreducible modules. They can be distinguished by the
action of the ordered volume form �r ,s = ∏r+s

k=1 zk . In fact, the elements J 1
2

(
1∓�r,s

) act as

an identity operator on the Clifford module, so J�r,s ≡ ± Id. Thus, we denote by V r ,s
irr;± two

non-equivalent irreducible Clifford modules on which the action of the volume form is given
by J�r,s = ∏r+s

k=1 Jzk ≡ ± Id.

Proposition 2.1 [28, Theorem 5.4] Clifford modules are completely reducible. Namely, let
U be a Clifford module, then it can be decomposed into irreducible modules:

U =

⎧
⎪⎨

⎪⎩

p⊕ V r ,s
irr , if r − s �≡ 3 (mod 4),(

p+⊕ V r ,s
irr;+

)

⊕
(

p−⊕ V r ,s
irr;−

)

, if r − s ≡ 3 (mod 4).
(2.1)
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The numbers p, p+, p− are uniquely determined by the given module U of the Clifford
algebra Clr ,s .

The module U = p⊕ V r ,s
irr is called isotypic and the second one in (2.1) is non-isotypic.

2.2 Admissible modules

Definition 2.2 [11] A module U of the Clifford algebra Clr ,s is called admissible if there is
a scalar product 〈· , ·〉U on U such that

〈Jzx, y〉U + 〈x, Jz y〉U = 0, for all x, y ∈ U and z ∈ R
r ,s . (2.2)

We also say that the pair (U , 〈· , ·〉U ) is an admissible module and the scalar product 〈· , ·〉U
is admissible.

We collect properties of admissible modules in several propositions.

Proposition 2.3 Let Clr ,s be the Clifford algebra generated by the space R
r ,s .

(1) If 〈· , ·〉U is anadmissible scalar product, then K 〈· , ·〉U is also admissible for any constant
K ∈ R\0. We can assume that K = ±1 by normalization of the scalar products.

(2) Let (U , 〈· , ·〉U ) be an admissible module for Clr ,s and let (U1, 〈· , ·〉U1) be such that U1

is a submodule of U and 〈· , ·〉U1 is the restriction of 〈· , ·〉U to U1. Then the orthogonal
complement U1

⊥ = {x ∈ U | 〈x, y〉U = 0, for all y ∈ U1} with the scalar product
obtained by the restriction of 〈· , ·〉U to U1

⊥ is also an admissible module.
(3) Condition (2.2) and the property J 2

z = −〈z, z〉r ,s IdU imply

〈Jzx, Jz y〉U = 〈z, z〉r ,s〈x, y〉U . (2.3)

(4) Relation (2.3) leads to the following: if z ∈ R
r ,s is positive, then

〈v, v〉U > 0 implies 〈Jzv, Jzv〉U > 0, and 〈v, v〉U < 0 implies 〈Jzv, Jzv〉U < 0.

In other words the map Jz : U → U is an isometry for 〈z, z〉r ,s = 1.
If z ∈ R

r ,s is negative, then

〈v, v〉U > 0 implies 〈Jzv, Jzv〉U < 0, and 〈v, v〉U < 0 implies 〈Jzv, Jzv〉U > 0.

and the map Jz : U → U is an anti-isometry for 〈z, z〉r ,s = −1.
(5) If s > 0, then any admissible module (U , 〈· , ·〉U ) of Clr ,s is neutral, i.e., dimU = 2l,

l ∈ N, and U is isometric to R
l,l , see [11, Proposition 2.2].

(6) If s = 0, then any Clifford module of Clr ,0 can be made into admissible with positive
definite or negative definite scalar product, see [21].

Proposition 2.4 describes the relation between irreducible and admissible modules. This
relation depends on the signature (r , s) of the generating space R

r ,s for the Clifford algebra
Clr ,s . An admissiblemodule of theminimal possible dimension is called aminimal admissible
module.

Proposition 2.4 [11, Theorem 3.1][18, Proposition 1] Let Clr ,s be the Clifford algebra gen-
erated by the space R

r ,s .

(1) If s = 0, then any irreducible Clifford module is minimal admissible with respect to a
sign definite scalar product.
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(2) If r − s ≡ 0, 1, 2 (mod 4), then a unique irreducible module V r ,s
irr is not necessary

admissible. The following situations are possible:

(2-1) The irreducible module V r ,s
irr is minimal admissible or,

(2-2) The irreduciblemodule V r ,s
irr is not admissible, nevertheless the direct sum V r ,s

irr ⊕V r ,s
irr

is minimal admissible.

(3) If r−s ≡ 3 (mod) 4, then for two non-equivalent irreduciblemodules V r ,s
irr;± the following

can occur:

(3-1) Each irreducible module V r ,s
irr;± is minimal admissible. The index s must be even in

this case.
(3-2) None of the irreducible modules V r ,s

irr;± is admissible. It can happened for even and
odd values of s.

(3-2-1) If s is even, then V r ,s
irr;+⊕V r ,s

irr;+, V
r ,s
irr;−⊕V r ,s

irr;− areminimal admissiblemodules,

and the module V r ,s
irr;+ ⊕ V r ,s

irr;− is not admissible.

(3-2-2) If s is odd, then the module V r ,s
irr;+ ⊕ V r ,s

irr;− is minimal admissible and neither

V r ,s
irr;+ ⊕ V r ,s

irr;+ nor V r ,s
irr;− ⊕ V r ,s

irr;− is admissible.

We emphasize the following corollary, see also Table 1 and the remark after it.

Corollary 2.5 If r − s ≡ 3 (mod 4) and s is even, then there are two minimal admissible
modules. We distinguish two cases:

(3-1) Each irreducible module is minimal admissible: V r ,s
min;+ = V r ,s

irr;+ and V r ,s
min;− =

V r ,s
irr;−. In this case r ≡ 3 (mod 4), s ≡ 0 (mod 4), or r ≡ 1 (mod 8), s ≡ 2 (mod 8),

or r ≡ 5 (mod 8), s ≡ 6 (mod 8).
(3-2-1) Direct sums of irreducible modules are minimal admissible: V r ,s

min;+ = V r ,s
irr;+ ⊕

Vr ,s
irr;+ and V r ,s

min;− = V r ,s
irr;− ⊕ V r ,s

irr;−. It happens if r ≡ 1 (mod 8), s ≡ 6 (mod 8),
or r ≡ 5 (mod 8), s ≡ 2 (mod 8).

2.3 Mutually commuting isometric involutions

Recall that a linear transformation� defined on a vector spaceU with a scalar product 〈· , ·〉U
is called symmetric with respect to the scalar product 〈· , ·〉U , if 〈�x, y〉U = 〈x,�y〉U ,
isometric (or positive) if it maps positive vectors to positive vectors and negative vectors to
negative vectors and anti-isometric (or negative) if it reverses the positivity and negativity of
the vectors. Let Jzi be representation maps for an orthonormal basis {z1, . . . , zr+s} of R

r ,s .
The simplest isometric involutions, written as a product of the maps Jzi , are one of the
following forms:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

P1 = Jzi1 Jzi2 Jzi3 Jzi4 , where all zik are either positive or negative,

P2 = Jzi1 Jzi2 Jzi3 Jzi4 , where two zil are positive and two are negative,

P3 = Jzi1 Jzi2 Jzi3 , where all three zik are positive,

P4 = Jzi1 Jzi2 Jzi3 , where one zil is positive and two are negative.

(2.4)

The product of types P3 and P4 need not be an involution, meanwhile the product of invo-
lutions of other types is again an involution. For a given minimal admissible module V r ,s

min ,
we denote by P Ir ,s a set of the maximal number of mutually commuting symmetric iso-
metric involutions of the forms (2.4). Moreover, we require that involutions in P Ir ,s , are all
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primitive in the sense that none of them is a product of other involutions in P Ir ,s . Also we
choose the set P Ir ,s in such a way that it may include only one of the types P3 or P4. The
set P Ir ,s is not unique, while the number of involutions pr ,s = #P Ir ,s in P Ir ,s is unique
for the given signature (r , s). The set P Ir ,s can be chosen equal for the modules with the
admissible scalar product of opposite signs, as well as it can be chosen equal for the minimal
admissible modules, based on the two non-equivalent Clifford modules. The ordering on the
set P Ir ,s could be made, if necessary, in such a way that at most one involution of the type
P3 or P4 is included in P Ir ,s , and, in this case, it would the last one, see Sects. 2.4 and 5. We
also need a set COr ,s of complementary operators to P Ir ,s , which are products of the maps
Jzi and they are ordered according to the ordering in P Ir ,s such that

Ck Pi = PiCk for i < k, and Ck Pk = −PkCk, Pk ∈ P Ir ,s, Ck ∈ COr ,s .

The complementary operators can be isometric or anti-isometric. They guarantee that all
the involutions from P Ir ,s have their both eigenspaces as subspaces of V r ,s

min . Note that if
r−s ≡ 3 (mod 4) and s is even, then the last involution of typeP3 orP4 allows to distinguish
the modules V r ,s

min;+ and Vr ,s
min;−, see for instance the proof of Theorem 2.9. Therefore, the

number of operators in COr ,s is different and is equal to

pr ,s, when r − s �≡ 3 (mod 4), or r − s ≡ 3 (mod 4) and s is odd, (2.5)

pr ,s − 1, when r − s ≡ 3 (mod 4) and s is even. (2.6)

We define the subspace Er ,s of a minimal admissible module V r ,s
min

Er ,s = {
v ∈ V r ,s

min | Piv = v i ≤ pr ,s
}

in the case (2.5),

Er ,s = {
v ∈ V r ,s

min | Piv = v i ≤ pr ,s − 1
}

in the case (2.6),

and call it the “common 1-eigenspace” for the system of involutions P Ir ,s . The comple-
mentary opertors show whether the common 1-eigenspace Er ,s is a neutral or sign definite
vector space with respect to the restriction of the admissible scalar product. The sets P Ir ,s
and COr ,s are collected in Sect. 5 and they will be mentioned precisely when it needs to be
done. In the following proposition we explain the possible interaction of involutions with the
complementary operators.

Proposition 2.6 [17] If P is an isometric symmetric involution acting on the space
(U , 〈· , ·〉U ) with a neutral scalar product and E±1 are eigenspaces of P, then

1. If I : U → U is an isometry such that PI = −IP, then E±1 are neutral,
2. If A : U → U is an anti-isometry such that PA = AP, then E±1 are neutral,
3. If A : U → U is an anti-isometry such that PA = −AP, then E±1 are either neutral

or sign definite,

with respect to the restriction of the scalar product 〈· , ·〉U to E±1.

Since the involutions in P Ir ,s are symmetric, the eigenspaces are orthogonal subspaces.
The involutions commute, therefore, they decompose the eigenspaces of other involutions
into smaller (eigen)-subspaces. We give an example, that is crucial for the paper.

Example 1 The set P Iμ,ν for (μ, ν) ∈ {(8, 0), (0, 8)(4, 4)} is given by
T1 = Jζ1 Jζ2 Jζ3 Jζ4 , T2 = Jζ1 Jζ2 Jζ5 Jζ6 , T3 = Jζ1 Jζ2 Jζ7 Jζ8 , T4 = Jζ1 Jζ3 Jζ5 Jζ7 .
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The set of complementary operators are

CO8,0 = {C1 = Jζ1 , C2 = Jζ2 Jζ3 , C3 = Jζ8 , C4 = Jζ3 Jζ4},
CO4,4 = {C1 = Jζ1 , C2 = Jζ2 Jζ3 , C3 = Jζ8 , C4 = Jζ3 Jζ4},
CO0,8 = {C1 = Jζ4 Jζ5 , C2 = Jζ2 Jζ3 , C3 = Jζ8 , C4 = Jζ3 Jζ4}.

The module Vμ,ν
min is decomposed into 16 one dimensional common eigenspaces of four

involutions Ti . Let v ∈ Eμ,ν and |〈v, v〉Vμ,ν
min

| = 1. Then other common eigenspaces are
spanned by Jζi v, i = 1, . . . , 8, and Jζ1 Jζ j v, j = 2, . . . , 8. Hence we have

Vμ,ν
min = Eμ,ν

8⊕

i=1

Jζi (Eμ,ν)

8⊕

j=2

Jζ1 Jζ j (Eμ.ν). (2.7)

The value 〈v, v〉Vμ,ν
min

can be ±1 according to the admissible scalar product, however we may
assume 〈v, v〉Vμ,ν

min
= 1 by Lemma 3.6.

2.4 Periodicity of Clifford algebras and admissible modules

We call the following lower values of signature (r , s):
⎧
⎪⎨

⎪⎩

(r , s) for 0 ≤ r ≤ 7 and 0 ≤ s ≤ 3,

(r , s) for 0 ≤ r ≤ 3 and 4 ≤ s ≤ 7, and

(r , s) ∈ {(8, 0), (0, 8), (4, 4)},
(2.8)

the basic cases. Recall the periodicity of Clifford algebras:

Clr ,s ⊗Cl0,8 ∼= Clr ,s+8, Clr ,s ⊗Cl8,0 ∼= Clr+8,s, Clr ,s ⊗Cl4,4 ∼= Clr+4,s+4,

where the last one follows from Clr ,s ⊗Cl1,1 ∼= Clr+1,s+1, see [3]. The Clifford algebras
Clμ,ν , (μ, ν) ∈ {(8, 0), (0, 8), (4, 4)}, are isomorphic toR(16). The unique irreducible mod-
ule is minimal admissible Vμ,ν

irr = Vμ,ν
min in all the cases. They are isometric to the following

spaces: either V 8,0
min

∼= R
16,0 or V 8,0

min
∼= R

0,16, where we fix the first isomorphism for the

constructions of Lie algebras due to Lemma 3.6, and we also have V 0,8
min

∼= R
8,8 ∼= V 4,4

min .

Proposition 2.7 [17] If V r ,s
min = (V r ,s

min, 〈· , ·〉V r,s
min

) is a minimal admissible module, then

V r+μ,s+ν = Vr ,s
min ⊗ Vμ,ν

min is the minimal admissible module of Clr+μ,s+ν , where the scalar
product on V r+μ,s+ν is given by 〈· , ·〉V r,s

min
〈· , ·〉Vμ,ν

min
for (μ, ν) ∈ {(8, 0), (0, 8), (4, 4)}.

Let {ζ1, . . . , ζ8} be an orthonormal basis for R
μ,ν and {z1, . . . , zr+s} be an orthonormal

basis forR
r ,s . Let Jζα , α = 1, . . . , 8 and Jzi , i = 1, . . . , r+s be the respective representation

maps. We denote by �μ,ν = ∏8
α=1 ζα the ordered volume form for Clμ,ν for (μ, ν) ∈

{(8, 0), (0, 8), (4, 4)}. Set
Ĵzi = Jzi ⊗ J�μ,ν for i = 1, . . . , r + s,

Ĵζα = IdVr,s ⊗Jζα for α = 1, . . . , 8.

Then the maps Ĵzi and Ĵζα are representations of an orthonormal basis {zi , ζα} of R
r+μ,s+ν

on the space V r ,s
min ⊗ Vμ,ν

min , as it was shown in [17].
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Table 1 Dimensions of minimal admissible modules

8 16± 32± 64± 64±
×2 128± 128± 128± 128±

×2 256±

7 16N 32N 64N 64± 128N 128N 128N 128± 256N

6 16N 16N×2 32N 32± 64N 64N×2 128N 128± 256N

5 16N 16N 16N 16± 32N 64N 128± 128N 256N

4 8± 8± 8± 8±
×2 16± 32± 64± 64±

×2 128±

3 8N 8N 8N 8± 16N 32N 64N 64± 128N

2 4N 4N×2 8N 8± 16N 16N×2 32N 32± 64N

1 2N 4N 8N 8± 16N 16N 16N 16± 32N

0 1± 2± 4± 4±
×2 8± 8± 8± 8±

×2 16±

s/r 0 1 2 3 4 5 6 7 8

2.5 Dimension of aminimal admissible module

The dimensions of minimal admissible modules are determined for basic cases (2.8). Then
dim(V r+μ,s+ν

min ) = dim(V r ,s
min) · dim(Vμ,ν

min ) = 16 dim(V r ,s
min) for any minimal admissible

module V r ,s
min , (μ, ν) ∈ {(8, 0), (0, 8), (4, 4)}. Moreover dim(V r ,s

min) = 2r+s−pr,s where
pr ,s = #P Ir ,s . This follows from the fact that minimal admissible modules are cyclic mod-
ules and pr ,s relations among the 2r+s vectors {Jzi1 Jzi2 · · · Jzik v}, v ∈ Er ,s , allow us to span
the space V r ,s

min by 2
r+s−pr,s number of linearly independent vectors. We describe the number

and the dimension of minimal admissible modules V r ,s
min in Table 1. We indicate whether the

scalar product restricted to the common 1-eigenspaces Er ,s of the involutions from P Ir ,s is
neutral or sign definite, see Sect. 2.6 for the proof.

We make the following comments to Table 1:

(1) We use the black colour when dim(V r ,s
min) = 2 dim(V r ,s

irr ), see Proposition 2.4, items
(2-2), (3-2-1), and (3-2-2).

(2) Writing the subscript “∗×2”, we show that the Clifford algebra has two minimal admissi-
ble modules corresponding to the non-equivalent irreducible modules, see Corollary 2.5.

(3) The upper index “∗N ” means that the scalar product restricted to Er ,s is neutral. The fact
that Er ,s is a neutral space does not depend on the choice of the scalar product on V r ,s

min ,
see Sect. 2.6.

(4) Theupper index “∗±” shows that the scalar product restricted to the common1-eigenspace
Er ,s of the system P Ir ,s is sign definite, see Sect. 2.6. The sign of the scalar product on
Er ,s depends on the choice of the admissible scalar product on the module V r ,s

min .

For example, the Clifford algebra Cl3,0 has 4 minimal admissible modules V 3,0;±
min;±, that is,

each non-equivalent irreducible module V 3,0
irr;± can be endowed with two scalar products:

positive definite, giving the minimal admissible modules V 3,0;+
min;± = V 3,0;+

irr;± and negative

definite: V 3,0;−
min;± = V 3,0;−

irr;± . However, it does not mean that pseudo H -type Lie algebras
corresponding to these four choices are different. We explain details in Theorems 4.2 and
4.3. To obtain Table 1 we determine the sets P Ir ,s and COr ,s , given in Sect. 5.
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2.6 Scalar product on the common 1-eigenspace Er,s

Lemma 2.8 Let (V r ,s
min, 〈· , ·〉V r,s

min
) be a minimal admissible module of Clr ,s and (V r+μ,s+ν

min ,

〈· , ·〉Vr+μ,s+ν
min

) a minimal admissible module of Clr+μ,s+ν , where (μ, ν) ∈ {(8, 0),
(0, 8), (4, 4)}. Let Er ,s and Er+μ,s+ν be the common 1-eigenspaces of the involutions P Ir ,s
and P Ir+μ,s+ν , respectively. Then dim Er ,s = dim Er+μ,s+ν . Moreover, if Er ,s is a neutral
vector space, then Er+μ,s+ν is also neutral, and if Er ,s is a sign definite, then Er+μ,s+ν is
also sign definite.

Proof If V r+μ,s+ν
min = Vr ,s

min ⊗ Vμ,ν
min , then the assertions follow from Proposition 2.7.

Let V r+μ,s+ν
min be an arbitrary minimal admissible module of Clr+μ,s+ν , where (μ, ν) ∈

{(8, 0), (0, 8), (4, 4)}. Let {z j , ζα ; j = 1, . . . , r + s, α = 1, . . . , 8} be an orthonormal
basis of R

r+μ,s+ν . We assume {zi , ζα ; i = 1, . . . , r , α = 1, . . . , μ} are positive and
{zr+ j , ζμ+β ; j = 1, . . . , s, β = 1, . . . , ν} are negative. We identify R

r ,s ⊕ R
μ,ν =

R
r+μ,s+ν by using the above bases. We choose P Ir+μ,s+ν = P Ir ,s

⋃{Tγ }4γ=1, where Tγ are
involutions from Example 1. The system of complementary operators COμ,ν shows that the
involutions Tγ ∈ P Ir+μ,s+ν , γ = 1, 2, 3, 4 decompose the space V r+μ,s+ν

min into 16 common
eigenspaces {Vi }15i=0 of Tγ and

V r+μ,s+ν
min =

15⊕

i=0

Vi = V0

8⊕

α=1

Jζα (V0)
8⊕

α=2

Jζ1 Jζα (V0), (2.9)

where V0 is the common 1-eigenspace of Tγ , γ = 1, 2, 3, 4. Since the generators Jz j ,
j = 1, . . . , r + s, commute with involutions Tγ , γ = 1, 2, 3, 4, we can regard V0 as a
minimal admissible module V r ,s

min of Clr ,s . The involutions from P Ir ,s act on V0 = Vr ,s
min

and decompose it into their common eigenspaces. Then by definition Er+μ,s+ν = Er ,s . This
finishes the proof of the theorem. ��
Theorem 2.9 Let Er ,s ⊂ V r ,s

min be a common 1-eigenspace of the system P Ir ,s . Then the
restriction of the admissible scalar product on Er ,s is sign definite for r ≡ 0, 1, 2 (mod 4)
and s ≡ 0 (mod 4) or for r ≡ 3 (mod 4) and arbitrary s. Otherwise, the restriction of the
admissible scalar product on the common 1-eigenspaces Er ,s is neutral.

Proof We find the sign of the scalar products on Er ,s for basic cases (2.8) and then apply
Lemma 2.8.

Case (r , 0). The scalar products on the common 1-eigenspaces Er ,0 are sign definite
because the admissible scalar products on V r ,0

min are sign definite.
Case (r , 4), r = 0, 1, 2, 4. The system of involutions P Ir ,4, r = 0, 1, 2 and their comple-

mentary operators are given in Table 5. The complementary operators gives the dimension
of Er ,s and the basis shows that the space is sign definite. The case (4, 4) was considered in
Example 1.

Cases (3, s), s = 0, . . . , 7 and (7, s), s = 1, 2, 3. The system of involutions and their
complementary operators are given in Table 6. Notice that the involution Jz1 Jz2 Jz3 belongs
to all the systems. The isometric complementary operators ensures that the common 1-
eigenspace E1 for involution from P Ir ,s\{Jz1 Jz2 Jz3} is neutral. Let E1,1 and E1,−1 be the
eigenspaces of Jz1 Jz2 Jz3 corresponding to the eigenvalues 1 and -1, respectively. The last
complementary operator from COr ,s , that is anti-isometry, shows that the spaces E1,1 ∩ E1

and E1,−1 ∩ E1 are sign definite with opposite signs of scalar products on E1,1 ∩ E1 and
E1,−1 ∩ E1.
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The case E3,4 is special since there are two non-equivalent irreducible modules V 3,4
irr;+ and

V 3,4
irr;−, where the volume form J�3,4 = P1P3P4 acts as Id and − Id, respectively. It shows

that P4 = Jz1 Jz2 Jz3 = − Id on V 3,4
irr;+ and P4 = Jz1 Jz2 Jz3 = Id on V 3,4

irr;−.
The proof of the statement concerning the neutral common 1-eigenspace follows from the

systems P Ir ,s and COr ,s for mentioned values of r and s, see Table 7 in Sect. 5. ��

3 Pseudo H-type Lie algebras and Lie groups

In this section we recall basic facts on isomorphisms between pseudo H -type algebras and
discuss some properties of the automorphism groups Aut(Nr ,s(U )) of pseudo H -type alge-
bras. Table 2 contains the classification result for the pseudo H -type Lie algebrasNr ,s(V

r ,s
min)

obtained in [18].

3.1 Definitions of the pseudo H-type Lie algebras and their groups

Let (U , 〈· , ·〉U ) be an admissible module of a Clifford algebra Clr ,s . We define a vector
valued skew-symmetric bilinear form

[· , ·] : U ×U → R
r ,s

(x, y) 	−→ [x, y]
by the relation

〈Jzx, y〉U = 〈z, [x, y]〉r ,s . (3.1)

Definition 3.1 [11] The space U ⊕ R
r ,s endowed with the Lie bracket

[(x, z), (y, w)] = (0, [x, y])
is called a pseudo H -type Lie algebra and it is denoted by Nr ,s(U ).

A pseudo H -type Lie algebra Nr ,s(U ) is 2-step nilpotent, the space R
r ,s is the centre,

and the direct sum U ⊕ R
r ,s is orthogonal with respect to 〈· , ·〉U + 〈· , ·〉r ,s .

The Baker–Campbell–Hausdorff formula allows us to define the Lie group structure on
the space U ⊕ R

r ,s by

(x, z) ∗ (y, w) =
(

x + y, z + w + 1

2
[x, y]

)

.

The Lie group is denoted by Gr ,s(U ) and is called the pseudo H -type Lie group. Note that
the scalar product 〈· , ·〉U is implicitly included in the definitions of the H -type Lie algebra
and the corresponding Lie group. In general, the Lie algebra structure might change if we
replace the admissible scalar product on U , see [4,15,16]. The main purpose of the present
paper is to classify the Lie algebras Nr ,s(U ), whose constructions involve the non-minimal
admissible modules U of Clifford algebras Clr ,s .

3.2 Isomorphisms of pseudo H-type Lie algebras

Let U and Ũ be two vector spaces with scalar products 〈· , ·〉U and 〈· , ·〉Ũ respectively. Let
� : U → Ũ be a linear map. The map �τ : Ũ → U defined by the relation

〈�x, y〉Ũ = 〈x,�τ y〉U (3.2)
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is called the adjoint map with respect to the scalar products 〈·, ·〉U and 〈·, ·〉Ũ . If both scalar
products are positive definite, we use the notation t�.

Let Nr ,s(U ) and Nr̃ ,s̃(Ũ ) be two pseudo H -type Lie algebras with r + s = r̃ + s̃ = k
and dim(U ) = dim(Ũ ) = n. A Lie algebra isomorphism � : Nr ,s(U ) → Nr̃ ,s̃(Ũ ) has the
form

� =
(
A 0
B C

)

: U ⊕ R
r ,s −→ Ũ ⊕ R

r̃ ,s̃, A ∈ GL(n), C ∈ GL(k),

B : U → R
k is a linear map, see [25]. The action is defined by �(x, z) = (Ax, Bx + Cz),

x ∈ U , z ∈ R
r ,s . If we write Jz : U → U and J̃w : Ũ → Ũ for the corresponding actions on

the Clifford modules, then the matrices A and C satisfy the relation

Aτ J̃wA = JCτ (w) for all w ∈ R
r̃ ,s̃, (3.3)

by (3.1). The matrices Aτ andCτ are defined as in (3.2). The matrix B is arbitrary and we can
choose B = 0 for simplicity. To short the notation we write � = A⊕C for the isomorphism

� =
(
A 0
0 C

)

. In following propositions we collect the properties of isomorphisms of H -type

Lie algebrasNr ,s(U ) andNr̃ ,s̃(Ũ ) for different values of signatures (r , s) and (r̃ , s̃) studied
in [18], see also [5,8,31–33].

Proposition 3.2 If � = A ⊕ C : Nr ,s(U ) → Nr̃ ,s̃(Ũ ) is a Lie algebra isomorphism, then

(1) the map �τ = Aτ ⊕ Cτ : Nr̃ ,s̃(Ũ ) → Nr ,s(U ) is also a Lie algebra isomorphism and
moreover

(2) r = r̃ , s = s̃, or r = s̃, s = r̃ .

Proposition 3.3 If � = A ⊕ C : Nr ,s(U ) → Ns,r (Ũ ) is a Lie algebra isomorphism and
r �= s, then

(1) Aτ AJz Aτ A = −Jz, z ∈ R
r ,s , AAτ J̃wAAτ = − J̃w, w ∈ R

s,r ;
(2) AJz1 Jz2 = − J̃C(z1) J̃C(z2)A, A J̃C(z1) J̃C(z2) = −Jz1 Jz2 A

τ for z1, z2 ∈ R
r ,s with

〈z1, z2〉r ,s = 0;
(3) the linear transformation C : R

r ,s → R
s,r maps positive vectors to negative vectors and

vice versa. Moreover CτC = − Id. We can assume that | det Aτ A| = 1 by multiplying
the matrix A by a constant.

Proposition 3.4 If � = A ⊕ C : Nr ,s(U ) → Nr ,s(Ũ ) is a Lie algebra isomorphism and
r �= s, then

(1) Aτ AJz Aτ A = Jz, AAτ J̃wAAτ = J̃w for z, w ∈ R
r ,s ;

(2) AJz1 Jz2 = J̃C(z1) J̃C(z2)A, A J̃C(z1) J̃C(z2) = Jz1 Jz2 A
τ for z1, z2 ∈ R

r ,s with
〈z1, z2〉r ,s = 0;

(3) the linear transformation C : R
r ,s → R

r ,s maps positive vectors to positive vectors,
negative to negative ones with CτC = Id. As in Proposition 3.3 we may assume that
| det Aτ A| = 1 by multiplying the matrix A by a constant.

Proposition 3.5 [18, Theorems 5 and 11] If � = A ⊕ C : Nr ,r (U ) → Nr ,r (Ũ ) is a Lie
algebra isomorphism, then CτC = ± Id for r ≡ 0, 1, 2 (mod 4) and CτC = Id for r ≡
3 (mod 4). The map A can be normalised such that | det Aτ A| = 1 and it satisfies the
conditions of items (1) − (2) of Proposition 3.4.
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We explain a possible construction of the map A : V r ,s
min → Ṽ r ,s

min . It was shown in [18,
Corollary 5, Theorem 3] that the map A can be obtained by the following procedure. The
system of involutions P Ir ,s acting on the minimal admissible modules decomposes them
into the direct sums V r ,s

min = ⊕i Ei , Ṽ
r ,s
min = ⊕i Ẽi of common eigenspaces. We start by

constructing a map A1 : Er ,s → Ẽr̃ ,s̃ , where Er ,s = E1 ⊂ Vr ,s
min , Ẽr̃ ,s̃ = Ẽ1 ⊂ Ṽ r ,s

min
are common 1-eigenspaces of the system of involutions P Ir ,s and P Ir̃ ,s̃ . Then the map A1

produces the rest of the maps Ai : Ei → Ẽi between the eigenspaces. Thus the map A has
block diagonal form A = ⊕i Ai written in the basis described in Sect. 3.4 and satisfies the
relations of Propositions 3.3 and 3.4.

Example 2 Recall decomposition (2.7) of Vμ,ν
min for (μ, ν) ∈ {(8, 0), (0, 8), (4, 4)}. Let A ⊕

Id : Nr ,s(V
μ,ν
min ) → Nr ,s(Ṽ

μ,ν
min ) and

Ṽμ,ν
min = Ẽμ,ν

8⊕

i=1

J̃ζi (Ẽμ,ν)

8⊕

j=2

J̃ζ1 J̃ζ j (Ẽμ,ν)

as in (2.7). The condition (3.3) applied to a vector u ∈ Eμ,ν is equivalent to the statement
that Aτ

j+1 J̃ζ j A1 = Jζ j , where A1 = A|Eμ,ν and Aτ
j+1 = Aτ | J̃ζ j (Ẽμ,ν )

, j = 1, . . . , 8, are the

restrictions of the maps on the indicated spaces and the diagram

Eμ,ν −−−−→
Jζ j

Jζ j (Eμ,ν)

A1

⏐
⏐
�

�
⏐
⏐A

τ
j+1

Ẽμ,ν −−−−→
J̃ζ j

J̃ζ j (Ẽμ,ν)

commutes. This shows that the maps

A j+1 = J̃ζ j (A
−1
1 )τ J−1

ζ j
: Jζ j (Eμ,ν) → J̃ζ j (Ẽμ,ν), j = 1, . . . , 8,

are completely determined by the map A1. The conditions AJζ1 Jζ j = J̃ζ1 J̃ζ j A determine the
maps

A j+8 = A1, j = J̃ζ1 J̃ζ j A1(Jζ1 Jζ j )
−1 : Jζ1 Jζ j (Eμ,ν) → J̃ζ1 J̃ζ j (Ẽμ,ν), j = 2, . . . , 8.

Thus the map A : Vμ,ν
min → Ṽμ,ν

min is defined by A1 : Eμ,ν → Ẽμ,ν and has the form A =
⊕ j=16

j=1 A j in a suitable basis.

Lemma 3.6 Let U+ = (U , 〈· , ·〉U ) be an admissible module of Clr ,s and Jz : U → U be
an action map, then the module U− = (U ,−〈· , ·〉U ) is admissible with the same action
map Jz : U− = U → U− = U. Moreover, the Lie algebras Nr ,s(U+) and Nr ,s(U−) are
isomorphic under the isomorphism Id⊕ − Id.

Proof We can see easily that U− = (U ,−〈· , ·〉U ) is an admissible module by definition.
The map

� = Id⊕ − Id : Nr ,s(U+) → Nr ,s(U−)

(x, z) 	→ (x,−z)

is a Lie algebra isomorphism. Indeed, let [· , ·]± be the commutators on the Lie algebras
Nr ,s(U±), respectively. Then
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〈z, [x, y]+〉r ,s = 〈Jzx, y〉U+ = −〈Jzx, y〉U− = 〈J−z x, y〉U− = 〈−z, [x, y]−〉r ,s .
��

3.3 Automorphisms of the pseudo H-type Lie algebras

We discuss here the group Aut(Nr ,s(U )) of automorphisms of a Lie algebra Nr ,s(U ), see
also [15,25,31]. The group Aut(Nr ,s(U )) is a subgroup of GL(r + s + dim(U ), R) and
consists of the linear maps

� =
(
A 0
B C

)

: Nr ,s(U ) = U ⊕ R
r ,s → U ⊕ R

r ,s = Nr ,s(U )

satisfying the condition (3.3), see also Propositions 3.4 and 3.5. The group Aut(Nr ,s(U )) is
isomorphic to the following product

Aut(Nr ,s(U )) ∼= R+×(Br ,s � Aut0(Nr ,s(U ))
)
. (3.4)

Here R+ is the group of non-homogeneous dilations δt : U ⊕ R
r ,s → U ⊕ R

r ,s acting as

δt (x, z) = (t x, t2z) for t ∈ R+. The group Br ,s =
{(

Id 0
B Id

)}

is isomorphic toR
(r+s)·dim(U ).

The subgroup Aut0(Nr ,s(U )), consisting of the automorphisms of the form � =
(
A 0
0 C

)

with CτC = ± Id, is called the group of restricted automorphisms. The semi-direct product
in (3.4) comes from the action of the subgroup Aut0(Nr ,s(U )) on Br ,s by

(
A 0
0 C

)

·
(
Id 0
B Id

)

·
(
A−1 0
0 C−1

)

=
(

Id 0
CBA−1 Id

)

∈ Br ,s .

The groups of automorphisms of the Lie algebras Nr ,0(U ) were studied in [5,24,31,32].
Now we present an example of elements of Aut0(Nr ,s(U )), that will be important for the

classification of the Lie algebras Nr ,s(U ). The map

R
r ,s � z 	→ −z ∈ R

r ,s ⊂ Clr ,s

can be extended to the Clifford algebra automorphism α : Clr ,s → Clr ,s by the universal
property of the Clifford algebras. We denote by Cl×r ,s the group of invertible elements in
Clr ,s and in particular R

r ,s× = {v ∈ R
r ,s | 〈v, v〉r ,s �= 0} = R

r ,s ∩Cl×r ,s . The representation
Ãd : R

r ,s× → End(Rr ,s), is defined as

Ãdv(z) = −vzv−1 =
(

z − 2
〈z, v〉r ,s
〈v, v〉r ,s v

)

∈ R
r ,s for z ∈ R

r ,s, v ∈ R
r ,s×.

Then it extends to the twisted adjoint representation Ãd : Cl×r ,s → GL(Clr ,s) by setting

Cl×r ,s � ϕ 	−→ Ãdϕ, Ãdϕ(φ) = α(ϕ)φϕ−1, φ ∈ Clr ,s . (3.5)

The map Ãdv for v ∈ R
r ,s×, leaving the space R

r ,s ⊂ Clr ,s invariant, is also an isometry:
〈Ãdv(z), Ãdv(z)〉r ,s = 〈z, z〉r ,s . Note that (Ãdϕ−1)τ = Ãdϕ . Subgroups of Cl×r ,s defined by

Pin(r , s) = {v1 · · · vk ∈ Cl×r ,s | 〈vi , vi 〉r ,s = ±1},
Spin(r , s) = {v1 · · · vk ∈ Cl×r ,s | k is even, 〈vi , vi 〉r ,s = ±1},

are called pin and spin groups, respectively. The reader can find more information about the
twisted adjoint representation and the groups Pin and Spin, for instance in [28].
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Proposition 3.7 [3,28] The maps

Ãd : Pin(r , s) → O(r , s) and Ãd : Spin(r , s) → SO(r , s)

are the double covering maps.

We make the identification Spin(r) × Pin(s) ∼= Spin(r , 0) × Pin(0, s) ⊂ Pin(r , s) and
present a special map from Aut0(Nr ,s(U )).

Proposition 3.8 Let J : Clr ,s → End(U ) be a Clifford algebra representation and ϕ ∈
Spin(r) × Pin(s). Then Jϕ−1 ⊕ (Ãdϕ)τ ∈ Aut0(Nr ,s(U )). The group homomorphism

A : Spin(r) × Pin(s) → Aut0(Nr ,s(U )),

ϕ 	→ Jϕ−1 ⊕ (Ãdϕ)τ

is injective and the diagram

0 −−−−→ Kr ,s(U ) −−−−→ Aut0(Nr ,s(U ))
A⊕C 	→C−−−−−−→ O(r , s)

�
⏐
⏐ A

�
⏐
⏐

�
⏐
⏐=

0 −−−−→ Z2 −−−−→ Spin(r) × Pin(s)
Ãd−−−−→ O(r , s)

(3.6)

is commutative. The kernel Kr ,s(U ) consists of automorphisms of the form A ⊕ Id.

Proof By the definition of the twisted adjoint representation, α(ϕ)zϕ−1 = Ãdϕ(z) we have

Jα(ϕ) Jz Jϕ−1 = JÃdϕ(z), z ∈ R
r ,s×.

If we show that Jα(ϕ) = J τ
ϕ−1 , or equivalently Jα(ϕ−1) = J τ

ϕ for ϕ ∈ Pin(r , s), then it will

imply that Jϕ−1 ⊕ (Ãdϕ)
τ ∈ Aut0(Nr ,s) due to the relation Aτ Jz A = JCτ (z).

If v ∈ R
r ,s× is such that 〈v, v〉r ,s = −1, then J τ

v−1 = J τ
v = −Jv = Jα(v), and hence

Jv−1 ⊕ (Ãdv)
τ ∈ Aut0(Nr ,s(U )). If v is such that 〈v, v〉r ,s = 1, then J τ

v−1 = J τ−v =
Jv �= Jα(v), and therefore the map Jv−1 ⊕ (Ãdv)

τ does not belong to Aut0(Nr ,s(U )). If
ϕ = v1v2 with 〈vi , vi 〉r ,s = ±1, i = 1, 2, then J(v1v2)−1 = Jv2v1 = J τ

α(v1v2)
. It implies

J(v1v2)−1 ⊕ (Ãdv1v2)
τ ∈ Aut0(Nr ,s(U )). In general, if ϕ = x1 · · · x2p · y1 · · · yq ∈ Pin(r , s)

with 〈xi , xi 〉r ,s = 1, i = 1, . . . , 2p, and 〈y j , y j 〉r ,s = −1, j = 1, . . . , q , then we obtain

(J(x1···x2p ·y1···yq )−1)τ = (Jyq ,···y1·x2p ···x1)τ = (−1)2p+q Jx1···x2p ·y1···yq = Jα(x1···x2p ·y1···yq ).

��
Corollary 3.9 There is an automorphism A ⊕ − Id ∈ Aut0(N2r ,s(U )) for any r , s.

Proof Observe that the image of the map Aut0(N2r ,s) → O(2r , s) includes the group
SO(2r) × O(s). This follows from diagram (3.6) and Proposition 3.7. Since − Id ∈
SO(2r) × O(s) belongs to the image of Aut0(N2r ,s(U )) → O(2r , s) we conclude that
there is A : U → U such that A ⊕ − Id ∈ Aut0(N2r ,s(U )). ��

Consider the diagram (3.6) in the cases: N0,8 = N0,8(V
0,8
min) and N8,0 = N8,0(V

8,0
min).

The following two diagrams are exact.

{0} −−−−→ K0,8 ∼= R
× −−−−→ Aut0(N0,8) −−−−→ O(0, 8) ∼= O(8) −−−−→ {Id}

�
⏐
⏐ A

�
⏐
⏐

�
⏐
⏐=

{0} −−−−→ Z2 −−−−→ Pin(0, 8) −−−−→ O(0, 8) ∼= O(8) −−−−→ {Id}
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{0} −−−−→ K8,0 ∼= R
× −−−−→ Aut0(N8,0) −−−−→ O(8) −−−−→ {Id}

�
⏐
⏐ A

�
⏐
⏐

�
⏐
⏐

{0} −−−−→ Z2 −−−−→ Spin(8) −−−−→ SO(8) −−−−→ {Id}.
Since the Lie algebrasN8,0 andN0,8 are isomorphic, see [18], there exists an automorphism
A⊕ I1 ∈ Aut0(N8,0) which is not in the imageA(Spin(8)), where I1 is defined as I1(ζ1) =
−ζ1, I1(ζ j ) = ζ j j = 2, . . . , 8.

Lemma 3.10 Assume that r ≡ 1 (mod 4) and the vector spaces V r ,s
min and V

r+1,s
min are linearly

isomorphic. Then

A ⊕ − Id ∈ Aut0
(
Nr+1,s

(
V r+1,s
min

))
implies A ⊕ − Id ∈ Aut0

(
Nr ,s

(
Vr ,s
min

))
.

Proof The existence of an automorphism A ⊕ − Id in Aut0(Nr+1,s(V
r+1,s
min )) is guaranteed

by Corollary 3.9. We consider the minimal admissible module V r ,s
min as the restriction of the

minimal admissible module V r+1,s
min by restricting the action of Jz : R

r+1,s → End(V r+1,s
min )

through the inclusion map R
r ,s ⊂ R

r+1,s as well as the restriction of the scalar product
〈· , ·〉Vr+1,s

min
onto Vr ,s

min . Note that the latter is possible due to the similar signatures of the

restriction of the scalar products to the common 1-eigenspaces, see Table 1. Letπ : R
r+1,s →

R
r ,s be the orthogonal projection. Then

IdVr+1,s
min

⊕π : Nr=1,s

(
V r+1,s
min

)
→ Nr ,s

(
V r+1,s
min

)
(3.7)

is a Lie algebra homomorphism. Let A⊕− IdRr+1,s ∈ Aut0(Nr+1,s(V
r+1,s
min )). The property

Aτ Jz A = J−z for any z ∈ R
r+1,s, with 〈Ax, y〉Vr+1,s

min
= 〈x, Aτ y〉Vr+1,s

min

and the homomorphism (3.7) allow to descend the automorphism A ⊕ − Id ∈ Aut0(Nr+1,s

(V r+1,s
min )) to the automorphism of Nr ,s(V

r ,s
min) where the map A : V r ,s

min → V r ,s
min is the

same. ��

At the end of the section we formulate the relation between the existence of an automor-
phism and an isomorphism of a special type.

Lemma 3.11 A Lie algebra isomorphism A ⊕ Id : Nr ,s(V
r ,s;+
min ) → Nr ,s(V

r ,s;−
min ) exists if

and only if there is a Lie algebra automorphism A ⊕ − Id : Nr ,s(V
r ,s;+
min ) → Nr ,s(V

r ,s;+
min ).

Proof Let us assume that A⊕Id : Nr ,s(V
r ,s;+
min ) → Nr ,s(V

r ,s;−
min ),where A : V r ,s;+

min → V r ,s;−
min

is a Lie algebra isomorphism. We assume that the module actions on V r ,s;±
min coincide, but the

admissible scalar products differ by the sign, that is 〈· , ·〉V r,s;+
min

= −〈· , ·〉V r,s;−
min

. We denote the

Lie brackets on the corresponding pseudo H -type Lie algebras by [x, y]± for x, y ∈ V r ,s;±
min .

Then

〈z, [x, y]+〉r ,s = 〈z, [Ax, Ay]−〉r ,s = 〈Jz Ax, Ay〉Vr,s;−
min

= −〈Jz Ax, Ay〉Vr,s;+
min

= −〈z, [Ax, Ay]+〉r ,s .
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It shows that A⊕ − Id is an automorphism ofNr ,s(V
r ,s;+
min ). Now assuming that A⊕ − Id ∈

Aut0
(
Nr ,s(V

r ,s;+
min )

)
, we obtain

〈z, [x, y]+〉r ,s = 〈−z, [Ax, Ay]+〉r ,s = −〈Jz Ax, Ay〉Vr,s;+
min

= 〈Jz Ax, Ay〉Vr,s;−
min

= 〈z, [Ax, Ay]−〉r ,s .
Thus A ⊕ Id : Nr ,s(V

r ,s;+
min ) → Nr ,s(V

r ,s;−
min ) is an isomorphism. ��

3.4 Existence of lattices on pseudo H-type Lie groups

To achieve the full description of isomorphic Lie algebras Nr ,s(U ), where the admissible
moduleU is not necessarilyminimal, we need a special type of bases for theCliffordmodules.
This type of bases also shows the existence of lattices on the corresponding Lie groups,
see [17]. It is enough to construct the bases only for minimal admissible modules, and then
apply Proposition 2.7.

Let V r ,s
min be a minimal admissible module of the Clifford algebra Clr ,s and Er ,s be the

common 1-eigenspace for the system P Ir ,s of involutions. We fix a vector v ∈ Er ,s such that
|〈v, v〉Vr,s

min
| = 1. Then a basis {xi }Ni=1 of the module Vr ,s

min can be chosen by setting

x1 = v, x2 = Jz1v, . . . , xr+s = Jzr+s−1v, . . . , xN = Jzi1 Jzi2 . . . Jzik v,

that is a subset of all the 2r+s vectors obtained from v by action of Jzi1 . . . Jzik , 1 ≤ ii <

i2 < · · · < ik ≤ r + s. The vector v ∈ Er ,s can be picked up in such a way that the basis in
Er ,s will be orthonormal due to the following proposition.

Proposition 3.12 [17, Lemma 2.9, Corollary 2.10] Let (V , 〈· , ·〉V ) be an admissible module,
�1, . . . , �l symmetric linear transformations on V such that

(1) �2
k = − IdV , k = 1, . . . , l;

(2) �k� j = −� j�k for all k, j = 1, . . . , l.

Then for any w ∈ V with 〈w,w〉V = 1 there is a vector w̃ satisfying 〈w̃,�kw̃〉V = 0 and
〈w̃, w̃〉V = 1, for k = 1, . . . , l.

Since the involutions are symmetric all the eigenspaces are mutually orthogonal, that
implies the orthonormality of the constructed basis. The construction of the basis also shows
that 〈Jzi x j , xk〉Vr,s

min
= 〈zi , [x j , xk]〉r ,s = ±1 or 0. It follows that the structure constants of

the Lie algebraNr ,s(U ) are ±1 or 0. The concrete construction of bases forNr ,s(U ) can be
found in [17], see also [12]. Applying the Malćev criterion [29], we obtain the proposition.

Proposition 3.13 [29] Let U be an admissible module of a Clifford algebra Clr ,s . Then there
exists a lattice on the pseudo H-type Lie group Gr ,s(U ).

3.5 Classification of pseudo H-type Lie algebrasNNN r,s(V
r,s
min)

The classification of the pseudo H -type algebrasNr ,s(V
r ,s
min), constructed from the minimal

admissible modules was done in [18]. We summarize the results of the classification in
Table 2. Here “d” stands for “double”, meaning that dim V r ,s

min = 2 dim V s,r
min and “h” (half)

means that dim V r ,s
min = 1

2 dim V s,r
min . The corresponding pairs are trivially non-isomorphic

due to the different dimension of minimal admissible modules. The symbol ∼= denotes the
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Table 2 Classification result after
the first step 8 ∼=

7 d d d �

6 d ∼= ∼= h

5 d ∼= ∼= h

4 ∼= h h h �
3 d � � �� d d d �

2 ∼= h � � d ∼= ∼= h

1 ∼= � d � d ∼= ∼= h

0 ∼= ∼= h ∼= h h h ∼=
s/r 0 1 2 3 4 5 6 7 8

Lie algebraNr ,s(V
r ,s
min) having isomorphic counterpartNs,r (V

s,r
min), the symbol � shows that

the Lie algebra Nr ,s(V
r ,s
min) is not isomorphic to Ns,r (V

s,r
min). The notation � indicates that

the Lie algebraNr ,r (V
r ,r
min) admits automorphisms A ⊕ − Id, and �� denotes the Lie algebra

Nr ,r (V
r ,r
min) that does not have this type of automorphism.

4 Classification of pseudo H-type algebras

In this section we state and prove the classification of the pseudo H -type algebras Nr ,s(U )

with an arbitrary admissible modules U , and fixed signature (r , s). Eventually, the classifi-
cation depends on the decomposition of U on the minimal admissible modules. It is enough
to classify basic cases (2.8) due to Theorem 4.8.

4.1 Statements of main results on isomorphisms of Lie algebrasNNN r,s(U)

In the rest of the paper we use the upper index ± to indicate the scalar products that differ
by sign: V r ,s;+

min = (V r ,s
min, 〈· , ·〉V r,s

min
) and V r ,s;−

min = (V r ,s
min,−〈· , ·〉V r,s

min
). We also use the lower

index ± to distinguish the minimal admissible modules, corresponding to non equivalent
irreducible modules, Vr ,s;+

min;± = (V r ,s
min;±, 〈· , ·〉V r,s

min;±) and V r ,s;−
min;± = (V r ,s

min;±,−〈· , ·〉V r,s
min;±)

that were mentioned in Corollary 2.5.
Recall that Clifford modules are completely reducible, see Proposition 2.1 and any admis-

siblemodule can be decomposed into the orthogonal sum ofminimal admissiblemodules, see
Proposition 2.3, item (2). To make the complete classification we decompose an admissible
module U of the Clifford algebra Clr ,s into the direct sum of, possibly different, minimal
admissible modules. We distinguish the following possibilities.

If r − s �≡ 3 (mod 4) and s is arbitrary or r − s ≡ 3 (mod 4) and s is odd then

U =
(

p+
⊕ V r ,s;+

min

)
⊕

(
p−
⊕ V r ,s;−

min

)

. (4.1)

If r − s ≡ 3 (mod 4) and s is even, then

U =
(

p++⊕ V r ,s;+
min;+

)
⊕

(
p−+⊕ V r ,s;−

min;+

)
⊕

(
p+−⊕ V r ,s;+

min;−

)
⊕

(
p−−⊕ Vr ,s;−

min;−

)

. (4.2)
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The system of involutions P Ir ,s does not depend on the scalar product on the admissible
modules Vr ,s;±

min and therefore the common 1-eigenspaces Er ,s coincide on V
r ,s;+
min and Vr ,s;−

min .

Nevertheless, the restrictions of the admissible scalar products from V r ,s;+
min and Vr ,s;−

min on the
respective Er ,s will have opposite signs. The result of the classification essentially depends
on the signature of the restriction of the admissible scalar product on Er ,s and the parity of
the index s. We formulate the main results of the classification.

Theorem 4.1 LetU = (U , 〈· , ·〉U ) and Ũ = (Ũ , 〈· , ·〉Ũ ) be admissible modules of a Clifford
algebraClr ,s . If r ≡ 0, 1, 2mod 4, then the pseudo H-type Lie algebraNr ,s(U ) is determined
by the dimension of the admissible module U and does not depend on the choice of an
admissible scalar product. Thus Nr ,s(U ) ∼= Nr ,s(Ũ ), if and only if dim(U ) = dim(Ũ ).

If r ≡ 3 (mod 4), then the pseudo H -type Lie algebra Nr ,s(U ) is determined by the
dimension of U and by the value of the index s.

Theorem 4.2 LetU = (U , 〈· , ·〉U ) and Ũ = (Ũ , 〈· , ·〉Ũ ) be admissible modules of a Clifford
algebra Clr ,s . Let r ≡ 3 (mod 4) and s ≡ 0 (mod 4) and let the admissible modules be
decomposed into the direct sums:

U =
(

p++⊕ V r ,s;+
min;+

)
⊕

(
p−+⊕ V r ,s;−

min;+

)
⊕

(
p+−⊕ V r ,s;+

min;−

)
⊕

(
p−−⊕ V r ,s;−

min;−

)

,

Ũ =
(

p̃++⊕ V r ,s;+
min;+

)
⊕

(
p̃−+⊕ V r ,s;−

min;+

)
⊕

(
p̃+−⊕ V r ,s;+

min;−

)
⊕

(
p̃−−⊕ V r ,s;−

min;−

)

.

Then the Lie algebras Nr ,s(U ) and Nr ,s(Ũ ) are isomorphic, if and only if,

p = p++ + p−− = p̃++ + p̃−− = p̃ and q = p−+ + p+− = p̃−+ + p̃+− = q̃

or

p = p++ + p−− = p̃−+ + p̃+− = q̃ and q = p−+ + p+− = p̃++ + p̃−− = p̃.

Theorem 4.3 Let r ≡ 3 (mod 4) and s ≡ 1, 2, 3 (mod 4) and let U and Ũ be decomposed
into the direct sums

U =
(

p+
⊕ V r ,s;+

min

)
⊕

(
p−
⊕ V r ,s;−

min

)

, Ũ =
(

p̃+
⊕ V r ,s;+

min

)
⊕

(
p̃−
⊕ V r ,s;−

min

)

.

Then Nr ,s(U ) ∼= Nr ,s(Ũ ), if and only if p = p+ = p̃+ = p̃ and q = p− = p̃− = q̃, or
p = p+ = p̃− = q̃ and q = p− = p̃+ = p̃.

4.2 Periodicity of isomorphisms

We can reduce the proof of the main theorems to basic cases (2.8), due to the following facts.
Let Vμ,ν

min be a minimal admissible module of the Clifford algebra Clμ,ν , where (μ, ν) ∈
{(8, 0), (0, 8), (4, 4)}. It was explained in Example 1 that Vμ,ν

min admits decomposition (2.7).
The admissible scalar product restricted to Eμ,ν is necessarily sign definite and we can fix
it to be positive definite on Eμ,ν by Lemma 3.6. We summarize the results of Sect. 2.4 and
Lemma 2.8.
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Proposition 4.4 Let (V r ,s
min, 〈· , ·〉V r,s

min
) be a minimal admissible module of Clr ,s and Jzi , i =

1, . . . , r + s, the Clifford actions of the orthonormal basis {zi }. Then

V r ,s
min ⊗ Vμ,ν

min = (
V r ,s
min ⊗ Eμ,ν

) 8⊕

α=1

(
V r ,s
min ⊗ Jζα (Eμ,ν)

) 8⊕

α=2

(
V r ,s
min ⊗ Jζ1 Jζα (Eμ,ν)

)
(4.3)

is a minimal admissible module V r+μ,s+ν
min of the Clifford algebra Clr+μ,s+ν .

Conversely, if V r+μ,s+ν
min is a minimal admissible module of the algebra Clr+μ,s+ν , then

the common 1-eigenspace E0 of the involutions Tγ , γ = 1, 2, 3, 4, from Example 1 can
be considered as a minimal admissible module V r ,s

min of the algebra Clr ,s . The action of the
Clifford algebra Clr ,s on E0 is the restricted action of Clr+μ,s+ν obtained by the natural
inclusion Clr ,s ⊂ Clr+μ,s+ν .

Proposition 4.5 According to the correspondence of minimal admissible modules stated in
Proposition 4.4, there is a natural injective map

B : Aut0
(
Nr ,s

(
V r ,s
min

)) → Aut0
(
Nr+μ,s+ν

(
V r+μ,s+ν
min

))
.

Conversely, automorphisms of the form A ⊕ C ∈ Aut0(Nr+μ,s+ν(V
r+μ,s+ν
min )) with the

property C(ζα) = ζα , α = 1, . . . , 8, defines an automorphism A|E0 ⊕ C |Rr,s of the algebra
Nr ,s(E0), where the space E0 is the common 1-eigenspace of the involutions Tγ , γ =
1, 2, 3, 4, viewed as a minimal admissible module of Clr ,s .

Proof Let Ar ,s ⊕ C ∈ Aut0(Nr ,s(V
r ,s
min)) with (Ar ,s)τ Jzi A

r ,s = JCτ (zi ), i = 1, . . . , r + s,
and let Jζα , α = 1, . . . , 8, be the actions on Vμ,ν

min of the Clifford algebra Clμ,ν .

We want to construct Ā : V r+μ,s+ν
min = V r ,s

min ⊗ Vμ,ν
min → Vr+μ,s+ν

min = V r ,s
min ⊗ Vμ,ν

min such
that zi 	→ C(zi ) and ζα 	→ ζα by using the map Ar ,s : V r ,s

min → V r ,s
min .

The action J̄ on V r ,s
min ⊗ Vμ,ν

min defined in Proposition 2.7 corresponds to
⎧
⎨

⎩

J̄zi (x ⊗ y) = −Jzi (x) ⊗ y, x ∈ V r ,s
min, y ∈ Jζα (E0), α = 1, . . . , 8,

J̄zi (x ⊗ y) = Jzi (x) ⊗ y, x ∈ V r ,s
min, y ∈ Jζ1 Jζα (E0), α = 2, . . . , 8,

J̄ζα (x ⊗ y) = x ⊗ Jζα (y), x ∈ V r ,s
min, y ∈ E0,

according to the decomposition (4.3). We define Ā : V r ,s
min ⊗ Vμ,ν

min → V r ,s
min ⊗ Vμ,ν

min on each
component of the decomposition (4.3) such that it satisfies (3.3) with C̄ being C̄(zi ) = C(zi )
and C̄(ζα) = ζα . It can be done in a unique way as in Example 2 and the operator Ā ⊕ C̄
will satisfy Proposition 3.4.

Conversely, let Ā ⊕ C̄ ∈ Aut0(Nr+μ,s+ν(V
r+μ,s+ν
min )) be such that C̄(ζα) = ζα , α =

1, . . . , 8. Then V r+μ,s+ν
min is decomposed into the orthogonal sum (2.9) and the commutativity

of the operators Jzi with the involutions Tj allows us to define an automorphism A|E0 ⊕C |Rr,s

of the pseudo H -type algebra Nr ,s(E0). ��
Note that the construction given in Proposition 2.7 can be performed for an arbitrary, not

necessary minimal admissible module Ur ,s . Thus we obtain that Ur+μ,s+ν = Ur ,s ⊗ Vμ,ν
min

is admissible for (μ, ν) ∈ {(8, 0), (0, 8), (4, 4)} if Ur ,s is admissible. Denote by Kr ,s(Ur ,s)

the kernel of the map

Aut0(Nr ,s(Ur ,s)) −→ O(r , s)
A ⊕ C 	→ C .
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Corollary 4.6 Let Ur ,s and Ur+μ,s+ν = Ur ,s ⊗ Vμ,ν
min be admissible modules. Then

Kr+μ,s+ν

(
Ur+μ,s+ν

) = B
(
Kr ,s(U

r ,s)
)
,

that is the kernel Kr ,s(Ur ,s) is invariant under the map B defined in Proposition 4.5.

Lemma 4.7 The Lie algebras Nr ,s(V
r ,s
min) and Nr ,s(Ṽ

r ,s
min) are isomorphic if and only if the

Lie algebras Nr+μ,s+ν(V
r+μ,s+ν
min ) and Nr+μ,s+ν(Ṽ

r+μ,s+ν
min ) are isomorphic for (μ, ν) ∈

{(8, 0), (0, 8), (4, 4)}.
Proof Let � = A ⊕ C : Nr ,s(V

r ,s
min) → Nr ,s(Ṽ

r ,s
min) be a Lie algebra isomorphism, then �

can be extended to �̄ = Ā⊕C̄ : Nr+μ,s+ν(V
r+μ,s+ν
min ) → Nr+μ,s+ν(Ṽ

r+μ,s+ν
min ) by the same

procedure as in Proposition 4.5. Namely, we set Ā = A ⊗ Id and C̄ = C ⊕ Id.
Conversely, if A⊕C : Nr+μ,s+ν(V

r+μ,s+ν
min ) → Nr+μ,s+ν(Ṽ

r+μ,s+ν
min ) is an isomorphism,

then

A|Vr,s
min

⊕ C |Rr,s : Nr ,s
(
V r ,s
min

) → Nr ,s

(
Ṽ r ,s
min

)

is an isomorphism, where V r ,s
min and Ṽ

r ,s
min are viewed as the common 1-eigenspace of the invo-

lutions Tγ , γ = 1, 2, 3, 4 acting respectively on V r+μ,s+ν
min and Ṽ r+μ,s+ν

min as was explained
in Proposition 4.5. ��

Let now Ur ,s and Ũ r ,s be two admissible modules of equal dimensions for the Clifford
algebraClr ,s such that they admit decompositionsUr ,s = ⊕k(V

r ,s
min)k and Ũ

r ,s = ⊕k(Ṽ
r ,s
min)k .

Then admissible modules Ur+μ,s+ν and Ũ r+μ,s+ν can be identified by Proposition 4.4:

Ur+μ,s+ν ∼ Ur ,s ⊗ Vμ,ν
min = ⊕k

(
(V r ,s

min)k ⊗ Vμ,ν
min

) ∼ ⊕k

(
V r+μ,s+ν
min

)

k
,

and

Ũ r+μ,s+ν ∼ Ũ r ,s ⊗ Vμ,ν
min = ⊕k

(
(Ṽ r ,s

min)k ⊗ Vμ,ν
min

) ∼ ⊕k(Ṽ
r+μ,s+ν
min )k .

Now applying Lemma 4.7 we obtain the following result.

Theorem 4.8 The Lie algebras Nr ,s(Ur ,s) and Nr ,s(Ũ r ,s) are isomorphic if and only if the
Lie algebras Nr+μ,s+ν(Ur+μ,s+ν) and Nr+μ,s+ν(Ũ r+μ,s+ν) are isomorphic for (μ, ν) ∈
{(8, 0), (0, 8), (4, 4)}.

4.3 Proof of Theorem 4.1

In order to prove the classification theorems for the pseudo H -type Lie algebras Nr ,s(U ),
one should be careful about the scalar product on each minimal admissible component of the
decompositions (4.1) and (4.2) of the admissible module U . Let us assume that U = ⊕i Vi ,
where Vi are minimal admissible modules. If we find linear maps Ai j : Vi → Vj for all
i and j such that Ai j ⊕ C : Nr ,s(Vi ) → Nr ,s(Vj ) are the Lie algebra isomorphisms with
CCτ = Id, then the Lie algebra Nr ,s(U ) is unique. Even though a different choice of a
scalar product on the vector space U gives different minimal admissible modules Vi in the
decompositionU = ⊕i Vi , the resulting Lie algebrasNr ,s(U ) can be isomorphic if there is a
map C : R

r ,s → R
r ,s that is the same for all Ai j : Vi → Vj . For the simplicity we choose C

to be identity on R
r ,s . The construction of maps Ai j : Vi → Vj depends on the signature of

the restriction of the admissible scalar product on the common 1-eigenspace of each minimal
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admissible module Vi from the direct sum U = ⊕i Vi . The proof of Theorem 4.1 is given in
three lemmas according to whether the common 1-eigenspace is sign definite or neutral space
and depends also on the type of the decomposition U = ⊕i Vi in (4.1) and (4.2). The first
lemma concerns with the cases when there are only two types of minimal admissible modules
V r ,s;+
min and V r ,s;−

min and the restrictions of the scalar product onto the common 1-eigenspace
is sign definite and have different sign.

Lemma 4.9 The Lie algebras Nr ,s(V
r ,s;+
min ) and Nr ,s(V

r ,s;−
min ) are isomorphic for r ≡

0, 1, 2 (mod 4) and s ≡ 0 (mod 4) under the map A ⊕ Id.

Proof We consider the case r ≡ 0, 2 (mod 4). In this case the existence of an isomorphism
A ⊕ Id : Nr ,s(V

r ,s;+
min ) → Nr ,s(V

r ,s;−
min ) is equivalent to the existence of the automorphism

A ⊕ − Id : Nr ,s(V
r ,s;+
min ) → Nr ,s(V

r ,s;+
min ) by Lemma 3.11. The necessary automorphism

exists by Corollary 3.9.
Let r ≡ 1 (mod 4). We need only to consider the cases (1, 0) (5, 0) and (1, 4) due

to periodicity. The case N1,0(V
1,0;±
min ) is trivial by the uniqueness of three dimensional

Heisenberg algebra. The automorphism A ⊕ − Id : Nr ,s(V
r ,s;+
min ) → Nr ,s(V

r ,s;+
min ) exists

for (r , s) ∈ {(1, 4), (5, 0)} by Lemma 3.10 and Corollary 3.9. The proof is finished by
applying Lemma 3.11. ��

The following two lemmas give the rest of the proof of Theorem 4.1 and they are con-
cerned with indices r ≡ 0, 1, 2 (mod 4), s ≡ 1, 2, 3 (mod 4) for which the restriction of the
admissible scalar product to the common 1-eigenspace is neutral. Lemma 4.10 deals with the
indices (r , s) /∈ {(1, 2), (1, 6), (5, 2)}, because in these cases any admissible module U has
decomposition (4.1). If (r , s) belongs to {(1, 2), (1, 6), (5, 2)} then an admissible moduleU
has decomposition (4.2) and the results of Lemma 4.10 are extended in Lemma 4.11.

Lemma 4.10 Let (r , s) /∈ {(1, 2), (1, 6), (5, 2)} and let V r ,s;+
min = (V , 〈· , ·〉V r,s;+

min
) and

V r ,s;−
min = (V , 〈· , ·〉V r,s;−

min
) be two minimal admissible modules of Clr ,s with 〈· , ·〉V r,s;+

min
=

−〈· , ·〉V r,s;−
min

. If the restrictions of both scalar products on the common 1-eigenspace Er ,s of

involutions from P Ir ,s are neutral, then the Lie algebrasNr ,s(V
r ,s;+
min ) andNr ,s(V

r ,s;−
min ) are

isomorphic under the isomorphism A ⊕ Id.

Proof Notice that the system of involutions P Ir ,s does not depend on the scalar product
and therefore the common 1-eigenspace Er ,s is the same for both modules. The restrictions
of the scalar products on Er ,s are neutral by hypothesis. We find v, u ∈ Er ,s such that
〈v, v〉Vr,s;+

min
= 〈u, u〉Vr,s;−

min
= 1. We find the orthonormal bases

x0 = v, x1 = Jz1v, . . . , xN−1 =
∏

i

Jzi v, N = dim(V ),

y0 = u, y1 = Jz1u, . . . , yN−1 =
∏

i

Jzi u, N = dim(V ).

Then the map A⊕ Id is the isomorphism of the Lie algebrasNr ,s(V
r ,s;+
min ) andNr ,s(V

r ,s;−
min ),

where we set A : xi 	→ yi and then extended it by linearity. Indeed, let Jzk : V → V be the
Clifford action. Then
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〈zk, [xi , x j ]+〉r ,s =
〈

Jzk
∏

i

Jzki v,
∏

j

Jzk j v

〉

Vr,s;+
min

=
〈

Jzk
∏

i

Jzki u,
∏

j

Jzk j u

〉

Vr,s;−
min

= 〈
zk, [yi , y j ]−

〉
r ,s

since the calculations depend only on number of permutations in the products. ��
In the cases (r , s) ∈ {(1, 2), (1, 6), (5, 2)} there are two irreducible modules V r ,s

irr;±, but
they are not admissible. The minimal admissible modules are V r ,s

min;+ = V r ,s
irr;+ ⊕ V r ,s

irr;+ and
V r ,s
min;− = Vr ,s

irr;− ⊕ V r ,s
irr;−, see Corollary 2.5, item (3-2-1). Thus any admissible module U

is decomposed into the direct sum of type (4.2).

Lemma 4.11 The Lie algebras

Nr ,s(V
r ,s;−
min;+)

�1∼= Nr ,s(V
r ,s;+
min;+)

�2∼= Nr ,s(V
r ,s;−
min;−)

�3∼= Nr ,s(V
r ,s;+
min;−)

for (r , s) ∈ {(1, 2), (1, 6), (5, 2)} are isomorphic under the maps�k = Ak ⊕ Id, k = 1, 2, 3.

Proof The existence of the maps �1 and �3 follows from Lemma 4.10. We need only to
construct �2.

Case N1,2. Let v ∈ V 1,2;+
min;+ be such that 〈v, v〉V 1,2;+

min;+
= 1 and u ∈ V 1,2;−

min;− with

〈u, u〉V 1,2;−
min;−

= −1. It is possible, since both scalar products are neutral on the module.

Then the vectors

x1 = v, x2 = Jz1v, x3 = Jz2v, x4 = Jz3v,

y1 = u, y2 = −Jz1u, y3 = −Jz2u, y4 = −Jz3u,

form the orthonormal bases for V 1,2;+
min;+ and V 1,2;−

min;−, respectively. We define the corre-
spondence: A : xi 	→ yi and C : zi 	→ zi and extend it by linearity. It is easy to check
that �2 = A ⊕ Id defines an isomorphism between the Lie algebras N1,2(V

1,2;+
min;+) and

N1,2(V
1,2;−
min;−).

Case N1,6. This case is similar to N1,2 and we construct an isomorphism � = A ⊕
Id : N1,6(V

1,6;+
min;+) → N1,6(V

1,6;−
min;−). We have J�1,6 ≡ Id on V 1,6;+

min;+, that implies P3 ≡ − Id,

see Table 7. It also shows that E1,6 = E1,6(V
1,6;+
min;+) = {v ∈ V 1,6

min;+ | P1(v) = v, P2(v) =
v}. Then if necessary, we apply Proposition 3.12, with the operators �1 = Jz2 Jz4 Jz6 and
�2 = Jz2 Jz4 Jz7 and obtain the orthonormal basis of V 1,6;+

min;+ from a vector v ∈ E1,6(V
1,6;+
min;+)

with 〈v, v〉1,6;+Vmin;+ = 1:

x1 = v, xi = Jzi−1v, i = 1, . . . , 8,
x j = Jz2 Jz j−5v, j = 9, . . . , 14 xk = Jz2 Jz4 Jzk−9v, k = 15, 16.

(4.4)

Let u ∈ E1,6(V
1,6;−
min;−) ⊂ V 1,6;−

min;− with 〈u, u〉V 1,6;−
min;−

= −1. Then by the sameway as for V 1,6;+
min;+

we obtain the orthonormal basis of V 1,6;−
min;−:

y1 = u, yi = −Jzi−1u, i = 1, . . . , 8,
y j = Jz2 Jz j−5u, j = 9, . . . , 14 yk = −Jz2 Jz4 Jzk−9u, k = 15, 16.

(4.5)

Then as previously, the correspondence A : xi 	→ yi , i = 1, . . . , 16, defines the Lie alge-
bra isomorphism � = A ⊕ Id : N1,6(V

1,6;+
min;+) → N1,6(V

1,6;−
min;−), since the map A satisfies

relation (3.3).
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Case N5,2. In this case we can use bases (4.4) and (4.5), since P I5,2 = P I1,6. The table
of commutators will differ by signs for z1, . . . , z7. ��

4.4 Proof of Theorem 4.2

Theorem 4.2 is concerned with the indices r ≡ 3 (mod 4) and s ≡ 0 (mod 4) and is given
in Lemmas 4.12 and 4.14. The cases with s = 0 are classical and the result is known, for
instance from [8,13], however in order to accomplish the whole classification of pseudo
H -type Lie algebras we must take into account that the Lie algebras Nr ,0(U ) can admit a
negative definite admissible scalar product onU . Thus, we can obtain the opposite sign of the
restriction of the admissible scalar product on the common 1-eigenspace even for classical
cases.

Lemma 4.12 Let r ≡ 3 (mod 4) and s ≡ 0 (mod 4). Then an admissible module U is
decomposed into the direct sum of type (4.2).

(1) There is a Lie algebra isomorphism � : Nr ,s(V
r ,s;+
min;+) → Nr ,s(V

r ,s;−
min;−) of the form

� = A⊕ Id. There is no isomorphism of the form� = A⊕− Id between these algebras.
Analogous results can be stated for the Lie algebras isomorphisms Nr ,s(V

r ,s;−
min;+) →

Nr ,s(V
r ,s;+
min;−).

(2) There is a Lie algebra isomorphism � : Nr ,s(V
r ,s;+
min;+) → Nr ,s(V

r ,s;−
min;+) of the form

� = A ⊕ C with detC < 0 and there is no isomorphism of the form � = A ⊕ Id.
Analogous results hold for the Lie algebra isomorphismsNr ,s(V

r ,s;+
min;−) → Nr ,s(V

r ,s;−
min;−),

Nr ,s(V
r ,s;+
min;+) → Nr ,s(V

r ,s;+
min;−), Nr ,s(V

r ,s;−
min;+) → Nr ,s(V

r ,s;−
min;−).

Proof We start from the proof of the first part. We restrict the consideration to the basic cases
(r , s) ∈ {(3, 0), (3, 4), (7, 0)} because of the periodicity Theorem 4.8. In order to construct
an isomorphism� = A⊕Id : Nr ,s(V

r ,s;+
min;+) → Nr ,s(V

r ,s;−
min;−)we choose v ∈ Er ,s ⊂ V r ,s;+

min;+
with 〈v, v〉Vr,s;+

min;+
= 1 and J�r,sv = v and a vector u ∈ Er ,s ⊂ Vr ,s;−

min;− with 〈u, u〉Vr,s;−
min;−

= −1

and J̃�r,s u = −u. Here �r ,s is the volume form of the Clifford algebra Clr ,s with actions
J : Clr ,s → End(V r ,s;+

min;+) and J̃ : Clr ,s → End(V r ,s;−
min;−).

Let (r , s) = (3, 0). The respective orthonormal bases are the following:

x1 = v, x2 = Jz1v, x3 = Jz2v, x4 = Jz3(v) for V 3,0;+
min;+ and

y1 = u, y2 = − J̃z1u, y3 = − J̃z2 , y4 = − J̃z3u for V 3,0;−
min;−.

In the case (r , s) = (7, 0) the initial vector v ∈ E7,0 ⊂ V 7,0;+
min;+ satisfies P1v = P2v =

P3v = P4v = v, where the involutions are given in Table 4. Note that J�7,0 = P1P4v = v.
The initial vector u ∈ E7,0 ⊂ V 7,0;−

min;− for the basis has to satisfy P1u = P2u = P3u =
−P4u = u with J̃�7,0 = P1P4u = −u. The bases are

x1 = v, x j = Jz j−1v, j = 2, . . . , 8 for V 7,0;+
min;+ and

y1 = u, y j = − J̃z j−1u, j = 2, . . . , 8, for V 7,0;−
min;−.

(4.6)

Let (r , s) = (3, 4). The basis is given by (4.6) and J�3,4 = P1P3P4, where the involutions
Pi are presented in Table 6.

The maps � = A ⊕ Id in all the cases are given by correspondence A : xi 	→ yi . The
Lie algebra isomorphisms � = A ⊕ Id : Nr ,s(V

r ,s;−
min;+) → Nr ,s(V

r ,s;+
min;−) are constructed

analogously.
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Assume that the isomorphism � = A ⊕ C with A : Vr ,s;+
min;+ → V r ,s;−

min;− and detC < 0
exists. If (r , s) ∈ {(3, 0), (7, 0)}, then Aτ = −tA, and J�r,0 = −J�̃r,0 = Id since theminimal
admissible modules correspond to the non-equivalent irreducible modules. Then

tAA = −tAJ�̃r,0 A = Aτ J�̃r,0 A =
7∏

i=1

JtC(zi ) = (det tC)J�r,0 = detC < 0,

by (3.3). This is a contradiction, since the matrix t AA is positive definite.
Let (r , s) = (3, 4). The admissible scalar products restricted to common 1-eigenspace

Er ,s are sign definite and the symmetric bilinear forms 〈x̃, ỹ〉Vr,s;−
min;−

and 〈x, y〉Vr,s;+
min;+

restricted

to the common 1-eigenspaces are related through the equalities

〈x̃, ỹ〉Vr,s;−
min;−

= 〈Ax, Ay〉Vr,s;−
min;−

= −〈J�̃3,4 Ax, Ay〉Vr,s;−
min;−

= −〈Aτ J�̃3,4 Ax, y〉Vr,s;+
min;+

= −
〈

7∏

i=1

JCτ (zi )x, y

〉

Vr,s;+
min;+

= − detCτ 〈J�3,4x, y〉Vr,s;+
min;+

= − detCτ 〈x, y〉Vr,s;+
min;+

. (4.7)

The signs of the values of two symmetric bilinear forms coincide if detC < 0 and opposite
if detC > 0. We conclude that there is no Lie algebra isomorphism � : Nr ,s(V

r ,s;+
min;+) →

Nr ,s(V
r ,s;−
min;−) of the form � = A ⊕ − IdRr,s . Remind that the map A maps the common 1-

eigenspace from Vr ,s;+
min;+ to common 1-eigenspace from Vr ,s;−

min;+ by the construction described
in Sect. 3.2 after Proposition 3.5.

The results for the Lie algebras Nr ,s(V
r ,s;−
min;+) and Nr ,s(V

r ,s;+
min;−) can be shown similarly.

We prove now the second part of the lemma. The isomorphisms

Nr ,s

(
V r ,s;+
min+

) ∼= Nr ,s

(
V r ,s;−
min;+

)
and Nr ,s

(
V r ,s;+
min;−

) ∼= Nr ,s

(
V r ,s;−
min;−

)

under the map � = Id⊕ − IdRr,s are given in Lemma 3.6. The reader can find the isomor-
phisms of the form � = A ⊕ C with detC < 0 for the Lie algebras

Nr ,s

(
V r ,s;+
min+

) ∼= Nr ,s

(
V r ,s;+
min;−

)
and Nr ,s

(
V r ,s;−
min;+

) ∼= Nr ,s

(
V r ,s;−
min;−

)

in [18, Theorem 12]. The non existence results are proved in a similar way as for the part (1)
of Lemma 4.12. ��

We state separately a corollary of Lemma 4.12 that is a core for the proof of Theorem 4.2.

Corollary 4.13 Let r ≡ 3 (mod 4) and s ≡ 0 (mod 4). There exists an isomorphism
Nr ,s(V

r ,s;+
min;+) → Nr ,s(V

r ,s;−
min;−) of the form � = A ⊕ Id. There does not exist a Lie algebra

isomorphism Nr ,s(V
r ,s;+
min;+) → Nr ,s(V

r ,s;−
min;+) of the form � = A ⊕ Id.

Lemma 4.14 The Lie algebrasNr ,s(U ), (r , s) ∈ {(3, 0), (7, 0), (3, 4)}, are completely deter-
mined by the pair of numbers (p = p++ + p−− , q = p−+ + p+−) in the decomposition of the
admissible module U:

U =
(

p++⊕ Vr ,s;+
min;+

)

⊕
(

p−+⊕ V r ,s;−
min;+

)

⊕
(

p+−⊕ V r ,s;+
min;−

)

⊕
(

p−−⊕ V r ,s;−
min;−

)

.
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Proof Let U be an admissible module of Clr ,s for (r , s) ∈ {(3, 0), (7, 0), (3, 4)}. First we
decompose U into the sum of irreducible modules:

U =
(

p+⊕ V r ,s
irr;+

)

⊕
(

p−⊕ Vr ,s
irr;−

)

= U+ ⊕U−.

Then, J�r,s = IdU+ and J�r,s = − IdU− . We decompose the submodules U+ and U− into
the minimal admissible modules

U+ =
(

p++⊕ V r ,s;+
min;+

)

⊕
(

p−+⊕ V r ,s;−
min;+

)

and U− =
(

p+−⊕ V r ,s;+
min;−

)

⊕
(

p−−⊕ V r ,s;−
min−

)

,

where V r ,s;+
min;± are the minimal admissible modules for which the restriction of the admissible

scalar product on the common 1-eigenspace Er ,s is positive definite and V r ,s;−
min;± are those

where the restriction of the scalar product on Er ,s is negative definite. It was stated in
Lemma 4.12, item (1), and Corollary 4.13 that

Nr ,s(U )
�∼= Nr ,s(U

+) with U+ =
(

p=p+++p−−⊕ V r ,s;+
min;+

)

⊕
(
q=p−++p+−⊕ V r ,s;+

min;−

)

,

where � = A ⊕ Id. Thus we can consider only the case when the restrictions on Er ,s of the
scalar product is positive definite. Since the isomorphism between Lie algebrasNr ,s(V

r ,s;+
min;+)

and Nr ,s(V
r ,s;+
min;−) can not admit the form A ⊕ Id by Corollary 4.13, we conclude that two

Lie algebras Nr ,s(U ) and Nr ,s(Ũ ) with

U =
(

p⊕ Vr ,s;+
min;+

)

⊕
(

q⊕ V r ,s;+
min;−

)

and Ũ =
(

p̃⊕ V r ,s;+
min;+

)

⊕
(

q̃⊕ V r ,s;+
min;−

)

are isomorphic if and only if either (p, q) = ( p̃, q̃) or (p, q) = (q̃, p̃). ��

4.5 Proof of Theorem 4.3

In order to prove Theorem 4.3, we consider the low values of the indices: r = 3,
s = 1, 2, 3, 5, 6, 7 or r = 7, s = 1, 2, 3 and then we apply the periodicity Theorem 4.8. An
admissiblemoduleU has decomposition of the type (4.1). Theorem 2.9 shows that the restric-
tion of the scalar product 〈· , ·〉Vr,s

min
on the common1-eigenspace E3,s for s = 1, 2, 3, 4, 5, 6, 7

and E7,s , s = 1, 2, 3 is sign definite. We denote by Vr ,s;+
min = (V r ,s;+

min , 〈· , ·〉V r,s;+
min

) the

minimal admissible module with positive definite metric on Er ,s . Analogously, we write
V r ,s;−
min = (V r ,s;−

min , 〈· , ·〉V r,s;−
min

) for the minimal admissible module with negative definite

metric on Er ,s . We note that all the systems P Ir ,s include the involution P = Jz1 Jz2 Jz3 for
mentioned values of r and s.

Consider pseudo H -type Lie algebras N3,s(V
3,s;+
min ) and N3,s(V

3,s;−
min ) for s = 1, 2, 3.

The natural inclusion R
3,0 ⊂ R

3,s allows to consider the module V 3,s;+
min as the admissible

module U = V 3,0;+
min;+ ⊕ V 3,0;−

min;− of Cl3,0. The module U has to include both eigenspaces of

the involution P = Jz1 Jz2 Jz3 and therefore U = V 3,s;+
min includes both irreducible modules

V 3,0
min;±. The metric on U = V 3,s;+

min is neutral and therefore the irreducible modules V 3,0
min;±

have to carry the definite metrics of opposite signs. Analogous considerations can be done
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with V 3,s;−
min . This and the item (1) of Lemma 4.12 imply the existence of the isomorphisms

A1 ⊕ Id : N3,0

(
V 3,s;+
min

) ∼= N3,0

(
V 3,0;+
min;+ ⊕ V 3,0;−

min;−
) ∼= N3,0

(
2⊕ V 3,0;+

min;+
)

,

A2 ⊕ Id : N3,0

(
V 3,s;−
min

) ∼= N3,0

(
V 3,0;−
min;+ ⊕ V 3,0;+

min;−
) ∼= N3,0

(
2⊕ V 3,0;+

min;−
)

.

for any s = 1, 2, 3. More generally there are Lie algebra isomorphisms

N3,0(U ) = N3,0

((
p+
⊕ V 3,s;+

min

)
⊕

(
p−
⊕ V 3,s;−

min

))

∼= N3,0

((
2p+
⊕ V 3,0;+

min;+

)
⊕

(
2p−
⊕ V 3,s;+

min;−

))

= N3,0(U ).

The projection map π : R
3,s → R

3,0, where zi , i = 3 + 1, . . . 3 + s, are mapped to zero,
defines a Lie algebra surjective homomorphism Id⊕π : N3,s(U ) → N3,0(U ). We assume
now that there exists a Lie algebra isomorphism

A ⊕ C : N3,s(U ) → N3,s(Ũ ), where Ũ =
(

p̃+
⊕ V 3,s;+

min

)

⊕
(

p̃−
⊕ V 3,s;−

min

)

.

Then it defines a Lie algebra isomorphism A ⊕ C
′ : N3,0(U ) → N3,0(Ũ ) where C

′
is the

restriction C |R3,0 of the map C on R
3,0. We define

π
′ : R

3,s → R
3,0 as π ′(C(zi )) =

{
C ′(zi ) for i = 1, 2, 3,

0 for i = 3 + 1, . . . , 3 + s.

Then the diagram

N3,s(U )
Id⊕π−−−−→ N3,0(U )

A⊕C

⏐
⏐
�

⏐
⏐
�A⊕C

′

N3,s(Ũ )
Id⊕π

′
−−−−→ N3,0(Ũ )

(4.8)

commutes. We conclude thatN3,s(U ) andN3,s(Ũ ) are isomorphic, if and only if p+ = p̃+
and p− = p̃− or p+ = p̃− and p− = p̃+ by Theorem 4.2, see also [8].

In order to prove the reduction ofN3,s(V
3,s;±
min ) toN3,0(V

3,0;±
min;±) for s = 5, 6, 7we observe

that there are Lie algebra isomorphisms

A1 ⊕ Id : N3,0

(
V 3,s;+
min

) ∼= N3,0

((
α(s)⊕ V 3,0;+

min;+
)

⊕
(

α(s)⊕ V 3,0;−
min;−

))
∼= N3,0

(
2α(s)⊕ V 3,0;+

min;+
)

,

A2 ⊕ Id : N3,0

(
V 3,s;−
min

) ∼= N3,0

((
α(s)⊕ V 3,0;−

min;+
)

⊕
(

α(s)⊕ V 3,0;+
min;−

))
∼= N3,0

(
2α(s)⊕ V 3,0;+

min;−
)

,

where α(5) = 2, α(6) = 4 and α(7) = 8. The rest of the proof is made analogously.
Literally the same reduction is made for the Lie algebrasN7,s(V

7,s;±
min ), s = 1, 2, 3, to the

Lie algebra N7,0(V
7,0;±
min;±). The theorem is proved. ��
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Table 3 Final result of the classification

8 ∼= ∼= ∼= ∼= ∼= ∼= ∼= ∼= ∼= ∼= �
7 ∼= ∼= ∼= � � ∼= � � �� �� ∼=
6 ∼= ∼= ∼= ∼= � ∼= ∼= � � � ∼=
5 ∼= ∼= ∼= ∼= � ∼= � ∼= � � ∼=
4 ∼= ∼= ∼= ∼= � � ∼= ∼= ∼= � ∼=
3 ∼= � � �� �� ∼= ∼= ∼= � � ∼=
2 ∼= ∼= � � � ∼= ∼= ∼= ∼= � ∼=
1 ∼= � ∼= � � ∼= ∼= ∼= ∼= � ∼=
0 ∼= ∼= ∼= � ∼= ∼= ∼= ∼= � ∼=
s/r 0 1 2 3 isotyp 3 nonisotyp 4 5 6 7 isotyp 7 nonisotyp 8

4.6 Final result of the classification

The following statement can be proved analogously to Theorem 4.8.

Theorem 4.15 The Lie algebrasNr ,s(Ur ,s) andNs,r (Ũ s,r ) are isomorphic if and only if the
Lie algebras Nr+μ,s+ν(Ur+μ,s+ν) and Ns+ν,r+μ(Ũ s+ν,r+μ) are isomorphic for (μ, ν) ∈
{(8, 0), (0, 8), (4, 4)}.

We showed in Theorem 4.1 that the Lie algebras Nr ,s(U ) for r ≡ 0, 1, 2 (mod 4) are
defined by the dimension of the admissible module U . If r ≡ 3 (mod 4) the Lie algebra
Nr ,s(U ) depends on the decompositions

U =
(

p⊕ V r ,s
min;+

)⊕(
q⊕ V r ,s

min;−
)

or U =
(

p⊕ V r ,s;+
min

)⊕(
q⊕ V r ,s;−

min

)

, (4.9)

where the numbers p, q are defined in Theorems 4.2 and 4.3. We call admissible modules
with decompositions (4.9) isotypic if one of the numbers p or q vanishes. Otherwise the
admissible module is called nonisotypic.

Theorem 4.16 Let r ≡ 0, 1, 2 (mod 4) and s ≡ 0, 1, 2 (mod 4). ThenNr ,s(U ) ∼= Ns,r (Ũ ) if
dim(U ) = dim(Ũ ).

Let r ≡ 3 (mod 8), s ≡ 0, 4, 5, 6 (mod 8) or r ≡ 7 (mod 8), s ≡ 0, 1, 2 (mod 8). Then
Nr ,s(U ) ∼= Ns,r (Ũ ) if dim(U ) = dim(Ũ ) and U is an isotypic admissible module.

Let r ≡ 3 (mod 8) and s ≡ 1, 2, 7 (mod 8). ThenN3,s(U ) is never isomorphic toNs,3(Ũ ).

Wesummarize the results ofTheorem4.16 inTable 3.Wedistinguish the columns for r = 3
and r = 7 for isotypic and nonisotypic modules. We write the symbol ∼= in the place (r , s)
if Nr ,s(U ) is isomorphic to Ns,r (Ũ ) and the isomorphism only depends on the dimension
of the admissible module. For example, N3,0(U ) ∼= N0,3(Ũ ) if dim(U ) = dim(Ũ ) and U
is isotypic and N3,0(U ) � N0,3(Ũ ) if U is non-isotypic. We have N3,1(U ) � N1,3(Ũ ) for
any admissible modules U and Ũ even if dim(U ) = dim(Ũ ) and the module U of Cl3,1 is

isotypic: U = p⊕ V 3,1;+
min or U = q⊕ V 3,1;−

min .
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5 Appendix

We give the collections P Ir ,s and COr ,s for basic cases (2.8) grouped in four tables. The
dimensions of Er ,s and signature of the scalar product restricted to Er ,s are listed. First we
mention trivial cases.

P I1,0 = P I0,1 = P I2,0 = P I1,1 = P I0,2 = P I2,1 = P I0,3 = ∅,

P I3,0 = P I1,2 = {P = Jz1 Jz2 Jz3}, CO3,0 = CO1,2 = ∅.

For the cases (r , s) of r − s ≡ 3 (mod 4) and s even, there is no complementary operator
which commutes with all the involutions in P Ir ,s except the last involution which is of the
form P3 or P4 and anti-commutes with the last involution. In these cases the operator J�r,s

is a product of involutions in P Ir ,s and it commutes with all the operators Jzk . This is the
reason for the number of complementary operators to be pr ,s − 1. The last operator in P Ir ,s
of the form P3 or P4 distinguishes the two different minimal admissible modules.

The signature of the admissible scalar product restricted on the space Er ,s is sign definite
in Table 6 and is neutral for signatures (r , s) in Table 7. The latter can be seen by finding
an additional negative operator other than operators in COr ,s which commutes with all the
involutions in P Ir ,s (Tables 4, 5, 6).

Table 4 Systems P Ir ,0 and COr ,0, r = 4, . . . , 7

P Ir ,0\COr ,0 Isom Isom Isom dim(Er ,0) and signature

P I4,0\CO4,0 Jz1
P1 = Jz1 Jz2 Jz3 Jz4 −1 dim(E4,0) = 4, ±
P I5,0\CO5,0 Jz2 Jz1
P1 = Jz2 Jz3 Jz4 Jz5 −1 1

P2 = Jz1 Jz2 Jz3 −1 dim(E5,0) = 2, ±
P I6,0\CO6,0 Jz1 Jz5 Jz2 Jz4
P1 = Jz1 Jz2 Jz3 Jz4 −1 1 1

P2 = Jz1 Jz2 Jz5 Jz6 −1 1

P3 = Jz1 Jz3 Jz5 −1 dim(E6,0) = 1, ±
P I7,0\CO7,0 Jz1 Jz1 Jz3 Jz1 Jz2
P1 = Jz1 Jz2 Jz3 Jz4 −1 1 1

P2 = Jz1 Jz2 Jz5 Jz6 −1 1

P3 = Jz1 Jz3 Jz5 Jz7 −1 dim(E7,0) = 1, ±
P4 = Jz5 Jz6 Jz7
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Table 5 Systems P Ir ,4 and COr ,4, r = 0, 1, 2

P Ir ,4\COr ,4 Isom Anti-isom Isom dim(Er ,4) and signature Basis for Er ,4

P I0,4 = P I4,0\CO0,4 Jz2

P1 = Jz1 Jz2 Jz3 Jz4 −1 dim(E0,4) = 4, ± v, Jz1 Jz2v,

Jz1 Jz3v, Jz1 Jz4v

P I1,4 = P I5,0\CO1,4 Jz2 Jz1
P1 = Jz2 Jz3 Jz4 Jz5 −1 1

P2 = Jz1 Jz2 Jz3 −1 dim(E1,4) = 2, ± v, Jz1v

P I2,4 = P I6,0\CO2,4 Jz1 Jz5 Jz1 Jz2
P1 = Jz1 Jz2 Jz3 Jz4 −1 1 1

P2 = Jz1 Jz2 Jz5 Jz6 −1 1

P3 = Jz1 Jz3 Jz5 −1 dim(E2,4) = 1, ± v

Table 6 Systems P I3,s and CO3,s , s = 1, . . . , 7 and P I7,s , CO7,s , s = 1, 2, 3

P Ir ,s\COr ,s Isom Isom Isom Anti-isom dim(E3,s ) Basis for E3,s

P I3,1\CO3,1 Jz4
P1 = Jz1 Jz2 Jz3 −1 dim(E3,1) = 4 v, Jz1v, Jz2v, Jz3v

P I3,2\CO3,2 Jz1 Jz2 Jz4
P1 = Jz1 Jz2 Jz4 Jz5 −1 1

P2 = Jz1 Jz2 Jz3 −1 dim(E3,2) = 2 v, Jz3v

P I3,3\CO3,3 Jz1 Jz3 J3 Jz6
P1 = Jz1 Jz2 Jz4 Jz5 −1 1 1

P2 = Jz1 Jz3 Jz4 Jz6 −1 1

P3 = Jz1 Jz2 Jz3 −1 dim(E3,3) = 1 v

P I3,4\CO3,4 Jz1 Jz3 Jz6
P1 = Jz1 Jz2 Jz4 Jz5 −1 1 1

P2 = Jz1 Jz3 Jz5 Jz7 −1 1

P3 = Jz1 Jz2 Jz6 Jz7 −1 dim(E3,4) = 1 v

P4 = Jz1 Jz2 Jz3
P I3,5\CO3,5 Jz1 Jz6 Jz8 Jz3 Jz8
P1 = Jz1 Jz2 Jz4 Jz5 −1 1 1 1

P2 = Jz1 Jz2 Jz6 Jz7 −1 1 1

P3 = Jz1 Jz3 Jz5 Jz7 −1 1

P4 = Jz1 Jz2 Jz3 −1 dim(E3,5) = 1 v

P I3xx,6 = P I3,5 CO3,6 = CO3,5 dim(E3,6) = 2 v, Jz8 Jz9v

P I3,7 = P I3,5 CO3,7 = CO3,5 dim(E3,7) = 4
v, Jz8 Jz9v,

Jz8 Jz10v, Jz9 Jz10v

P I7,1\CO7,1 Jz1 Jz5 Jz7 Jz8
P1 = Jz1 Jz2 Jz3 Jz4 −1 1 1 1

P2 = Jz1 Jz2 Jz5 Jz6 −1 1 1

P3 = Jz1 Jz3 Jz5 Jz7 −1 1

P4 = Jz1 Jz2 Jz3 −1 dim(E7,1) = 1 v

P I7,2 = P I71 CO7,2 = CO7,1 dim(E7,2) = 2 v, Jz8 Jz9v

P I7,3 = P I71 CO7,3 = CO7,1 dim(E7,3) = 4
v, Jz8 Jz9v,

Jz8 Jz10v, Jz9 Jz10v
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Table 7 Systems P Ir ,s and COr ,s for Proposition 2.9

P Ir ,s\COr ,s Isom Isom Isom Anti-isom dim(Er ,s )

P I1,3\CO1,3 Jz2 Jz4
P1 = Jz1 Jz2 Jz3 −1 dim(E1,3) = 4

P I2,2\CO2,2 Jz1
P1 = Jz1 Jz2 Jz3 Jz4 −1 dim(E2,2) = 4

P I2,3\CO2,3 Jz1 Jz1 Jz2
P1 = Jz1 Jz2 Jz3 Jz4 −1 1

P2 = Jz2 Jz3 Jz5 −1 dim(E2,3) = 2

P I0,5\CO0,5 Jz1 Jz5
P1 = Jz1 Jz2 Jz3 Jz4 −1 dim(E0,5) = 8

P I0,6\CO0,6 Jz1 Jz5 Jz2 Jz3
P1 = Jz1 Jz2 Jz3 Jz4 −1 1

P2 = Jz1 Jz2 Jz5 Jz6 −1 dim(E0,6) = 4

P I0,7\CO0,7 Jz1 Jz5 Jz2 Jz3 Jz5 Jz6
P1 = Jz1 Jz2 Jz3 Jz4 −1 1 1

P2 = Jz1 Jz2 Jz5 Jz6 −1 1

P3 = Jz1 Jz3 Jz5 Jz7 −1 dim(E0,7) = 2

P I1,5\CO1,5 Jz5 Jz6 Jz3 Jz4
P1 = Jz2 Jz3 Jz4 Jz5 −1 1

P2 = Jz1 Jz2 Jz3 −1 dim(E1,5) = 4

P I1,6\CO1,6 Jz5 Jz6 Jz3 Jz4 Jz2 Jz4 Jz6
P1 = Jz2 Jz3 Jz4 Jz5 −1 1 1

P2 = Jz2 Jz3 Jz6 Jz7 −1 1

P3 = Jz1 Jz2 Jz3 1 dim(E1,6) = 4

P I1,7\CO1,7 Jz5 Jz6 Jz3 Jz4 Jz2 Jz4 Jz6 Jz8
P1 = Jz2 Jz3 Jz4 Jz5 −1 1 1

P2 = Jz2 Jz3 Jz6 Jz7 −1 1

P3 = Jz1 Jz2 Jz3 −1 dim(E1,7) = 4

P I2,5\CO2,5 Jz1 Jz1 Jz3 Jz7 Jz5 Jz6
P1 = Jz1 Jz2 Jz3 Jz4 −1 1 1

P2 = Jz1 Jz2 Jz5 Jz6 −1 1

P3 = Jz1 Jz3 Jz5 −1 dim(E2,5) = 2

P I2,6 = P I2,5 CO2,6 = CO2,5 dim(E2,6) = 4

P I2,7 = P I2,5 CO2,7 = CO2,5 dim(E2,7) = 8

P I4,1 = P I0,5 CO4,1 = {Jz1 } dim(E4,1) = 8

P I4,2 = P I0,6 CO4,2 = {Jz1 , Jz2 Jz3 } dim(E4,2) = 4

P I4,3 = P I0,7 CO4,3 = {Jz1 , Jz2 Jz3 , Jz5 Jz6 } dim(E4,3) = 2

P I5,1 = P I1,5 CO5,1 = {Jz5 , Jz3 Jz4 } dim(E5,1) = 4

P I5,2 = P I1,6 CO5,2 = {Jz5 , Jz3 Jz4 , Jz2 Jz4 Jz6 } dim(E5,2) = 4

P I5,3 = P I1,7 CO5,3 = {Jz5 , Jz3 Jz4 , Jz2 Jz4 Jz6 Jz8 } dim(E5,3) = 4

P I6,1 = P I2,5 CO6,1 = {Jz1 , Jz1 Jz3 , Jz5 Jz6 } dim(E6,1) = 2

P I6,2 = P I2,5 CO6,2 = CO6,1 dim(E6,2) = 4

P I6,3 = P I2,5 CO6,3 = CO6,1 dim(E6,3) = 8

123



Geometriae Dedicata (2019) 202:233–264 263

References

1. Alekseevsky, D.V., Cortés, V.: Classification of N -(super)-extended algebras and bilinear invariants of
the spinor representation of Spin(p, q). Commun. Math. Phys. 183(3), 477–510 (1997)

2. Altomani, A., Santi, A.: Classification of maximal transitive prolongations of super-Poincaré algebras.
Adv. Math. 265, 60–96 (2014)

3. Atiyah, M.S., Bott, R., Shapiro, A.: Clifford modules. Topology 3, 3–38 (1964)
4. Autenried, C., Furutani, K., Markina, I., Vasiliev, A.: Pseudo-metric 2-step nilpotent Lie algebras. Adv.

Geom. 18(2), 237–263 (2018)
5. Barbano, P.E.: Automorphisms and quasi-conformal mappings of Heisenberg-type groups. J. Lie Theory

8(2), 255–277 (1998)
6. Bauer, W., Furutani, K., Iwasaki, C.: Spectral zeta function on pseudo H-type nilmanifolds. Indian J. Pure

Appl. Math. 46(4), 539–582 (2015)
7. Bellaïche, A., Risler, J.J.: Sub-Riemannian geometry. In: Bellaïche, A., Risler, J.-J. (eds.) Progress in

Mathematics, vol. 144. Birkhäuser, Basel (1996)
8. Berndt, J., Tricerri, F., Vanhecke, L.: GeneralizedHeisenbergGroups andDamek–RicciHarmonic Spaces.

Lecture Notes in Mathematics, vol. 1598. Springer, Berlin (1995)
9. Bieske, T., Gong, J.: The P-Laplace equation on a class of Grushin-type spaces. Proc. Am. Math. Soc.

134(12), 3585–3594 (2006)
10. Calin, O., Chang, D.C., Furutani, K., Iwasaki, C.: Heat Kernels for Elliptic and Sub-elliptic Operators:

Methods and Techniques. Applied and Numerical Harmonic Analysis. Birkhäuser, New York (2011)
11. Ciatti, P.: Scalar products on Clifford modules and pseudo-H -type Lie algebras. Ann. Mat. Pura Appl.

178(4), 1–32 (2000)
12. Crandall, G., Dodziuk, J.: Integral structures on H-type Lie algebras. J. Lie Theory 12(1), 69–79 (2002)
13. Cowling, M., Dooley, A.H., Korányi, A., Ricci, F.: H -type groups and Iwasawa decompositions. Adv.

Math. 87(1), 1–41 (1991)
14. del Barco, V.: Homogeneous geodesics in pseudo-Riemannian nilmanifolds. Adv. Geom. 16(2), 175–187

(2016)
15. Eberlein, P.: Geometry of 2-step nilpotent groups with a left invariant metric. Ann. Sci. École Norm. Sup.

(4) 27(5), 611–660 (1994)
16. Eberlein, P.: Riemannian submersion and lattices in 2-step nilpotent Lie groups. Commun. Anal. Geom.

11(3), 441–488 (2003)
17. Furutani, K., Markina, I.: Existence of the lattice on general H -type groups. J. Lie Theory 24, 979–1011

(2014)
18. Furutani, K., Markina, I.: Complete classification of pseudo H -type algebras: I. Geom. Dedicata 190,

23–51 (2017)
19. Godoy Molina, M., Korolko, A., Markina, I.: Sub-semi-Riemannian geometry of general H -type groups.

Bull. Sci. Math. 137(6), 805–833 (2013)
20. Heinonen, J.: Calculus on Carnot groups. Fall School in Analysis (Jyväskylä, 1994), pp. 1–31, Report,

68. Univ. Jyväskylä, Jyväskylä (1995)
21. Husemoller, D.: Fibre Bundles. Graduate Texts in Mathematics, vol. 20, 2nd edn, p. 327. Springer, New

York (1975)
22. Kobayashi, T., Yoshino, T.: Compact Clifford–Klein forms of symmetric spaces—revisited. Pure Appl.

Math. Q. 1(3), 591–663 (2005). (Special Issue: In memory of Armand Borel. Part 2)
23. Kaplan, A.: Fundamental solutions for a class of hypoelliptic PDE generated by composition of quadratic

forms. Trans. Am. Math. Soc. 258(1), 147–153 (1980)
24. Kaplan, A.: Riemannian nilmanifolds attached to Clifford modules. Geom. Dedicata 11, 127–136 (1981)
25. Kaplan, A., Tiraboschi, A.: Automorphisms of non-singular nilpotent Lie algebras. J. Lie Theory 23(4),

1085–1100 (2013)
26. Kocsard,A.,Ovando,G.P.,Reggiani, S.:Onfirst integrals of the geodesic flowonHeisenberg nilmanifolds.

Differ. Geom. Appl. 49, 496–509 (2016)
27. Lam, T.Y.: The Algebraic Theory of Quadratic Forms. Mathematics Lecture Note Series, p. 344. W. A.

Benjamin, Inc., Reading (1973)
28. Lawson, H.B.,Michelsohn,M.-L.: SpinGeometry. PrincetonMathematical Series, vol. 38, p. 427. Prince-

ton University Press, Princeton (1989)
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