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Abstract

We classify a class of 2-step nilpotent Lie algebras related to the representations of the
Clifford algebras in the following way. Let J: CI(R"*) — End(U) be a representation of
the Clifford algebra C1(R"*) generated by the pseudo Euclidean vector space R"*. Assume
that the Clifford module U is endowed with a bilinear symmetric non-degenerate real form
(-, -)y making the linear map J, skew symmetric for any z € R"*. The Lie algebras and the
Clifford algebras are related by (J,v, w)y = (z, [v, w)rrs, z € R™%, v, w € U. We detect
the isomorphic and non-isomorphic Lie algebras according to the dimension of U and the
range of the non-negative integers r, s.

Keywords Clifford module - Nilpotent 2-step Lie algebra - Pseudo H-type Lie algebras -
Lie algebra isomorphism - Scalar product - Involution
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1 Introduction

The present work is a continuation of [18] and it studies 2-step nilpotent graded Lie alge-
bras associated to the representations of Clifford algebras. Let Cl, ; be the Clifford algebra
generated by the pseudo Euclidean vector space R™* and let J: Cl, ; — End(U) be its
representation. Assume that there exists a non-degenerate symmetric bilinear form (-, -);y on
the Clifford module U such that (J x, y)y + (x, J;y)y =Oforallz e R"* andx,y € U.
The pair (U, (-, -)y) is called an admissible module. The set U @& R"*, endowed with the
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Lie bracket defined by (z, [x, y])rrs = (J;x, y)y for x, y € U and zero otherwise, is called
a pseudo H-type Lie algebra and is denoted by .4} ;(U). The pseudo H-type Lie algebras
A.0(U) were introduced in [23] and their generalizations .4 ;(U) appeared in [11,19].
The pseudo H-type Lie algebras were actively studied for instance in [5,12,17,18,24]. They
provide a setting for the study of sub-elliptic, hypo-elliptic and Grushin type operators, see
for instance [9,10] and it is an important particular case of the extended Poincaré Lie super
algebras [1,2]. The Lie groups of pseudo H-type Lie algebras constitute a source of inter-
esting examples of sub-Riemannian manifolds [7,20], nil-manifolds [14,26], iso-spectral but
non-diffeomorphic manifolds [6], Damek—Ricci harmonic spaces [8], symmetric spaces of
rank one [13,30].

The authors considered in [18] the classification of pseudo H-type Lie algebras whose
constructions are based on the minimal dimensional admissible modules Vnrl’i;. It has been
shown that two Lie algebras .47 ¢ (V"> ) and 47 (V" ) are never isomorphic unless r = 7
and s = §,orr = § and s = 7. Among the couples .47 (V") and .45 (V" ) there are
isomorphic and non-isomorphic Lie algebras.

The present paper is a continuation of [18] and it finishes the classification of the pseudo
H-type Lie algebras .4 (U), where U is not necessary minimal dimensional admissible
module. The first step of the classification depends on the fact whether the Clifford algebra
Cl, s is simple or not. If the Clifford algebra CI, ; is simple, then the Lie algebra A4 (U)
for r # 3 (mod 4) is uniquely defined by the dimension of the admissible module U and
does not depend on the choice of the scalar product on U. As a consequence in this case we
obtain that the Lie algebras .4, ;(U) and %,,(0 ) are isomorphic if dim(U) = dim(U ). If
r = 3 (mod 4) then the Lie algebra .4/ ;(U) depends on the choice of the scalar product
on each minimal dimensional component (V,*); in the decomposition U = &(V,:});. If
r —s = 3 (mod 4), then Clifford algebras Cl, ; are not simple and the classification is more
complicate. Recall, that the Lie algebras .4 o(U) for r = 3 (mod 4) are defined only by
number of non-equivalent irreducible terms in the decomposition of U into the direct sum
of irreducible submodules and any irreducible Clifford module is actually an admissible
module, see [8,13]. For the pseudo H-type Lie algebras .47 ;(U), s > 0, and r = 3 (mod 4)
the classification is more subtle and depends not only on the number of different minimal
dimensional modules, but also on the choice of the scalar product on them. These phenomena
come from the signature of the scalar product restricted to the “common 1-eigenspace” of
a set of maximal number of mutually commuting symmetric isometric involutions of the
Clifford action on the minimal dimensional module. It is also closely related to the existence
or non-existence of a special type of an automorphism of the Lie algebra .4/ ;(U) which is
identity on the centre.

The structure of the paper is the following. We recall basic properties of Clifford algebras,
such as, periodicity, the system of involutions, the structure of admissible modules, and
other information needed to complete classification of pseudo H-type Lie algebras in Sect. 2.
Section 3 is dedicated to the description of pseudo H-type Lie algebras and the structure
of their isomorphisms and automorphisms. The main result is contained in Theorems 4.1—
4.3, see Sect. 4. In Sect. 5, we present Tables 4, 5, 6 and 7 needed to determine important
properties of minimal admissible modules for basic cases (2.8), which are summarized in
Table 1 in Sect. 2.5.
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2 Clifford algebras and admissible modules

In the section we collect the information about Clifford algebras and their admissible modules
that we need for the classification of pseudo H-type Lie algebras.

2.1 Definitions of Clifford algebras

We denote by R"** the space R¥, r +s = k, with the non-degenerate quadratic form Q, ;(z) =
> Ziz - Zj’:l Zf 422 € R¥, of the signature (r, s). The non-degenerate bilinear form
obtained from Q, s by polarization is denoted by (-, ), ;. We call the form (-, -), s a scalar
product. A vector z € R"™* is called positive if (z, z), ¢ > 0, negative if (z,z), s < 0, and
null if (z, z), s = 0. We constantly use the orthonormal basis {z1, ..., Zr, Zr41, - Fr4s}
for R”™%, where the basis vectors z1, ..., z, are positive and z,1, ..., Z,45 are negative.
Let Cl, ¢ be the real Clifford algebra generated by R”"-%, that is the quotient of the tensor

algebra
2 3
T(Rrﬂ) — R EB (RrJrs) @ (® Rr%v) @ (® RrJr.v) @ e

divided by the two-sided ideal I, ; generated by the elements of the form z ® z 4 (z, z), 51,
z € R, The explicit determination of the Clifford algebras is given in [3] and they are
isomorphic to matrix algebras R(n), R(n) @ R(n), C(n), H(n) or H(n) & H(n) where the
size n is determined by r and s, see [28].

Given an algebra homomorphism T Cl, s — End(U), we call the space U a Clifford
module and the operator Jy a Clifford action or a representation map of an element ¢ € Cl, ;.
If there is a map

J:R" — End(U)
z = J,

satisfying J2 = —(z, 2)r.s Idy for an arbitrary z € R™*, then J can be uniquely extended
to an algebra homomorphism T by the universal property, see, for instance [21,27,28]. Even
though the representation matrices of the Clifford algebras Cl, s, and the Clifford modules U
are given over the fields R, C or H, we refer to Cl, s as a real algebra and U as a real vector
space. The dimension of U is a multiple of n over the corresponding fields R, C or H. For
a systematic and thorough treatment of Clifford algebras for indefinite quadratic forms over
R see [22].

Ifr —s £ 3 (mod 4), then Cl, ; is a simple algebra. In this case there is only one irreducible
module U = V¥ of dimension n. If r —s = 3 (mod 4), then the algebra Cl, ; is not simple,
and there are two non-equivalent irreducible modules. They can be distinguished by the

action of the ordered volume form Q"% = ]_[2;”1 zk. In fact, the elements J, ( 1 ) act as
2

FQIS

an identity operator on the Clifford module, so Jor.s = £1d. Thus, we denote by Vlrr: 4 two
non-equivalent irreducible Clifford modules on which the action of the volume form is given

by Jors = [[}2] Jo, = £1d.

Proposition 2.1 [28, Theorem 5.4] Clifford modules are completely reducible. Namely, let
U be a Clifford module, then it can be decomposed into irreducible modules:
po, .
eV, if r—s#3(mod4),

U=1/r+ . P— L ) (2.1)
@V, )e\eV,,. |, ifr—s=3(modd).
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The numbers p, p+, p— are uniquely determined by the given module U of the Clifford
algebra Cl, 5.

p
The module U =& Vlrr: is called isotypic and the second one in (2.1) is non-isotypic.

2.2 Admissible modules

Definition 2.2 [11] A module U of the Clifford algebra Cl, ; is called admissible if there is
a scalar product (-, -)yy on U such that

(J.x, )u + (x, Joy)y =0, forall x,y e U and ze€R"". (2.2)

We also say that the pair (U, (-, -)y) is an admissible module and the scalar product (-, -}y
is admissible.

We collect properties of admissible modules in several propositions.

Proposition 2.3 Let Cl, ; be the Clifford algebra generated by the space R™*.

(1) If(-, -)u isanadmissible scalar product, then K (- , -)y is also admissible for any constant
K € R\O. We can assume that K = £1 by normalization of the scalar products.

(2) Let (U, (-, -)u) be an admissible module for Cl, s and let (U1, (-, -)u,) be such that U;
is a submodule of U and (-, -)y, is the restriction of (-, -)uy to Uy. Then the orthogonal
complement Ui+ = {x € U | (x,y)y =0, forall y € Uy} with the scalar product
obtained by the restriction of (-, -)y to U, is also an admissible module.

(3) Condition (2.2) and the property JZ2 = —(z, 2)r.s Idy imply

(Jex, Joy)u = (2, 2)r s (2, YU (2.3)
(4) Relation (2.3) leads to the following: if z € R"™* is positive, then
(v, v)y > 0 implies (J;v, J;v)y >0, and (v,v)y < 0implies (J;v, J;v)y < 0.

In other words the map J,: U — U is an isometry for (z, z2), s = 1.
If z € R"® is negative, then

(v, v)y > 0implies (J v, J;v)y <0, and (v,v)y < 0implies (J,v, J;v)y > 0.

and the map J,: U — U is an anti-isometry for (z, z), s = —L.

(5) If s > 0, then any admissible module (U, (-, -)u) of Cl, s is neutral, i.e., dim U = 2I,
I €N, and U is isometric to RM | see [11, Proposition 2.2].

(6) If s = 0, then any Clifford module of Cl, o can be made into admissible with positive
definite or negative definite scalar product, see [21].

Proposition 2.4 describes the relation between irreducible and admissible modules. This
relation depends on the signature (r, s) of the generating space R"* for the Clifford algebra
Cl, 5. An admissible module of the minimal possible dimension is called a minimal admissible
module.

Proposition 2.4 [11, Theorem 3.1][18, Proposition 1] Let Cl, s be the Clifford algebra gen-
erated by the space R™**.

(1) If s = 0, then any irreducible Clifford module is minimal admissible with respect to a
sign definite scalar product.
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2) If r —s = 0,1,2(mod 4), then a unique irreducible module V.
admissible. The following situations are possible:

”,r 1S not necessary

(2-1) The irreducible module V/’" is minimal admissible or,
(2-2) Theirreducible module Vr * is not admissible, nevertheless the direct sum Vlr”s ® Vl i
is minimal admissible.

3) Ifr—s = 3 (mod) 4, then for two non-equivalent irreducible modules Vlrr; . thefollowing
can occur:

(3-1) Each irreducible module VW . is minimal admissible. The index s must be even in
this case.
(3-2) None of the irreducible modules Vm . is admissible. It can happened for even and
odd values of s.
(3-2-1) Ifsiseven, then vesS avis veS ov!hs _ are minimal admissible modules,

lrr + irr; +’ irr;— irr;
and the module V* , @& V* _is not admlsstble.

irr;+ irr;—

(3-2-2) Ifs is odd, then the module V” L@ V"% is minimal admissible and neither

irr;—
vi:S e v:E norv:?: @ Vr  is admissible.

irr; + irr;+ irr;— irr;—

We emphasize the following corollary, see also Table 1 and the remark after it.

Corollary 2.5 If r — s = 3 (mod 4) and s is even, then there are two minimal admissible
modules. We distinguish two cases:

(3-1) Each irreducible module is minimal admissible: m}sn = Vlrrry+ and V,:”Sn =

V'S In this case r = 3 (mod 4), s = 0 (mod 4), or r = 1 (mod 8), s = 2 (mod 8),

Lrr;

orr _5(m0d8) s = 6 (mod 8).

(3-2-1) Direct sums of irreducible modules are minimal admissible: Viinie = Vlrrry+ @
Vlrr 4 and Vnrusn = Vlrr; @ V;ff It happens if r = 1 (mod 8), s = 6 (mod 8),

orr _5(m0d8) K _2(m0d8)

2.3 Mutually commuting isometric involutions

Recall that a linear transformation A defined on a vector space U with a scalar product (-, )y
is called symmetric with respect to the scalar product (-, -)y, if (Ax, y)y = (x, Ay)y,
isometric (or positive) if it maps positive vectors to positive vectors and negative vectors to
negative vectors and anti-isometric (or negative) if it reverses the positivity and negativity of
the vectors. Let J;; be representation maps for an orthonormal basis {z1, ..., 2,45} of R"™%.
The simplest isometric involutions, written as a product of the maps J;,, are one of the
following forms:

P1 = JZ[.1 lez JZ,3 le4 where all z;, are either positive or negative,

P2 = lel JZ,.2 Jz,,3 Jz,.4 ., where two z;, are positive and two are negative, 2.4)
Py =T, I, JZ,.3 , where all three z;, are positive,

Pa= Ty Joyy Iz » where one z;, is positive and two are negative.

The product of types Pz and P4 need not be an involution, meanwhile the product of invo-
lutions of other types is again an involution. For a given minimal admissible module Vnr”sn,

we denote by PI,  a set of the maximal number of mutually commuting symmetric iso-
metric involutions of the forms (2.4). Moreover, we require that involutions in P I, g, are all
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primitive in the sense that none of them is a product of other involutions in P, 5. Also we
choose the set P, ; in such a way that it may include only one of the types P3 or P4. The
set PI, s is not unique, while the number of involutions p, ; = #P1I, s in PI, s is unique
for the given signature (r, s). The set P, s can be chosen equal for the modules with the
admissible scalar product of opposite signs, as well as it can be chosen equal for the minimal
admissible modules, based on the two non-equivalent Clifford modules. The ordering on the
set PI, ¢ could be made, if necessary, in such a way that at most one involution of the type
P53 or P4 isincluded in P, s, and, in this case, it would the last one, see Sects. 2.4 and 5. We
also need a set C O, of complementary operators to P I, s, which are products of the maps
J; and they are ordered according to the ordering in P, s such that

CyP; = PiCy for i <k, and CyPy=—PCy, Pr€Pl.s, CreCOy.

The complementary operators can be isometric or anti-isometric. They guarantee that all
the involutions from P, ; have their both eigenspaces as subspaces of Vnr“sn Note that if
r—s = 3 (mod 4) and s is even, then the last involution of type P3 or P4 allows to distinguish
the modules V,;’l.iu , and v ._» see for instance the proof of Theorem 2.9. Therefore, the

number of operators in C O, ; is different and is equal to

Pr.s» whenr —s # 3 (mod 4), orr —s =3 (mod4) and s is odd, 2.5

prs — 1, whenr — s = 3 (mod 4) and s is even. (2.6)

We define the subspace E, ; of a minimal admissible module VnZ’i‘;

Eg={veV) | Pv=vi<p,s} inthecase(2.5),

E,s={veV) | Pv=vi<p,,—1} inthecase(2.6),
and call it the “common 1-eigenspace” for the system of involutions P, ;. The comple-
mentary opertors show whether the common 1-eigenspace E, g is a neutral or sign definite
vector space with respect to the restriction of the admissible scalar product. The sets P 1, g
and C O,  are collected in Sect. 5 and they will be mentioned precisely when it needs to be
done. In the following proposition we explain the possible interaction of involutions with the
complementary operators.

Proposition 2.6 [17] If P is an isometric symmetric involution acting on the space
(U, (-, Yu) with a neutral scalar product and E*" are eigenspaces of P, then

1. IfT: U — U is an isometry such that PT = —IP, then E*! are neutral,

2. If A: U — U is an anti-isometry such that PA = AP, then E*! are neutral,

3. If A: U — U is an anti-isometry such that PA = — AP, then E*! are either neutral
or sign definite,

with respect to the restriction of the scalar product (-, -}y to E*!.

Since the involutions in P/, ; are symmetric, the eigenspaces are orthogonal subspaces.
The involutions commute, therefore, they decompose the eigenspaces of other involutions
into smaller (eigen)-subspaces. We give an example, that is crucial for the paper.

Example 1 The set P, , for (i, v) € {(8,0), (0, 8)(4, 4)} is given by

T = JyJoJedeys To = JoJoyJesJeg, T3 = Ty Joy I oy Ta = gy Joy Jis Ty
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The set of complementary operators are

COg0=1{Cy = Jy, Cr=JpJey, C3 = Jrg, Co = JryJyy ),
COsa={C1=Jy, Cr=Jnly, C3=Jy, Ca= eyl
COo3 =1{C1 = JgJps, Co = Jpy Iy, C3 = Jig, Co4 = Jpy gy}

The module Vrffm is decomposed into 16 one dimensional common eigenspaces of four

involutions 7;. Let v € E, , and [{v, v)yx»| = 1. Then other common eigenspaces are

min

spanned by Jyv,i =1,...,8,and Jg, Jr;v, j =2, ..., 8. Hence we have

Viin = Euv B Ve B €D I I (Epe)- @.7)
i=1 j=2

The value (v, v)».v can be 1 according to the admissible scalar product, however we may

min

assume (v, v) ey = 1 by Lemma 3.6.

2.4 Periodicity of Clifford algebras and admissible modules

We call the following lower values of signature (r, s):

(r,s) forO<r<7and0<s <3,
(r,s) forO<r<3and4 <s <7, and (2.8)
(r,s) €{3,0),(0,8), 4, H},

the basic cases. Recall the periodicity of Clifford algebras:
Cl, s ®Clog =Cly 548, Cls®Clgo=Clygs, Cly®Clysg = Clyys 544,

where the last one follows from Cl, ; ® Cl;,1 = Cl,41 541, see [3]. The Clifford algebras
Cly v, (1, v) € {(8,0), (0, 8), (4, 4)}, are isomorphic to R(16). The unique irreducible mod-

ule is minimal admissible V/;” = V!":" in all the cases. They are isometric to the following

spaces: either V8 0~ RI60 o V801 = RO16 where we fix the first isomorphism for the

constructions of L1e algebras due to Lemma 3.6, and we also have V,g 8~ R88 ~ V:l’ijt.

Proposition 2.7 [17] If V> = (V.. (-,-)yrs) is a minimal admissible module, then

VISt = YIS @ VLY is the minimal admissible module of Cly . s+, where the scalar

product on V" s given by (-, ) yra (- )y for (1, v) € {(8,0), (0, 8), (4, 4)}.

Let {¢1, ..., ¢g} be an orthonormal basis for R*" and {zy, ..., 45} be an orthonormal
basis for R™%. Let J;,,a = 1,...,8and J,;,i = 1,...,r+s be the respective representation

maps. We denote by Q*V = ]_[fi: 1 o the ordered volume form for Cl, , for (u,v) €
{(8,0), (0, 8), (4, 4)}. Set

fZi:JZ,.(X)JQu,v for i=1,...,r+s,
Je, = ldyrs ®Jp, for a=1,...,8.

Then the maps f and f;a are representations of an orthonormal basis {z;, ¢y} of R"T#STV

on the space V,:”; ® V" as it was shown in [17].
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Table 1 Dimensions of minimal admissible modules

8 16+ 32F 64t eat,  128F 128+ 128+ 1285,  256*
7 16V 32N 64" 64% 128V 128V 128V 128+ 256N
6 16V 16, 3N 3E 64V 641, 128V 128+ 256
5 16" 16V 16N 16+ 32V 64" 128+ 128V 256"
4 8+ 8+ 8+ 8%, 16+ 32+ 647+ 645, 128+
3 8V 8V 8N g+ 16V 32N 64" 64% 128V
2 4y 4v, 8V 8+ 16V 167, 32N 3+ 64V
1 2N 4N 8V 8t 16" 16N 16N 16+ 32V
0 1+ 2+ 4* 4k, 8+ g+ g+ 8%, 16+
sl 0 1 2 3 4 5 6 7 8

2.5 Dimension of a minimal admissible module

The dimensions of minimal admissible modules are determined for basic cases (2.8). Then
dim(V,:;n“ ,H'—v) = dim(V,*) - dim(V!") = 16dim(V, ") for any minimal admissible
module V* . (1, v) € {(8,0),(0,8), (4,4)}. Moreover dim(V, ") = 2"t Prs where
pr.s = #P1I, 5. This follows from the fact that minimal admissible modules are cyclic mod-

ules and p, ; relations among the 2" FS yectors {JZ[1 JZ[2 e Jz,,k v}, v € E, 4, allow us to span
the space Vr;’l.‘; by 2"+ =Pr.s number of linearly independent vectors. We describe the number
and the dimension of minimal admissible modules Vn:’ifl in Table 1. We indicate whether the
scalar product restricted to the common 1-eigenspaces E, s of the involutions from P I, ; is
neutral or sign definite, see Sect. 2.6 for the proof.

We make the following comments to Table 1:

(1) We use the black colour when dim(V, ;') = 2dim(V;"), see Proposition 2.4, items
(2-2), (3-2-1), and (3-2-2).

(2) Writing the subscript “xx2”, we show that the Clifford algebra has two minimal admissi-
ble modules corresponding to the non-equivalent irreducible modules, see Corollary 2.5.

(3) The upper index “xN> means that the scalar product restricted to E, s is neutral. The fact
that E,  is a neutral space does not depend on the choice of the scalar product on V,** |
see Sect. 2.6.

(4) The upperindex “«* shows that the scalar product restricted to the common 1-eigenspace
E, ; of the system P I, g is sign definite, see Sect. 2.6. The sign of the scalar product on
E, ; depends on the choice of the admissible scalar product on the module V.

3,0;+
Vmin;i’

For example, the Clifford algebra Cls ¢ has 4 minimal admissible modules that is,

each non-equivalent irreducible module Vfrro . can be endowed with two scalar products:
y30+ _ 3.0+

positive definite, giving the minimal admissible modules V, ="} = V> " and negative

definite: V,i;.?;_; = Vfrrog However, it does not mean that pseudo H-type Lie algebras
corresponding to these four choices are different. We explain details in Theorems 4.2 and
4.3. To obtain Table 1 we determine the sets P I, ; and C O, g, given in Sect. 5.
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2.6 Scalar product on the common 1-eigenspace E, s

Lemma 2.8 Let (me, (-, -)yrs ) be a minimal admissible module of Cl, ; and (Vnr;l“ S+U,

(-, )yr+ustv) a minimal admissible module of Cly1y s+v, where (u,v) € {(3,0),
O, 8),”1621, 4)}). Let E, s and E,,, s+v be the common I-eigenspaces of the involutions P 1, s
and Py, 51y, respectively. Then dim E, ¢ = dim E; 4, 51,. Moreover, if E, ; is a neutral
vector space, then E, 1, s1 is also neutral, and if E,  is a sign definite, then E, 1, is
also sign definite.

Proof If Vn:;;” STV Vs @ VI then the assertions follow from Proposition 2.7.

Let Vnrl;;“ **¥ be an arbitrary minimal admissible module of Clyt.5+v, Where (i, v) €
{8,0),(0,8), (4, M} Let {z;,¢0; j = 1,...,r+5, @ = 1,..., 8} be an orthonormal
basis of R’ T#:5tV We assume {z;,¢y;i = 1,...,7, « = 1,...,u} are positive and
{Zr4jsSusrps J = 1,...,8, B = 1,...,v} are negative. We identify R"* @ R*" =
R"TH-STY by using the above bases. We choose P ity s+v = Pl s (T, };4/:1, where T, are
involutions from Example 1. The system of complementary operators C O, , shows that the
involutions 7, € P1r+u s+v» ¥ = 1,2, 3, 4 decompose the space V' ""**" into 16 common

eigenspaces {V; }l:0 of T}, and

Vet @ Vi =V 69 Tz, (Vo) EB Ty Te, (Vo). (2.9)

where Vj is the common 1-eigenspace of 7, y = 1,2, 3,4. Since the generators J, i
Jj =1,...,r + s, commute with involutions 7),, y = 1,2, 3,4, we can regard Vj as a
minimal adm1551ble module V,** of Cl, ;. The involutions from P, s acton Vo = V,
and decompose it into their common eigenspaces. Then by definition E, 4, 51, = E, 5. This
finishes the proof of the theorem. O
Theorem 2.9 Let E, ; C Vr:”; be a common 1-eigenspace of the system Pl ;. Then the
restriction of the admissible scalar product on E, ; is sign definite for r = 0, 1,2 (mod 4)
and s = 0 (mod 4) or for r = 3 (mod 4) and arbitrary s. Otherwise, the restriction of the

admissible scalar product on the common 1-eigenspaces E, s is neutral.

Proof We find the sign of the scalar products on E,  for basic cases (2.8) and then apply
Lemma 2.8.

CASE (r, 0). The scalar products on the common 1-eigenspaces E, o are sign definite
because the admissible scalar products on V)" are sign definite.

CASE (r,4),r =0, 1,2, 4. The system of 1nvolut10ns PI, 4,r =0, 1, 2 and their comple-
mentary operators are given in Table 5. The complementary operators gives the dimension
of E,  and the basis shows that the space is sign definite. The case (4, 4) was considered in
Example 1.

CASES (3,s),s =0,...,7and (7,s), s = 1,2, 3. The system of involutions and their
complementary operators are given in Table 6. Notice that the involution J;, J;, J; belongs
to all the systems. The isometric complementary operators ensures that the common 1-
eigenspace E! for involution from PI. \{J; J;, J5} is neutral. Let E'!and EV=1 be the
eigenspaces of J;, J;, J,, corresponding to the eigenvalues 1 and -1, respectively. The last
complementary operator from C O, y, that is anti-isometry, shows that the spaces E'! N E!
anld 1? L=1'n E! are sign definite with opposite signs of scalar products on EL-! 0 E! and
EMInEL
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The case E3 4 is special since there are two non-equivalent irreducible modules v and

irr;+
Vf/ﬁ_, where the volume form Jg34 = Pj P3Py acts as Id and — Id, respectively. It shows

that Py = J., Jo, Joy = —1don V>*  and Py = J., J.,J.; =1d on V*

irr;+ irry;—"
The proof of the statement concerning the neutral common 1-eigenspace follows from the
systems P, ; and C O, s for mentioned values of r and s, see Table 7 in Sect. 5. ]

3 Pseudo H-type Lie algebras and Lie groups

In this section we recall basic facts on isomorphisms between pseudo H-type algebras and
discuss some properties of the automorphism groups Aut(4; ;(U)) of pseudo H-type alge-
bras. Table 2 contains the classification result for the pseudo H-type Lie algebras .4 ¢ (Vr;}sn)
obtained in [18].

3.1 Definitions of the pseudo H-type Lie algebras and their groups

Let (U, (-, -)u) be an admissible module of a Clifford algebra Cl, ;. We define a vector
valued skew-symmetric bilinear form

[(,-]:UxU — R"S
(x,y) —> [x,y]

by the relation
(Jx, y)u = (2 [x, yDr.s. 3.1

Definition 3.1 [11] The space U & R™* endowed with the Lie bracket
[(x,2), (. w)] = (0, [x, y])
is called a pseudo H-type Lie algebra and it is denoted by A} (U).

A pseudo H-type Lie algebra .4/ ((U) is 2-step nilpotent, the space R"* is the centre,
and the direct sum U @ R"-¥ is orthogonal with respect to (-, )y + (-, *)r s-

The Baker—Campbell-Hausdorft formula allows us to define the Lie group structure on
the space U & R"* by

1
(xaz)*(y!w)= (X+Y»Z+w+§[x,)’]>

The Lie group is denoted by G, ;(U) and is called the pseudo H-type Lie group. Note that
the scalar product (-, )y is implicitly included in the definitions of the H-type Lie algebra
and the corresponding Lie group. In general, the Lie algebra structure might change if we
replace the admissible scalar product on U, see [4,15,16]. The main purpose of the present
paper is to classify the Lie algebras .47 ¢(U), whose constructions involve the non-minimal
admissible modules U of Clifford algebras Cl, .

3.2 Isomorphisms of pseudo H-type Lie algebras

Let U and U be two vector spaces with scalar products (-, )y and (-, -) {7 Tespectively. Let
A: U — U be a linear map. The map A*: U — U defined by the relation

(Ax,y)g = {x, A"y)u (3.2)
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is called the adjoint map with respect to the scalar products (-, -)y and (-, -) 5. If both scalar
products are positive definite, we use the notation ’ A.

Let A} 4(U) and </V;,§([7) be two pseudo H-type Lie algebras withr +s =7 +5 =k
and dim(U) = dim(l?) = n. A Lie algebra isomorphism ®: .4} (U) — i/V;,g(U) has the
form

P = <2 2‘) USSR — U®R™, AeGL®), CeGL(k),

B: U — R is a linear map, see [25]. The action is defined by ®(x, z) = (Ax, Bx + C2),
xeU,zeR"¥. If wewrite J;: U — U and Juw: U — U for the corresponding actions on
the Clifford modules, then the matrices A and C satisfy the relation

ATJyA = Jcrqyy forall weR™, (3.3)

by (3.1). The matrices A® and C* are defined as in (3.2). The matrix B is arbitrary and we can
choose B = 0 for simplicity. To short the notation we write ® = A @ C for the isomorphism

D = (13 g) In following propositions we collect the properties of isomorphisms of H-type

Lie algebras 47 ¢(U) and A7 g(U ) for different values of signatures (r, s) and (7, §) studied
n [18], see also [5,8,31-33].

Proposition3.2 If ® =AB C: A ;(U) — ,/1{:,5((}) is a Lie algebra isomorphism, then

(1) the map ®* = AT @ CT: Q/I{:,g(lj) — M. 5(U) is also a Lie algebra isomorphism and
moreover

Q) r=r,s=8o0rr=3§s5="r.

Proposition3.3 If & = A C: 4 ,(U) — /K,r(f]) is a Lie algebra isomorphism and
r # s, then

(1) ATALLATA = —J,, z €eR™, AATJ,AAT = —],, weR";

2) A, J, = JC(Z1)JC(zz)A AJC(Z1)JC(12) = —J, J, A" for z1,220 € R with
(21, ZZ)r,s =0,

(3) the linear transformation C : R™* — R®" maps positive vectors to negative vectors and
vice versa. Moreover C*C = —1d. We can assume that | det A A| = 1 by multiplying
the matrix A by a constant.

Proposition3.4 If ® = A® C: A ,(U) — c/li,s(lj) is a Lie algebra isomorphism and
r # s, then

(1) ATAJLATA =T, AATJ,AAT = Jw forz,w € R"%;

(2) AJZ] Jzz = JC(Z[)JC(Zz)A AJC(Z|)JC(22) = le JzzA for 71,22 € R™% with
(Zl, Z2>r,s =0;

(3) the linear transformation C: R™* — R™ maps positive vectors to positive vectors,
negative to negative ones with C*C = 1d. As in Proposition 3.3 we may assume that
|det AYA| = 1 by multiplying the matrix A by a constant.

Proposition 3.5 [18, Theorems 5 and 11]If ® = A® C: A ,(U) — JV,),(U) is a Lie
algebra isomorphism, then C°C = +1d forr = 0, 1,2 (mod 4) and C*C = Id for r =
3 (mod 4). The map A can be normalised such that |det AYA| = 1 and it satisfies the
conditions of items (1) — (2) of Proposition 3.4.
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We explain a possible construction of the map A: V" — V'* "It was shown in [18,
Corollary 5, Theorem 3] that the map A can be obtained by the following procedure. The
system of involutions P, s acting on the minimal admissible modules decomposes them
into the direct sums me & Ei, V,;, = & E, of common elgenspaces We start by
constructing a map A;: E,; — Er;, where E,; = E| C Vo Ei; = E C Vnr“;
are common 1-eigenspaces of the system of involutions P/, ; and PI; ;. Then the map A;
produces the rest of the maps A;: E; — E; between the eigenspaces. Thus the map A has
block diagonal form A = @; A; written in the basis described in Sect. 3.4 and satisfies the

relations of Propositions 3.3 and 3.4.

Example 2 Recall decomposition 2.7) of Vn’:l: for (u, v) € {(8,0), (0,8), (4,4)}. Let A &
Id: A (VY = A7 (VYY) and

min min

oo

8
Virin = 69 o (En) @ Je e (i)
i=1 j=2
as in (2.7). The condition (3.3) applied to a vector u € E,, , is equivalent to the statement
that AJ+1J;jA1 = J;j, where A| = A|EM , and A/+1 AT|J}/»(E,L,v)’ j=1,...,8, are the
restrictions of the maps on the indicated spaces and the diagram

E;L,v J—> J{j (E,u,v)
¢

o T

Eu,v — j{j (E/L,V)

commutes. This shows that the maps

Ajit = Je (AT T (Bpn) = T (Ep), j=1....,8,

are completely determined by the map A . The conditions AJ;, J;; = f;l f;j A determine the
maps

Ajrg = Avj = JoJg MU Je) ™ s T Je () = o Jg (Epy). j=2.....8.

Thus the map A: V/“" — V"V is defined by Ay: E,., — E,., and has the form A =

16 min min
69’ A; in a suitable basis.

Lemma3.6 Let UT = (U, (-, -)y) be an admissible module of Cl, s and J;: U — U be
an action map, then the module U~ = (U, —(-, -)y) is admissible with the same action
map J;: U~ = U — U~ = U. Moreover, the Lie algebras E/K,X(U*) and N (U™) are
isomorphic under the isomorphism 1d @ — Id.

Proof We can see easily that U~ = (U, —(-, -)y) is an admissible module by definition.
The map
=1 —Id: A (U") - A (U")
(x,2) > (x,—-2)
is a Lie algebra isomorphism. Indeed, let [-, -]*
M s (U ), respectively. Then

be the commutators on the Lie algebras
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<Za [)C, )’]+)r,s - (szv y)UJr = _(sza y)U’ = (J—sz y)U’ = <_Z’ [)C, )’]7>r,s-

3.3 Automorphisms of the pseudo H-type Lie algebras

We discuss here the group Aut(.4; ¢(U)) of automorphisms of a Lie algebra .4} (U), see
also [15,25,31]. The group Aut(.4; ;(U)) is a subgroup of GL(r 4 s 4+ dim(U), R) and
consists of the linear maps

v = <2 2) : J‘{,S‘(U) =U @Rr,s — U @Rr,x = </Vr,S(U)

satisfying the condition (3.3), see also Propositions 3.4 and 3.5. The group Aut(4; s(U)) is
isomorphic to the following product

Aut( A7 5 (U)) = Ry x(Byy 3 Au’ (A 5 (U))). (3.4)

Here R is the group of non-homogeneous dilations §,: U & R — U & R"* acting as

8:(x,z) = (tx, 12z) fort € R,.The group B, s = { (Ig I?l) ] is isomorphic to RO+s)-dim(U)
The subgroup AutO(JVr. s(U)), consisting of the automorphisms of the form ¥ = g g

with C*C = =£1d, is called the group of restricted automorphisms. The semi-direct product
in (3.4) comes from the action of the subgroup Aut’(.4; ;(U)) on B, ; by

A0\ (1do) (A7t 0\ _( W 0) 5
0c) \B1d 0 ¢c') \cBa 'l

The groups of automorphisms of the Lie algebras .47 o(U) were studied in [5,24,31,32].
Now we present an example of elements of Aut? (A1 .5(U)), that will be important for the
classification of the Lie algebras .4/ ;(U). The map

R 3z —zeR"” CCly

can be extended to the Clifford algebra automorphism «: Cl, ; — CI, s by the universal
property of the Clifford algebras. We denote by C1; the group of invertible elements in
Cl,  and in particular R"** = {v € R"*| (v, v), s # 0} =R N CI;. The representation
Ad: R™5% — End(R"), is defined as

Ady(z) = —vzv ! = <z -2 (@, v)r.s v) eR™ for zeR™, veR ",
(v, V) s

Then it extends to the twisted adjoint representation Ad: Cl; — GL(Cl, ;) by setting
ClX, 29— Ady, Ady(¢) =a(p)pp™'. ¢ Cl. (3.5)

The map Ad for v € R, leaving the space R™* C Cl, ¢ invariant, is also an isometry:
(Ad (2), Ad v(@))r.s = (2, 2)r,s. Note that (Ad )= Ad Subgroups of CL* »s defined by

Pin(r,s) ={vy---v; € Clm | (i, vi)rs = £1},
Spin(r, s) = {vy ---vx € CIX | kiseven, (v, vi)r s = £1},

are called pin and spin groups, respectively. The reader can find more information about the
twisted adjoint representation and the groups Pin and Spin, for instance in [28].
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Proposition 3.7 [3,28] The maps
Ad: Pin(r,s) — O(r,s) and Ad: Spin(r,s) — SO(r, s)
are the double covering maps.
We make the identification Spin(r) x Pin(s) = Spin(r, 0) x Pin(0, s) C Pin(r, s) and
present a special map from Aut? (M .s(U)).

Proposition 3.8 Let J: Cl. s — End(U) be a Clifford algebra representation and ¢ €
Spin(r) x Pin(s). Then J,-1 @ (Ad(p)’ € Auto(/l/ s(U)). The group homomorphism

A: Spin(r) x Pin(s) — Auto(m,f‘gU)),
10 = Jy-1 @ (Ady)”
is injective and the diagram

0 —— Koy(U) —— Aut®(H,U) 22225 00, 9)

1 qa T e

0 —— Z» —— Spin(r) x Pints) —25 0@, s)
is commutative. The kernel K, ;(U) consists of automorphisms of the form A @ Id.
Proof By the definition of the twisted adjoint representation, a(¢)zg ™' = &1¢ (z) we have
Ja)Jely=1 = IR4,)» 2 € RS>,

If we show that Jy () = J;fl , or equivalently Ja((p—l) = JJ for ¢ € Pin(r, s), then it will
imply that J,-1 @ (Ady)" € Aut’(4;,) due to the relation A”J.A = Jer ().

If v € R™% is such that (v, v), ; = —1, then Jvﬂl = J; = —Jy = Jy@), and hence
Jy-1 @ (Ady)" € Aut® (A (U)). If v is such that (v, v)rs = 1, then Jvﬁ1 =JI, =
Jy # Ja), and therefore the map J,-1 & (Xav)f does not belong to AutO(Jifr,_;(U)). If

¢ = vivp with (v;, v;), s = £1,7 = 1,2, then Jwoy-t = Jup, = J;(UIUZ)' It implies

Joyom-1 ® (Ady,,)7 € Aut’ (A7 (U)). In general, if ¢ = x; -+~ X2, - y1 -+ ¥4 € Pin(r, s)
with (x;, x;), s = 1,i =1,...,2p,and (y;, yj)rs = —1,j = 1,..., g, then we obtain

= (=1t

T __ T —
(J(xl__,xzp_ylmyq)—l) = (qu:"'yl'XZp"'xl) Jxl"'XZp'yl"'Yq = ‘Ia(xl"‘XZp'yl'”yq)'

Corollary 3.9 There is an automorphism A & —1d € Auto(r/l/zr,s(U))for anyr,s.

Proof Observe that the image of the map Auto(,/Vzm) — O(2r, s) includes the group
SO(2r) x O(s). This follows from diagram (3.6) and Proposition 3.7. Since —1Id €
SO(2r) x O(s) belongs to the image of Auto(,/Vzm(U)) — O(Qr, s) we conclude that
thereis A: U — U suchthat A® —1d € Auto(/l/zr (). O

) and A5 = Ag0(V,

Wlll’l)

Consider the diagram (3.6) in the cases: .40 8 = 40, g(me
The following two diagrams are exact.

{0} —— Kog =R* — Aut®(Ahg) — 0(0,8) = 0(8) — {Id}

I A I-

{0} —— Zy —— Pin(0,8) —— 0(0,8) =0(8) —— ({Id}
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(0} —— Kgo=R* —— Aut’(45,) 0(8) (1d)
I 4] I
0} —— 7o —  Spin(8) SO(8) {Id}.

Since the Lie algebras . 4§ o and .4 g are isomorphic, see [18], there exists an automorphism
A € Aut’ (13,0) which is not in the image A(Spin(8)), where I; is defined as 11 (¢1) =
=L, h(&)=¢j=2,...,8.
Lemma 3.10 Assume that r = 1 (mod 4) and the vector spaces V, "> and Vr;?;ll’s are linearly
isomorphic. Then

min min

A®—1d e Aut’ <</Vr+l,s (V’“’S)) implies A® —1d € Aut® (75 (V).

Proof The existence of an automorphism A & — Id in Aut® (M1, S(Vnrl;;l’s)) is guaranteed

by Corollary 3.9. We consider the minimal admissible module V" as the restriction of the
minimal admissible module V,;;tll‘s by restricting the action of J,: R"+1:5 — End(V' 1)

min
through the inclusion map R™* < R’T! as well as the restriction of the scalar product

(-, )yr+1s onto Vy;’l.‘;. Note that the latter is possible due to the similar signatures of the
min

restriction of the scalar products to the common 1-eigenspaces, see Table 1. Let 7 : R0 —
R’* be the orthogonal projection. Then

Wyt @7 A g (V’*"“) — (V“’l“‘) 3.7)

! min min
min

Vr+1,s

is a Lie algebra homomorphism. Let A @ — Idgr+1.s € Aut®( Ay 41.4( min ). The property

ATJLA=J_; forany zeR™ with (Ax,y) reis = (x, ATY) et

and the homomorphism (3.7) allow to descend the automorphism A @ —Id € Aut®(.4/ 1
(V" T15)) to the automorphism of Nrs(V2 ) where the map A: V2 — V™ is the

min min min min
same. O

At the end of the section we formulate the relation between the existence of an automor-
phism and an isomorphism of a special type.

Lemma3.11 A Lie algebra isomorphism A & Id: A; (VIS — 47 (V57 exists if

N
min min

and only if there is a Lie algebra automorphism A @ —1Id: A} (VIS5 T) — 47 (V5

min min

Proof Letusassumethat A®Id: .A; (V5 ) — 47 (V57 where A: V5 sy

min min min min

is a Lie algebra isomorphism. We assume that the module actions on V,;'if;i coincide, but the
admissible scalar products differ by the sign, thatis (-, -) yrst == (-, ) yrsi— We denote the

min min

Lie brackets on the corresponding pseudo H-type Lie algebras by [x, y]* forx, y € V,;’if;i
Then

(z, [x, y]+),,s (z, [Ax, Ayl )r.s = (J;Ax, Ay)vr,.;;f = —(J;Ax, Ay)vr,s:+

_<Z7 [Ax, Ay]+>r,s-
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It shows that A @ — Id is an automorphism of J%,.;(VHZ’[“;JF)‘ Now assuming that A @ —Id €
Aut® (A7, (VI21F)), we obtain

min

(z, [x, y]+>r,s = (—z, [Ax, AY]+>r,s = —(J;Ax, A)’)Vr.rHr = (J;Ax, Ay)

min

yrsi

= (z, [Ax, Ay]_)r,s~
Thus A @ Id: A7 (V5 T) — A7 o(V/57) is an isomorphism. ]

min min

3.4 Existence of lattices on pseudo H-type Lie groups

To achieve the full description of isomorphic Lie algebras .4/ ;(U), where the admissible
module U is not necessarily minimal, we need a special type of bases for the Clifford modules.
This type of bases also shows the existence of lattices on the corresponding Lie groups,
see [17]. It is enough to construct the bases only for minimal admissible modules, and then
apply Proposition 2.7.

Let V,:”; be a minimal admissible module of the Clifford algebra Cl, ¢ and E, ; be the
common 1-eigenspace for the system P I, ¢ of involutions. We fix a vector v € E; s such that

[{v, v)yrs | = 1. Then a basis {x,-}l’.V , of the module V" can be chosen by setting

= min
x1=v, x2=Jy0,..., Xpps=Jp, V,..., XN = Jz;l JZ‘.2 ...le.kv,
that is a subset of all the 2"+% vectors obtained from v by action of Joy oS 1 =i <

ip <--- <iy <r+s.The vector v € E, s can be picked up in such a way that the basis in
E, s will be orthonormal due to the following proposition.

Proposition 3.12 [17, Lemma 2.9, Corollary 2.10] Let (V, (-, -)v) be an admissible module,
A1, ..., A; symmetric linear transformations on 'V such that

(D) A7 =—1dy, k=1,....1;
(2) ArAj=—AjApforallk,j=1,...,1

Then for any w € V with (w, w)y = 1 there is a vector w satisfying (w, Ayw)y = 0 and
(w,w)yy =1, fork=1,...,1L

Since the involutions are symmetric all the eigenspaces are mutually orthogonal, that
implies the orthonormality of the constructed basis. The construction of the basis also shows
that (J;;x;, x¢)yrs = (i, [xj, xx])rs = £1 or 0. It follows that the structure constants of
the Lie algebra }rll},n s(U) are £1 or 0. The concrete construction of bases for .47 ;(U) can be
found in [17], see also [12]. Applying the Maléev criterion [29], we obtain the proposition.

Proposition 3.13 [29] Let U be an admissible module of a Clifford algebra Cl, ;. Then there
exists a lattice on the pseudo H-type Lie group G, 3(U).

3.5 Classification of pseudo H-type Lie algebras .4}, (Vpin

The classification of the pseudo H-type algebras .4} ¢ (V,:lfn), constructed from the minimal

admissible modules was done in [18]. We summarize the results of the classification in
Table 2. Here “d” stands for “double”, meaning that dim V"’ = 2dim V°'" and “h” (half)

min min
means that dim V¥ = 1 dim V" . The corresponding pairs are trivially non-isomorphic
due to the different dimension of minimal admissible modules. The symbol = denotes the
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Table 2 Classification result after

the first step 8 =
7 d d d >3
6 d = = h
5 d = = h
4 = h h h O
3 d 3 =3 ) d d d >3
2 = h O Z d = = h
1 = O d o3 d = = h
0 =~ = h = h h h =
s/r 0 1 2 3 4 5 6 7 8

Lie algebra A7 (V") having isomorphic counterpart .4 (V" ), the symbol 2 shows that
the Lie algebra s (V! mi n) is not isomorphic to .45, (V;”rn) The notation O indicates that
the Lie algebra .4} , (me) admits automorphisms A @ —1d, and  denotes the Lie algebra

.- (V") that does not have this type of automorphism.

min

4 Classification of pseudo H-type algebras

In this section we state and prove the classification of the pseudo H-type algebras 4, ;(U)
with an arbitrary admissible modules U, and fixed signature (r, s). Eventually, the classifi-
cation depends on the decomposition of U on the minimal admissible modules. It is enough
to classify basic cases (2.8) due to Theorem 4.8.

4.1 Statements of main results on isomorphisms of Lie algebras .4} s (U)

In the rest of the paper we use the upper index =+ to indicate the scalar products that differ
by sign: V5t = (v (-, )V' s)yand V0T = (VS — (-, Jyrs ). We also use the lower

index = to distinguish the minimal admissible modules, correspondlng to non equivalent

r,si+ r.s;— _
irreducible modules, V, ="\ = (me IO >Vm}n;i) and V, © ' = (me =, >V,:”f,i

that were mentioned in Corollary 2.5.

Recall that Clifford modules are completely reducible, see Proposition 2.1 and any admis-
sible module can be decomposed into the orthogonal sum of minimal admissible modules, see
Proposition 2.3, item (2). To make the complete classification we decompose an admissible
module U of the Clifford algebra Cl, ; into the direct sum of, possibly different, minimal
admissible modules. We distinguish the following possibilities.

If r —s % 3 (mod 4) and s is arbitrary or r — s = 3 (mod 4) and s is odd then

P _
U= (@ V,;ljﬁ) P (@ Vs ) 4.1
If r —s = 3 (mod 4) and s is even, then

r,s; r,s;— Pf r,s; p: r,s;—
(EB sznj—) @ (69 thn +) @ (@ met> @ <€B Vm’i‘n,;—) : (4.2)
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The system of involutions P I, ; does not depend on the scalar product on the admissible

r.sid i i 7,8+ r,s;—
modules V, * '~ and therefore the common 1-eigenspaces E; s coincideon V, : " and V, ;.
Nevertheless, the restrictions of the admissible scalar products from V> and V">~ on the

respective E, ¢ will have opposite signs. The result of the classification essentially depends
on the signature of the restriction of the admissible scalar product on E, ; and the parity of
the index s. We formulate the main results of the classification.

Theorem4.1 LetU = (U, (-, -)y) andU = (U, (-, -) ;) be admissible modules of a Clifford
algebraCl, 5. Ifr =0, 1, 2 mod 4, then the pseudo H -type Lie algebra Ny ;(U) is determined
by the dimension of the admissible module U and does not depend on the choice of an
admissible scalar product. Thus ;. s(U) = JVM([]), if and only if dim(U) = dim(f]).

If r = 3 (mod 4), then the pseudo H-type Lie algebra .4; ((U) is determined by the
dimension of U and by the value of the index s.

Theorem4.2 LetU = (U, (-, -)y) andU = (U, (-, -) ) be admissible modules of a Clifford
algebra Cl, 5. Let r = 3 (mod 4) and s = 0 (mod 4) and let the admissible modules be
decomposed into the direct sums:

+ - + -
P st P si— P rsit P s
v= (8 v )@ (o v ) @ (5 vie ) @ (o v ).
pE I it I
7 it 8§ N oyt N oS
0= (5 vt )@ (% v ) @ (5 v )@ (B v ).
Then the Lie algebras ;. s(U) and Jl/r,s(l}) are isomorphic, if and only if,
p=pi+p-=pi+p-=p and q=pi+pr=p;+p =g
or

p=pi+p-=p;+p =G and q=p; +p" =p{+p_=p.

Theorem4.3 Letr = 3 (mod 4) and s = 1,2, 3 (mod 4) and let U and U be decomposed
into the direct sums

U = p+ Vr,S;-‘r P Vr,s;— U_ ﬁ+ Vr,S;-‘r P Vr,s;—
_@mm @@mm ’ _@mm @@mm .

Then ;. s(U) = A (U), ifand only if p = p™ = p* = pandq = p~ = p~ = G, or
p=pt=p =qandq=p =pt=p.

4.2 Periodicity of isomorphisms

We can reduce the proof of the main theorems to basic cases (2.8), due to the following facts.
Let Vrﬁi’; be a minimal admissible module of the Clifford algebra Cl,, ,, where (i, v) €
{(8,0), (0, 8), (4,4)}. It was explained in Example 1 that Vrffl?,': admits decomposition (2.7).
The admissible scalar product restricted to E,, , is necessarily sign definite and we can fix
it to be positive definite on £, , by Lemma 3.6. We summarize the results of Sect. 2.4 and

Lemma 2.8.
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Proposition 4.4 Let (me, (-, -)yrs) be a minimal admissible module of Cl, s and J;;, i =
1,...,r +s, the Clifford actions of the orthonormal basis {z;}. Then

8 8
len ® V}Zl: - (‘/ﬂl;lf’l ® E )@ (Vr:uit ® Jfa(Eli’V)) @ Vr;ti ® JCI J{a (EH»V)) (43)
a=1 a=2

is a minimal admissible module Vnr;n“ S of the Clifford algebra Cl, 4, s4v.

Conversely, if V};;“ STV is a minimal admissible module of the algebra Cl, 4 sy, then
the common 1-eigenspace Eq of the involutions T,,, y = 1,2,3,4, from Example 1 can
be considered as a minimal admissible module V , Of the algebra Cl, 5. The action of the
Clifford algebra Cl, 5 on Ey is the restricted actlon of Cly 4 s4+v obtained by the natural

inclusion Cl. s C Clyp sy

Proposition 4.5 According to the correspondence of minimal admissible modules stated in
Proposition 4.4, there is a natural injective map

B: A (A (Vi) = A (A (Vi ™).

min min

Conversely, automorphisms of the form A & C € Aut® (</1§+,L,S+V(Vnr1;“ YJrv)) with the
property C(¢y) = o, o =1, ..., 8, defines an automorphism A|g, ® Clrr.s of the algebra
Ny s(Eo), where the space Ey is the common 1-eigenspace of the involutions T,, y =

1,2, 3,4, viewed as a minimal admissible module of Cl, ;.

Proof Let A™ & C € AutO(JVS(VrS)) with (A7) 7T A™ = Jetey.i = 1,....r +s,

min
and let Jo,, 0 = 1,..., 8, be the actions on V" of the Clifford algebra Cl,, .
r+u,s+v v r+u,s+v M,
We want to construct A: V' =V Vv =V @ V! such
that z; — C(z;) and £y > ¢y by using the map A™5: V* — V'* .
The action J on Ve ® V“ : defined in Proposition 2.7 corresponds to

J(x ®y) = —J;(x) ® y, erm,n, y € Jg,(Eo), a=1,...,8,
J,(x®y) =J;x) ®y, xeVv: y € JyJe, (Ep), a=2,...,8,

= mln’
Jo, x ®y) =x ® Jr, (), xeVlh y € Ep,

mzn’

according to the decomposition (4.3). We define A: V' ®@ V" — V"5 @ vV on each

min min min min

component of the decomposition (4.3) such that it satisfies (3.3) with C being Ciz)=C (zi)
and C(¢y) = ¢y. It can be done in a unique way as in Example 2 and the operator A @& C
will satisfy Proposition 3.4.

Conversely, let A @ C € Aut® (A4, 500 (V")) be such that C(&) = o @ =

min
,8.Then V/ T+ g decomposed into the orthogonal sum (2.9) and the commutativity

min
of the operators J;; with the involutions 7’; allows us to define an automorphism A| g, @ C||rr.s
of the pseudo H-type algebra .47 ;(Ep). O

Note that the construction given in Proposition 2.7 can be performed for an arbitrary, not
necessary minimal admissible module U”*. Thus we obtain that U" T#5TV = "5 @ V,Zl :

is admissible for (i, v) € {(8,0), (0, 8), (4, 4)} if U™ is admissible. Denote by K, ;(U"*)
the kernel of the map

Aut® (A s (U™)) —> O(r, $)
A C — C.
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Corollary 4.6 Let U™ and U™ 5tV = U™ @ V" be admissible modules. Then

min
Kripsio (UTY) = B(Kr s (U™))

that is the kernel K, ;(U™®) is invariant under the map B defined in Proposition 4.5.
Lemma4.7 The Lie algebras N, (V') and N, (V" ) are isomorphic if and only if the
Lie algebras J%+M,S+V(V,;;t,”’s+v) and Jl/r+#,s+v(‘7r’r1;#’s+v) are isomorphic for (i, v) €
{(8,0),(0,8), (4,4)}.

Proof Let ® = A® C: A (V)10) — J%,S(V,;’I.Sn) be a Lie algebra isomorphism, then ®
canbe extended to ® = ADC: Ay 510 (VIS g cu (VIFTY) by the same

min min

procedure as in Proposition 4.5. Namely, we set A = A ® Id and C=Cold
Conversely, if AGC: e/ﬂJr,l,SJrv(VnZ;“’Hv) — C/KJFM,SJFV(V';;“’HV) is an isomorphism,

then

min

Aly @ Clies: s (Vo) = s (V)

is an isomorphism, where V" and V'*® are viewed as the common 1-eigenspace of the invo-
min min

lutions Ty, y = 1,2, 3, 4 acting respectively on V7" and V! TH“*" a5 was explained

in Proposition 4.5. O

Let now U”* and U be two admissible modules of equal dimensions for the Clifford
algebra Cl, ; such that they admit decompositions U"* = @ (V, > Yy and U™ = & (V, " k.
Then admissible modules U T#5 and U”+#5+V can be identified by Proposition 4.4:

U U @ VI = @ (Ve k ® Vi) ~ @k (Voo ™)
R

min min min min
and

Ormsty ~ g7 @ VI = (Vi k ® Vi) ~ @V ).

min min min min

Now applying Lemma 4.7 we obtain the following result.

Theorem 4.8 The Lie algebras N s(U™") and r/i/,,s~(l~/”‘?) are isomorphic if and only if the
Lie algebras ;4 s4+v(U™ STy and Npy 540 (UTTHSTV) are isomorphic for (i, v) €
{(8,0),(0,8), (4, 4)}.

4.3 Proof of Theorem 4.1

In order to prove the classification theorems for the pseudo H-type Lie algebras .4} (U),
one should be careful about the scalar product on each minimal admissible component of the
decompositions (4.1) and (4.2) of the admissible module U. Let us assume that U = @;V;,
where V; are minimal admissible modules. If we find linear maps A;;: V; — V; for all
i and j such that A;; @ C: A} (Vi) — A7 (V;) are the Lie algebra isomorphisms with
CC™ = 1Id, then the Lie algebra .4 ((U) is unique. Even though a different choice of a
scalar product on the vector space U gives different minimal admissible modules V; in the
decomposition U = @; V;, the resulting Lie algebras .4, ;(U) can be isomorphic if there is a
map C: R™* — R" that is the same for all A;;: V; — V. For the simplicity we choose C
to be identity on R™-*. The construction of maps A;;: V; — V; depends on the signature of
the restriction of the admissible scalar product on the common 1-eigenspace of each minimal
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admissible module V; from the direct sum U = @; V;. The proof of Theorem 4.1 is given in
three lemmas according to whether the common 1-eigenspace is sign definite or neutral space
and depends also on the type of the decomposition U = @;V; in (4.1) and (4.2). The first
lemma concerns with the cases when there are only two types of minimal admissible modules

r,s;+ r,s;— P .
V., and V = and the restrictions of the scalar product onto the common 1-eigenspace

is sign definite and have different sign.

Lemma4.9 The Lie algebras JK,S(VH;JF) and Jl/r,S(Vr"Y;f) are isomorphic for r =

min min

0, 1,2 (mod 4) and s = 0 (mod 4) under the map A @ 1d.

Proof We consider the case r = 0, 2 (mod 4). In this case the existence of an isomorphism
ADId: A (VIS — 47 ((V7) is equivalent to the existence of the automorphism

min min
A®—1d: JI/,,X(VIZ’I.‘2;+) — JVr,x(Vn};’,":+) by Lemma 3.11. The necessary automorphism
exists by Corollary 3.9.
Let r = 1(mod 4). We need only to consider the cases (1,0) (5,0) and (1,4) due

to periodicity. The case 4] o(V,"*F) is trivial by the uniqueness of three dimensional

min
Heisenberg algebra. The automorphism A & —Id: Q/Vrys(Vr;’i;‘Jr) — Q/Vrys(Vr;’i;‘Jr) exists
for (r,s) € {(1,4),(5,0)} by Lemma 3.10 and Corollary 3.9. The proof is finished by
applying Lemma 3.11. O

The following two lemmas give the rest of the proof of Theorem 4.1 and they are con-
cerned with indices r =0, 1,2 (mod 4), s = 1, 2, 3 (mod 4) for which the restriction of the
admissible scalar product to the common 1-eigenspace is neutral. Lemma 4.10 deals with the
indices (r, s) ¢ {(1,2), (1,6), (5,2)}, because in these cases any admissible module U has
decomposition (4.1). If (r, s) belongs to {(1, 2), (1, 6), (5, 2)} then an admissible module U
has decomposition (4.2) and the results of Lemma 4.10 are extended in Lemma 4.11.

Lemma4.10 Ler (r,s) ¢ {(1,2),(1,6),(5,2)} and let st = (v, G ) yrst) and

min X
min
V};’i‘;ﬁ = (V,(, ')Vr,s:—) be two minimal admissible modules of Cl, s with (-, ')Vr.5;+ =
min min
=y If the restrictions of both scalar products on the common 1-eigenspace E, g of

min
involutions from P1, s are neutral, then the Lie algebras ;. s(VrZ’i;;Jr) and N; (V") are
isomorphic under the isomorphism A & Id.

Proof Notice that the system of involutions P/, s does not depend on the scalar product
and therefore the common 1-eigenspace E, s is the same for both modules. The restrictions
of the scalar products on E, s are neutral by hypothesis. We find v,u € E, such that

(v, v)V,-ts;+ = (u, M)Vr,.s:— = 1. We find the orthonormal bases
xo=v, x1=Jyv, ..., Xn—1 = l_[JZiv, N =dim(V),
i
yo=u, yi=Jyu ... yy1=]]Ju. N=dimV).
i

Then the map A @ Id is the isomorphism of the Lie algebras .4/ (V,;’fn;Jr) and A7 (V)2 7),

where we set A: x; — y; and then extended it by linearity. Indeed, let /., : V — V be the
Clifford action. Then
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= <Jzk 1_[ Jzk[ u, 1_[ Jij u>
i j

(Zk’[xi»xj] r,s —< zkl_[Jzk v, HJZk v>

Voin Voin
= (2. i yj]_>,,s
since the calculations depend only on number of permutations in the products. O

In the cases (r, s) € {(1, 2), (1, 6), (5, 2)} there are two irreducible modules V” L. but

they are not admissible. The minimal admissible modules are me L= VW L@ Vlrrrs 4 and
Voo = Vi@ V2., see Corollary 2.5, item (3-2-1). Thus any admissible module U
is decomposed into the dlrect sum of type (4.2).
Lemma 4.11 The Lie algebras
— <D1 . —
sV 2 v B v 2

for(r,s) € {(1,2), (1, 6), (5,2)} are isomorphic under the maps &, = Ay ®1d, k =1, 2, 3.

Proof The existence of the maps ®; and ®3 follows from Lemma 4.10. We need only to
construct ;.

CASE A12. Let v € anuii be such that (v, v)v1,z;+ = land u € me with
min;+
(u, u)v1,2;— = —1. It is possible, since both scalar products are neutral on the module.

min;—

Then the vectors
x1=v, x2=J,v, x3 = J,v, x4 = Jv,
yi=u, y=-Jyu, y3=-—Jpu, ys=—Jzu,

form the orthonormal bases for anuii and an”i , respectively. We define the corre-

spondence: A: x; — y; and C: z; +— z; and extend it by linearity. It is easy to check
that & = A @ Id defines an isomorphism between the Lie algebras .41, z(V ) and

mm
1,2(Vmi,,;,)~
CASE .41 6. This case is similar to .41 2 and we construct an isomorphism & = A &

d: A (V2 t) — M 6(V,i% 7). We have Jgi6 = Id on V2% that implies P3 = —Id,

in;+ min;— mln +’

see Table 7. It also shows that E} ¢ = E1,6(V”1”.2 :) ={v e me " | Pi(v) = v, Py(v) =

v}. Then if necessary, we apply Proposition 3.12, with the operators A1 = J;, J;, st and
Ay = J;, J,, J;; and obtain the orthonormal basis of anl from a vector v € Ej 6( Vm 6+

in; +)
: 1,6;+ .
with (v, v)v’m;+ =1:

x1=v, xi=J; v, i=1,...,8,

xj_J JZ/ U, J=9,...,14 xp=JnJuJy 4v, k=15,16. (44)

= —1. Then by the same way as for V5%

Letu € Eq, 6(V min 4

mlﬂ

)CV

mln

— with (u, u)Vl,@f

min;—

we obtain the orthonormal basis of Vm e

yvi=u, yi=—J; u, i=1,...,8,

; 4.5
Vi=Jndzysu, j=9,...,14 yp=—JyJyJy gu, k=1516. @3)

Then as previously, the correspondence A: x; — y;, i = 1,..., 16, defines the Lie alge-

bra isomorphism ® = A @ Id: 4], 6(me +) - M 6(me _) since the map A satisfies
relation (3.3).
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CASE .45 2. In this case we can use bases (4.4) and (4.5), since PIs» = P . The table
of commutators will differ by signs for zy, ..., z7. O

4.4 Proof of Theorem 4.2

Theorem 4.2 is concerned with the indices r = 3 (mod 4) and s = 0 (mod 4) and is given
in Lemmas 4.12 and 4.14. The cases with s = 0 are classical and the result is known, for
instance from [8,13], however in order to accomplish the whole classification of pseudo
H-type Lie algebras we must take into account that the Lie algebras .4; ¢(U) can admit a
negative definite admissible scalar product on U. Thus, we can obtain the opposite sign of the
restriction of the admissible scalar product on the common 1-eigenspace even for classical
cases.

Lemma4.12 Let r = 3 (mod 4) and s = 0 (mod 4). Then an admissible module U is
decomposed into the direct sum of type (4.2).

(1) There is a Lie algebra isomorphism ®: A7 (VIS4 Y — 47 (VST of the form

min;+ min;—

® = A@Id. There is no isomorphism of the form ® = A @ — 1d between these algebras.
Analogous results can be stated for the Lie algebras isomorphisms Ay ¢(VI'5 ") —

min;+
A s (VD).
(2) There is a Lie algebra isomorphism ®: %J(Vnr”;t’_) — q/l/”(Vnr”;:_) of the form

o = A @ C withdetC < 0 and there is no isomorphism of the form ® = A & Id.
Analogous results hold for the Lie algebra isomorphisms Ay s(V/5 Ty — 47 (V57

min;— min;—
N sVl ) = Mo sV, A (Vi) = A (Vi ).
Proof We start from the proof of the first part. We restrict the consideration to the basic cases
(r,s) € {(3,0),(3,4), (7,0)} because of the periodicity Theorem 4.8. In order to construct

anisomorphism ® = A@Id: A7 (V%) — A7 (VI " ) wechoose v € E, ; C VI

min;+ in min;+
with (v, v)Vn,l,isn;tr = land Jorsv =vandavectoru € E, ; C Vl:l;l: with (u, u>V,;}Sn:~: =-1
and Jorsu = —u. Here Q™ is the volume form of the Clifford algebra Cl, ; with actions
J: Cl.g — End(V)* " )and J: Cl. g — End(V,): 7).

Let (7, s) = (3, 0). The respective orthonormal bases are the following:

3 .
;054 and

X1 =v, x2 =Jv, x3 =J,v, x4 =J,5() for me;Jr

~ 4 3,0;—
vi=u, y=—Jyu, y3=—J;, ya=—Jyufor V

min;—"

In the case (r,s) = (7, 0) the initial vector v € E79 C V,Zl(:li satisfies Pjv = Pyv =

P3v = P4v = v, where the involutions are given in Table 4. Note that Jo10 = P1Pyv = v.
The initial vector u € E79 C V7%~ for the basis has to satisfy Piu = Pou = P3u =

min;—
— Pqu = u with J~Q7.o = P} P4u = —u. The bases are
xp=v,xj=J; v, j=2,...,8 for Vnz;.?l;: and
7 : 7,0;— (4.6)
yi=u,yj=—Jz; u, j=2,...,8, for me;_.

Let (r, s) = (3, 4). The basis is given by (4.6) and Jg3.4 = P; P3 P4, where the involutions
P; are presented in Table 6.

The maps ® = A & Id in all the cases are given by correspondence A: x; + y;. The
Lie algebra isomorphisms ® = A @ Id: JV,,S(V,;};;;L) — e/Vr,S(V,;’if;:) are constructed
analogously.
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Assume that the isomorphism ® = A @ C with A: Vr:tlsntr — Vo and detC < 0

exists. If (r, 5) € {(3,0), (7,0)}, then A" = —'A, and Jr0 = —Jg&r0 = 1d since the minimal
admissible modules correspond to the non-equivalent irreducible modules. Then

7
UA = —AJg oA =A"Jg0A =[] Jic) = et C)Jgro = det C <0,
i=1

by (3.3). This is a contradiction, since the matrix ' AA is positive definite.
Let (r,s) = (3,4). The admissible scalar products restricted to common 1-eigenspace

E, s are sign definite and the symmetric bilinear forms (X, y) yrsic and (x, ) rs+ restricted
mir min;+
to the common 1-eigenspaces are related through the equahtles

(i,y) rsi— = (AX,Ay) <J§234Ax Ay)V'57 = (A .1934AX y)Vrer

min;— min:— min;— min;+

7
—<1_[Jcr(zi)x,y> = —detC* (Jzax, y) rosit

it mtn +
me +

—det CT (x, Y)yrsit - 4.7)

min;+

The signs of the values of two symmetric bilinear forms coincide if det C < 0 and opposite

if det C > 0. We conclude that there is no Lie algebra isomorphism ®: .4 (Vr;’lf;i)

s (Vi) of the form & = A @ — Idgrs. Remind that the map A maps the common 1-
eigenspace from V> i
in Sect. 3.2 after Proposition 3.5.

The results for the Lie algebras .4, S(Vnzl; ~)and .4 s(V,,r”fl *) can be shown similarly.

We prove now the second part of the 1emma The 1somorph1sms

</Vr,s (Vr,'s;+) ~ f/%*,s (Vr,'s;.f) and </Vr,s (Vr’.S;Jr) o~ =/Vr,s (Vr,'s;f)

min—+ min;+ min;— min;—

to common 1-eigenspace from V' . by the construction described

min; +

under the map & = Id @ — Idgr.s are given in Lemma 3.6. The reader can find the isomor-
phisms of the form ® = A @ C with det C < 0 for the Lie algebras

s (Vi) = s (Vi) and s (Vi) = s (Vi)

in [18, Theorem 12]. The non existence results are proved in a similar way as for the part (1)
of Lemma 4.12. O

We state separately a corollary of Lemma 4.12 that is a core for the proof of Theorem 4.2.

Corollary4.13 Let r = 3(mod 4) and s = 0(mod 4). There exists an isomorphism
</Vr,5(Vn:’.S;+ ) = M, (V' 57 of the form ® = A @ 1d. There does not exist a Lie algebra

in,+ min;
isomorphism t/i/m(Vr;iZ':) — M S(me Jr) of the form & = A @ Id.

Lemma4.14 The Lie algebras N7 s(U), (r, s) € {(3,0), (7, 0), (3, 4)}, are completely deter-
mined by the pair of numbers (p = pi +p-,q=p,+ pT) in the decomposition of the
admissible module U :

)
(@ v,;,;t) o (ea - ) ® (ee v,;,iﬁ) o (@ - )

@ Springer



Geometriae Dedicata (2019) 202:233-264 257

Proof Let U be an admissible module of Cl, 5 for (r,s) € {(3,0), (7,0), (3, 4)}. First we
decompose U into the sum of irreducible modules:

p pP—
v=(8vi)e (B vy )-vieu.

Then, Jors = Idy, and Jors = —Idy_. We decompose the submodules U, and U_ into
the minimal admissible modules

U. = pi Vr,s;+ Py Vr,s;— d U = pf Vr,s:+ p- Vr,s;—
+=| O min;+ O min;+ an -=1© min;— Sl IS min— |

r.s;+
where Vmin; L
scalar product on the common 1-eigenspace E, s is positive definite and Vnr“;; are those
where the restriction of the scalar product on E,  is negative definite. It was stated in

Lemma 4.12, item (1), and Corollary 4.13 that

are the minimal admissible modules for which the restriction of the admissible

D p=pl+p_ . g=p;+p* .
N s(U) = A (U with UT = ( & V”’Jr) @ ( & V”’+> ,

min;+ min;—

where & = A @ Id. Thus we can consider only the case when the restrictions on E, ; of the

scalar product is positive definite. Since the isomorphism between Lie algebras .47 ¢ (Vy:l’l.‘:i)
and A7 (V"5 can not admit the form A @ Id by Corollary 4.13, we conclude that two

min;—

Lie algebras .4} (U) and .A4; (U) with
J4 . q . ~ p . q .-
v=(&vit)e(dvit) wma 0= (bvit)e (dvit)
are isomorphic if and only if either (p, g) = (p, g) or (p, q) = (g, p). O

4.5 Proof of Theorem 4.3

In order to prove Theorem 4.3, we consider the low values of the indices: r = 3,
s=1,2,3,5,6,70rr =7,5 =1, 2,3 and then we apply the periodicity Theorem 4.8. An
admissible module U has decomposition of the type (4.1). Theorem 2.9 shows that the restric-
tion of the scalar product (-, '>V,;"‘ on the common 1-eigenspace E3  fors = 1,2,3,4,5,6,7

and E7, s = 1,2,3 is sign definite. We denote by Vr:]’ifl;+ = (Vr;'if]:'Jr, (-, )yrat) the
minimal admissible module with positive definite metric on E, ;. Analogously, we write
VoSt = (VST *)yr.s:-) for the minimal admissible module with negative definite

min min
metric on E, ;. We note that all the systems P, ; include the involution P = J;, J, J,; for
mentioned values of r and s.
Consider pseudo H-type Lie algebras J1/3,S(V3’s;+) and ,/1/3,S(V3’S:_) fors = 1,2, 3.

min min
The natural inclusion R39 ¢ R3* allows to consider the module Vniﬁﬁ'
module U = V>30T g v30— of Cl3,0. The module U has to include both eigenspaces of

min;+ min;—

the involution P = J;, J,, J; and therefore U = Vj}‘;;+ includes both irreducible modules

as the admissible

3,0 . _ 3t . . 3,0
Vo o The metricon U = V, '™ is neutral and therefore the irreducible modules V- it

have to carry the definite metrics of opposite signs. Analogous considerations can be done
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258
with me This and the item (1) of Lemma 4.12 imply the existence of the isomorphisms
ysit y 30+ 3,00—\ ~ 3.0:+
Al ® Id: /VS 0 ( mtil ) /V 3,0 ( min;+ @ Vmin;—) = ’/VS'O (@ me +>

3,5 ~ 307 3,00+ ) ~ 3,0+
AZ@Id ‘/’/30<V ) ‘/VSO( mm+@me —) :‘/‘/3»0 (@ me —>

min

for any s = 1, 2, 3. More generally there are Lie algebra isomorphisms
P _
HoWU) = Mo ((@ Vri;*) D (@ Vo ))
~ A Yo 3t
= ‘/’6»0 (( ® me +> @ ( ® men —))

= M3,0(U).

The projection map 7 : R>* — R39 where z;,i =3 +1,...
defines a Lie algebra surjective homomorphism Id @x : A3 ,(U) — A435,0(U). We assume

3 + s, are mapped to zero,

now that there exists a Lie algebra isomorphism
A®C: M U) — H(U), where U= (éB V,f”fﬁ) ® <ea V,fﬂil_)

Then it defines a Lie algebra isomorphism A & c: M0U) — ,/1/3,0(17) where C is the
restriction C|ps.0 of the map C on R3?. We define

4 3 3 C/ Zi [()] | = 1, 2, 3,
V- R‘ s — R”O as 71/((: (21)) = ( l) l
O 10]1——3+|,...,3—|—S.

Then the diagram
Id ®n
Ms(U) —— A30(U)

A@Cl lA@c’ 4.8)

- Wder -
M s (U) ——— M0U)

commutes. We conclude that .45 ((U) and 43 ¢ (l7 ) are isomorphic, if and only if p* = p
p~and p~ = p+ by Theorem 4.2, see also [8].

and p-=p orpt =
v35E) 10 44 o(le?l i) fors = 5, 6, 7 we observe

In order to prove the reduction of A3 (V7
that there are Lie algebra isomorphisms
a(s) a(s) L 20(s)
Ar@d: A (Vi) zm.o(@ V,i,iii) 69(@ Vi}i;)) = w( ® V,i;i';i)

min

~ a(s) @) 300\ o 29 3.0+
A, ®1d: </1/30< i ):Jl{g,o (( @ me +) 53] ( @ me;,)) = 3,0( & Viini— )

where @ (5) = 2, «(6) = 4 and «(7) = 8. The rest of the proof is made analogously.
(V7S£ s = 1,2, 3, to the

Literally the same reduction is made for the Lie algebras .47 5(V,
O

Lie algebra Q/V7,0(Vn71 l(r)l :i) The theorem is proved.
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Table 3 Final result of the classification

ks

W IR
wRIR

11111 1R

C
o
C

W MR

O = NP W kR N0
[ o | P | PO | PO | PO [ PO 1 4
SRR R RR S IR

SRR ORI IR R IR
ORI OIR S IROIROIR R R
SOROROR R IR IR RS

R | P P [P (P [ P (P [ P P

=GR R TR TR R
SR MR R R R

DR R C
=R IR
DR IR R R IR

s/r isotyp nonisotyp isotyp nonisotyp

4.6 Final result of the classification
The following statement can be proved analogously to Theorem 4.8.

Theorem 4.15 The Lie algebras ;. (U™) and JK,C(I:/‘Y”) are isomorphic if and only if the
Lie algebras JV,+M,S+U(U”“*””) and %+V’r+M(US+v’r+M) are isomorphic for (i, v) €
{(8,0),(0,8), (4,4)}.

We showed in Theorem 4.1 that the Lie algebras .4; ((U) for r = 0, 1, 2 (mod 4) are
defined by the dimension of the admissible module U. If » = 3 (mod 4) the Lie algebra
1.s(U) depends on the decompositions

P r,s 9q r,s P r,s, q r,s,—
U= (@ Vm;-n;+) D (@ Vm;-n;_) or U= (69 Vm;-,;*) S¥ (@ Vi ) .49

where the numbers p, g are defined in Theorems 4.2 and 4.3. We call admissible modules
with decompositions (4.9) isotypic if one of the numbers p or g vanishes. Otherwise the
admissible module is called nonisotypic.

Theorem 4.16 Letr =0, 1,2 (mod4) ands =0, 1, 2 (mod 4). Then A} (U) = ,/1@7,(17) if
dim(U) = dim(0).

Letr =3 (mod8), s =0,4,5,6(mod 8) orr =7 (mod 8), s =0, 1,2 (mod 8). Then
Nrs(U) = /l@,r(l}) ifdim(U) = dim(U) and U is an isotypic admissible module.

Letr =3 (mod8) ands = 1,2,7 (mod8). Then A3 s (U) is never isomorphic to %,3(17).

We summarize the results of Theorem 4.16 in Table 3. We distinguish the columns forr = 3
and r = 7 for isotypic and nonisotypic modules. We write the symbol = in the place (r, s)
if A7 ¢(U) is isomorphic to ,/K,r(f/ ) and the isomorphism only depends on the dimension
of the admissible module. For example, .45,0(U) = %,3(17) if dim(U) = dim(U) and U
is isotypic and .43 o(U) 2 %,3(0) if U is non-isotypic. We have .45 1(U) 2 </1/1,3(0) for

any admissible modules U and U even if dim(U) = dim(U ) and the module U of Cl3 1 is
isotypic: U =é Vit oru =é vl

min min
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5 Appendix

We give the collections P, s and C O, , for basic cases (2.8) grouped in four tables. The
dimensions of E, s and signature of the scalar product restricted to E, s are listed. First we
mention trivial cases.

PLo=Plyy =Pho=PlLi1=Plyp=Ph1=Plhz=19,
PhLo=Plh={P=J,J,J5}, CO30=CO12=0.

For the cases (r,s) of r —s = 3 (mod 4) and s even, there is no complementary operator
which commutes with all the involutions in P, ; except the last involution which is of the
form P3 or P4 and anti-commutes with the last involution. In these cases the operator Jgr.s
is a product of involutions in P, ; and it commutes with all the operators J;, . This is the
reason for the number of complementary operators to be p, ; — 1. The last operator in P, ¢
of the form P3 or P4 distinguishes the two different minimal admissible modules.

The signature of the admissible scalar product restricted on the space E,  is sign definite
in Table 6 and is neutral for signatures (r, s) in Table 7. The latter can be seen by finding
an additional negative operator other than operators in C O, ; which commutes with all the
involutions in P 1, ¢ (Tables 4, 5, 6).

Table4 Systems PI. gand CO, o,r =4,...,7

PI.0\CO; o Isom Isom Isom dim(E, () and signature
P4 0\CO4,0 Jz

Py = Uz JzpJz3 0z -1 dim(E4 ) =4, £
PIS,O\COS,O jzz jzl

Py = JzpJz3 074 Jz5 —1 1

Py =Jz1Jz 0z —1 dim(E5 ) =2, £
PI6,O\C06,O Jz1 12,5 Jzz-’z4

P1 =z 30z -1 1 1

Py = Uz Jp Iz 0z —1 1

Py = J; Jo3 Tz —1 dim(E¢0) =1,
PI70\CO7,0 Jz Jz1Jz3 Jz1 2y

Py = JzJznJz3 0z -1 1 1

Py = Jz1Jzp Jz5 0z -1 1

Py = Jy Iy o5 Iz -1 dim(E70) =1, £

Py = JZ5 Jz6l27
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Table5 Systems Pl 4 and CO; 4,7 =0,1,2

PI 4\CO, 4 Isom  Anti-isom  Isom dim(E, 4) and signature  Basis for £, 4

Ply4 = Plso\COp 4 Jz,

_ B . _ v, Jz Iz,
Py=Jz Joy oy Jzy 1 dim(Ep4) = 4. + Jz Iz v, Sz Iy
Pl 4= PlIsp\CO1 4 Jz, Jz
Py = JzpJz3J24 25 —1 1
Py = Jz oy Joy -1 dim(Ej 4) =2, + v, Jzv
Pl4=Plgo\COr4 Jz Jzs Jz1Jz
Py =z Jzs 0z -1 1 1
Py = Jzy Jzy s o —1 1
Py = Jz 30z —1 dim(Er4) =1, £ v

Table6 Systems PI3sand CO3,5s =1,...,7and Pl75,CO74,5s =1,2,3

Pl s\COy s Isom Isom  Isom Anti-isom dim(E3 ) Basis for E3 ¢
PI31\CO3,1 Iy
Py =Jz 0z 0z —1 dim(E3 1) =4 v, J;; v, S0, 30
PI32\CO3 Jzy o Iy
Pl = Jzy JeyJoy Jos -1 1
Py = J; Jzp Jzs —1 dim(E32) =2 v, Jzzv
PI33\CO33 Iz Joiz o J3dz
Py = Jz o JzyJzs —1 1 1
Py = Jyy oy Ty Jog -1 1
Py =z J:pJzs —1 dim(E33) =1 v
PI34\CO3 4 Jzy Ty Uz
Pl = U2y JeyJoy Jos —1 1 1
Py = Uz Joydis oy -1 1
Py = Jz Jzp Iz 0z, —1 dim(E34) =1 v
Py =Jz Jzydzy
PI3 s\CO3 5 Jz Jeo ey Jzs Jzg
Pl =y oy ey ey —1 1 1 1
Py = Jzy oy Jog I —1 11
Py = Jz Joy Jos T2y -1 1
Py= Uz JoyJos -1 dim(E35) =1 v
Pl3xx6 = Pl35 CO36=C035 dim(E36) =2 v, JzgJzgv
. v Jza J7gV
Plz7 =PI CO37=CO dim(E =4 ’ w8297
3.7 3.5 3.7 3.5 (E3.7) Teg oo, Jog Jorg
PI; 1\CO7 1 Jz Jzs Jo7 Tz
Py =Jy oy ey —1 1 (N
Py = Jzy ey Jes g -1 1
Py = Jz JzyJesdzy -1 1
Py =Jz JzpJzy -1 dim(E7) =1 v
PI7!2 = P171 C07!2 = C07,1 dim(E7,2) =2 v, ng ngv
Pl;3 =PIy CO73=CO07, dim(E7,3) = 4 v Jzg g0,

Jzg Jz10Vs Jz9 21V
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Table7 Systems PI; s and C Oy s for Proposition 2.9

Pl s\COy Isom Isom Isom Anti-isom  dim(Ey 5)

P11 3\CO; 3 Jzp Jzy

Pl =y Jzy ey -1 dim(E| 3) =4
P 2\CO7 o Jz

Py =z Jz JZ3 Jzy -1 dim(Epp) =4
PI3\CO23 Jz Iz Iz

PL= oy Joydzydoy -1 1

Py = Jzy Joy Jos -1 dim(Ey3) =2
Ply5\COp 5 Jzy Jzs

Pl =y Ty dig sy 1 dim(Eq 5) =8
P10,6\C00.6 JZ] 125 Jzz qu

Pl =z Joy g Ty 1 1

Py = Jzy Jzp Jog Uz ~1 dim(Eq.¢) = 4
Plp7\CO¢ 7 JZ] JZS Jzz ng JZ5 ‘126

Py =z oy Ty 1 1 1

Py= Uy Jop Jos Tz ~1 1

Py = Jzy Jzy g 0oy ~1 dim(Eq.7) =2
P11 5\CO 5 JZ5 116 123 Jzy

Pl =Jydy oy leg 1 1

Py =z oy Ty -1 dim(E| 5) = 4
P11 6\CO16 JZ5 JZ(, JZ3 JZ4 JZZ JZ4JZ(,
Pl=oylydydes —1 1 1

Py = Jzy Iy Jog )2y -1 1

Py =Jz oy oy 1 dim(E| ¢) = 4
P’1.7\C01,7 JZS Jz6 Jz3 Jz4 Jzz ‘124]26‘128

Pl= Uy oy dos —1 1 1

Py = oy Jiz g oy ~1 1

Py =Ty Ty Ty -1 dim(E) 7) = 4
P12,5\C02,5 JZ] JZ] Jz3 127 JZ5 ng

Pl =z oy g Jey 1 1 1

Py= Uy Jop Jog g ~1 1

Py =Jz oy Jos -1 dim(Ey,5) =2
Phe=Plhs CO26=COy5 dim(E 6) =4
Ph7=Phs CO27=COy5 dim(Ep7) =8
Ply1=Plys COy4.1 = {Jz} dim(E4 1) =8
Plyp = Plye CO40 ={Jzy. Jzp J25} dim(E42) =4
Ply3 = Plyy CO43 = {JZI, Jzy .113,Jz5 ‘116} dim(E43) =2
Pls 1 =Pl 5 C05q1 :{JZSV‘]Z3‘IZ4} dim(ES’l):4
Plsy, =Pl g COs5 5 = {‘IZS’JZSJM"IZZJM‘IZG} dim(E5p) =4
Pls3 =Pl 7 COs53 ={Jzg, o3 Jzys Jop Jog Jzg g} dim(Es53) =4
Pl = Plys CO61 = Uz J2y Iy Jos o) dim(Eg,) =2
Plgo = P12,5 COg2 = C06,1 dim(E6’2) =4
Plg3 = P12’5 CO¢3 = CO0g,1 dim(E6’3) =8
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