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Abstract For a hyperbolic surface S of finite typewe consider the set A(S) of angles between
closed geodesics on S. Our main result is that there are only finitely many rational multiples
of π in A(S).
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1 Introduction

Geometry of two dimensional manifolds, surfaces, have been in the center of mathematical
research for centuries. Hyperbolic metrics on surfaces has been a very important testing
ground for different geometric curiosities. In particular, lengths of closed geodesics on these
surfaces have been an important topic of research for years (see [3–5,8,10]). This article is
on a related geometric quantity, the angles between pairs of closed geodesics.

Let S be a hyperbolic surface of finite type. We denote the set of angles between pairs of
closed geodesics on S by A(S). A fixed angle may appear at many different intersections.
We call this number of distinct appearances the multiplicity of the angle. We denote the set
of angles in A(S) forgetting their multiplicities by A(S) and call A(S) and A(S) by angle
spectrum and angle set respectively.

We begin by specifying a way of measuring these angles. Let γ and δ be two closed
geodesics on S that intersect each other at p. Let γ̇p and δ̇p respectively denote the tangent
vectors to to γ and δ at p. We measure the angle of intersection θ(γ, δ, p) between γ̇p and
δ̇p in the counter clockwise direction from γ to δ. In particular θ(γ, δ, p) = π − θ(δ, γ, p).
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Remark 1.1 For γ, δ and θ = θ(γ, δ, p) as above cos2(θ) depends on γ and δ but not on the
direction in which the angle is measured.

In this article we focus on qualitative properties of the two collectionsA(S) and A(S). For
any hyperbolic surface S of finite type A(S) is a countable infinite set and it follows from [9]
that A(S) is dense in [0, π ]. The main question that we address in this paper is the following.

Question 1.2 How many angles in A(S) can be a rational multiple of π?

Surprisingly the author’s motivation to study this question came from a seemingly unre-
lated field. In the paper [6] we have studied eigenfunctions of the Laplacian on hyperbolic
surfaces. Let φ be an eigenfunction of the Laplacian on H

2. Let �φ denote the subgroup of
isometries of H2 that leaves φ2 invariant. In [6] we have observed (motivated by a similar
observation in [1]) that if φ vanishes on a geodesic γ then it is odd with respect to the reflec-
tion isometry Rγ along γ of H2 i.e. φ ◦ Rγ = −φ. In particular, Rγ ∈ �φ . An important
property of any non-constant eigenfunction φ is that the subgroup �φ is discrete (see if it
contains a co-finite subgroup [6]).

Now consider two intersecting geodesics γ, δ on H
2 and consider the subgroup �(γ, δ)

of SL(2,R) generated by the reflections Rγ , Rδ along γ and δ respectively. Let γ, δ intersect
each other at p and let θ = θ(γ, δ, p). Then �(γ, δ) contains an elliptic isometry of H2

which is a rotation about p by an angle equal to θ . Let φ be a non-constant eigenfunction
that vanish on both γ and δ. Then by the last paragraph �(γ, δ) ⊂ �φ . In particular, if �φ is
discrete, so is �(γ, δ) implying that θ must be a rational multiple of π .

It is not difficult to construct eigenfunctions that vanish on two intersecting geodesics, even
on closed hyperbolic surfaces (see [6]). In general the answer to Question 1.2 is ‘infinite’. In
the last section we construct examples of surfaces for which there are infinitely many distinct
intersections between pairs of closed geodesics such that the angle of intersection is π/2.
The main result of this article is that, in general, there are infinitely many rational multiples
of π in A(S) if and only if one of these rational multiples of π has infinite multiplicity in
A(S).

Theorem 1.3 For any hyperbolic surface S of finite type there are only finitely many angles
in A(S) that are rational multiples of π .

1.1 Structure of the article

In the first section we consider a complete hyperbolic surface S of finite type. Using uni-
formization theorem we consider a Fuchsian group � such that S = H

2/�, up to isometry.
For two intersecting closed geodesics γ and δ on S we fix an intersection point p. In Sect.1
we consider Mγ , Mδ ∈ � representing γ and δ respectively and use the matrix entries of Mγ

and Mδ to get a formula for cos2(θ) where θ = θ(γ, δ, p).
We prove Theorem 1.3 in Sect. 2. In the first step of the proof we consider the field F�

obtained by attaching the matrix entries of all the elements in � to Q. Using the fact that
� is finitely generated it follows that F� is a finitely generated field extension of Q. Using
the expression for cos2(θ) obtained in Sect.1 we deduce that cos2(θ) ∈ F� for any angle
θ ∈ A(H2/�).

The final arguments of the proof go follows. For simplicity, assume that F� is algebraic
over Q. Since F� is finitely generated over Q we obtain that the degree of extension F�|Q is
finite. Now let p

q π be in A(H2/�) and so cos2( p
q π) ∈ F� . Then there is a field extension

F(q) of F� with degree of extension at most two that contain a primitive q-th root of unity. In
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particular, the degree of extension F(q)|Q is uniformly bounded independent of q . Finally we
observe that the degree of extension F(q)|Q is at least φ(q)where φ is the Euler’s φ-function
that counts the number of distinct positive integers less than and co-prime with q . Since φ(q)

goes to infinity as q goes to infinity [2, Theorem 328], we reach our desired contradiction.

2 Formula for the cosine of an angle

Let � be a finitely generated Fuchsian group. This usually means that � ⊂ PSL(2,R). By
taking the pre-image of� under the quotient map� : SL(2,R) → PSL(2,R)we can always
think of � ⊂ SL(2,R). This identification will be assumed in the article from now on. It is a
standard fact that every closed geodesic on S corresponds to a conjugacy class of elements in
π1(S) = �. Let γ, δ be two closed geodesics on S and letMγ , Mδ ∈ � be two representatives
of γ, δ respectively. Let us denote

Mγ =
(
aγ bγ

cγ dγ

)
, Mδ =

(
aδ bδ

cδ dδ

)
.

Recall that γ and δ are the projections of the axes of Mγ and Mδ respectively, under the
covering map:H2 → H

2/�. Since γ and δ are closed geodesics, Mγ and Mδ are hyperbolic
linear fractional transformations. Thus the axes of Mγ and Mδ are either semi-circles or
vertical straight lines that intersect R orthogonally. Here R ∪ {∞} is identified with the
boundary ∂H2 of H2.

Observe that in both the cases it is possible to determine the axis of Mγ (or Mδ) from the
points where they intersect R. Now these last set of points are just the fixed points of Mγ (or
Mδ). The fixed points of Mγ can be computed simply as follows. There are two cases.

Case I First let the axis of Mγ (or Mδ) be a semi-circle. Then both the points of intersections
are finite real numbers that satisfy

Mγ (z) = z ⇒ aγ z + bγ

cγ z + dγ

= z ⇒ cγ z
2 + (

dγ − aγ

)
z − bγ = 0.

Hence the two points of intersections of the axis of Mγ with the real line are the two roots
of the equation

cγ z
2 + (

dγ − aγ

)
z − bγ = 0. (2.1)

Denote these by αγ and βγ with αγ < βγ . In terms of matrix coefficients of Mγ we have

αγ =
(
aγ − dγ

) −
√(

aγ − dγ

)2 + 4cγ bγ

2cγ

, βγ =
(
aγ − dγ

) +
√(

aγ − dγ

)2 + 4cγ bγ

2cγ

.

(2.2)
Using det Mγ = 1 they take the form:

αγ =
(
aγ − dγ

) −
√
tr Mγ

2 − 4

2cγ

, βγ =
(
aγ − dγ

) +
√
tr Mγ

2 − 4

2cγ

. (2.3)

In particular, the center and the Euclidean radius of the axis of Mγ are respectively

mγ =
(
aγ − dγ

2cγ

, 0

)
and rγ =

√
tr Mγ

2 − 4

2cγ

. (2.4)
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Fig. 1 Cosine of the angle

Case II The axis of Mγ is a vertical straight line. In particular, cγ = 0. Then the only point

of intersection between the axis of Mγ and R is
(

bγ

dγ −aγ
, 0

)
.

2.1 Cosine of the angle

Consider two intersecting closed geodesics γ and δ on S. Fix one point of their intersection p.
Choose two representatives Mγ , Mδ for γ, δ respectively such that the point of intersection
p̃ between the axis of Mγ and the axis of Mδ is a lift of p under the covering map π : H2 →
H

2/� = S. Let θ = θ(γ, δ, p). Hence θ is the angle between the axis of Mγ and the axis
of Mδ at p̃. Now we have two cases depending on the nature of the axes of Mγ and Mδ . We
treat them separately.

Case I First let us assume that both Mγ and Mδ have semi-circle axes. This situation is
explained in the top picture in Fig. 1. Let ψ be the angle between the normals to the the axis
of Mγ and the axis of Mδ at p̃. Then ψ = π − θ .

Now consider the Euclidean triangle on H
2 with the following three vertices: the centre

of the (semi-circle) axis of Mγ , the centre of the (semi-circle) axis of Mδ and p̃ the point
of intersection of the two axes. Let us denote the distance between the two centres by dγ,δ .
Hence

dγ,δ =
∣∣∣∣aγ − dγ

2cγ

− aδ − dδ

2cδ

∣∣∣∣ . (2.5)

Using Euclidean geometry for the above described triangle we obtain

cos(π − θ) = r2γ + r2δ − d2γ,δ

2rγ rδ
.
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Thus

cos2 (θ) =
(
r2γ + r2δ − d2γ,δ

)2
4r2γ r

2
δ

. (2.6)

Case II Now we assume that the axis of Mγ is a vertical straight line. Since γ and δ intersect
each other, the axis of Mδ must be a semi-circle. This situation is explained in the bottom
picture of Fig. 1. Consider the normal Nδ to the axis of Mδ at p̃. Let ψ be the angle between
the boundary ∂H2 = R and Nδ . Observe thatψ = θ . Nowwe consider the Euclidean triangle
with vertices: the center of the axis of Mδ , the point of intersection between axis of Mγ and
∂H2 = R and p̃. By the definition of the cosine function and the last equality ψ = θ we get

cos2(θ) =

⎛
⎜⎜⎝

∣∣∣∣ bγ

dγ −aγ
− aδ−dδ

2cδ

∣∣∣∣
√

tr Mδ
2−4

2cδ

⎞
⎟⎟⎠

2

. (2.7)

Lemma 2.1 From the above two expressions it is clear that cos2(θ) is expressible as rational
functions in the matrix entries aγ , bγ , cγ , dγ of Mγ and aδ, bδ, cδ, dδ of Mδ .

Remarks 2.2 1. The two expressions (2.6) and (2.7) are not original. Some variant of these
expressions aremost likely known to experts. The authorwas informed by the anonymous
referee that an expression similar to these is implicitly used in [7].

2. It was pointed out to the author by the anonymous referee that it is possible to deduce the
same conclusion as in Lemma 2.1 by staying entirely in hyperbolic framework (avoiding
Euclidean geometry). This approach is in fact a little shorter than ours. We are sticking
to this approach mainly because of the last part of the proof our main result, which in the
other approach becomes a bit complicated.

3 Proof of Theorem 1.3

Consider the field

F� = Q

(
aγ , bγ , cγ , dγ : Mγ =

(
aγ bγ

cγ dγ

)
∈ �

)

generated by the entries of the matrices in � ⊂ SL(2,R). Observe that this is a finitely
generated field. This is clear because � is a finitely generated group and so adjoining the
matrix entries of a generating subset of � is enough.

Now we have two cases depending on whether F� is algebraic over Q or not. In the
latter case, since F� is finitely generated over Q, there is a purely transcendental extension
T�|Q ⊂ F� such that F� is algebraic over T� . To treat the two cases at the same time let T�

denote Q when F� is algebraic over Q. In both the cases F� is finitely generated over T� .
Hence the degree [F� : T�] of the extension F�|T�

is finite.
Now from Lemma 2.1 we have for θ = θ(γ, δ, p) the value cos2(θ) is in F� . Hence the

degree of the field extension F�

(
e2iθ

)
|F�

[
F�

(
e2iθ

)
: F�

]
≤ 2.
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This implies that the degree of the extension T�

(
e2iθ

)
|T�[

T�

(
e2iθ

)
: T�

]
≤

[
F�

(
e2iθ

)
: T�

]
=

[
F�

(
e2iθ

)
: F�

]
· [F� : T�] ≤ 2 [F� : T�] .

Now recall thatT� is a purely transcendental extension ofQ and so for θ rational multiple
of π (since e2iθ is algebraic over Q) we always have[

T�

(
e2iθ

)
: T�

]
=

[
Q

(
e2iθ

)
: Q

]
.

Let θ = p
q π . It is a known fact that, in this case, the degree

[
Q

(
e2iθ

)
: Q

]
=

[
Q

(
e
2iπp
q

)
: Q

]
= φ(q) (3.1)

where φ is the Euler φ-function. Thus combining the above inequalities we have

φ(q) ≤ 2 [F� : T�] .

Hence there are only finitely many choices for q by [2, Theorem 328].

Remarks 3.1 (i) Observe that the fieldF� depends explicitly on� where A(H2/�) depends
only on the conjugacy class of � because conjugate groups produce isometric surfaces.
Hence we conclude that for any p

q π ∈ A(H2/�)

φ(q) ≤ 2 · min
γ∈PSL(2,R)

[
Fγ�γ −1 ,Tγ�γ −1

]
.

This can be used to give an explicit bound on the size of A(H2/�) ∩ Q · π.

(ii) For the modular surface H2/PSL(2,Z) the group � is PSL(2,Z) and so the field F� is
just Q. Hence for any p

q π ∈ A(H2/PSL(2,Z)) we have φ(q) ≤ 2 i.e. q ≤ 6. A simple
computation provides that the possible angles are π/6, π/4 and π/3.

4 Some questions and examples

Let � be a Fuchsian group as above and S = H
2/�. Given an angle θ ∈ A(S) one may

consider the map  : A(S) → F
1
� given by (θ) = cos2(θ), where F1

� ⊂ F� is the set of
elements with norm < 1.

Question 4.1 What is the image of this map?

Since A(S) is dense in [0, π ] the image is dense in [− 1, 1] and hence in F
1
� . It is not clear

if it equals F1
� though.

4.1 Angles with infinite multiplicity

Nowwe show that form < n there are closed hyperbolic surfaces S such that the anglemπ/n
has infinite multiplicity inA(S). Let S be a hyperbolic surface that has an isometry τn of order
2n that fixes exactly two points x1, x2 of S and such that S/ < τn > is not homeomorphic
to the sphere. Clearly S/ < τn > has exactly two cone points with cone angle equal to π/n.
Since S/ < τn > is not homeomorphic to the sphere there are infinitely many geodesic arcs
on S/ < τn > that joins the two cone points. Let γ be one such arc and let γ̃ be a lift of γ

that joins x1, x2. It is not that difficult to see that γ̃ and τ nn (γ̃ ) forms a closed geodesic γ̂ that
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contains γ̃ . It is now easy to see that for any m < n the angle between γ̂ and τmn (γ̂ ) at x1 (or
x2) equals mπ/n.

It was pointed out by the referee that the above example can be modified to construct a
closed hyperbolic surface S′ such that the angle mπ/n has infinite multiplicity in A(S′) but
S′ has no isometry.

Our last question is the following:

Question 4.2 What angles inA(S) can have infinite multiplicity? In particular, can irrational
multiples of π have infinite multiplicity?
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general n. I would like to thank the referee for his all his comments that helped the author to improve the
exposition.

References

1. Ghosh, A., Reznikov, A., Sarnak, P.: Nodal domains of Maas forms I. Geom. Funct. Anal. 23, 1515–1568
(2013)

2. Hardy, G.H., Wright, E.M.: An Introduction to the Theory of Numbers, 5th edn. Oxford University Press,
Oxford. ISBN 978-0-19-853171-5

3. Huber, H.: Zur analytischen Theorie hyperbolischer Raumformen undBewegungsgruppen I, II, Nachtrag
II. Math. Ann. 138, 1–26 (1959)

4. Huber, H.: Zur analytischen Theorie hyperbolischer Raumformen undBewegungsgruppen I, II, Nachtrag
II. Math. Ann. 142, 385–398 (1961)

5. Huber, H.: Zur analytischen Theorie hyperbolischer Raumformen undBewegungsgruppen I, II, Nachtrag
II. Math. Ann. 143, 463–464 (1961)

6. Judge, C., Mondal, S.: Geodesics and Nodal sets of Laplace eigenfunctions on hyperbolic manifolds.
Proc. AMS 145(10), 4543–4550 (2017)

7. McShane, G.: On the variation of a series on Teichmüller space. Pac. J. Math. 231(2), 461–479 (2007)
8. Otal, J.-P.: Le spectre marqué des longueurs des surfaces à courbure ngative. (French) [The marked

spectrum of the lengths of surfaces with negative curvature]. Ann. Math. (2) 131(1), 151162 (1990)
9. Pollicott, M., Sharp, R.: Angular self-intersections for closed geodesics on surfaces. Proc. AMS 134(2),

419–426 (2006)
10. Wolpert, S.: The length spectra as moduli for compact Riemann surfaces. Ann.Math. (2) 109(2), 323–351

(1979)

123


	An arithmetic property of the set of angles between closed geodesics on hyperbolic surfaces of finite type
	Abstract
	1 Introduction
	1.1 Structure of the article

	2 Formula for the cosine of an angle
	2.1 Cosine of the angle

	3 Proof of Theorem 1.3
	4 Some questions and examples
	4.1 Angles with infinite multiplicity

	Acknowledgements
	References




