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Abstract Inoue constructed the first examples of smooth minimal complex surfaces of gen-
eral type with pg = 0 and K 2 = 7. These surfaces are finite Galois covers of the 4-nodal
cubic surface with the Galois group, the Klein group Z2 × Z2. For such a surface S, the
bicanonical map of S has degree 2 and it is composed with exactly one involution in the
Galois group. The divisorial part of the fixed locus of this involution consists of two irre-
ducible components: one is a genus 3 curve with self-intersection number 0 and the other is
a genus 2 curve with self-intersection number − 1. Conversely, assume that S is a smooth
minimal complex surface of general type with pg = 0, K 2 = 7 and having an involution
σ . We show that, if the divisorial part of the fixed locus of σ consists of two irreducible
components R1 and R2, with g(R1) = 3, R2

1 = 0, g(R2) = 2 and R2
2 = − 1, then the Klein

group Z2 × Z2 acts faithfully on S and S is indeed an Inoue surface.
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1 Introduction

In this article we focus on smooth minimal surfaces S of general type with pg = 0, K 2 = 7
and nonbirational bicanonical map. By [9] the bicanonical map ϕ has degree 2. Denote by σ

the involution associated to ϕ, called as the bicanonical involution. Despite of the existence
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of examples, the Inoue surfaces (see [9, Example 4.1], [7] and [1]), and a structure theorem
(see [10, Theorem 3.2]), a complete classification of these surfaces is still out of reach. To
understand S, one needs to study the quotient surface � := S/σ and the fixed locus Fix(σ )

of σ . Mendes Lopes and Pardini [10, Propostion 3.1] study� in detail and show that σ has 11
isolated fixed points. However, an explicit description of the divisorial part of Fix(σ ) is still
missing. In general, for an involution σ on a surface of general type with pg = 0 and K 2 = 7,
denote by Rσ the divisorial part of Fix(σ ). Lee and the second named author [8, Table in
page 3] describe all the possible cases for Rσ in terms of the genus and the self-intersection
number of each irreducible component of Rσ , except the case where σ is the bicanonical
involution. See also [12].

So it is natural to first consider the case where Rσ has the same irreducible decomposition
as the one of an Inoue surface. For any Inoue surface, degϕ = 2 (cf. [9, Example 4.1]) and
Rσ has the irreducible decomposition R1 + R2 with g(R1) = 3, R2

1 = 0, g(R2) = 2 and
R2
2 = − 1 (cf. [8, Section 5]). Conversely, we have the following theorem.

Theorem 1.1 Let S be a smooth minimal surface of general type with pg(S) = 0, K 2
S = 7

and having an involution σ . Assume that the divisorial part Rσ of the fixed locus of σ

consists of two irreducible components R1 and R2, with g(R1) = 3, R2
1 = 0, g(R2) = 2 and

R2
2 = − 1. Then the automorphism group of S contains a subgroup which is isomorphic to

the Klein group Z2 × Z2 and S is an Inoue surface.

It is not hard to show degϕ = 2 and that σ is the bicanonical involution (see Lemma 2.4).
The main claim of the theorem is the existence of involutions on S other than σ . We briefly
mention how to prove the theorem. In Sect. 3, based on the results of [10, Propostion 3.1],
we consider the minimal resolution W of the quotient surface � = S/σ and study a rational
fibration f̄ : W → P

1.With the assumption of Theorem 1.1, we not only analyze the singular
fibers of f̄ in detail (see Proposition 3.4) but also find a fibration of curves of genus 2 on
W which induces a hyperelliptic fibration of genus 5 on S (see Propositions 4.1 and 4.2).
For these we present several lemmas about curves of genus 2 in Sect. 5. The hyperelliptic
fibration of genus 5 implies an involution τ on S such that τ �= σ . Therefore, we obtain three
commuting involutions σ, τ, στ on S. Then S is an Inoue surface by the result of [3] (see
Proposition 2.1).

Notation We mainly consider projective normal surfaces with at worst ordinary double
points (nodes) over C in this article. For such a surface X , we use the following notation:

≡: a linear equivalence among divisors on X ;
num∼ : a numerical equivalence among divisors on X ;

Num(X): the quotient of Pic(X) by
num∼ ;

ρ(X): the Picard number of X , i.e., the rank of Num(X);
(− n)-curve (n ∈ N): a smooth irreducible rational curvewith the self intersection number
− n;
a (− 2)-curve is also called a nodal curve.

Throughout this article, we denote by S a smooth minimal surface of general type with
pg = 0 and K 2 = 7 and by ϕ : S ��� P

7 the bicanonical map of S.

2 Inoue surfaces and known results

Now we briefly introduce Inoue surfaces, the first examples of surfaces of general type with
pg = 0 and K 2 = 7. For explicit construction see [7] and [9, Example 4.1]. Here we just
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mention that an Inoue surface can be realized as a finite Galois cover of the 4-nodal cubic
surface with the Galois group Z2 × Z2, and that its bicanonical map has degree 2 and that
its bicanonical involution σ belongs to the Galois group (cf. see [9, Example 4.1]). Also
Rσ = R1 + R2 with g(R1) = 3, R2

1 = 0, g(R2) = 2 and R2
2 = − 1 (cf. [8, Section 5]). We

now state a proposition characterizing Inoue surfaces.

Proposition 2.1 Let S be a smoothminimal surface of general typewith pg = 0, K 2 = 7 and
degϕ = 2. Assume that there is an involution τ on S other than the bicanonical involution
σ . Then the subgroup 〈σ, τ 〉 of the automorphism group of S is isomorphic to Z2 × Z2 and
S is an Inoue surface.

Proof By [4, Theorem 1.2], we have 〈σ, τ 〉 ∼= Z2 × Z2. Since KSRσ = 7 by Theorem 2.2
(a) below, S is an Inoue surface according to [3, Theorem 1.1]. 	


In general, for a minimal surface of general type with pg = 0 and K 2 = 7, we know
degϕ = 1 or 2 by [9]. When degϕ = 2, Mendes Lopes and Pardini prove the following
theorem.

Theorem 2.2 (cf. [10]) Assume degϕ = 2 and let σ be the bicanonical involution. Then

(a) KSRσ = 7 and σ has 11 isolated fixed points;
(b) � is a rational surface with 11 nodes and K 2

� = − 4;
(c) there is a rational fibration f : � → P

1 such that f ◦π is a genus 3 hyperelliptic fibration
(see the right triangle of the diagram (2.1));

(d) KS is ample.

Proof For (a), see [2, Proposition 3.3(v) and Corollary 3.6(iv)] and [5, Lemma 4.2]. For (b),
(c) and (d), see [10, Proposition 3.1 and Theorem 3.3]. 	

Remark 2.3 [10, Proposition 3.1(ii) and Theorem 3.2(iv)] describe the singular fibers of f
and f ◦ π explicitly. See also [10, Remark 3.4(i)].

From now on, we keep the assumption and notation of Theorem 1.1.

Lemma 2.4 The bicanonical map ϕ of S has degree 2 and σ is the bicanonical involution.

Proof The adjunction formula gives KSR1 = 4 and KSR2 = 3, and thus KSRσ = 7. Then
ϕ is composed with σ by [5, Lemma 4.2] and [2, Corollary 3.6(iv)]. Since degϕ ≤ 2 by [9],
we conclude degϕ = 2 and that σ is the bicanonical involution. 	


Let ε : V → S be the blow-up of the 11 isolated fixed points of σ and denote by E j

( j = 0, 1, . . . , 10) the corresponding exceptional divisors. Then σ lifts to an involution σ̄

on V . Denote by W the quotient of V by σ̄ , by π : V → W the quotient map and by C j the
image of E j under π for j = 0, . . . , 10. Then W is a smooth surface and the curves C j are
nodal curves. The middle square of the diagram (2.1) commutes

V

h̄◦π

ε

π

S

π
f ◦π

P
1 W

h̄

η

f̄ = f ◦η

�
f

P
1

(2.1)
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where η is the minimal resolution of �. In particular, KW ≡ η∗K� and W is a smooth
rational surface with K 2

W = − 4 by Theorem 2.2(b).

Note thatπ is a smooth double cover branched along the divisor B1+B2+∑10
j=0 C j , where

Bi = π(ε∗Ri ) for i = 1, 2. Note that Bi is isomorphic to Ri for i = 1, 2 and thus smooth.
Also B1 and B2 are disjoint, and they are disjoint from the nodal curves C0,C1, . . . ,C10.
There is an invertible sheaf L ∈ Pic(W ) such that

2L ≡ B1 + B2 + C0 + C1 + · · · + C10. (2.2)

According to Theorem 2.2(b), f̄ := f ◦ η : W → P
1 is a rational fibration. Denote by

F the general fiber of f̄ . We will frequently refer to the following intersection numbers
B2
1 = 0, KW B1 = 4, B2

2 = − 2 and KW B2 = 4.

Lemma 2.5 Let D := 2KW + B1 + B2. Then

(a) π∗D ≡ ε∗(2KS), D2 = 14, DKW = 0 and D is nef and big;
(b) DB1 = 8, DB2 = 6 and DF = 4;
(c) If DC = 0 for an irreducible curve C, then C is one of the 11 nodal curves

C0,C1, . . . ,C10.

Proof For (a), see [2, Proposition 3.1(i), (ii)]. And (b) follows from a direct calculation and
Theorem 2.2(c). Now for (c) we use KS is ample (see Theorem 2.2(d)) and ε contracts exactly
the curves E0, E1, . . . , E10. 	


3 The branch divisors and the singular fibers of the rational fibration

This section and the next are devoted to the proof of Theorem 1.1. So we stick to the assump-
tion in Theorem 1.1 throughout these two sections. In this section we focus on the description
of the divisor class of Bi in Pic(X) and the singular fibers of f̄ .

Proposition 3.1 After possibly renumbering the 11 nodal curves C0,C1, . . . ,C10, we have

B1 ≡ −2KW + 2F and B2 ≡ −2KW + F + 2G + C0,

where G is a (− 1)-curve such that FG = 0 and GC0 = 1. Moreover, B1G = 2 and
B2G = 1.

Proof Note that (2KW + B1)
2 = 0 and KW (2KW + B1) = − 4. Then we have

h0(W,OW (2KW +B1)) ≥ 3 by theRiemann–Roch theorem. Since F is nef, F(2KW +B1) ≥
0 and thus FB1 ≥ − 2FKW = 4.

Similarly, we have h0(W,OW (2KW + B2)) ≥ 2 and FB2 ≥ −2FKW = 4. By
Lemma 2.5(b), DF = 4 and thus F(B1 + B2) = F(D − 2KW ) = 8. So FB1 = FB2 = 4.

Then F(2KW + B1) = 0. Since (2KW + B1)
2 = 0, the Zariski lemma implies 2KW +

B1
num∼ aF (a ∈ N) and then aFKW = (2KW + B1)KW , i.e. − 2a = − 4. So a = 2 and

B1 ≡ − 2KW + 2F since a numerical equivalence is the same as a linear equivalence on any
smooth rational surface.

We have seen dim |2KW + B2| ≥ 1 and F(2KW + B2) = 0. It follows that the moving
part of |2KW + B2| is composed with |F |, namely 2KW + B2 ≡ bF + �, where b ∈ N and
� is the fixed part of |2KW + B2|. Then D(bF + �) = D(2KW + B2), i.e. 4b + D� = 6.
By Lemma 2.5(a), we have b = 1 and � ≡ B2 + 2KW − F .
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By Lemma 2.5(b), we have

D� = 2, F� = 0, KW� = − 2, �2 = − 2, B1� = 4 and B2� = 2.

Since F� = 0, every irreducible component of � is a smooth rational curve with negative
self-intersection number. Since KW� = − 2, there is an irreducible component G of �

such that KWG < 0. It follows that G is a (− 1)-curve by the adjunction formula and then
DG > 0 by Lemma 2.5(a) and (c).We claim that DG = 1. Otherwise, since DG ≤ D� = 2
by Lemma 2.5(a), DG = 2 and then D(� − G) = 0. By Lemma 2.5(c), Supp(� − G) is
contained inC0∪C1 . . .∪C10. Then Bi (�−G) = 0 since Bi is disjoint fromC0,C1, . . . ,C10

for i = 1, 2. So B1G = B1� = 4 and B2G = B2� = 2. Since D ≡ 2KW + B1 + B2, we
have KWG = 1

2 (D − B1 − B2)G = − 2. This contradicts that G is a (− 1)-curve and thus
DG = 1.

Then G(B1 + B2) = G(D − 2KW ) = 3. Also GB1 = G(−2KW + 2F) = 2 and thus
GB2 = 1. By (2.2), G(C0 + C1 + · · · + C10) = 2LG − 3 �= 0. In particular, GC j > 0 for
some j ∈ {0, 1, . . . , 10}. After possibly renumbering the 11 nodal curves C0,C1, . . . ,C10,
we may assume j = 0 and thus GC0 > 0. Since F(G + C0) = 0, G + C0 is contained in
the same singular fiber of f̄ and thus GC0 = 1.

We have shown FG = 0, DG = 1, B1G = 2, B2G = 1 andGC0 = 1. It remains to show
� = 2G+C0. Note that�G = (B2+2KW −F)G = − 1 and�C0 = (B2+2KW −F)C0 =
0. It follows that (� − 2G − C0)

2 = �2 − 2�(2G + C0) + (2G + C0)
2 = 0. Since

D(� − 2G − C0) = 0, � = 2G + C0 by the algebraic index theorem. 	

Corollary 3.2 2G|B2 ≡ KB2 .

Proof By Proposition 3.1, 2(KW + B2) ≡ (−2KW + 2F) + 4G + 2C0 ≡ B1 + 4G + 2C0.
Since B1 ∩ B2 = ∅ and C0 ∩ B2 = ∅, we have 2KB2 ≡ 2(KW + B2)|B2 ≡ 4G|B2 . Note that
G �= B2 and deg(G|B2) = GB2 = 1. Since g(B2) = 2, 2G|B2 ≡ KB2 by Lemma 5.2. 	

Corollary 3.3 The linear system | − 2KW + 2F | is a base point free pencil of curves of
genus 3.

Before the proof, we remark that we can not even conclude | − 2KW + 2F | �= ∅ from the
Riemman-Roch theorem: χ(OW (−2KW + 2F)) = − 1.

Proof Recall that B1 ≡ −2KW + 2F (see Proposition 3.1) and B1 is smooth irreducible
with B2

1 = 0 and g(B1) = 3. First assume | − KW + F | �= ∅. Then for  ∈ | − KW + F |,
B1 = 0 and thus B1 is disjoint from . Therefore B1 and 2 generate a base point free
pencil of curves of genus 3.

It suffices to prove | − KW + F | �= ∅. We first show | − KW + F + G| �= ∅. Note that
(−KW + F +G)2 = 1 and KW (−KW + F +G) = 1 (see Proposition 3.1). By Serre duality,
h2(W,OW (−KW +F+G)) = h0(W,OW (2KW −F−G)) = 0. Then |−KW +F+G| �= ∅
by the Riemann-Roch theorem.

Let � ∈ | − KW + F + G|. It suffices to show � ≥ G. Since KW + B2 ≡ −KW + F +
2G +C0 ≡ � +G +C0 and pg(W ) = 0, we conclude that � �≥ B2 and thus �|B2 ≥ 0. We
claim � ≥ G. Otherwise, since G� = G(−KW + F + G) = 0, � and G are disjoint. Note
that

KB2 = (KW + B2)|B2 ≡ (� + G + C0)|B2 = �|B2 + G|B2
since C0 ∩ B2 = ∅. Then �|B2 ≡ G|B2 by Corollary 3.2. Since deg�|B2 = degG|B2 = 1
and � is disjoint from G, we have B2 ∼= P

1, a contradiction to g(B2) = 2. Hence � ≥ G. 	
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Proposition 3.4 Denote by F0 the singular fiber of f̄ containing G+C0. The rational fibra-
tion f̄ has exactly 5 singular fibers (possibly renumbering the 10 nodal curves C1, . . . ,C10):

(a) F0 = 2G + 2C0 + 2Z + C9 + C10, where Z is a (− 2)-curve such that ZG = 0 and
ZC0 = ZC9 = ZC10 = 1;

(b) the other 4 fibers are C2i−1 + 2�i +C2i , where �i is a (− 1)-curve such that �iC2i−1 =
�iC2i = 1 for i = 1, . . . , 4.

Proof We have the following observations.

(i) The (− 1)-curve G is disjoint from the 10 nodal curves C1, . . . ,C10.
Since 2G ≡ 2KW +B2−F−C0 by Proposition 3.1, we haveGCi = 0 for i = 1, . . . , 10.

(ii) F0 ≥ 2G + C0.
Actually, since (−2KW + 2F)B2 = B1B2 = 0 by Proposition 3.1 and B2 is irreducible,
B2 is contained in some member of |−2KW +2F | (see Corollary 3.3). Then |−2KW +
2F − B2| �= ∅. Since (−2KW + 2F) − B2 ≡ F − 2G − C0, we have F0 ≥ 2G + C0.

(iii) Every irreducible component of a singular fiber of f̄ is either a (− 1)-curve or a nodal
curve.
It suffices to show that −KW is f̄ -nef, which follows from Corollary 3.3.

Blowing downG and then blowing down the image ofC0, we obtain a birationalmorphism
μ : W → W ′, whereW ′ is a smooth rational surface with K 2

W ′ = −2 and ρ(W ′) = ρ(W )−
2 = 12.

Denote by p′ the point μ(G + C0) on W ′. Note that there is a fibration f ′ : W ′ → P
1

such that f̄ = f ′ ◦ μ. Set F ′
0 := μ(F0). Then F ′

0 is a fiber of f ′ and p′ ∈ F ′
0.

Set C ′
j := μ(C j ) for j = 1, . . . , 10. Since both G and C0 are disjoint from the 10

nodal curves C1, . . . ,C10, we see that C ′
j is a nodal curve and p′ /∈ C ′

j for j = 1, . . . , 10.
So W ′ contains 10 pairwise disjoint nodal curves. Applying [5, Theorem 3.3] and possibly
renumbering the nodal curvesC ′

1, . . . ,C
′
10, we conclude that f

′ has exactly 5 singular fibers:
C ′
2i−1+2�′

i+C ′
2i , where�′

i is a (− 1)-curve such that�′
iC

′
2i−1 = �′

iC2i = 1 for i = 1, . . . , 5.
We distinguish two cases.

Case 1: F ′
0 is a smooth fiber of f ′. Since p′ ∈ F ′

0, according to (ii), we have F0 = μ∗F ′
0 =

Z + 2G +C0, where Z is the strict transform of F ′
0 and Z is a nodal curve with ZG = 1 and

ZC0 = 0. Besides F0, f̄ has 5 singular fibers C2i−1 + 2�i + C2i , i.e., the pullback of the
singular fibers of f ′, where �i := μ∗(�′

i ) is a (− 1)-curve for i = 1, . . . , 5.
Denote by γ : B2 → P

1 the restriction of f̄ : W → P
1 to B2 and denote by Rγ the

ramification divisor of γ . Then deg γ = FB2 = 4 and then degRγ = 10 by the Riemann–
Hurwitz theorem.

Since�i (i = 1, . . . , 5) appearswithmultiplicity 2 in a singular fiber of f̄ ,Rγ ≥ �i |B2 for
i = 1, . . . , 5. Similarly,Rγ ≥ G|B2 .Note that deg�i |B2 = �i B2 = 1

2 (F−C2i−1−C2i )B2 =
2 for i = 1, . . . , 5 and degG|B2 = GB2 = 1. We have 10 = degRγ ≥ 2 × 5 + 1 = 11, a
contradiction. So Case 1 does not occur.

Case 2: F ′
0 is one of the singular fiber of f ′. Without loss of generality, assume F ′

0 =
C ′
9 + 2�′

5 + C ′
10. We have seen p′ ∈ F ′

0 and p′ /∈ C ′
9 ∪ C ′

10. So p′ ∈ �′
5. By (ii) and (iii),

F0 = μ∗F ′
0 = 2G + 2C0 + 2Z + C9 + C10, where Z is the strict transform of �′

5 and Z is
a nodal curve such that ZG = 0 and ZC0 = ZC9 = ZC10 = 1. The pullbacks of the other
4 singular fibers of f ′ are as described in (b) of the proposition since p′ does not belong to
these 4 fibers. 	
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Corollary 3.5 We have

F |B2 ≡ 2KB2 , KW |B2 ≡ 2KB2 , B2|B2 ≡ −KB2 .

Proof Denote by γ : B2 → P
1 the restriction of f̄ : W → P

1 to B2. Then deg γ = FB2 = 4.
The restriction of singular fibers of f̄ (see Proposition 3.4) to B2 gives 5 double fibers of γ ,
namely, 2�i |B2 (i = 1, 2, 3, 4) and 2(G + Z)|B2 . Then Lemma 5.4 yields F |B2 ≡ 2KB2 .

By the adjunction formula, Proposition 3.1, Corollary 3.2 and C0 ∩ B2 = ∅, we have
KB2 = (KW + B2)|B2 ≡ (−KW + F + 2G + C0)|B2 ≡ −KW |B2 + 3KB2 .

Hence KW |B2 ≡ 2KB2 . Then B2|B2 ≡ KB2 − KW |B2 ≡ −KB2 . 	


4 The proof of the main theorem

We provide the complete proof of Theorem 1.1. Recall that G, �i (i = 1, 2, 3, 4) and Z are
contained in the singular fibers of f̄ (see Proposition 3.4).

Proposition 4.1 Let H := B2 + 2G + C0.

(a) The linear system |H | is a base point free pencil of curves of genus 2.
(b) For a general smooth H ∈ |H |, F |H ≡ 2KH and (

∑4
i=1 �i |H + Z |H ) ≡ 5KH .

Proof By Proposition 3.1, we have HKW = 2, HB2 = 0, HG = 0, HF = 4 and HC j = 0
for j = 0, . . . , 10. It follows that H2 = H(B2 + 2G + C0) = 0 and pa(H) = 2 by the
adjunction formula.

Since C0 ∩ B2 = ∅, we have H |B2 ≡ OB2 by Corollary 3.2 and Corollary 3.5. Tensoring
the exact sequence 0 → OW (−B2) → OW → OB2 → 0 by OW (H), we obtain

0 → OW (2G + C0) → OW (H) → OB2 → 0.

It is clear that dim H0(W,OW (2G + C0)) = 1 and then H1(W,OW (2G + C0)) = 0
by the Riemann+-Roch theorem. The long exact sequence of cohomology groups yields
dim |H | = 1.

To prove (a), it remains to show that |H | is base point free. Since H2 = 0, it suffices to
show that H is nef. If HC < 0 for an irreducible curve C , since B2 + 2G + C0 ∈ |H |,
C = B2,G or C0. But we have seen HB2 = HG = HC0 = 0, a contradiction. So H is nef.

For a general H , the same reasoning as the proof of Corollary 3.5 yields that the restriction
of f̄ to H has degree 4 and that it has 5 double fibers 2Z |H and 2�i |H (i = 1, . . . , 4). Then
Lemma 5.4 yields F |H ≡ 2KH and (

∑4
i=1 �i + Z)|H ≡ 5KH . 	


Proposition 4.2 For a general H ∈ |H |, π∗H is a hyperelliptic curve of genus 5.

Proof The double cover π∗H → H is determined by the data (B1 + B2 +∑10
j=0 C j )|H and

L|H (see (2.2)). By (2.2), Propositions 3.1 and 3.4, we have

2L ≡ (−2KW + 2F) + (−2KW + F + 2G + C0) + (C0 + C9 + C10) +
8∑

j=1

C j

= −4KW + 3F + (2G + 2C0 + C9 + C10) +
4∑

i=1

(C2i−1 + C2i )

≡ −4KW + 3F + (F − 2Z) +
4∑

i=1

(F − 2�i ) = −4KW + 8F − 2

(

Z +
4∑

i=1

�i

)

.
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Since W is a smooth rational surface, Pic(W ) is torsion free and thus

L ≡ −2KW + 4F −
(

4∑

i=1

�i + Z

)

.

Since H |H = OH by Proposition 4.1(a), KW |H = KH by the adjunction formula. Then
L|H ≡ (−2KW + 4F − (

∑4
i=1 �i + Z))|H ≡ KH by Proposition 4.1(b).

Note that a general H is disjoint from B2+∑10
j=0 C j . So (B1+B2+∑10

j=0 C j )|H = B1|H .
Since a general H intersects B1 transversely and deg B1|H = B1H = B1(B2+2G+C0) = 4,
we conclude that π∗H is irreducible and smooth.

We have shown that the double cover π∗H → H and its covering data B1|H and L|H
satisfy the assumption of Lemma 5.5 and hence π∗H is a hyperelliptic curve of genus 5. 	


Recall the commutativity of the square in the diagram (2.1). Denote by h̄ : W → P
1 the

genus 2 fibration defined by |H |. Since HC j = 0, C j is contained in the fibers of h̄ for
j = 0, . . . , 10. By Proposition 4.2, h̄ ◦ π : V → P

1 is a hyperelliptic fibration of genus 5
(see the left triangle of the diagram (2.1)). Since π∗C j = 2E j , we see that E j is contained
in the singular fibers of h̄ ◦ π . Therefore h̄ ◦ π induces a hyperelliptic fibration of genus 5
on S. The hyperelliptic involutions on smooth fibers of this fibration induce an involution τ

on S since S is minimal. It is clear that τ is different from σ . Then Theorem 1.1 follows by
Proposition 2.1.

5 Lemmas on genus two curves

Throughout this section, we denote by C a smooth projective curve of genus 2. We omit the
proofs of Lemmas 5.1 and 5.2.

Lemma 5.1 Let L be an invertible sheaf on C with deg L = 2. Then h0(C, L) ≥ 1 and
h0(C, L) ≥ 2 if and only if L ≡ KC.

Recall that a point p on C is a Weierstrass point if 2p ≡ KC .

Lemma 5.2 (a) If p is a point of C such that 4p ≡ 2KC, then 2p ≡ KC.
(b) The sum of the Weierstrass points of C is linearly equivalent to 3KC.

Lemma 5.3 Assume that the automorphism group of C contains a subgroup G ∼= Z2 ×Z2.
Denote by q : C → C/G the quotient map. Then C/G ∼= P

1 and q∗OP1(1) ≡ 2KC.

Proof From [6, p. 267, V.1.10.], one see that G contains the hyperelliptic involution of C .
Then we obtain the conclusion. 	

Lemma 5.4 Let γ : C → P

1 be a morphism of degree 4. Assume that t1, . . . , t4 and t5 are 5
distinct points of P1 such that γ ∗(ti ) = 2xi + 2yi for i = 1, . . . , 5. Then γ ∗OP1(1) ≡ 2KC

and
∑5

i=1(xi + yi ) ≡ 5KC.

Proof It follows from Riemann-Hurwitz theorem that
∑5

i=1(xi + yi ) is the ramification
divisor of γ and xi �= yi for i = 1, . . . , 5. Set X := P

1 \ {t1, t2, t3, t4, t5} and Y := γ −1(X).
Then Y with γ |Y : Y → X is a topological covering space of X . Fix t0 ∈ X and take
a simple loop li in X based at t0 and going around ti for i = 1, . . . , 5. Denote by [li ]
the class of li in π1(X, t0). Then π1(X, t0) is generated by [l1], . . . , [l5] with the relation
[l1][l2][l3][l4][l5] = 1.
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Identify the permutation group of γ −1(t0)with the symmetric group S4 with 4 letters. The
group π1(X, t0) acts on γ −1(t0) (from the right) and corresponds to an anti-group homomor-
phism α : π1(X, t0) → S4. Also the groupD ofDeck transformations of the covering Y → X
acts on γ −1(t0) (from the left) and corresponds to a group homomorphism β : D → S4. It is
well known that β is injective and Im(β) is the centralizer of Im(α) in S4.

For i = 1, . . . , 5, since γ ∗(ti ) = 2xi + 2yi and xi �= yi , we conclude that α([li ]) �= 1
and α([li ]) ∈ V4, where V4 := {1, (12)(34), (13)(24), (14)(23)}. Since any two nontrivial
elements of V4 generate V4 and α([l5]) . . . α([l1]) = α([l1] . . . [l5]) = 1, we have Im(α) =
V4. Since the centralizer of V4 in S4 is itself, D ∼= Im(β) = V4 ∼= Z2 × Z2.

Note that D is indeed isomorphic to the Galois group of γ . So γ ∗OP1(1) ≡ 2KC by
Lemma 5.3. Since KC = γ ∗KP1 + ∑5

i=1(xi + yi ), we have
∑5

i=1(xi + yi ) ≡ 5KC . 	

Lemma 5.5 Let π : E → C be a double cover between smooth projective curves. Assume
that the branch locus ofπ consists of 4 points x1, x2, x3, x4 such that x1+x2+x3+x4 ≡ 2KC

and π∗OE ∼= OC ⊕ OC (−KC ). Then E is a hyperelliptic curve of genus 5.

Proof The Riemann–Hurwitz theorem yields g(E) = 5. It suffices to show that the canonical
image of E is a rational curve in P

4.
Note that |2KC | is composed with the hyperelliptic pencil |KC |. We may assume

x1+x2, x3+x4 ∈ |KC |. Choose s1, s2 ∈ H0(C,OC (KC )) such that (s1)0 = x1+x2, (s2)0 =
x3 + x4. Then s1, s2 is a basis of H0(C,OC (KC )) and thus s21 , s1s2, s

2
2 is a basis of

H0(C,OC (2KC )).
Set s j := π∗s′

j for j = 1, 2 and yi := π−1(xi ) for i = 1, 2, 3, 4. Let s′ ∈ H0(E,OE (y1+
y2 + y3 + y4)) such that (s′)0 = y1 + y2 + y3 + y4. Since 2y1 + 2y2 + 2y3 + 2y4 =
π∗(x1 + x2 + x3 + x4), we may choose s′ such that s′2 = s′

1s
′
2.

Since π∗OE ∼= OC ⊕ OC (−KC ), we have

H0(E,OE (KE )) ∼= s′π∗H0(C,OC (KC )) ⊕ π∗H0(C,OC (2KC ))

(cf. [11, Proposition 4.1]). It follows that s′s′
1, s

′s′
2 and s

′2
1 , s′

1s
′
2, s

′2
2 together form a basis of

H0(E,OE (KE )). Since s′2 = s′
1s

′
2, one sees that the image of E under the canonical map

defined by this basis a rational normal curve. 	
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