

ORIGINAL PAPER

A characterization of Inoue surfaces with $p_g = 0$ and $K^2 = 7$

Yifan Chen¹ · YongJoo Shin²

Received: 27 August 2017 / Accepted: 15 January 2018 / Published online: 18 January 2018 © Springer Science+Business Media B.V., part of Springer Nature 2018

Abstract Inoue constructed the first examples of smooth minimal complex surfaces of general type with $p_g = 0$ and $K^2 = 7$. These surfaces are finite Galois covers of the 4-nodal cubic surface with the Galois group, the Klein group $\mathbb{Z}_2 \times \mathbb{Z}_2$. For such a surface *S*, the bicanonical map of *S* has degree 2 and it is composed with exactly one involution in the Galois group. The divisorial part of the fixed locus of this involution consists of two irreducible components: one is a genus 3 curve with self-intersection number 0 and the other is a genus 2 curve with self-intersection number -1. Conversely, assume that *S* is a smooth minimal complex surface of general type with $p_g = 0$, $K^2 = 7$ and having an involution σ . We show that, if the divisorial part of the fixed locus of σ consists of two irreducible components R_1 and R_2 , with $g(R_1) = 3$, $R_1^2 = 0$, $g(R_2) = 2$ and $R_2^2 = -1$, then the Klein group $\mathbb{Z}_2 \times \mathbb{Z}_2$ acts faithfully on *S* and *S* is indeed an Inoue surface.

Keywords Surfaces of general type · Involution · Hyperelliptic fibration

Mathematics Subject Classification 14J10 · 14J29

1 Introduction

In this article we focus on smooth minimal surfaces S of general type with $p_g = 0$, $K^2 = 7$ and nonbirational bicanonical map. By [9] the bicanonical map φ has degree 2. Denote by σ the involution associated to φ , called as the bicanonical involution. Despite of the existence

Yifan Chen chenyifan1984@gmail.com
YongJoo Shin haushin@kaist.ac.kr

School of Mathematics and Systems Science, Beijing University of Aeronautics and Astronautics, Xueyuan Road No. 37, Beijing 100191, People's Republic of China

² Department of Mathematical Sciences, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea

of examples, the Inoue surfaces (see [9, Example 4.1], [7] and [1]), and a structure theorem (see [10, Theorem 3.2]), a complete classification of these surfaces is still out of reach. To understand *S*, one needs to study the quotient surface $\Sigma := S/\sigma$ and the fixed locus Fix(σ) of σ . Mendes Lopes and Pardini [10, Proposition 3.1] study Σ in detail and show that σ has 11 isolated fixed points. However, an explicit description of the divisorial part of Fix(σ) is still missing. In general, for an involution σ on a surface of general type with $p_g = 0$ and $K^2 = 7$, denote by R_{σ} the divisorial part of Fix(σ). Lee and the second named author [8, Table in page 3] describe all the possible cases for R_{σ} in terms of the genus and the self-intersection number of each irreducible component of R_{σ} , except the case where σ is the bicanonical involution. See also [12].

So it is natural to first consider the case where R_{σ} has the same irreducible decomposition as the one of an Inoue surface. For any Inoue surface, deg $\varphi = 2$ (cf. [9, Example 4.1]) and R_{σ} has the irreducible decomposition $R_1 + R_2$ with $g(R_1) = 3$, $R_1^2 = 0$, $g(R_2) = 2$ and $R_2^2 = -1$ (cf. [8, Section 5]). Conversely, we have the following theorem.

Theorem 1.1 Let *S* be a smooth minimal surface of general type with $p_g(S) = 0$, $K_S^2 = 7$ and having an involution σ . Assume that the divisorial part R_{σ} of the fixed locus of σ consists of two irreducible components R_1 and R_2 , with $g(R_1) = 3$, $R_1^2 = 0$, $g(R_2) = 2$ and $R_2^2 = -1$. Then the automorphism group of *S* contains a subgroup which is isomorphic to the Klein group $\mathbb{Z}_2 \times \mathbb{Z}_2$ and *S* is an Inoue surface.

It is not hard to show deg $\varphi = 2$ and that σ is the bicanonical involution (see Lemma 2.4). The main claim of the theorem is the existence of involutions on *S* other than σ . We briefly mention how to prove the theorem. In Sect. 3, based on the results of [10, Propostion 3.1], we consider the minimal resolution *W* of the quotient surface $\Sigma = S/\sigma$ and study a rational fibration $\overline{f}: W \to \mathbb{P}^1$. With the assumption of Theorem 1.1, we not only analyze the singular fibers of \overline{f} in detail (see Proposition 3.4) but also find a fibration of curves of genus 2 on *W* which induces a hyperelliptic fibration of genus 5 on *S* (see Propositions 4.1 and 4.2). For these we present several lemmas about curves of genus 2 in Sect. 5. The hyperelliptic fibration of genus 5 implies an involution τ on *S* such that $\tau \neq \sigma$. Therefore, we obtain three commuting involutions σ , τ , $\sigma\tau$ on *S*. Then *S* is an Inoue surface by the result of [3] (see Proposition 2.1).

Notation We mainly consider projective normal surfaces with at worst ordinary double points (nodes) over \mathbb{C} in this article. For such a surface *X*, we use the following notation:

 \equiv : a linear equivalence among divisors on X;

 \sim^{num} : a numerical equivalence among divisors on X;

Num(X): the quotient of Pic(X) by \sim^{num} ;

 $\rho(X)$: the Picard number of X, i.e., the rank of Num(X);

(-n)-curve $(n \in \mathbb{N})$: a smooth irreducible rational curve with the self intersection number -n;

a (-2)-curve is also called a nodal curve.

Throughout this article, we denote by *S* a smooth minimal surface of general type with $p_g = 0$ and $K^2 = 7$ and by $\varphi \colon S \dashrightarrow \mathbb{P}^7$ the bicanonical map of *S*.

2 Inoue surfaces and known results

Now we briefly introduce Inoue surfaces, the first examples of surfaces of general type with $p_g = 0$ and $K^2 = 7$. For explicit construction see [7] and [9, Example 4.1]. Here we just

mention that an Inoue surface can be realized as a finite Galois cover of the 4-nodal cubic surface with the Galois group $\mathbb{Z}_2 \times \mathbb{Z}_2$, and that its bicanonical map has degree 2 and that its bicanonical involution σ belongs to the Galois group (cf. see [9, Example 4.1]). Also $R_{\sigma} = R_1 + R_2$ with $g(R_1) = 3$, $R_1^2 = 0$, $g(R_2) = 2$ and $R_2^2 = -1$ (cf. [8, Section 5]). We now state a proposition characterizing Inoue surfaces.

Proposition 2.1 Let S be a smooth minimal surface of general type with $p_g = 0$, $K^2 = 7$ and deg $\varphi = 2$. Assume that there is an involution τ on S other than the bicanonical involution σ . Then the subgroup $\langle \sigma, \tau \rangle$ of the automorphism group of S is isomorphic to $\mathbb{Z}_2 \times \mathbb{Z}_2$ and S is an Inoue surface.

Proof By [4, Theorem 1.2], we have $\langle \sigma, \tau \rangle \cong \mathbb{Z}_2 \times \mathbb{Z}_2$. Since $K_S R_\sigma = 7$ by Theorem 2.2 (a) below, *S* is an Inoue surface according to [3, Theorem 1.1].

In general, for a minimal surface of general type with $p_g = 0$ and $K^2 = 7$, we know deg $\varphi = 1$ or 2 by [9]. When deg $\varphi = 2$, Mendes Lopes and Pardini prove the following theorem.

Theorem 2.2 (cf. [10]) Assume deg $\varphi = 2$ and let σ be the bicanonical involution. Then

- (a) $K_S R_{\sigma} = 7$ and σ has 11 isolated fixed points;
- (b) Σ is a rational surface with 11 nodes and $K_{\Sigma}^2 = -4$;
- (c) there is a rational fibration $f: \Sigma \to \mathbb{P}^1$ such that $f \circ \pi$ is a genus 3 hyperelliptic fibration (see the right triangle of the diagram (2.1));
- (d) K_S is ample.

Proof For (a), see [2, Proposition 3.3(v) and Corollary 3.6(iv)] and [5, Lemma 4.2]. For (b), (c) and (d), see [10, Proposition 3.1 and Theorem 3.3].

Remark 2.3 [10, Proposition 3.1(ii) and Theorem 3.2(iv)] describe the singular fibers of f and $f \circ \pi$ explicitly. See also [10, Remark 3.4(i)].

From now on, we keep the assumption and notation of Theorem 1.1.

Lemma 2.4 The bicanonical map φ of S has degree 2 and σ is the bicanonical involution.

Proof The adjunction formula gives $K_S R_1 = 4$ and $K_S R_2 = 3$, and thus $K_S R_\sigma = 7$. Then φ is composed with σ by [5, Lemma 4.2] and [2, Corollary 3.6(iv)]. Since deg $\varphi \le 2$ by [9], we conclude deg $\varphi = 2$ and that σ is the bicanonical involution.

Let $\varepsilon: V \to S$ be the blow-up of the 11 isolated fixed points of σ and denote by E_j (j = 0, 1, ..., 10) the corresponding exceptional divisors. Then σ lifts to an involution $\bar{\sigma}$ on V. Denote by W the quotient of V by $\bar{\sigma}$, by $\bar{\pi}: V \to W$ the quotient map and by C_j the image of E_j under $\bar{\pi}$ for j = 0, ..., 10. Then W is a smooth surface and the curves C_j are nodal curves. The middle square of the diagram (2.1) commutes

Deringer

where η is the minimal resolution of Σ . In particular, $K_W \equiv \eta^* K_{\Sigma}$ and W is a smooth rational surface with $K_W^2 = -4$ by Theorem 2.2(b).

Note that $\overline{\pi}$ is a smooth double cover branched along the divisor $B_1 + B_2 + \sum_{j=0}^{10} C_j$, where $B_i = \overline{\pi}(\varepsilon^* R_i)$ for i = 1, 2. Note that B_i is isomorphic to R_i for i = 1, 2 and thus smooth. Also B_1 and B_2 are disjoint, and they are disjoint from the nodal curves C_0, C_1, \ldots, C_{10} . There is an invertible sheaf $\mathcal{L} \in \text{Pic}(W)$ such that

$$2\mathcal{L} \equiv B_1 + B_2 + C_0 + C_1 + \dots + C_{10}. \tag{2.2}$$

According to Theorem 2.2(b), $\overline{f} := f \circ \eta \colon W \to \mathbb{P}^1$ is a rational fibration. Denote by F the general fiber of \overline{f} . We will frequently refer to the following intersection numbers $B_1^2 = 0$, $K_W B_1 = 4$, $B_2^2 = -2$ and $K_W B_2 = 4$.

Lemma 2.5 Let $D := 2K_W + B_1 + B_2$. Then

- (a) $\overline{\pi}^* D \equiv \varepsilon^* (2K_S)$, $D^2 = 14$, $DK_W = 0$ and D is nef and big;
- (b) $DB_1 = 8$, $DB_2 = 6$ and DF = 4;
- (c) If DC = 0 for an irreducible curve C, then C is one of the 11 nodal curves C_0, C_1, \ldots, C_{10} .

Proof For (a), see [2, Proposition 3.1(i), (ii)]. And (b) follows from a direct calculation and Theorem 2.2(c). Now for (c) we use K_S is ample (see Theorem 2.2(d)) and ϵ contracts exactly the curves E_0, E_1, \ldots, E_{10} .

3 The branch divisors and the singular fibers of the rational fibration

This section and the next are devoted to the proof of Theorem 1.1. So we stick to the assumption in Theorem 1.1 throughout these two sections. In this section we focus on the description of the divisor class of B_i in Pic(X) and the singular fibers of \overline{f} .

Proposition 3.1 After possibly renumbering the 11 nodal curves C_0, C_1, \ldots, C_{10} , we have

$$B_1 \equiv -2K_W + 2F$$
 and $B_2 \equiv -2K_W + F + 2G + C_0$,

where G is a (-1)-curve such that FG = 0 and $GC_0 = 1$. Moreover, $B_1G = 2$ and $B_2G = 1$.

Proof Note that $(2K_W + B_1)^2 = 0$ and $K_W(2K_W + B_1) = -4$. Then we have $h^0(W, \mathcal{O}_W(2K_W + B_1)) \ge 3$ by the Riemann–Roch theorem. Since *F* is nef, $F(2K_W + B_1) \ge 0$ and thus $FB_1 \ge -2FK_W = 4$.

Similarly, we have $h^0(W, \mathcal{O}_W(2K_W + B_2)) \ge 2$ and $FB_2 \ge -2FK_W = 4$. By Lemma 2.5(b), DF = 4 and thus $F(B_1 + B_2) = F(D - 2K_W) = 8$. So $FB_1 = FB_2 = 4$.

Then $F(2K_W + B_1) = 0$. Since $(2K_W + B_1)^2 = 0$, the Zariski lemma implies $2K_W + B_1 \stackrel{num}{\sim} aF$ ($a \in \mathbb{N}$) and then $aFK_W = (2K_W + B_1)K_W$, i.e. -2a = -4. So a = 2 and $B_1 \equiv -2K_W + 2F$ since a numerical equivalence is the same as a linear equivalence on any smooth rational surface.

We have seen dim $|2K_W + B_2| \ge 1$ and $F(2K_W + B_2) = 0$. It follows that the moving part of $|2K_W + B_2|$ is composed with |F|, namely $2K_W + B_2 \equiv bF + \Psi$, where $b \in \mathbb{N}$ and Ψ is the fixed part of $|2K_W + B_2|$. Then $D(bF + \Psi) = D(2K_W + B_2)$, i.e. $4b + D\Psi = 6$. By Lemma 2.5(a), we have b = 1 and $\Psi \equiv B_2 + 2K_W - F$. By Lemma 2.5(b), we have

$$D\Psi = 2, F\Psi = 0, K_W\Psi = -2, \Psi^2 = -2, B_1\Psi = 4 \text{ and } B_2\Psi = 2.$$

Since $F\Psi = 0$, every irreducible component of Ψ is a smooth rational curve with negative self-intersection number. Since $K_W\Psi = -2$, there is an irreducible component G of Ψ such that $K_WG < 0$. It follows that G is a (-1)-curve by the adjunction formula and then DG > 0 by Lemma 2.5(a) and (c). We claim that DG = 1. Otherwise, since $DG \le D\Psi = 2$ by Lemma 2.5(a), DG = 2 and then $D(\Psi - G) = 0$. By Lemma 2.5(c), $\text{Supp}(\Psi - G)$ is contained in $C_0 \cup C_1 \ldots \cup C_{10}$. Then $B_i(\Psi - G) = 0$ since B_i is disjoint from C_0, C_1, \ldots, C_{10} for i = 1, 2. So $B_1G = B_1\Psi = 4$ and $B_2G = B_2\Psi = 2$. Since $D \equiv 2K_W + B_1 + B_2$, we have $K_WG = \frac{1}{2}(D - B_1 - B_2)G = -2$. This contradicts that G is a (-1)-curve and thus DG = 1.

Then $G(B_1 + B_2) = G(D - 2K_W) = 3$. Also $GB_1 = G(-2K_W + 2F) = 2$ and thus $GB_2 = 1$. By (2.2), $G(C_0 + C_1 + \dots + C_{10}) = 2\mathcal{L}G - 3 \neq 0$. In particular, $GC_j > 0$ for some $j \in \{0, 1, \dots, 10\}$. After possibly renumbering the 11 nodal curves C_0, C_1, \dots, C_{10} , we may assume j = 0 and thus $GC_0 > 0$. Since $F(G + C_0) = 0$, $G + C_0$ is contained in the same singular fiber of \overline{f} and thus $GC_0 = 1$.

We have shown FG = 0, DG = 1, $B_1G = 2$, $B_2G = 1$ and $GC_0 = 1$. It remains to show $\Psi = 2G + C_0$. Note that $\Psi G = (B_2 + 2K_W - F)G = -1$ and $\Psi C_0 = (B_2 + 2K_W - F)C_0 = 0$. It follows that $(\Psi - 2G - C_0)^2 = \Psi^2 - 2\Psi(2G + C_0) + (2G + C_0)^2 = 0$. Since $D(\Psi - 2G - C_0) = 0$, $\Psi = 2G + C_0$ by the algebraic index theorem.

Corollary 3.2 $2G|_{B_2} \equiv K_{B_2}$.

Proof By Proposition 3.1, $2(K_W + B_2) \equiv (-2K_W + 2F) + 4G + 2C_0 \equiv B_1 + 4G + 2C_0$. Since $B_1 \cap B_2 = \emptyset$ and $C_0 \cap B_2 = \emptyset$, we have $2K_{B_2} \equiv 2(K_W + B_2)|_{B_2} \equiv 4G|_{B_2}$. Note that $G \neq B_2$ and $\deg(G|_{B_2}) = GB_2 = 1$. Since $g(B_2) = 2$, $2G|_{B_2} \equiv K_{B_2}$ by Lemma 5.2. \Box

Corollary 3.3 The linear system $|-2K_W + 2F|$ is a base point free pencil of curves of genus 3.

Before the proof, we remark that we can not even conclude $|-2K_W + 2F| \neq \emptyset$ from the Riemman-Roch theorem: $\chi(\mathcal{O}_W(-2K_W + 2F)) = -1$.

Proof Recall that $B_1 \equiv -2K_W + 2F$ (see Proposition 3.1) and B_1 is smooth irreducible with $B_1^2 = 0$ and $g(B_1) = 3$. First assume $|-K_W + F| \neq \emptyset$. Then for $\Delta \in |-K_W + F|$, $B_1\Delta = 0$ and thus B_1 is disjoint from Δ . Therefore B_1 and 2Δ generate a base point free pencil of curves of genus 3.

It suffices to prove $|-K_W + F| \neq \emptyset$. We first show $|-K_W + F + G| \neq \emptyset$. Note that $(-K_W + F + G)^2 = 1$ and $K_W(-K_W + F + G) = 1$ (see Proposition 3.1). By Serre duality, $h^2(W, \mathcal{O}_W(-K_W + F + G)) = h^0(W, \mathcal{O}_W(2K_W - F - G)) = 0$. Then $|-K_W + F + G| \neq \emptyset$ by the Riemann-Roch theorem.

Let $\Phi \in |-K_W + F + G|$. It suffices to show $\Phi \ge G$. Since $K_W + B_2 \equiv -K_W + F + 2G + C_0 \equiv \Phi + G + C_0$ and $p_g(W) = 0$, we conclude that $\Phi \ge B_2$ and thus $\Phi|_{B_2} \ge 0$. We claim $\Phi \ge G$. Otherwise, since $G\Phi = G(-K_W + F + G) = 0$, Φ and G are disjoint. Note that

$$K_{B_2} = (K_W + B_2)|_{B_2} \equiv (\Phi + G + C_0)|_{B_2} = \Phi|_{B_2} + G|_{B_2}$$

since $C_0 \cap B_2 = \emptyset$. Then $\Phi|_{B_2} \equiv G|_{B_2}$ by Corollary 3.2. Since deg $\Phi|_{B_2} = \deg G|_{B_2} = 1$ and Φ is disjoint from *G*, we have $B_2 \cong \mathbb{P}^1$, a contradiction to $g(B_2) = 2$. Hence $\Phi \ge G$. \Box

Springer

Proposition 3.4 Denote by F_0 the singular fiber of \overline{f} containing $G + C_0$. The rational fibration \overline{f} has exactly 5 singular fibers (possibly renumbering the 10 nodal curves C_1, \ldots, C_{10}):

- (a) $F_0 = 2G + 2C_0 + 2Z + C_9 + C_{10}$, where Z is a (-2)-curve such that ZG = 0 and $ZC_0 = ZC_9 = ZC_{10} = 1$;
- (b) the other 4 fibers are $C_{2i-1} + 2\Gamma_i + C_{2i}$, where Γ_i is a (-1)-curve such that $\Gamma_i C_{2i-1} = \Gamma_i C_{2i} = 1$ for i = 1, ..., 4.

Proof We have the following observations.

- (i) The (-1)-curve G is disjoint from the 10 nodal curves C_1, \ldots, C_{10} .
- Since $2G \equiv 2K_W + B_2 F C_0$ by Proposition 3.1, we have $GC_i = 0$ for i = 1, ..., 10. (ii) $F_0 \ge 2G + C_0$.

Actually, since $(-2K_W + 2F)B_2 = B_1B_2 = 0$ by Proposition 3.1 and B_2 is irreducible, B_2 is contained in some member of $|-2K_W + 2F|$ (see Corollary 3.3). Then $|-2K_W + 2F - B_2| \neq \emptyset$. Since $(-2K_W + 2F) - B_2 \equiv F - 2G - C_0$, we have $F_0 \ge 2G + C_0$.

(iii) Every irreducible component of a singular fiber of \bar{f} is either a (-1)-curve or a nodal curve.

It suffices to show that $-K_W$ is \bar{f} -nef, which follows from Corollary 3.3.

Blowing down G and then blowing down the image of C_0 , we obtain a birational morphism $\mu: W \to W'$, where W' is a smooth rational surface with $K_{W'}^2 = -2$ and $\rho(W') = \rho(W) - 2 = 12$.

Denote by p' the point $\mu(G + C_0)$ on W'. Note that there is a fibration $f' \colon W' \to \mathbb{P}^1$ such that $\overline{f} = f' \circ \mu$. Set $F'_0 := \mu(F_0)$. Then F'_0 is a fiber of f' and $p' \in F'_0$.

Set $C'_j := \mu(C_j)$ for j = 1, ..., 10. Since both G and C_0 are disjoint from the 10 nodal curves $C_1, ..., C_{10}$, we see that C'_j is a nodal curve and $p' \notin C'_j$ for j = 1, ..., 10. So W' contains 10 pairwise disjoint nodal curves. Applying [5, Theorem 3.3] and possibly renumbering the nodal curves $C'_1, ..., C'_{10}$, we conclude that f' has exactly 5 singular fibers: $C'_{2i-1} + 2\Gamma'_i + C'_{2i}$, where Γ'_i is a (-1)-curve such that $\Gamma'_i C'_{2i-1} = \Gamma'_i C_{2i} = 1$ for i = 1, ..., 5. We distinguish two cases.

Case 1: F'_0 is a smooth fiber of f'. Since $p' \in F'_0$, according to (ii), we have $F_0 = \mu^* F'_0 = Z + 2G + C_0$, where Z is the strict transform of F'_0 and Z is a nodal curve with ZG = 1 and $ZC_0 = 0$. Besides F_0 , \bar{f} has 5 singular fibers $C_{2i-1} + 2\Gamma_i + C_{2i}$, i.e., the pullback of the singular fibers of f', where $\Gamma_i := \mu^*(\Gamma'_i)$ is a (-1)-curve for $i = 1, \ldots, 5$.

Denote by $\gamma: B_2 \to \mathbb{P}^1$ the restriction of $\overline{f}: W \to \mathbb{P}^1$ to B_2 and denote by \mathcal{R}_{γ} the ramification divisor of γ . Then deg $\gamma = FB_2 = 4$ and then deg $\mathcal{R}_{\gamma} = 10$ by the Riemann-Hurwitz theorem.

Since Γ_i (i = 1, ..., 5) appears with multiplicity 2 in a singular fiber of \overline{f} , $\mathcal{R}_{\gamma} \ge \Gamma_i|_{B_2}$ for i = 1, ..., 5. Similarly, $\mathcal{R}_{\gamma} \ge G|_{B_2}$. Note that deg $\Gamma_i|_{B_2} = \Gamma_i B_2 = \frac{1}{2}(F - C_{2i-1} - C_{2i})B_2 = 2$ for i = 1, ..., 5 and deg $G|_{B_2} = GB_2 = 1$. We have $10 = \deg \mathcal{R}_{\gamma} \ge 2 \times 5 + 1 = 11$, a contradiction. So Case 1 does not occur.

Case 2: F'_0 is one of the singular fiber of f'. Without loss of generality, assume $F'_0 = C'_9 + 2\Gamma'_5 + C'_{10}$. We have seen $p' \in F'_0$ and $p' \notin C'_9 \cup C'_{10}$. So $p' \in \Gamma'_5$. By (ii) and (iii), $F_0 = \mu^* F'_0 = 2G + 2C_0 + 2Z + C_9 + C_{10}$, where Z is the strict transform of Γ'_5 and Z is a nodal curve such that ZG = 0 and $ZC_0 = ZC_9 = ZC_{10} = 1$. The pullbacks of the other 4 singular fibers of f' are as described in (b) of the proposition since p' does not belong to these 4 fibers.

Corollary 3.5 We have

$$F|_{B_2} \equiv 2K_{B_2}, K_W|_{B_2} \equiv 2K_{B_2}, B_2|_{B_2} \equiv -K_{B_2}.$$

Proof Denote by $\gamma: B_2 \to \mathbb{P}^1$ the restriction of $\overline{f}: W \to \mathbb{P}^1$ to B_2 . Then deg $\gamma = FB_2 = 4$. The restriction of singular fibers of \overline{f} (see Proposition 3.4) to B_2 gives 5 double fibers of γ , namely, $2\Gamma_i|_{B_2}$ (i = 1, 2, 3, 4) and $2(G + Z)|_{B_2}$. Then Lemma 5.4 yields $F|_{B_2} \equiv 2K_{B_2}$.

By the adjunction formula, Proposition 3.1, Corollary 3.2 and $C_0 \cap B_2 = \emptyset$, we have

$$K_{B_2} = (K_W + B_2)|_{B_2} \equiv (-K_W + F + 2G + C_0)|_{B_2} \equiv -K_W|_{B_2} + 3K_{B_2}.$$

Hence $K_W|_{B_2} \equiv 2K_{B_2}$. Then $B_2|_{B_2} \equiv K_{B_2} - K_W|_{B_2} \equiv -K_{B_2}$.

4 The proof of the main theorem

We provide the complete proof of Theorem 1.1. Recall that G, Γ_i (i = 1, 2, 3, 4) and Z are contained in the singular fibers of \overline{f} (see Proposition 3.4).

Proposition 4.1 *Let* $H := B_2 + 2G + C_0$.

(a) The linear system |H| is a base point free pencil of curves of genus 2.

(b) For a general smooth $H \in |H|$, $F|_H \equiv 2K_H$ and $(\sum_{i=1}^4 \Gamma_i|_H + Z|_H) \equiv 5K_H$.

Proof By Proposition 3.1, we have $HK_W = 2$, $HB_2 = 0$, HG = 0, HF = 4 and $HC_j = 0$ for j = 0, ..., 10. It follows that $H^2 = H(B_2 + 2G + C_0) = 0$ and $p_a(H) = 2$ by the adjunction formula.

Since $C_0 \cap B_2 = \emptyset$, we have $H|_{B_2} \equiv \mathcal{O}_{B_2}$ by Corollary 3.2 and Corollary 3.5. Tensoring the exact sequence $0 \to \mathcal{O}_W(-B_2) \to \mathcal{O}_W \to \mathcal{O}_{B_2} \to 0$ by $\mathcal{O}_W(H)$, we obtain

$$0 \to \mathcal{O}_W(2G + C_0) \to \mathcal{O}_W(H) \to \mathcal{O}_{B_2} \to 0.$$

It is clear that dim $H^0(W, \mathcal{O}_W(2G + C_0)) = 1$ and then $H^1(W, \mathcal{O}_W(2G + C_0)) = 0$ by the Riemann+-Roch theorem. The long exact sequence of cohomology groups yields dim |H| = 1.

To prove (a), it remains to show that |H| is base point free. Since $H^2 = 0$, it suffices to show that H is nef. If HC < 0 for an irreducible curve C, since $B_2 + 2G + C_0 \in |H|$, $C = B_2$, G or C_0 . But we have seen $HB_2 = HG = HC_0 = 0$, a contradiction. So H is nef.

For a general *H*, the same reasoning as the proof of Corollary 3.5 yields that the restriction of \bar{f} to *H* has degree 4 and that it has 5 double fibers $2Z|_H$ and $2\Gamma_i|_H$ (i = 1, ..., 4). Then Lemma 5.4 yields $F|_H \equiv 2K_H$ and $(\sum_{i=1}^{4} \Gamma_i + Z)|_H \equiv 5K_H$.

Proposition 4.2 For a general $H \in |H|$, $\overline{\pi}^* H$ is a hyperelliptic curve of genus 5.

Proof The double cover $\overline{\pi}^* H \to H$ is determined by the data $(B_1 + B_2 + \sum_{j=0}^{10} C_j)|_H$ and $\mathcal{L}|_H$ (see (2.2)). By (2.2), Propositions 3.1 and 3.4, we have

$$2\mathcal{L} \equiv (-2K_W + 2F) + (-2K_W + F + 2G + C_0) + (C_0 + C_9 + C_{10}) + \sum_{j=1}^8 C_j$$
$$= -4K_W + 3F + (2G + 2C_0 + C_9 + C_{10}) + \sum_{i=1}^4 (C_{2i-1} + C_{2i})$$
$$\equiv -4K_W + 3F + (F - 2Z) + \sum_{i=1}^4 (F - 2\Gamma_i) = -4K_W + 8F - 2\left(Z + \sum_{i=1}^4 \Gamma_i\right).$$

Deringer

Since W is a smooth rational surface, Pic(W) is torsion free and thus

$$\mathcal{L} \equiv -2K_W + 4F - \left(\sum_{i=1}^4 \Gamma_i + Z\right).$$

Since $H|_H = \mathcal{O}_H$ by Proposition 4.1(a), $K_W|_H = K_H$ by the adjunction formula. Then $\mathcal{L}|_H \equiv (-2K_W + 4F - (\sum_{i=1}^4 \Gamma_i + Z))|_H \equiv K_H$ by Proposition 4.1(b).

Note that a general *H* is disjoint from $B_2 + \sum_{j=0}^{10} C_j$. So $(B_1 + B_2 + \sum_{j=0}^{10} C_j)|_H = B_1|_H$. Since a general *H* intersects B_1 transversely and deg $B_1|_H = B_1H = B_1(B_2+2G+C_0) = 4$, we conclude that $\overline{\pi}^*H$ is irreducible and smooth.

We have shown that the double cover $\overline{\pi}^*H \to H$ and its covering data $B_1|_H$ and $\mathcal{L}|_H$ satisfy the assumption of Lemma 5.5 and hence $\overline{\pi}^*H$ is a hyperelliptic curve of genus 5. \Box

Recall the commutativity of the square in the diagram (2.1). Denote by $\bar{h}: W \to \mathbb{P}^1$ the genus 2 fibration defined by |H|. Since $HC_j = 0$, C_j is contained in the fibers of \bar{h} for j = 0, ..., 10. By Proposition 4.2, $\bar{h} \circ \overline{\pi}: V \to \mathbb{P}^1$ is a hyperelliptic fibration of genus 5 (see the left triangle of the diagram (2.1)). Since $\pi^*C_j = 2E_j$, we see that E_j is contained in the singular fibers of $\bar{h} \circ \overline{\pi}$. Therefore $\bar{h} \circ \overline{\pi}$ induces a hyperelliptic fibration of genus 5 on *S*. The hyperelliptic involutions on smooth fibers of this fibration induce an involution τ on *S* since *S* is minimal. It is clear that τ is different from σ . Then Theorem 1.1 follows by Proposition 2.1.

5 Lemmas on genus two curves

Throughout this section, we denote by C a smooth projective curve of genus 2. We omit the proofs of Lemmas 5.1 and 5.2.

Lemma 5.1 Let L be an invertible sheaf on C with deg L = 2. Then $h^0(C, L) \ge 1$ and $h^0(C, L) \ge 2$ if and only if $L \equiv K_C$.

Recall that a point p on C is a Weierstrass point if $2p \equiv K_C$.

Lemma 5.2 (a) If p is a point of C such that $4p \equiv 2K_C$, then $2p \equiv K_C$. (b) The sum of the Weierstrass points of C is linearly equivalent to $3K_C$.

Lemma 5.3 Assume that the automorphism group of *C* contains a subgroup $G \cong \mathbb{Z}_2 \times \mathbb{Z}_2$. Denote by $q: C \to C/G$ the quotient map. Then $C/G \cong \mathbb{P}^1$ and $q^*\mathcal{O}_{\mathbb{P}^1}(1) \equiv 2K_C$.

Proof From [6, p. 267, V.1.10.], one see that G contains the hyperelliptic involution of C. Then we obtain the conclusion. \Box

Lemma 5.4 Let $\gamma: C \to \mathbb{P}^1$ be a morphism of degree 4. Assume that t_1, \ldots, t_4 and t_5 are 5 distinct points of \mathbb{P}^1 such that $\gamma^*(t_i) = 2x_i + 2y_i$ for $i = 1, \ldots, 5$. Then $\gamma^*\mathcal{O}_{\mathbb{P}^1}(1) \equiv 2K_C$ and $\sum_{i=1}^5 (x_i + y_i) \equiv 5K_C$.

Proof It follows from Riemann-Hurwitz theorem that $\sum_{i=1}^{5} (x_i + y_i)$ is the ramification divisor of γ and $x_i \neq y_i$ for i = 1, ..., 5. Set $X := \mathbb{P}^1 \setminus \{t_1, t_2, t_3, t_4, t_5\}$ and $Y := \gamma^{-1}(X)$. Then Y with $\gamma|_Y : Y \to X$ is a topological covering space of X. Fix $t_0 \in X$ and take a simple loop l_i in X based at t_0 and going around t_i for i = 1, ..., 5. Denote by $[l_i]$ the class of l_i in $\pi_1(X, t_0)$. Then $\pi_1(X, t_0)$ is generated by $[l_1], ..., [l_5]$ with the relation $[l_1][l_2][l_3][l_4][l_5] = 1$.

Identify the permutation group of $\gamma^{-1}(t_0)$ with the symmetric group S_4 with 4 letters. The group $\pi_1(X, t_0)$ acts on $\gamma^{-1}(t_0)$ (from the right) and corresponds to an anti-group homomorphism $\alpha : \pi_1(X, t_0) \to S_4$. Also the group D of Deck transformations of the covering $Y \to X$ acts on $\gamma^{-1}(t_0)$ (from the left) and corresponds to a group homomorphism $\beta : D \to S_4$. It is well known that β is injective and Im(β) is the centralizer of Im(α) in S₄.

For i = 1, ..., 5, since $\gamma^*(t_i) = 2x_i + 2y_i$ and $x_i \neq y_i$, we conclude that $\alpha([l_i]) \neq 1$ and $\alpha([l_i]) \in V_4$, where $V_4 := \{1, (12)(34), (13)(24), (14)(23)\}$. Since any two nontrivial elements of V_4 generate V_4 and $\alpha([l_5]) \dots \alpha([l_1]) = \alpha([l_1] \dots [l_5]) = 1$, we have $\text{Im}(\alpha) =$ V_4 . Since the centralizer of V_4 in S_4 is itself, $D \cong \text{Im}(\beta) = V_4 \cong \mathbb{Z}_2 \times \mathbb{Z}_2$.

Note that D is indeed isomorphic to the Galois group of γ . So $\gamma^* \mathcal{O}_{\mathbb{P}^1}(1) \equiv 2K_C$ by Lemma 5.3. Since $K_C = \gamma^* K_{\mathbb{P}^1} + \sum_{i=1}^5 (x_i + y_i)$, we have $\sum_{i=1}^5 (x_i + y_i) \equiv 5K_C$. \Box

Lemma 5.5 Let $\pi: E \to C$ be a double cover between smooth projective curves. Assume that the branch locus of π consists of 4 points x_1, x_2, x_3, x_4 such that $x_1+x_2+x_3+x_4 \equiv 2K_C$ and $\pi_*\mathcal{O}_E \cong \mathcal{O}_C \oplus \mathcal{O}_C(-K_C)$. Then E is a hyperelliptic curve of genus 5.

Proof The Riemann–Hurwitz theorem yields g(E) = 5. It suffices to show that the canonical image of *E* is a rational curve in \mathbb{P}^4 .

Note that $|2K_C|$ is composed with the hyperelliptic pencil $|K_C|$. We may assume $x_1+x_2, x_3+x_4 \in |K_C|$. Choose $s_1, s_2 \in H^0(C, \mathcal{O}_C(K_C))$ such that $(s_1)_0 = x_1+x_2, (s_2)_0 = x_3 + x_4$. Then s_1, s_2 is a basis of $H^0(C, \mathcal{O}_C(K_C))$ and thus s_1^2, s_1s_2, s_2^2 is a basis of $H^0(C, \mathcal{O}_C(2K_C))$.

Set $s_j := \pi^* s_j$ for j = 1, 2 and $y_i := \pi^{-1}(x_i)$ for i = 1, 2, 3, 4. Let $s' \in H^0(E, \mathcal{O}_E(y_1 + y_2 + y_3 + y_4))$ such that $(s')_0 = y_1 + y_2 + y_3 + y_4$. Since $2y_1 + 2y_2 + 2y_3 + 2y_4 = \pi^*(x_1 + x_2 + x_3 + x_4)$, we may choose s' such that $s'^2 = s'_1 s'_2$.

Since $\pi_* \mathcal{O}_E \cong \mathcal{O}_C \oplus \mathcal{O}_C(-K_C)$, we have

$$H^0(E, \mathcal{O}_E(K_E)) \cong s'\pi^*H^0(C, \mathcal{O}_C(K_C)) \oplus \pi^*H^0(C, \mathcal{O}_C(2K_C))$$

(cf. [11, Proposition 4.1]). It follows that $s's'_1$, $s's'_2$ and s'^2_1 , $s'_1s'_2$, s'^2_2 together form a basis of $H^0(E, \mathcal{O}_E(K_E))$. Since $s'^2 = s'_1s'_2$, one sees that the image of *E* under the canonical map defined by this basis a rational normal curve.

Acknowledgements The first named author is greatly indebted to Yi Gu for many discussions. The first named author would like to thank Meng Chen for the invitation to Fudan University, Wenfei Liu for the invitation to Xiamen University and for their hospitality. The second named author would like to thank Seonja Kim for useful comments of curves. Both author thank the referee for many valuable comments. The first named author was supported by the National Natural Science Foundation of China (Grant No.: 11501019). The second named author was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (No. 2017R1D1A1B03028273).

References

- 1. Bauer, I., Catanese, F.: Inoue type manifolds and Inoue surfaces: a connected component of the moduli space of surfaces with $K^2 = 7$, $p_g = 0$. Geometry and arithmetic, 23–56, EMS series of congress reports. European Mathematical Society, Zürich (2012)
- Calabri, A., Ciliberto, C., Mendes Lopes, M.: Numerical Godeaux surfaces with an involution. Trans. Am. Math. Soc. 359(4), 1605–1632 (2007)
- 3. Chen, Y.: Commuting involutions on surfaces of general type with $p_g = 0$ and $K^2 = 7$. Manuscr. Math. **147**(3–4), 547–575 (2015)
- 4. Chen, Y.: Notes on automorphisms of surfaces of general type with $p_g = 0$ and $K^2 = 7$. Nagoya Math. J. **223**(1), 66–86 (2016)

- 5. Dolgachev, I., Mendes Lopes, M., Pardini, R.: Rational surfaces with many nodes. Compos. Math. 132(3), 349-363 (2002)
- 6. Farkas, H.M., Kra, I.: Riemann Surfaces. Graduate Texts in Mathematics, vol. 71, 2nd edn. Springer, New York (1992)
- 7. Inoue, M.: Some new surfaces of general type. Tokyo J. Math. **17**(2), 295–319 (1994) 8. Lee, Y., Shin, Y.: Involutions on a surface of general type with $p_g = q = 0$, $K^2 = 7$. Osaka J. Math. 51(1), 121-139 (2014)
- 9. Mendes Lopes, M., Pardini, R.: The bicanonical map of surfaces with $p_g = 0$ and $K^2 \ge 7$. Bull. Lond. Math. Soc. 33(3), 265-274 (2001)
- 10. Mendes Lopes, M., Pardini, R.: The bicanonical map of surfaces with $p_g = 0$ and $K^2 \ge 7$, II. Bull. Lond. Math. Soc. 35(3), 337-343 (2003)
- 11. Pardini, R.: Abelian covers of algebraic varieties. J. Reine Angew. Math. **417**, 191–213 (1991) 12. Rito, C.: Some bidouble planes with $p_g = q = 0$ and $4 \le K^2 \le 7$. Int. J. Math. **26**(5), 1550035 (2015)