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Abstract In this paper, we study strong symplectic fillability and Stein fillability of some
tight contact structures on negative parabolic and negative hyperbolic torus bundles over
the circle. For the universally tight contact structure with twisting π in S1-direction on a
negative parabolic torus bundle, we completely determine its strong symplectic fillability
and Stein fillability. For the universally tight contact structure with twisting π in S1-direction
on a negative hyperbolic torus bundle, we give a necessary condition for it being strongly
symplectically fillable. For the virtually overtwisted tight contact structure on the negative
parabolic torus bundle with monodromy − T n (n < 0), we prove that it is Stein fillable. In
addition, we give a partial answer to a conjecture of Golla and Lisca.
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1 Introduction

Tight contact structures on torus bundles are classified up to isotopy, see [10] and [15].
The study of symplectic fillability and Stein fillability of contact torus bundles has been
conducted in the past decade. Symplectic fillability and Stein fillability of contact elliptic,
positive hyperbolic, and positive parabolic torus bundles have been completely determined.
See [2,3,5,9,18,24] and [1]. In this paper, we focus on strong symplectic fillability and Stein
fillability of certain contact negative parabolic and negative hyperbolic torus bundles.
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If A ∈ SL(2,Z), let MA denote the T 2-bundle over S1 with monodromy A. That is, MA is

obtained from T 2 × I = R
2/Z2 ×[0, 1], with coordinates (x, t) = (

(
x
y

)
, t) by identifying

the two ends via the map A : T 2 × {1} → T 2 × {0}, where (x, 1) �→ (Ax, 0). Two torus
bundles MA and MB are orientation-preserving diffeomorphic if and only if A is conjugate

in SL(2,Z) to B or J B−1 J−1, where J =
(
0 1
1 0

)
(cf. [21, Lemma 6.2]). If |tr(A)| < 2

(resp. |tr(A)| = 2 or |tr(A)| > 2), then A and the torus bundle MA are called elliptic (resp.
parabolic or hyperbolic). If tr(A) > 0 (resp. tr(A) < 0), then A and the torus bundle MA are
called positive (resp. negative).

Let φ : R → R be a smooth function with strictly positive derivative. The 1-form

sin φ(t)dx + cosφ(t)dy, (x, y, t) ∈ R
3,

defines a contact structure on R
3. This contact structure descends to a contact structure on

T 2 × R = (R2/Z2) × R which we denote by ζ̃ (φ).
For each A ∈ SL(2,Z), MA is the quotient of T 2 × R = (R2/Z2) × R with coordinates

(x, t) = (

(
x
y

)
, t) by the transformation (x, t) �→ (Ax, t − 1).

For each θ ∈ R, let �θ denote the ray
{(

s cos θ

−s sin θ

)
: s ≥ 0

}
⊂ R

2.

If A(�φ(t)) = �φ(t−1) for all t ∈ R, then the contact structure ζ̃ (φ) on T 2 × R is invariant
under the transformation (x, t) �→ (Ax, t − 1) and thus descends to a contact structure on
MA which we denote by ζ(φ). By [2, Theorem 1], ζ(φ) is weakly symplectically fillable.

Let m denote the integer satisfying

mπ ≤ sup
t∈R

(φ(t + 1) − φ(t)) < (m + 1)π.

Up to fiber preserving isotopy, the contact structure ζ(φ) on MA depends only on m when
m ≥ 1. This is the universally tight contact structure on MA with twistingmπ in S1-direction
(see [15, Theorem 0.1]). If A is negative parabolic or negative hyperbolic, the set of possible
values for m is the set of positive odd numbers and the contact structure ζ(φ) on MA with
the corresponding m = 1 is denoted by ξA. The contact structure ζ(φ) on MA with the
corresponding m ≥ 3 has positive Giroux torsion and is not strongly symplectically fillable
due to [9, Corollary 3].

Let S =
(

0 1
− 1 0

)
, and T =

(
1 1
0 1

)
.

For n ∈ Z, M−T n , the torus bundle with monodromy − T n , is also denoted by Mn . Then
Mn, n ∈ Z, constitute all negative parabolic torus bundles. The contact structure ξ−T n on Mn

is also denoted by ξn . When n ≥ − 3, ξn is Stein fillable by [24]. In [11], Golla and Lisca
constructed a strongly symplectically fillable contact structure on Mn for each n ≥ − 4. We
first claim that for − 4 ≤ n ≤ − 1, the strongly symplectically fillable contact structure
on Mn they constructed is (contactomorphic to) ξn (see Lemma 3.1). Thus ξ−4 is strongly
symplectically fillable. In fact, ξ−4 is Stein fillable (see Proposition 3.2). For n ≤ − 5, we
have the following result.

Theorem 1.1 If n ≤ − 5, then ξn is not strongly symplectically fillable.
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Remark 1.2 The negative parabolic torus bundle Mn can be considered as a non-orientable
S1-bundle over the Klein bottle. The contact structure ξn on Mn is transverse to the S1-fibers
away from a single torus. By Theorem 1.1, (Mn, ξn), n ≤ − 5, are examples of contact
3-manifolds without Giroux torsion that are weakly but not strongly symplectically fillable.
Niederkrüger and Wendl constructed such examples by considering S1-invariant contact
structures on S1 × � with � a closed oriented surface of genus at least 2 (see [22, Corollary
5]).

Remark 1.3 Let Pn denote the positive parabolic torus bundle with monodromy T n and ηn
denote the universally tight contact structure on Pn with twisting 2π in S1-direction. Pn
can be considered as an oriented S1-bundle over the torus with Euler number n, and ηn is
transverse to the S1-fibers away from two parallel tori. If n ≥ 0, then ηn is Stein fillable since
it can be obtained from η0 by Legendrian surgery (see [2, Proposition 13] and its proof). If
n < 0, then ηn is not strongly symplectically fillable since it has positive Giroux torsion.

According to [15, Theorem 0.1], for each n < 0, there is a unique, up to isotopy, virtually
overtwisted tight contact structure on Mn . We denote this contact structure on Mn by ξ ′

n . We
obtain the following.

Proposition 1.4 If n < 0, then ξ ′
n is Stein fillable.

Given (d1, . . . , dk) ∈ Z
k, k ≥ 1, we define

A(d1, . . . , dk) := T−dk S · · · T−d1 S =
(
dk 1
− 1 0

)
· · ·

(
d1 1
− 1 0

)
∈ SL(2,Z).

By [21, proposition 6.3], for A ∈ SL(2,Z), the torus bundle MA is negative hyperbolic if
and only if A is conjugate in SL(2,Z) to −A(d1, . . . , dk) for some d1, . . . , dk with di ≥ 2
for all i and di ≥ 3 for some i .

Let

d = (n1 + 3, 2, . . . , 2︸ ︷︷ ︸
m1

, n2 + 3, 2, . . . , 2︸ ︷︷ ︸
m2

, . . . , ns + 3, 2, . . . , 2︸ ︷︷ ︸
ms

), mi , ni ≥ 0, s ≥ 1,

and

ρ(d) = (ms + 3, 2, . . . , 2︸ ︷︷ ︸
ns

,ms−1 + 3, 2, . . . , 2︸ ︷︷ ︸
ns−1

, . . . ,m1 + 3, 2, . . . , 2︸ ︷︷ ︸
n1

),

then by [21, Theorem 7.3] we have −M−A(d) = M−A(ρ(d)). If d is embeddable (see [11] for
the definition), then by [11, Theorems 1.2 and 2.5] and [12], ξ−A(d) is strongly symplectically
fillable. For general d , we give a necessary condition for ξ−A(d) to be strongly symplectically
fillable.

Theorem 1.5 If ξ−A(d) is strongly symplectically fillable, then

n1 + n2 + · · · + ns ≤ m1 + m2 + · · · + ms + 4.

If s = 1, then this necessary condition is also sufficient.

Proposition 1.6 If d = (n1 +3, 2, . . . , 2︸ ︷︷ ︸
m1

) with m1, n1 ≥ 0, then ξ−A(d) is strongly symplec-

tically fillable if and only if n1 ≤ m1 + 4.
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We also give a partial answer to [11, Conjecture 1]. Suppose that D = C1 ∪ · · · ∪ Cl is
a symplectic divisor in a symplectic 4-manifold X . If each Ci is a 2-sphere, then the divisor
D is called spherical. If Ci · C j = 0 for j − i 
≡ − 1, 0, 1 (mod l) and Ci · C j = 1 for
j−i ≡ −1, 1 (mod l), then the divisor D is called circular. The plumbing graph of a circular,
spherical symplectic divisor is illustrated in [21, Theorem 6.1, IV].

Proposition 1.7 Let (X, ω) be a closed symplectic 4-manifold obtained as a symplectic
blowup of CP2 with the standard Kähler form. Suppose that

D = C1 ∪ · · · ∪ Cl ⊂ X

is a circular, spherical symplectic divisor such that Ci · Ci ∈ {0, 1} for some i ∈ {1, . . . , l}
and the intersection matrix of D is nonsingular. Then, any contact structure induced on the
boundary of a concave neighbourhood of D is universally tight.

In Sect. 2, we give some preliminaries. In Sect. 3, we identify the strongly symplectically
fillable contact structure onMn constructed in [11] (Lemma 3.1) and prove Theorems 1.1, 1.5
and Proposition 1.6. In Sect. 4, we prove Proposition 1.4. In Sect. 5, we prove Proposition 1.7.

2 Preliminaries

2.1 Legendrian surgery on (MA, ξA)

A fiber torus of MA is a torus T 2 × {p} ⊂ MA where p ∈ [0, 1]. If A ∈ SL(2,Z) is
negative parabolic or negative hyperbolic, then in (MA, ξA), each fiber torus T 2 × {p} is
pre-Lagrangian (i.e., linearly foliated) by the construction of ξA (see Sect. 1). Using the same
method as in the proof of [2, Proposition 11], we can deduce the following proposition. Note
that MA corresponds to TA−1 in [2].

Proposition 2.1 Assume that A ∈ SL(2,Z) is negative parabolic or negative hyperbolic. Let
L be a simple closed curve on T 2 such that L × {p} ⊂ T 2 × {p} (p ∈ [0, 1]) is Legendrian
in (MA, ξA). If ATL is negative parabolic or negative hyperbolic, where TL ∈ SL(2,Z)

corresponds to a right-handed Dehn twist along L in T 2, then the Legendrian surgery along
L × {p} in (MA, ξA) yields the contact manifold (MATL , ξATL ).

In T 2 = R
2/Z2, let μ = {

(
t
0

)
: 0 ≤ t ≤ 1} and λ = {

(
0
t

)
: 0 ≤ t ≤ 1}. Then μ

(resp. λ) is a linear simple closed curve in T 2 = R
2/Z2 of slope 0 (resp. ∞). Here we use

the parameter t to orient μ and λ. The right-handed Dehn twists Tμ =
(
1 1
0 1

)
= T and

Tλ =
(

1 0
− 1 1

)
.

2.2 b+
2 and b−

2

The following lemma is obvious.

Lemma 2.2 Let X1, X2 be two compact oriented 4-manifolds. Let Ni be a component of
∂Xi , i = 1, 2. Suppose f : N1 → N2 is an orientation-reversing diffeomorphism. The
manifold obtained by gluing X1 and X2 via f is denoted by X. Then we have b+

2 (X) ≥
b+
2 (X1) + b+

2 (X2) and b
−
2 (X) ≥ b−

2 (X1) + b−
2 (X2).
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2.3 Minimal strong symplectic fillings and Stein cobordism

The following proposition is due to John Etnyre.

Proposition 2.3 [4] Let N ′ be a minimal strong symplectic filling of a contact 3-manifold
(Y1, ξ1), W ′ be a Stein cobordism from (Y1, ξ1) to a contact 3-manifold (Y2, ξ2). Then N ′∪W ′
is a minimal strong symplectic filling of (Y2, ξ2).

Proof If there was a symplectic sphere� of self-intersection − 1 in N ′ ∪W ′, then according
to [23, Proposition 7.1], � is an (almost) complex sphere. It cannot intersect W ′, otherwise
the strictly pluri-subharmonic function would then have a maximum when restricted to the
sphere and that can’t happen. Thus the sphere � would have to be entirely contained in N ′,
but that’s not possible either since N ′ was minimal. �

3 Universally tight contact torus bundles

3.1 Identification of the contact structures constructed on Mn (− 4 ≤ n ≤ − 1) in
[11].

Lemma 3.1 For every integer − 4 ≤ n ≤ − 1, the strongly symplectically fillable contact
structure on Mn constructed in [11] is (contactomorphic to) ξn.

Proof By [11, Lemma 2.3], for each n ≥ − 4 (here n corresponds to− n in [11, Lemma 2.3]),

there is a spherical complex divisor D ⊂ CP
2#(5 + n)CP

2
which is the proper transform

of a complex line and a smooth conic in general position in CP2, obtained by blowing up at
4 + n generic points of the conic and one generic point of the complex line, such that the
boundary of a closed regular neighborhood of D is −Mn . Since the intersection matrix of D
is nonsingular and not negative definite, by [17, Theorem 1.3] (see also [11, Theorem 2.5]),

there is a closed regular neighborhood of D and a symplectic formω onCP2#(5+n)CP
2
such

that ∂W = −Mn is a concave boundary of (W, ω). The contact structure on Mn constructed
in [11] is induced by the ω-concave structure on ∂W = −Mn . We prove the lemma for the
case n = − 4. The proof for other cases are similar.

According to [7, Theorem 1.1(part B)] and [8], the contact structure on M−4 is supported
by an open book decomposition whose page is shown in Fig. 1 and whose monodromy is
the composition of Dehn twists along the ±-labelled simple closed curves, where the Dehn
twists along the +(resp. −)-labelled curves are right (resp. left) handed. Repeatedly using
[24, Lemma 4.4.2], the above open book decomposition is stably equivalent to the open book
decomposition shown in Fig. 2 with monodromy ψ−4 = tδ1 tδ2 t

−6
α1

t−2
α2

, where tγ denotes a
right-handed Dehn twist along the simple closed curve γ . By part 3(d) of the proof of [24,
Theorem 4.3.1], the latter open book decomposition supports the contact structure ξ−4 on
M−4. So the lemma holds. �

Proposition 3.2 For every integer − 4 ≤ n ≤ − 1, the contact structure ξn on Mn is Stein
fillable.

Proof We only prove the proposition for the case n = − 4. It suffices to show that the
monodromy ψ−4 admits a factorization into a product of right-handed Dehn twists. Using
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Fig. 1 A compact genus one
surface with eight boundary
components

+

+

+

+

+

+

+ +

− −

Fig. 2 A compact genus one
surface with two boundary
components

− −

− −

− −− −
+ +

α1

α2

δ1 δ2

chain relations and braid relations in the mapping class group, we can factor the monodromy
ψ−4 into a product of right-handed Dehn twists as follows:

ψ−4 = tδ1 tδ2 t
−6
α1

t−2
α2

= t−4
α1

tα1 tε tα2 tα1 tε tα2 tα1 tε tα2 tα1 tε tα2 t
−1
α1

t−2
α2

t−1
α1

= t−3
α1

tε tα2 tα1 tε tα2 tα1 tε tα2 tα1 tε t
−1
α1

t−1
α2

t−1
α1

= (t−2
α1

tε t
2
α1

)tα2 tε(tα1 tα2 tα1 tε t
−1
α1

t−1
α2

t−1
α1

).

�
3.2 Proof of Theorem 1.1

The torus bundle Mn has monodromy

(− 1 − n
0 − 1

)
. Let T 2 × {p} (p ∈ [0, 1]) be a pre-

Lagrangian fiber torus in the contact manifold (Mn, ξn) such that μ × {p} ⊂ T 2 × {p} is
Legendrian (for the definition of μ, see Sect. 2). Denote μ × {p} by K . Note that the contact
framing of K coincides with its framing induced by the pre-Lagrangian fiber torus containing
it.

Suppose now that n ≤ − 5. Let (Mn × [0, 1], ωn) be a symplectization of (Mn, ξn).
Attaching (− n−4)Weinstein 2-handles to (Mn ×[0, 1], ωn) along (− n−4) parallel copies
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of K × {1} in the fiber torus T 2 × {p} × {1} in Mn × {1}, by [6, Proposition 2.1], we obtain
a Stein cobordism W such that the concave end is (Mn, ξn). By Proposition 2.1, the convex
end of W is (M−4, ξ−4).

Lemma 3.3 b−
2 (W ) = − n − 4 and b+

2 (W ) = 0.

Proof If n is odd, then H1(Mn;Z) ∼= Z⊕Z4. If n is even, then H1(Mn;Z) ∼= Z⊕Z2 ⊕Z2.
So b1(Mn) = 1, and hence b2(Mn) = 1. Denote a generator of H2(Mn × [0, 1];R) ∼= R by
h0. The inclusion i : Mn × [0, 1] → W induces an injection i∗ : H2(Mn;R) → H2(W ;R).
By abuse of notation, i∗(h0) is still denoted by h0. Obviously, for any element h in H2(W ;R),
h0 · h = 0.

Let [K ] ∈ H1(Mn;Z) denote the homlogy class of K . In H1(Mn,Z), we have 2[K ] = 0.
There is an oriented annulus in MA whose boundary consists of two copies of the oriented
K . In fact it comes from μ × [0, 1] ⊂ T 2 × [0, 1] by quotient. The framing of K induced by
the annulus coincides with that induced by the fiber torus T 2 × {p} containing K .

Let K1, · · · , K− n−4 be the (− n−4) parallel copies of K ×{1} along which we attach the
(− n − 4) Weinstein 2-handles. For each i = 1, . . . ,− n − 4, there is an oriented annulus Ai

in Mn ×{1} with ∂Ai = 2Ki . Let Si be the oriented surface which is the union of Ai and two
copies of the core disk of the Weinstein 2-handle attached along Ki . Let [Si ] ∈ H2(W ;R)

denote the homology class of Si . Then h0, [S1], . . . , [S−n−4] freely generate H2(W ;R).
Since the 2-handles are attached to K1, . . . , K−n−4 with framing − 1 with respect to the
framing induced by the annuli A1, . . . , A− n−4, for i, j = 1, · · · ,−n − 4, we have

[Si ] · [S j ] =
{

− 4, i = j,

0, i 
= j.

Thus b−
2 (W ) = −n − 4 and b+

2 (W ) = 0. �
Suppose that Wn is a strong symplectic filling of the contact manifold (Mn, ξn). Without

loss of generality, we assume that Wn is minimal. Then, by Proposition 2.3, the union of
Wn and W is a minimal strong symplectic filling of (M−4, ξ−4). By [11, Theorem 3.5] and
its proof, all minimal strong symplectic fillings of the contact manifold (M−4, ξ−4) have
vanishing b−

2 . Indeed, the union of a minimal strong symplectic filling and the symplectic

cap in [11, Figure 3] is eitherCP2�CP2 or S2×S2. Since that symplectic cap,CP2�CP2 and
S2× S2 all have b−

2 = 1, by Lemma 2.2, the minimal strong symplectic filling of (M−4, ξ−4)

has b−
2 = 0. Hence b−

2 (Wn ∪ W ) = 0. So by Lemma 2.2, b−
2 (W ) = 0. This contradicts

Lemma 3.3 since n ≤ − 5. Thus (Mn, ξn) is not strongly symplectically fillable for n ≤ − 5.

3.3 Proof of Theorem 1.5

Let A =
(
x y
z w

)
∈ SL(2,Z). Assume that tr(A) = x + w ≤ − 3, i.e., A is negative

hyperbolic. Let T 2 ×{p} (p ∈ [0, 1]) be a pre-Lagrangian fiber torus in the contact manifold
(MA, ξA) such that λ × {p} ⊂ T 2 × {p} is Legendrian (for the definition of λ, see Sect. 2).
Denote λ × {p} by K . Let (MA × [0, 1], ωA) be a symplectization of (MA, ξA). Attaching
a Weinstein 2-handle to (MA × [0, 1], ωA) along K × {1} in the fiber torus T 2 × {p} × {1}
in MA × {1}, by [6, Proposition 2.1], we obtain a Stein cobordism W ′ such that the concave

end is (MA, ξA). Let A′ =
(
x y
z w

) (
1 0
− 1 1

)
=

(
x − y y
z − w w

)
. Suppose that tr(A′) =

x + w − y ≤ − 3. Then by Proposition 2.1, the convex end of W ′ is (MA′ , ξA′). Denote
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μ × {0} (⊂ T 2 × {0} ⊂ MA) by μ0 and λ × {0} (⊂ T 2 × {0} ⊂ MA) by λ0. Denote μ × {1}
(⊂ T 2 × {1} ⊂ MA) by μ1 and λ × {1} (⊂ T 2 × {1} ⊂ MA) by λ1.

Lemma 3.4 Assume that tr(A′) ≤ − 3, then b+
2 (W ′) = 0 and b−

2 (W ′) = 1.

Proof Since b1(MA) = 1, b2(MA) = 1. Denote a generator of H2(MA × [0, 1];R) ∼= R by
h0. The inclusion i : MA×[0, 1] → W ′ induces an injection i∗ : H2(MA;R) → H2(W ′;R).
By abuse of notation, i∗(h0) is still denoted by h0. Obviously, for any element h in H2(W ′;R),
h0 · h = 0.

Let [μ0], [λ0], [K ] ∈ H1(MA;Z) denote the homology classes of μ0, λ0, K . In
H1(MA;Z), we have [μ0] = x[μ0]+z[λ0], [λ0] = y[μ0]+w[λ0]. Thus (2−x−w)[λ0] = 0.
Since [K ] = [λ0], (2− x −w)[K ] = 0. Let C be a 2-chain in MA with ∂C = (2− x −w)K .
Let S be the oriented surface which is the union of C × {1} (⊂ MA × {1}) and 2 − x − w

copies of the core disk of the attached Weinstein 2-handle. Let [S] ∈ H2(W ′;R) denote
the homology class of S. Then h0, [S] freely generate H2(W ′;R). By Lemma 3.5 below,
[S] · [S] = −(2 − x − w)(2 − x − w + y) = −(2 − tr(A))(2 − tr(A′)) < 0. Therefore,
b+
2 (W ′) = 0 and b−

2 (W ′) = 1. �
Lemma 3.5 [S] · [S] = −(2 − x − w)(2 − x − w + y).

Proof Without loss of generality, we assume that 0 < p < 1 . Since (2 − x − w)[K ] = 0
in H1(MA;Z), K is a rationally null-homologous knot in MA. Denote a closed regular
neighborhood of K in MA by ν(K ). Let λ′ ⊂ ∂ν(K ) be a longitude for K determined
by the framing induced by the fiber torus T 2 × {p} containing K . Let μ′ ⊂ ∂ν(K ) be
a meridian of ν(K ) oriented such that the intersection number μ′ · λ′ = 1 on ∂ν(K ). In
H1(MA\Int(ν(K ));Z), we have [μ1] = x[μ0]+z[λ0], [λ1] = y[μ0]+w[λ0], [λ1] = [λ0] =
[λ′] and [μ′] = [μ1]−[μ0]. So in H1(MA\Int(ν(K ));Z), (2−x−w)[λ′]+ y[μ′] = 0. Since
the 2-handle is attached to K × {1} with framing − 1 with respect to the framing induced by
the fiber torus T 2 × {p} × {1} containing it, the Lemma follows from [19, Lemma 5.1]. �

Let

d = (n1 + 3, 2, . . . , 2︸ ︷︷ ︸
m1

, n2 + 3, 2, . . . , 2︸ ︷︷ ︸
m2

, . . . , ns + 3, 2, . . . , 2︸ ︷︷ ︸
ms

), mi , ni ≥ 0, s ≥ 1.

Suppose that s ≥ 2. Let

d ′ = (2, . . . , 2︸ ︷︷ ︸
m1+1

, n2 + 3, 2, . . . , 2︸ ︷︷ ︸
m2

, . . . , ns + 3, 2, . . . , 2︸ ︷︷ ︸
ms

).

Suppose that T 2 × {p} (p ∈ [0, 1]) is a pre-Lagrangian fiber torus in the contact manifold
(M−A(d), ξ−A(d)) such that λ×{p} ⊂ T 2×{p} is Legendrian. Let (M−A(d) ×[0, 1], ω−A(d))

be a symplectization of (M−A(d), ξ−A(d)). As before, attaching n1+1Weinstein 2-handles (if
s = 1, attaching n1 Weinstein 2-handles) to (M−A(d) × [0, 1], ω−A(d)) along parallel copies
of λ×{p}×{1} in the fiber torus T 2×{p}×{1} inM−A(d)×{1}, we obtain a Stein cobordism
such that the concave end is (M−A(d), ξ−A(d)) and the convex end is (M−A(d ′), ξ−A(d ′)) by
Proposition 2.1. Let

d ′′ = (n2 + 3, 2, . . . , 2︸ ︷︷ ︸
m2

, . . . , ns + 3, 2, . . . , 2︸ ︷︷ ︸
ms+m1+1

),

then (M−A(d ′), ξ−A(d ′)) = (M−A(d ′′), ξ−A(d ′′)). So we can attach Weinstein 2-handles as
before. After successively attaching n1 + n2 + · · · + ns + s − 1 Weinstein 2-handles, we
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obtain a Stein cobordism W with the concave end (M−A(d), ξ−A(d)) and the convex end
(M−A(d0), ξ−A(d0)), where

d0 = (3, 2, . . . , 2︸ ︷︷ ︸
m1+m2+···+ms+s−1

).

By Lemma 3.4 and Lemma 2.2, we have b−
2 (W ) ≥ n1 + n2 + · · · + ns + s − 1.

Suppose that W−A(d) is a minimal strong symplectic filling of the contact manifold
(M−A(d), ξ−A(d)). Then by Proposition 2.3,W−A(d) ∪W is a minimal strong symplectic fill-
ing of (M−A(d0), ξ−A(d0)). Let c = m1 +m2 +· · ·+ms + s+2. Then M−A(d0) = −M−A(c).
By [11, Theorem 3.1], the contact manifold (M−A(d0), ξ−A(d0)) admits a unique minimal
strong symplectic filling up to orientation preserving diffeomorphism, which is the com-
plement of the interior of a closed regular neighborhood W̃ of a spherical complex divisor
D in CP2#(c + 2)CP2. By the construction of D (see [11, Lemma 2.4]), b−

2 (W̃ ) = 1.

Hence by Lemma 2.2, b−
2 (W ) ≤ b−

2 (W−A(d) ∪ W ) ≤ b−
2 (CP2#(c + 2)CP2) − b−

2 (W̃ ) =
c + 2− 1 = c + 1. So n1 + n2 + · · · + ns + s − 1 ≤ m1 +m2 + · · · +ms + s + 2+ 1, i.e.,
n1 + n2 + · · · + ns ≤ m1 + m2 + · · · + ms + 4, concluding the proof of Theorem 1.5.

3.4 Proof of Proposition 1.6

It suffices to show that if n1 ≤ m1 + 4, then ξ−A(d) is strongly symplectically fillable.
If 2 ≤ n1 ≤ m1 + 4, then (n1 − 1, 1, 2, . . . , 2︸ ︷︷ ︸

n1−2

, 1) ≺ ρ(d) = (m1 + 3, 2, . . . , 2︸ ︷︷ ︸
n1

). Since

(n1 −1, 1, 2, . . . , 2︸ ︷︷ ︸
n1−2

, 1) is a blowup of (0, 0), d is embeddable. We refer the reader to [11] for

the notation “≺” and the definition of “blowup”. If n1 = 1, then (0, 0) ≺ ρ(d) = (m1+3, 2).
So d is also embeddable. By [11, Theorem 1.2 and Theorem 2.5(v)], for n1 ≥ 1, ξ−A(d) is
strongly symplectically fillable. If n1 = 0, then ρ(d) = (m1 + 3). By [11, Theorem 1.2 and
Theorem 2.5(iv)] ([11, Theorem 1.2] is still true if d = (3, 2, . . . , 2︸ ︷︷ ︸

m1

)), ξ−A(d) is strongly

symplectically fillable.

4 Virtually overtwisted contact torus bundles

In this section, we prove Proposition 1.4. Throughout this section, n is a negative integer.
Since − T n = (− S)2T n is conjugate to (−S)T n(−S), by [16, Theorem A.4], Mn can be
obtained by surgery of S3 along the framed link shown in the left of Fig. 3. We isotope the
framed link to the right of Fig. 3. So by changing the 2-handles attached along the 0-framed
unknots to 1-handles, we can turn the topological surgery diagram in Fig. 3 to a Legendrian
link diagram in standard form (cf. [13] or [14]) shown in Fig. 4. The Legendrian knot K0 in
Fig. 4 has tb(K0) = 1. Performing − n positive or negative stabilizations on K0, we obtain
a Legendrian knot K ′

0 which has tb(K
′
0) = n + 1. Attaching a Weinstein 2-handle along K ′

0
yields a Stein domain N which is a Stein filling of a contact structure ξ on Mn . It is easy to
know that H1(N ;Z) ∼= Z ⊕ Z2.

Let M̃n denote the double cover of Mn corresponding to the epimorphism

φ : π1(Mn)
pr→ π1(S

1) ∼= Z
β→ Z2,
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0

0

n

0

0

n

Fig. 3 An isotopy of topological surgery diagrams

Fig. 4 A Legendrian link
diagram in standard form, where
K0 is a Legendrian knot with
tb(K0) = 1, rot(K0) = 0

K0

where pr is induced by the projection of the T 2-bundle and β : Z → Z2 denotes the
homomorphism which sends 1 to the generator of Z2. Then M̃n is a T 2-bundle over S1 with
monodromy T 2n .

Lemma 4.1 If ξ is a universally tight contact structure on Mn, then the lift of ξ to M̃n is not
strongly symplectically fillable.

Proof According to Honda’s classification [15, Theorem 0.1], we divide the proof into two
cases. If ξ is a universally tight contact structure onMn with twisting in S1-directionβS1 ≥ π ,
then the lift of ξ to M̃n is universally tight with βS1 ≥ 2π . Explicitly, the lift of ξ can be
written as given by the following 1-form on (T 2×R)/ ∼: αm = sin(φ(t))dx+cos(φ(t))dy,
with m ∈ Z

+, φ′(t) > 0, 2mπ ≤ supt∈R(φ(t + 1) − φ(t)) < (2m + 1)π , and ker αm is
invariant under the action (x, t) → (T 2nx, t − 1). See the second paragraph in page 99 of
[15] or Section 1. If ξ is a universally tight contact structure on Mn with minimal twisting in
the S1-direction given by μ′ if μ′ is odd, or by (μ′,±) if μ′ is even, where μ′ is a positive
integer, then the lift of ξ to M̃n is a universally tight contact structure on M̃n with minimal
twisting in the S1-direction given by (μ′, l ′) for some integer l ′, which is contactomorphic
to a universally tight contact structure on M̃n with βS1 ≥ 2π .

Since n < 0, it is straightforward to check that a universally tight contact structure on M̃n

with βS1 ≥ 2π has positive Giroux torsion. So the lemma follows from [9, Corollary 3]. �
Let c : H1(N ;Z) → Z denote a homomorphism which sends a generator of the Z-

summand of H1(N ;Z) to a generator ofZ. Let Ñ denote the double cover of N corresponding
to the epimorphism
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ψ : π1(N )
h→ H1(N ;Z)

c→ Z
β→ Z2,

where h denotes the Hurewicz homomorphism. Since N is Stein, the homomorphism j :
π1(Mn) → π1(N ) induced by inclusion is surjective. Thus the boundary of Ñ , ∂ Ñ , is a
double cover of Mn corresponding to the epimorphism ψ ◦ j : π1(Mn) → Z2.

Lemma 4.2

ψ ◦ j = φ.

Proof Note that h ◦ j = j0 ◦ h0, where h0 : π1(Mn) → H1(Mn;Z) is the Hurewicz
homomorphism and j0 : H1(Mn;Z) → H1(N ;Z) is induced by inclusion. Thus ψ ◦ j =
β ◦ c ◦ h ◦ j = β ◦ c ◦ j0 ◦ h0. If n is odd, then H1(Mn;Z) ∼= Z ⊕ Z4. If n is even,
then H1(Mn;Z) ∼= Z ⊕ Z2 ⊕ Z2. The homomorphism c ◦ j0 : H1(Mn;Z) → Z sends a
torsion element of H1(Mn;Z) to 0. Since c ◦ j0 is surjective, it sends a generator of the
Z-summand of H1(Mn;Z) to a generator of Z. Note that φ = β ◦ pr = β ◦ p0 ◦ h0,
where p0 : H1(Mn;Z) → H1(S1;Z) ∼= Z is induced by the projection of the T 2-bundle.
p0 sends a torsion element of H1(Mn;Z) to 0. Since p0 is surjective, it sends a generator
of the Z-summand of H1(Mn;Z) to a generator of Z. Thus β ◦ p0 = β ◦ c ◦ j0. Hence
ψ ◦ j = β ◦ c ◦ j0 ◦ h0 = β ◦ p0 ◦ h0 = φ. �

By Lemma 4.2, ∂ Ñ = M̃n . Lift the contact structure ξ to ∂ Ñ and denote the resulting
contact structure by ξ̃ . Since the Stein structure on N lifts to Ñ , ξ̃ is a Stein fillable contact
structure on M̃n . By Lemma 4.1, ξ is not universally tight. It follows that ξ is just the virtually
overtwisted contact structure ξ ′

n and ξ ′
n is Stein fillable.

5 Circular spherical symplectic divisors

Let (X, ω) be a closed symplectic 4-manifold obtained as a symplectic blowup of CP2 with
the standard Kähler form. For a circular, spherical symplectic divisor D = C1∪· · ·∪Cl ⊂ X
(l ≥ 2), define ei = Ci ·Ci , i = 1, . . . , l. The boundary of a closed regular neighborhood of
D is MA, a torus bundle over S1, with A = A(−e1, . . . ,−el) (see the proof of [21, Theorem
6.1]).

Nowwe start the proof of Proposition 1.7. Assume that ei ∈ {0, 1} for some i ∈ {1, . . . , l}.
Then the intersectionmatrix of D is not negative definite. Since the intersectionmatrix of D is
nonsingular, we can apply [11, Theorem2.1] to see that there is a closed regular neighborhood
V of D and a deformation ω1 of ω such that ∂V is a concave boundary of (V, ω1). Denote
the induced contact structure on ∂V = MA by ξ . The contact manifold (−MA, ξ) admits a
strong symplectic filling P0 given by the complement of Int(V ).

The intersection matrix of D is nonsingular implies that b1(MA) = 1 (see the proof of
[11, Theorem 2.5]). Hence tr(A) 
= 2.

Lemma 5.1 (−MA, ξ) cannot admit a strong symplectic filling P with b1(P) = 1.

Proof Suppose that (−MA, ξ) admits a strong symplectic filling P with b1(P) = 1. By [20,
Theorems 1.1 and 1.4], V ∪P is rational or ruled. So b1(V ∪P) is even. By theMayer-Vietoris
sequence of (V, P), the fact that i∗ : H1(MA;Z) → H1(V ;Z) ∼= Z induced by inclusion is
surjective and b1(V ) = b1(P) = 1, we conclude that b1(V ∪ P) = 1, a contradiction. �

We prove Proposition 1.7 by a case by case argument.

123



414 Geom Dedicata (2018) 195:403–415

If A is elliptic and ξ is not universally tight, then ξ is one of the three virtually overtwisted
contact structures listed in elliptic case of [15, Theorem 0.1] (one for A−1 conjugate to S, two
for A−1 conjugate to (T−1S)2). By [5, Theorem 1.1], these three contact structures are not
weakly symplectically semi-fillable, contradicting the fact that (−MA, ξ) admits the strong
symplectic filling P0.

If A is hyperbolic with tr(A) > 2, since (−MA, ξ) is strongly symplectically fillable, it
is a tight contact structure which is minimally twisting in the S1-direction. Therefore there
is a Stein filling P of (−MA, ξ) with b1(P) = 1(see the proof of [1, Proposition 11]). This
contradicts Lemma 5.1.

If A is hyperbolic with tr(A) < −2 and (−MA, ξ) is not universally tight, then it is a tight
contact structure which is minimally twisting in the S1-dirction. By [11, Lemma 4.3], there
is a Stein filling P of (−MA, ξ) with b1(P) = 1, contradicting Lemma 5.1.

If A is parabolic with tr(A) = −2 and (−MA, ξ) is not universally tight, then it is the
virtually overtwisted contact structure in the preceding section byHonda’s classification [15].
By the preceding section, it has a Stein filling P with b1(P) = 1, contradicting Lemma 5.1.

This ends the proof of Proposition 1.7.
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