
Geom Dedicata (2019) 199:281–290
https://doi.org/10.1007/s10711-018-0349-y

ORIGINAL PAPER

Total curvature and some characterizations of closed
curves in CATk spaces

Areeyuth Sama-Ae1 · Aniruth Phon-on1

Received: 9 July 2017 / Accepted: 22 March 2018 / Published online: 24 March 2018
© Springer Science+Business Media B.V., part of Springer Nature 2018

Abstract In this paper, we study the characterizations of a closed curve in a CAT(k) space
that bounds a geodesic surface which is isometric to the disk bounded by a circle in the model
space Sk with same perimeter.
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1 Introduction

In this paper, we study the characterizations of a closed curve γ in a CAT(k) space that
bounds a geodesic surface which is isometric to the disk bounded by a circle γ ′ in the model
space Sk with the same perimeter. These characterizations involve either the length or the total
curvature of γ and all its subarcs and either the chord length or central angle. Here, properties
of subarcs of γ are inherited from the same subarc of γ ′. Specifically, the characterizations
are:

(1) arclength of γ , including its subarcs, and chord length,
(2) arclength of γ , including its subarcs, and central angle,
(3) the total curvature of γ , including its subarcs, and chord length, and
(4) the total curvature of γ , including its subarcs, and central angle.
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A curve γ in a CAT(k) space M is called a spherical curve if there is a point q ∈ M and
a positive real number r such that d(x, q) = r for all x ∈ γ . The real number r is called the
radius of γ . For example, a circle of radius r > 0 in the model space Sk is a closed spherical
curve at a distance r from its center. In what follows, we let γxy be a spherical curve in a
CAT(k) with endpoints x, y and let γ ′

x ′y′ be a subarc of a circle in the model space Sk with
endpoints x ′, y′. Denote κc(γ ) and κ(γxy) the total curvature of a closed curve γ and a subarc
γxy , respectively. We let �(γ ) stand for the length of a curve γ , while � q(x, y) is the angle
at a point q between the geodesics from q to x and from q to y. We let C(A) be the convex
hull of a set A. Let M be with a metric d a CAT(k) space, and let d ′ be a metric on the model
space Sk . The main result of this paper is presented as the following theorem:

Theorem 1.1 Let γ be a closed spherical curve at a distance r < π

2
√
k
from q in a CAT(k)

space M, and γ ′ be a circle of radius r centered at q ′ in the model space Sk. Suppose that
one of the following statements holds:

(1) �(γ ) = �(γ ′); d(x, y) = d ′(x ′, y′) whenever �(γxy) = �(γ ′
x ′ y′) for any subarc γxy of γ

and any subarc γ ′
x ′y′ of γ ′;

(2) �(γ ) = �(γ ′); � q(x, y) = � q ′(x ′, y′) whenever �(γxy) = �(γ ′
x ′y′) for any subarc γxy

of γ and any subarc γ ′
x ′y′ of γ ′;

(3) κc(γ ) = κc(γ
′); d(x, y) = d ′(x ′, y′) whenever κ(γxy) = κ(γ ′

x ′ y′) for any subarc γxy

of γ and any subarc γ ′
x ′y′ of γ ′;

(4) κc(γ ) = κc(γ
′); � q(x, y) = � q ′(x ′, y′) whenever κ(γxy) = κ(γ ′

x ′ y′) for any subarc γxy

of γ and any subarc γ ′
x ′y′ of γ ′.

Then C(γ ′) is isometric to C(γ ), that is, the totally geodesic surface bounded by γ in M is
isometric to the disk bounded by γ ′ in the model space Sk.

The curvature of a smooth curve parametrized by its arclength is the rate of change of
direction of the tangent vector and measures the amount that the curve deviates from being
straight. Pointwise curvature indicates how fast the direction changes at a point and total
curvature depicts how much the change accumulates over the entire course of the curve. In
the smooth case, the total curvature is the integral of pointwise scalar curvature in respect to
arclength. In three-dimensional space, the total curvature of smooth curves was first studied
in 1929 by Fenchel [12] who verified that any closed curve has total curvature greater than
or equal to 2π ; equality is realized if and only if the curve is a planar convex curve. In 1947,
Borsuk [8] and Milnor [15] extended that fact to n-dimensional space. For the general case,
the total curvature was introduced by Alexandrov [4] in 1946. An extensive development of
this theory was given in [6], where the total curvature was defined by considering the total
rotation of a sequence of geodesic polygons inscribed in the closed curve and arbitrarily
close to it. The total curvature of a closed curve in a Riemannian manifold of non-positive
curvature and in a hyperbolic spacewere studied in [9,13,20]. In a complete simply connected
Riemannian manifold with negative sectional curvature, Tsukamoto [23] proved in 1974 that
the total curvature of a smooth closed curve is also greater than 2π . The idea of the total
curvature has been extended to a CAT(0) space by Alexander and Bishop [2] who showed
that a lower bound for total curvature of a closed curve is 2π . If the total curvature of a
closed curve is 2π then that curve is either a geodesic bigon or bounds a convex subset that
is isometric to a convex set in the 2-dimensional Euclidean space. Furthermore, the idea for
a CAT(k) space, with a real number k, was introduced by Maneesawarng and Lenbury [14].

Recently, Sama-Ae et al. proved in [17] that in the case of k > 0, the lower bound of the
total curvature of any closed curve in a CAT(k) space with perimeter s < 2π√

k
is greater than
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or equal to the total curvature of a circle in the model space Sk with the same circumference
s. It was shown that the total curvature of any circle in the model space Sk with circumference

s < 2π√
k
is 2π

√
1 − ks2

4π2 . It means that in the case of k > 0, the total curvature of a closed

curve γ in a CAT(k) space with perimeter s < 2π√
k
is greater than or equal to 2π

√
1 − ks2

4π2 .

In the case of a curve in a CAT(k) space for k > 0, the following corollary to Theorem 1.1
proves a conjecture of Sama-Ae et al. from [17]:

Corollary 1.2 Let γ be a closed spherical curve at a distance r < π

2
√
k
from a point q with

perimeter s < 2π√
k
in a CAT(k) space M, for k > 0, and let γ ′ be a circle of radius r centered

at a point q ′ in the model space Sk. If κ(γ ) = 2π
√
1 − ks2

4π2 and d(x, y) = d ′(x ′, y′) (or
� q(x, y) = � q ′(x ′, y′)) whenever �(γxy) = �(γ ′

x ′ y′) for any subarc γxy of γ and any subarc

γ ′
x ′y′ of γ ′, then the totally geodesic surface bounded by γ in M is isometric to the disk

bounded by γ ′ in the model space Sk.

Sama-Ae and Maneesawarng [18] studied a comparison and rigidity theorem of spherical
curves in a CAT(k) space. They compared the total curvature and the curvelength of spherical
curves in a CAT(k) space with subarcs of circles of the same radii in the model space Sk .
Their results are given in the following theorem:

Theorem 1.3 [18] Let M be a C AT (k) space, q ∈ M, 0 < r < π

2
√
k
(= ∞ if k ≤ 0), and

let γxy be a spherical curve at distance r from q with endpoints x, y and �(γxy) < π√
k
. Let

γ ′
x ′y′ be a subarc of a circle of radius r centered at q ′ in the model space Sk with endpoints

x ′, y′.

(1) If �(γxy) = �(γ ′
x ′y′) then κ(γxy) ≥ κ(γ ′

x ′ y′).
(2) If d(x, y) = d ′(x ′, y′) then �(γxy) ≥ �(γ ′

x ′ y′), and hence κ(γxy) ≥ κ(γ ′
x ′ y′). In addition,

if �(γxy) = �(γ ′
x ′y′) or κ(γxy) = κ(γ ′

x ′ y′), then C
({q ′} ∪ γ ′

x ′y′
)
is isometric to C

({q} ∪
γxy

)
.

(3) If � q(x, y) = � q ′(x ′, y′) then �(γxy) ≥ �(γ ′
x ′ y′), and κ(γxy) ≥ κ(γ ′

x ′ y′). In addition, if

�(γxy) = �(γ ′
x ′ y′) or κ(γxy) = κ(γ ′

x ′ y′) then C
({q ′}∪γ ′

x ′ y′
)
is isometric to C

({q}∪γxy
)
.

From Theorem 1.3, we have the following conclusions.

Remark 1.4 In a CAT (k) space, the following statements hold.

(1) If �(γxy) > �(γ ′
x ′y′), then κ(γxy) > κ(γ ′

x ′ y′). That is, if κ(γxy) = κ(γ ′
x ′ y′), then �(γxy) ≤

�(γ ′
x ′y′).

(2) If d(x, y) > d ′(x ′, y′), then �(γxy) > �(γ ′
x ′ y′), and hence κ(γxy) > κ(γ ′

x ′ y′). On the
other hand, if �(γxy) = �(γ ′

x ′y′) or κ(γxy) = κ(γ ′
x ′ y′), then d(x, y) ≤ d ′(x ′, y′).

(3) If � q(x, y) > � q ′(x ′, y′), then �(γxy) > �(γ ′
x ′ y′) and κ(γxy) > κ(γ ′

x ′ y′). On the other
hand, if �(γxy) = �(γ ′

x ′y′) or κ(γxy) = κ(γ ′
x ′ y′), then � q(x, y) ≤ � q ′(x ′, y′).

So, in this paper, we shall use the facts in Remark 1.4 to study characterizations of a closed
curve γ in a CAT(k) space M in both cases of �(γxy) = �(γ ′

x ′ y′) (or κ(γxy) = κ(γ ′
x ′y′)) and

d(x, y) = d ′(x ′, y′) (or � q(x, y) = � q ′(x ′, y′)).
In Sect. 2, we give the definition of CAT(k) spaces and themeaning of the total curvature of

closed curves in a CAT(k) space by considering closed polygonal curves. These are the curves
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that can be expressed as a concatenation of finitely many minimizing geodesics (distance-
realizing curves). In Sect. 3, we deduce the characterizations of a closed spherical curve in a
CAT(k) space.

2 Definitions and preliminaries

A metric space M is a CAT(k) space for k ≤ 0 if each pair of points of M is joined
by a geodesic segment and the distance between any two points of any geodesic triangle

(x, y, z) in M is no greater than that between the corresponding points of the model
triangle 
(x ′, y′, z′) with the same sidelengths in the 2-dimensional space Sk of constant
curvature k. That is, S0 is the Euclidean plane and Sk for k < 0 is the hyperbolic plane with
curvature k. Similarly, a metric space M is a CAT(k) space for k > 0 if each pair of points of
M with distance less than π√

k
is joined by a geodesic segment, and the distance between any

two points of any geodesic triangle 
(x, y, z) of perimeter less than 2π√
k
in M is no greater

than that between the corresponding points of the model triangle 
(x ′, y′, z′) with the same
sidelengths in the 2-dimensional Euclidean sphere Sk of radius 1√

k
. We call Sk the model

space of M . It is clear that a CAT(k2) space is a CAT(k1) for k1 > k2 because triangles
with given sidelengths in the model space Sk1 are fatter than those in the model space Sk2 .
A CAT(0) space is a generalization of a Hadamard manifold. It is known that the classical
hyperbolic space, a complete simply connected Riemannian manifold having nonpositive
sectional curvature, Euclidean buildings and the complex Hilbert ball with a hyperbolic
metric are examples of CAT(0) spaces. Further discussion may be found in [5,7,10,11], and
more properties of spaces of constant curvature can be found in [1]. In a CAT(k) space, the
angle �

w(δ, τ ) between two curves δ and τ having a common starting point w is the limit,
if it exists,

lim
u,v→w

arccos
x2 + y2 − z2

2xy
,

where u (resp., v) is a point on δ (resp., τ ), and x, y and z are the lengths of minimizing
geodesics between the pairs (v,w), (w, u) and (u, v), respectively.

As the total curvature will involve angles between two geodesics, the class of metric
spaces we consider here is one where angles between geodesics starting from a common
point always exist. The angle � x (y, z) at x of a triangle 
(x, y, z) is defined to be the angle
between the geodesics [x, y] and [x, z].

A closed curve in a CAT(k) space M is a continuous map of an oriented circle in the 2-
dimensional Euclidean space. A chain V on a closed curve γ is a set of points corresponding
to finitely many parameter values in order. The points in V are called the vertices of the
chain. If γ consists of geodesic segments joining adjacent pairs in V , then γ and V form a
closed geodesic polygon with vertex chain in V . A closed geodesic polygon δ is inscribed in
a closed curve γ if its chain of vertices has an oriented reparametrization as a chain on γ . If
δ is a closed geodesic polygon with a chain {δ(s0), δ(s1), . . . , δ(sn) = δ(s0)} inscribed in a
closed curve γ , we define the modulus of δ associated with the closed curve γ , denoted by
μγ (δ), as μγ (δ) = max{diam(γ |[sk ,sk+1]) ; 0 ≤ k ≤ n − 1}, where for each 0 ≤ k ≤ n − 1,
γ |[sk ,sk+1] is the subarc with endpoints γ (sk) and γ (sk+1) of γ . Let δ be a closed geodesic
polygon inscribed in γ with consecutive vertices x1, x2, . . . , xn = x0. The total rotation
κ∗
c (δ) of δ is defined by rotations of δ, κ∗

c (δ) = ∑n
i=1(π − x̂i ), where x̂i is the angle at xi .

The total curvature κc(γ ) of a closed curve γ is defined by
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κc(γ ) = lim
ε→0

sup
δ∈	ε(γ )

κ∗
c (δ),

where for each ε > 0, 	ε(γ ) is the set of all closed geodesic polygons δ inscribed in γ such
that μγ (δ) < ε.

If γ itself is a closed geodesic polygon then κ∗
c (γ ) = κc(γ ), see [17]. We note that our

total curvature κc is based on the total curvature κ defined by Maneesawarng and Lenbury in
[14]. For any closed geodesic polygon δ in a CAT(k) space, the total curvature κ(δ) of δ does
not exceed κc(δ). Hence we have that κ(γ ) ≤ κc(γ ) for each closed curve γ in a CAT(k)
space.

By the definition of the total curvature for a closed curve given above, if γ is a closed curve
in a CAT(k) space for k ≤ 0, then κc(γ ) and the total curvature of γ defined by Alexander
and Bishop in [2] coincide; that is, κc(γ ) is the supremum of κc(δ) over all closed polygons
δ inscribed in γ .

3 Results

In the first two theorems of this paper, we present characterizations of a closed curve in a
CAT(k) space which has the same length and total curvature as a circle in the model space Sk .
Throughout the paper, we set γxy to be a subarc of γ with the starting point x and the ending
point y, and if it is not ambiguous we sometimes call these points x and y the endpoints of
γxy .

Theorem 3.1 Let γ be a closed spherical curve at a distance r from q in a CAT(k) space
and let γ ′ be a circle of radius r centered at q ′ in the model space Sk. Additionally, if k > 0
we assume r < π

2
√
k
. If �(γ ) = �(γ ′) then κc(γ ) ≥ κc(γ

′). In addition, if κc(γ ) = κc(γ
′)

then the angle between the opposite directions is π at any point.

Proof Assume that �(γ ) = �(γ ′). Then, by Theorem 1.3, it is clear that κc(γ ) ≥ κc(γ
′).

Assume additionally that κc(γ ) = κc(γ
′), and let q1, q2, . . . , qn, qn+1 = q1 be consecutive

vertices of γ and q ′
1, q

′
2, . . . , q

′
n, q

′
n+1 = q ′

1 consecutive vertices of γ
′ such that �(γqkqk+1) =

�(γ ′
q ′
kq

′
k+1

) = �(γ )
n , for k = 1, 2, . . . , n. Therefore we have that κ(γqk ,qk+1) ≥ κ(γ ′

q ′
kq

′
k+1

)

for all k = 1, 2, . . . , n. Since all q ′
k are points of γ ′, we obtain that

∑n
k=1(π − q̂ ′

k) = 0.
Consequently, κc(γ ′) = ∑n

k=1 κ(γ ′
q ′
kq

′
k+1

), and since

κc(γ ) =
n∑

k=1

κ(γqkqk+1) +
n∑

k=1

(π − q̂k)

≥
n∑

k=1

κ
(
γ ′
q ′
kq

′
k+1

)
+

n∑
k=1

(π − q̂k)

≥
n∑

k=1

κ
(
γ ′
q ′
kq

′
k+1

)

= κc(γ
′),

we have that
∑n

k=1 κ(γ ′
q ′
kq

′
k+1

)+∑n
k=1(π −q̂k) = ∑n

k=1 κ(γ ′
q ′
kq

′
k+1

), that is,
∑n

k=1(π −q̂k) =
0. Hence the angle between the opposite directions is π at the point qk . �
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Theorem 3.2 Let γ be a closed spherical curve at a distance r from q in a CAT(k) space
and let γ ′ be a circle of radius r centered at q ′ in the model space Sk. Additionally, if k > 0
we assume r < π

2
√
k
. Suppose that the following statements hold:

(1) �(γ ) = �(γ ′);
(2) κc(γ ) = κc(γ

′).

Then for any subarc γxy of γ with �(γxy) ≤ �(γ )
2 and any subarc γ ′

x ′y′ of γ ′ with �(γ ′
x ′y′) ≤

�(γ ′)
2 , �(γxy) = �(γ ′

x ′ y′) if and only if κ(γxy) = κ(γ ′
x ′ y′).

Proof The implication part follows easily by Theorem 1.3 and (2). Now suppose that
κ(γxy) = κ(γ ′

x ′ y′), and by (1) of Remark 1.4, we have �(γxy) ≤ �(γ ′
x ′ y′). However, the

strict inequality does not occur since �(γ ) = �(γ ′). Therefore, �(γxy) = �(γ ′
x ′ y′). �

In Theorem 3.6, as themain result of this paper, we give characterizations of a closed curve
γ in a CAT(k) space which bounds a convex surface that is isometric to the disk bounded by
a circle in the model space Sk . In order to prove Theorem 3.6, we first need Lemmas 3.3 and
3.5.

Lemma 3.3 Let γ be a closed spherical curve at a distance r from q in a CAT(k) space and
let γ ′ be a circle of radius r centered at q ′ in the model space Sk. Additionally, if k > 0 we
assume r < π

2
√
k
. If �(γxy) = �(γ ′

x ′ y′) ≤ �(γ )
2 and d(x, y) = d ′(x ′, y′) where γxy is a subarc

of γ and γ ′
x ′ y′ is a subarc of γ ′, then C

({q ′} ∪ γ ′
x ′y′

)
and C

({q} ∪ γxy
)
are isometric to each

other.

Proof Wedefine amap j fromC
({q ′}∪γ ′

x ′ y′
)
toC

({q}∪γxy
)
in such away that every segment

[q ′, z′] from q ′ to a point z′ on γ ′
x ′y′ is transfered on to the geodesic segment [q, z] from q

to a point z on γxy , where z is the point such that �(γxz) = �(γ ′
x ′z′). As d(x, y) = d ′(x ′, y′),

by using Theorem 1.3, we have that j is an isometry. The lemma is then proved. �
If we set a map j which is similar to the one in Lemma 3.3, then the two following lemmas

follow from Theorem 1.3 as well.

Lemma 3.4 Let γ be a closed spherical curve at a distance r from q in a CAT(k) space and
let γ ′ be a circle of radius r centered at q ′ in the model space Sk. Additionally, if k > 0 we
assume r < π

2
√
k
. Let γxy be a subarc of γ and γ ′

x ′y′ be a subarc of γ ′. If one of the following
statements holds:

(1) �(γxy) = �(γ ′
x ′ y′) and � q(x, y) = � q ′(x ′, y′);

(2) κ(γxy) = κ(γ ′
x ′y′) and d(x, y) = d ′(x ′, y′);

(3) κ(γxy) = κ(γ ′
x ′y′) and � q(x, y) = � q ′(x ′, y′),

then C
({q ′} ∪ γ ′

x ′y′
)
and C

({q} ∪ γxy
)
are isometric to each other.

Let x, y ∈ γ be two distinct points of a closed spherical curve γ in a CAT(k) space. Then
we have two subarcs with endpoints x, y, and we let γ xy denote the shorter one and call it
the minor subarc.

Lemma 3.5 Let γ be a closed spherical curve at a distance r from q in a CAT(k) space and
let γ ′ be a circle of radius r centered at q ′ in the model space Sk. Additionally, if k > 0 we
assume r < π

2
√
k
. Suppose that the following statements hold:
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(1) �(γ ) = �(γ ′);
(2) d(x, y) = d ′(x ′, y′)whenever �(γxy) = �(γ ′

x ′ y′) for any subarc γxy of γ and any subarc

γ ′
x ′y′ of γ ′.

If x1, x2, x3 and x4 are different consecutive vertices on γ and x ′
1, x

′
2, x

′
3 and x

′
4 are different

consecutive vertices on γ ′ such that �(γx1x2) = �(γ ′
x ′
1x

′
2
), �(γx2x3) = �(γ ′

x ′
2x

′
3
) and �(γx3x4) =

�(γ ′
x ′
3x

′
4
), then the geodesic segment [x1, x3] meets the geodesic segment [x2, x4] at a point.

Proof By Lemma 3.3, we have that C({q ′} ∪ γ ′x ′
1x

′
3) is isometric to C({q} ∪ γ x1x3) and

C({q ′}∪γ ′x ′
2x

′
4) is isometric toC({q}∪γ x2x4).Without loss of generality, we can suppose that

x3 ∈ γ x2x4 and x4 ∈ γ x3x1 . Let x ′ be the point of intersection between the segments [x ′
1, x

′
3]

and [x ′
2, x

′
4] and let x be a point on geodesic segment [x1, x3] such that d(x, x3) = d ′(x ′, x ′

3).

Since C({q ′} ∪ γ ′x ′
2x

′
4) is isometric to C({q} ∪ γ x2x4) and C({q ′} ∪ γ ′x ′

1x
′
3) is isometric to

C({q} ∪ γ x1x3), we have that x is the corresponding point of x ′. Hence we obtain that
d(x4, x) = d ′(x ′

4, x
′) and d(x2, x) = d ′(x ′

2, x
′). Consequently,

d(x2, x4) ≤ d(x2, x) + d(x, x4)

= d ′(x ′
2, x

′) + d ′(x ′, x ′
4)

= d ′(x ′
2, x

′
4)

= d(x2, x4),

which means that x is a point on the geodesic segments [x2, x4]. Therefore, x is the point of
intersection of two geodesic segments [x1, x3] and [x2, x4]. �

Now we are ready to prove Theorem 3.6.

Theorem 3.6 Let γ be a closed spherical curve at a distance r from q in a CAT(k) space
and let γ ′ be a circle of radius r centered at q ′ in the model space Sk. Additionally, if k > 0
we assume r < π

2
√
k
. Suppose that the following statements hold:

(1) �(γ ) = �(γ ′);
(2) d(x, y) = d ′(x ′, y′)whenever �(γxy) = �(γ ′

x ′ y′) for any subarc γxy of γ and any subarc

γ ′
x ′y′ of γ ′.

Then C(γ ′) is isometric to C(γ ), that is, the totally geodesic surface bounded by γ and the
disk bounded by γ ′ are isometric to each other.

Proof Let x, y ∈ γ and x ′, y′ ∈ γ ′ be such that �(γxy) = �(γ ′
x ′y′) = �(γ )

2 . By hypothesis, we

thus have that d ′(x ′, y′) = d(x, y). We define a map j1 from C
({q ′} ∪ γ ′

x ′ y′
)
to C

({q} ∪ γxy
)

in such a way that every segment [q ′, z′] from q ′ to a point z′ on γ ′
x ′ y′ is transfered on

to the geodesic segment [q, z] from q to a point z on γxy , where z is the point such that
�(γ ′

x ′z′) = �(γxz) and a map j2 is defined from C
({q ′} ∪ γ ′

y′x ′
)
to C

({q} ∪ γyx
)
similar to j1.

By Lemma 3.3, we get that j1 and j2 are isometries.
Now we are in a position to show that C(γ ′) is isometric to C(γ ). We first note that

C(γ ) exists and is unique by the definition of convex hull. Let j be a map from C(γ ′) =
C(γ ′

x ′y′) ∪ C(γ ′
y′x ′) to C(γ ) in such a way that the function j on C(γ ′

x ′ y′) is j1 and on
C(γ ′

y′x ′) is j2. To verify that j is an isometry from C(γ ′) to C(γ ), we have to show that j is

an isometry onto its image andC(γ ) = C
(
γxy ∪γyx

) = C(γxy)∪C(γyx ). It is obvious that j
is surjective. Moreover, j is injective following from the conditions of isometric convex hulls
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and intersecting geodesics, as we proved in Lemma 3.5. Let u′
1, u

′
2 ∈ C(γ ′) and u1 = j (u′

1)

and u2 = j (u′
2). We shall show that d ′(u′

1, u
′
2) = d(u1, u2). There is nothing to prove if

u′
1, u

′
2 ∈ C(γ ′

x ′y′) or u′
1, u

′
2 ∈ C(γ ′

y′x ′). Suppose that u′
1 ∈ C(γ ′

x ′y′) and u′
2 ∈ C(γ ′

y′x ′), let
[q ′, v′

1], where v′
1 ∈ γ ′

x ′y′ , be the segment containing u′
1 and let [q ′, v′

2], where v′
2 ∈ γ ′

y′x ′ ,
be the segment containing u′

2. On M , we let [q, v1] be the geodesic segment containing
u1 and let [q, v2] be the geodesic segment containing u2 where v1 ∈ γxy and v2 ∈ γyx . If
�(γ ′

v′
1v

′
2
) ≤ �(γ ′)/2, we then have γ ′

v′
1v

′
2

= γ ′
v′
1 y

′ ∪γ ′
y′v′

2
. SinceC(γ ′

v′
1 y

′) is isometric toC(γv1 y)

by j1 andC(γ ′
y′v′

2
) is isometric toC(γyv2) by j2, we get thatC(γ ′

v′
1v

′
2
) is isometric toC(γv1v2)

by j . Consequently, d ′(u′
1, u

′
2) = d(u1, u2). Additionally, if �(γ ′

v′
2v

′
1
) ≤ �(γ ′)/2, we do the

same as in the case that �(γ ′
v′
1v

′
2
) ≤ �(γ ′)/2. We also have that d ′(u′

1, u
′
2) = d(u1, u2).

Now we shall verify that C
(
γxy ∪ γyx

) = C(γxy) ∪ C(γyx ). It suffices to show that
C(γxy) ∪ C(γyx ) is convex. Let x1 and x2 be two points in C(γxy) ∪ C(γyx ). It is clear that
[x1, x2] ∈ C(γxy) ∪ C(γyx ) if both x1 and x2 are in the same convex hull. Without loss of
generality, we can suppose that x1 ∈ C(γxy) and x2 ∈ C(γyx ). Let [q, w1], where w1 ∈ γxy ,
be the segment containing x1 and [q, w2], wherew2 ∈ γyx , the segment containing x2. Since
j1 is the isometry from C(γ ′

x ′y′) to C(γxy) and j2 is the isometry from C(γ ′
y′x ′) to C(γyx ),

we let two points w′
1 and w′

2 in Sk be the points corresponding to w1 and w2, respectively,
and let two points x ′

1 and x ′
2 in Sk be the points corresponding to x1 and x2, respectively. If

�(γ ′
w′
1w

′
2
) ≤ �(γ ′)/2, we then have γ ′

w′
1w

′
2

= γ ′
w′
1 y

′ ∪ γ ′
y′w′

2
. Since C(γ ′

w′
1 y

′) is isometric to

C(γw1 y) by j1 and C(γ ′
y′w′

2
) is isometric to C(γyw2) by j2, we get that C(γ ′

w′
1w

′
2
) is isometric

to C(γw1w2) by j . Consequently, d ′(x ′
1, x

′
2) = d(x1, x2). Let x̂ be the point of intersection

of [x ′, y′] and [x ′
1, x

′
2], and let x = j (x̂) = j1(x̂) = j2(x̂). Then

d(x1, x2) = d ′(x ′
1, x

′
2) = d ′(x ′

1, x̂) + d ′(x̂, x ′
2) = d(x1, x) + d(x, x2),

whichmeans that [x1, x2] = [x1, x]∪[x, x2] ⊂ C(γxy)∪C(γyx ). Therefore,C(γxy)∪C(γyx )

is convex. If �(γ ′
w′
2w

′
1
) ≤ �(γ ′)/2, we proceed in the same manner as in the case �(γ ′

w′
1w

′
2
) ≤

�(γ ′)/2 to get that C(γxy) ∪ C(γyx ) is convex.
Then we have that C(γ ′) is isometric to C(γ ). This completes the proof of the theorem.

�
Theorem 3.7 gives three characterizations of a closed curve γ in a CAT(k) space, which

bounds a surface that is isometric to the disk bounded by a circle γ ′ in the model space Sk
with the same radius.

Theorem 3.7 Let γ be a closed spherical curve at a distance r from q in a CAT(k) space
and let γ ′ be a circle of radius r centered at q ′ in the model space Sk. Additionally, if k > 0
we assume r < π

2
√
k
. Suppose that one of the following statements holds:

(1) �(γ ) = �(γ ′); � q(x, y) = � q ′(x ′, y′) whenever �(γxy) = �(γ ′
x ′y′) for any subarc γxy

of γ and any subarc γ ′
x ′y′ of γ ′;

(2) κc(γ ) = κc(γ
′); d(x, y) = d ′(x ′, y′) whenever κ(γxy) = κ(γ ′

x ′ y′) for any subarc γxy

of γ and any subarc γ ′
x ′y′ of γ ′;

(3) κc(γ ) = κc(γ
′); � q(x, y) = � q ′(x ′, y′) whenever κ(γxy) = κ(γ ′

x ′ y′) for any subarc γxy

of γ and any subarc γ ′
x ′y′ of γ ′.

Then the totally geodesic surface bounded by γ and the disk bounded by γ ′ are isometric to
each other.
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Proof We suppose that the statement (1) holds. Let γxy be a subarc of γ and let γ ′
x ′y′ be

a subarc of γ ′ such that �(γxy) = �(γ ′
x ′y′) = �(γ )

2 . By (1) of Lemma 3.4, we have that
C({q ′}∪γ ′

x ′y′) is isometric toC({q}∪γxy). We also prove in the same manner as in Theorem
3.6 that C(γ ′) is isometric to C(γ ).

We suppose that the statement (2) (or (3)) holds. Let γxy be a subarc of γ and γ ′
x ′y′ be a

subarc of γ ′ such that κ(γxy) = κ(γ ′
x ′ y′) = κ(γ )

2 . By (2) (or (3)) of Lemma 3.4, we have that
C({q ′} ∪ γ ′

x ′y′) is isometric to C({q} ∪ γxy). We can mimic the same idea as in Theorem 3.6
to prove that C(γ ′) is isometric to C(γ ). �

By Theorem 3.7, we have a next following corollary.

Corollary 3.8 Let γ be a closed spherical curve at a distance r < π

2
√
k
from a point q with

perimeter s < 2π√
k
in a CAT(k) space, for k > 0, and let γ ′ be a circle of radius r centered at

a point q ′ in the model space Sk. Suppose that the total curvature of γ is 2π
√
1 − ks2

4π2 and

d(x, y) = d ′(x ′, y′) (or � q(x, y) = � q ′(x ′, y′)) whenever �(γxy) = �(γ ′
x ′ y′) for any subarc

γxy of γ and any subarc γ ′
x ′y′ of γ ′, then the geodesic surface bounded by γ and the disk

bounded by γ ′ are isometric to each other.

It is worth remarking that the assumption of the space M being a CAT(k) space is crucial in
Theorem 3.6 and Theorem 3.7. For example, we consider a set A := R2 − {(x, y) ∈ R2 :
0.2 < x2 + y2 < 0.5} as a subspace of the 2-dimensional Euclidean space, S0. We have that
A is not a CAT(0) space. Let γ be the unit circle centered at the origin in A and γ ′ be the
unit circle centered at the origin in S0. We have that γ and γ ′ satisfy Theorem 3.6 and (2) of
Theorem 3.7 but the region bounded by γ and the disk bounded by γ ′ are not isometric to
each other.
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