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Abstract The Apollonian circle and sphere packings are well known objects that have
attracted the attention of mathematicians throughout the ages. The historically natural gen-
eralization of the procedure for generating the packing breaks down in higher dimensions,
as it leads to overlapping hyperspheres. There is, however, an alternative interpretation that
allows one to extend the concept to higher dimensions and in a unique way. For relatively
small dimensions (2 through at least 8), those packings can be thought of as ample cones
for classes of K3 surfaces. We describe the packings in some detail for dimensions 4 (with
plenty of pictures), 5, and 6.

Keywords Apollonius · Apollonian · Circle packing · Sphere packing · Hexlet · Soddy ·
K3 surface · Ample cone · Lattice

Mathematics Subject Classification (2010) 52C26 · 52C17 · 14J28 · 11H31 · 06B99

The Apollonian circle packing is generated as follows: begin with four mutually tangent
circles. In the resulting curvilinear triangles, we inscribe a circle tangent to the three sides,
thereby producing newcurvilinear triangles.We continue the procedure indefinitely, as shown
in Fig. 1. The points left over, the residual set, is a set of measure zero. It is a fractal of
dimension ≈ 1.305688 [9,16].

The procedure can be done in three dimensions as well: Begin with five mutually tangent
spheres. For each of the five subsets of four mutually tangent spheres, it is possible to inscribe
a new sphere that is tangent to the four. Again, continue indefinitely. In two dimensions, it is
clear that none of the newly generated circles will overlap any of the earlier generations (other
than tangentially), as the curvilinear triangles are separated. In three dimensions, the space
between the initial four mutually tangent spheres is connected, so it is not a priori clear that
the procedure will not lead to overlapping spheres. This does not happen, and the resulting
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Fig. 1 Generating the Apollonian packing

packing fills the space, except for a residual set of measure zero (with fractal dimension
≈ 2.42 [8]).

In higher dimensions, this procedure in fact leads to overlapping hyperspheres, as was
observed by Boyd [8]. This has led many to conclude there is no canonical way of general-
izing the Apollonian packing to higher dimensions. Boyd gives alternative Apollonian-like
packings whose initial configuration is a set of N + 2 spheres of dimension N−1 in R

N

but with gaps or separation (i.e. not mutually tangent) [8]. These packings are described via
separation matrices.

In a recent work [6], we show that the Apollonian circle and spherical packings can be
realized as the ample cone for classes of K3 surfaces. Given a K3 surface X with Picard
group Pic(X) = e1Z⊕· · ·⊕ eρZ, the intersection matrix JX = [ei · e j ] uniquely determines
the ample cone for X . Let Jρ be the ρ × ρ matrix with −2’s on the diagonal and 2’s off the
diagonal. Then there are K3 surfaces with intersection matrix Jρ for ρ ≤ 10 [17], and the
ample cone for ρ = 4 and 5 generate the Apollonian circle and sphere packings, respectively
[6]. Thus, it seems natural to suggest that the canonical Apollonian packing in 4 dimensions
(for example) should be the ample cone generated by J6. Ample cones can have edges,
meaning the hyperspheres intersect, though the angle of intersection can only be π/2 or
2π/3. (See [4] for an example.) Thus, the ample cone for J6 a priori might not be what we
expect or desire.

In this paper, using the above as our inspiration, we give a formal definition of the Apol-
lonian packing in any dimension N ≥ 2. This definition is consistent with the Apollonian
circle and sphere packings, and with the ample cone for classes of K3 surfaces with Picard
number N +2 = ρ ≤ 10 (and possibly higher, though no larger than 20). Though arithmetic
geometry played a role in our inspiration, this paper will not rely on any arithmetic geometry,
except in the remarks. In each dimension, there is a unique Apollonian packing. For those
familiar with multiple Apollonian circle packings (e.g. Figs. 2 and 3), we will take the point
of view that these are the same packing but viewed from a different perspective.

For dimensions 4 through 6, we show that the Apollonian packing shares many of the
familiar properties of the circle and sphere packings, and so are in a sense what we desire.
These are:

(a) The packings include a configuration of N + 2 mutually tangent hyperspheres in R
N .

(b) Every hypersphere in the packing is a member of N + 2 mutually tangent hyperspheres
in the packing.

(c) The hyperspheres do not intersect except tangentially.
(d) The hyperspheres fill RN .
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Fig. 2 The circles of inversion
(dotted lines) that generate the
Apollonian packing. In this figure
and figures throughout the paper,
we will label a circle Hn with its
normal vector n
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Fig. 3 The strip packing and its symmetries

(e) Given a perspective where a configuration of N + 2 mutually tangent hyperspheres all
have integer curvature, every hypersphere in the packing has integer curvature.

By “fill RN ” in (d) we mean there is no space left where we can insert a hypersphere. By
“curvature” we mean the inverse of the radius together with a sign, which is negative if the
hypersphere contains the packing (e.g. the outside circle in Fig. 1) and positive otherwise. It
is sometimes called bend.

We prove (a) and (e) for all N (see Lemmas 5.1 and 4.1). Because our definition is
consistent with the description of ample cones for K3 surfaces, (d) for 2 ≤ N ≤ 8 follows
from results due to Kovacs [14] and Morrison [17]. It is a priori possible that for some N ,
the packing has intersecting hyperspheres, though that intersection must be perpendicular.
Assuming a variation of (d) we prove (c) (see Lemma 5.3), and in passing establish (b)
(Corollary 5.4). The variation on property (d), which does not follow from the results of
Kovacs and Morrison, is the main result in Sect. 6 and is established for N = 4, 5, and 6.

Besides a mathematical/written description of the packings, we generate multiple two-
dimensional cross sections of the four-dimensional Apollonian packing (see Figs. 5, 6, 7, 8,
9, 10, 11). We also explain the classical obstruction and how it does not fit in this description.

1 Definitions and background

It has long been known that the Apollonian circle and sphere packings have an underlying
hyperbolic structure (e.g. [15]), an observation that was foreshadowed by René Descartes’
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celebrated result a full two centuries before the discovery of hyperbolic geometry. We will
model hyperbolic geometry with the pseudosphere embedded in Lorentz space. This is some-
times called the vector model. Boyd’s polyspherical coordinates [7] (attributed to Clifford
[10] and Darboux [11] in the late nineteenth century) are essentially the same, though not
interpreted that way. Suggested references for the pseudosphere in Lorentz space include
[3,18]. A nice summary appears in [12], who recommends the references [1,2,21]. (Dol-
gachev is also interested in the connection between Apollonian-like packings and arithmetic
geometry; in particular the connection between the growth rate of orbits of curves on surfaces
and the Hausdorff dimension of residual sets.)

1.1 The pseudosphere in Lorentz space

Lorentz space, Rρ−1,1, is the set of ρ-tuples over R equipped with the Lorentz product

u ◦ v := u1v1 + u2v2 + · · · + uρ−1vρ−1 − uρvρ.

The surface x ◦ x = −1 is a hyperboloid of two sheets. Let us take the top sheet

H : x ◦ x = −1, xρ > 0,

which lies in the light cone

L+ : x ◦ x = 0, xρ > 0.

We call H the pseudosphere, as it can be thought of as a sphere of radius i . Many of the
properties we cite herein have analogous results on the sphere of radius r , where r is replaced
with i and the dot product is replaced by the Lorentz product. We define the distance |AB|
between two points on H by

cosh(|AB|) = −A ◦ B.

(Compare this with the similar result for a sphere of radius r : r2 cos(|AB|/r) = A · B.) The
pseudosphere H equipped with this metric is a model of Hρ−1.

Hyperplanes onH are the intersection ofHwith hyperplanes inRρ−1,1 that go through the
origin. That is, hyperplanes of the form n ◦x = 0 with n ∈ R

ρ−1,1. The hyperplane intersects
H if and only if n ◦ n > 0. Let us denote the hyperplane in R

ρ−1,1 and its intersection with
H by Hn. The plane divides Rρ−1,1 and H into two halves, which we denote H+

n and H−
n ,

where

H+
n = {x : n ◦ x ≥ 0}.

The angle θ between two hyperplanes Hn and Hm that intersect in H is given by

|n||m| cos θ = −n ◦ m, (1)

where |n| = √
n ◦ n, and θ is the angle in the region H+

m ∩ H+
n . If the planes do not intersect,

then

|n ◦ m| = |n||m| coshψ

where ψ is the shortest distance between the two planes Hm and Hn. The sign of n ◦ m is
negative if H+

m ∩ H+
n is the region between the two planes.

When u ◦ u < 0, our notation |u| = √
u ◦ u is the positive imaginary square root. The

notation ||u|| represents the absolute value of |u|.
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We let

O(R) = {
T ∈ Mρ×ρ : Tu ◦ T v = u ◦ v for all u, v ∈ R

ρ−1,1}

O+(R) = {
T ∈ O(R) : TL+ = L+}

.

Reflection through the plane Hn is given by

Rn(x) = x − 2projn(x)
n
|n| = x − 2

n ◦ x
n ◦ n

n,

and is in O+(R). Because all isometries (in any dimension and any geometry) are generated
by reflections, the group O+(R) is therefore the group of isometries of H.

1.2 The Poincaré models

If we project H through the point (0, . . . , 0,−1) and onto the hyperplane xρ = 0, then we
get the Poincaré hyperball model of Hρ−1. (If we project H through the origin and onto
xρ = 1, then we get the Klein model.) Let ∂Hρ−1 be the usual compactification of Hρ−1,
which is the spherical boundary of the hyperball model and is isomorphic to S

ρ−2. For a
point E ∈ L+, the set of planes that includes E and the origin generates a set of lines on H,
all with a common endpoint at infinity. In this way, we understand L+/R+ as representing
∂H ∼= ∂Hρ−1.

Let us use E ∈ L+ for our point at infinity for the Poincaré upper half hyperspace model,
which we denote with HE . Let ∂HE = ∂H \ {ER+} be the bounding plane of HE . Then
∂HE is isomorphic to R

ρ−2. In [5], we give a direct map to this model, and prove that the
metric

|PQ|2E = −2P ◦ Q

(P ◦ E)(Q ◦ E)
(2)

is a Euclidean metric on ∂HE . (In [5], there is no negative sign. This is because in that paper
we use the intersection pairing, which is the negative of a Lorentz product.)

In the upper half space modelHE , Hn is represented by a hemisphere or plane perpendic-
ular to the boundary. Its intersection with ∂HE is a (ρ − 3)-sphere or plane, which we will
represent with Hn,E or Hn, depending on whether the choice of E is important.

Lemma 1.1 Let Hn,E be a (ρ − 3)-sphere in ∂HE . Then the radius of Hn,E is given by

|n|
|n ◦ E | ,

using the metric defined in Eq. (2).

Proof The center of Hn,E is the reflection of E through the plane Hn, so is P = Rn(E) =
E − 2n◦E

n◦n n. Let Q be any point on the intersection of Hn with ∂HE , so Q ◦ Q = 0 and
Q ◦ n = 0. The radius of Hn,E therefore satisfies

r2 = |PQ|2E = −2P ◦ Q

(P ◦ E)(Q ◦ E)

= −2E ◦ Q

− 2n◦E
n◦n (n ◦ E)(Q ◦ E)

= n ◦ n
(n ◦ E)2

,

from which the result follows. 
�
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The sign of n ◦ E depends on the orientations of n and E . In particular, once E is fixed,
we can choose the orientation of n so that the curvature is n ◦ E/|n|.

For P ∈ H, the quantity P ◦ E can be thought of as a measure of how far away P is from
∂HE in the Poincaré model:

Lemma 1.2 Let P ∈ H and E ∈ L+. In the Poincaré upper half hyperspace model of H,
the image of P is a distance

||P||
|P ◦ E |

away from ∂HE, using the Euclidean metric in Eq. (2).

Proof Let us find the plane Hn through P with the property that the corresponding hyper-
sphere Hn,E has minimal radius. The center of such a hypersphere is an endpoint of the line
in H through P and E , so n is a linear combination of P and E :

n = aE + P.

Now

0 = n ◦ P = aE ◦ P + P ◦ P

n ◦ E = P ◦ E

n ◦ n = 2aE ◦ P + P ◦ P

= −2P ◦ P + P ◦ P = −P ◦ P.

Thus, the radius of the hypersphere Hn,E is

||P||
|P ◦ E | ,

from which the result follows. 
�
1.3 The Apollonian circle packing

To generate the Apollonian packing, we begin with four circles. Let us think of those circles
as representing planes in the Poincaré upper half space model of H3. They can therefore
be denoted with Hei for i = 1, . . . , 4 and vectors ei in R

3,1. Let us orient the vectors ei
so that the half space H+

ei includes the other circles He j , j �= i . Note that with this choice
of orientation, the curvature of Hei is positive if E ∈ H+

ei , and negative otherwise. Let us
also normalize their lengths so ei ◦ ei = 1. Since the circles are mutually tangent, the angle
between them (in pairs) is zero, so ei ◦ e j = ±1 for i �= j . Because of the orientations we
chose, and by Eq. (1), we get ei ◦ e j = −1. If x and y are vectors in R3,1 expressed as linear
combinations of the vectors ei , then x ◦ y = xt Jy where

J = [ei ◦ e j ] =

⎡

⎢⎢
⎣

1 −1 −1 −1
−1 1 −1 −1
−1 −1 1 −1
−1 −1 −1 1

⎤

⎥⎥
⎦ .

Since det(J ) �= 0, the set β = {e1, e2, e3, e4} is a basis of R3,1.
The next step in our generation of the packing is to inscribe circles in the curvilinear

triangles formed by our initial four circles. We can think of this as inverting in the four circles
shown in Fig. 2.
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Let us denote these new circles as Hsi for some vectors si ∈ R
3,1. The circle inscribed in

the curvilinear triangle formed by He1 , He2 , and He3 is the image of He4 under inversion in
the circle Hs4 , etc.

Inversion in the circle Hsi can be thought of as reflection in the plane Hsi in H
3. Since

Hsi is perpendicular to He j for all j �= i , we get the relations si ◦ e j = 0, from which we
can solve for si (up to a multiple): s1 = (−1, 1, 1, 1), etc. (Note that si ◦ si = 4.) These
inversions/reflections generate the Apollonian group

�Ap = 〈Rs1 , Rs2 , Rs3 , Rs4〉.
The image of the circles Hei under the action of �Ap is the Apollonian packing.

What is often overlooked is that there is an underlying lattice, the lattice

	 = e1Z ⊕ e2Z ⊕ e3Z ⊕ e4Z.

Let us consider the group

O+(Z) = {T ∈ O+(R) : T	 = 	}.
Since si ◦ si = 4, it is not immediately obvious that Rsi ∈ O+(Z), but it is easily verified.
Thus �Ap ≤ O+(Z). Note that of our choices for si , we chose si ∈ 	 and primitive, meaning
its coefficients have no common factor.

Since we are viewing the Apollonian packing as the boundary at infinity of an object in
H

3, let us change our perspective and choose our point at infinity (for the upper half space
model) to be a point of tangency, say where He3 and He4 meet. This gives us the familiar strip
packing in Fig. 3. There are a lot of advantages to studying this version. It is in particular
easier to visualize its analog in higher dimensions.

Let Hvi j be the plane that is tangent to Hei and He j , and is perpendicular to Hek for
k �= i, j . Several are noted in Fig. 3. The reflection Rvi j just switches the i-th and j-th
component of vectors written in the basis β. Thus Rvi j ∈ O+(Z). In [6], we prove

O+(Z) = 〈Re3 , Rs2 , Rv12 , Rv34 , Rv14〉.
The group

� = 〈Rs2 , Rv12 , Rv34 , Rv14〉
is the full group of symmetries of the packing.

1.4 Descartes’ theorem

Lemma 1.1 gives us a simple proof of Descartes theorem.

Theorem 1.3 (Descartes)Given four mutually tangent circles with curvatures k1, k2, k3, and
k4, those curvatures satisfy

kt J−1k = 0,

where k = (k1, k2, k3, k4).

Proof Let ei be as above. That is, let them represent the four circles. Recall that ei ◦ei = 1, so
ei ◦ E = ki , where E represents the point at infinity in the Poincaré upper half space model.
Combining these four equalities, we get

J E = k
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E = J−1k.

Since E ◦ E = 0, we get

(J−1k)t J J−1k = 0

kt J−1 J J−1k = 0,

from which the result follows. 
�
More generally, if k represents the curvatures of ρ hyperspheres Hei in R

ρ−2, and J =
[ei ◦ e j ] is not degenerate, then

kt J−1k = 0.

This was observed by Boyd [8].
We also get the following classic result:

Lemma 1.4 Suppose ρ hyperspheres Hei in R
ρ−2 have integer curvatures ki , that J =

[ei ◦ e j ] is not degenerate, and that ei ◦ ei are all equal. Suppose γ ∈ O+(Z). Then the
curvature of Hγ ei is an integer.

Proof As above, we note that J E = k|ei |. The curvature of Hγ ei is

γ ei ◦ E

|γ ei | = etiγ
t J E

|ei | = etiγ
tk.

Since γ and k have integer entries, this is an integer. 
�
Remark 1 We get an integer packing if E ∈ 	.

2 Intuition and the classical obstruction

In ρ−2 dimensions, it is possible to arrange ρ mutually tangent (ρ−3)-spheres. As before, let
us represent these spheres with Hei for ρ vectors ei ∈ R

ρ−1,1, normalized so that ei ◦ ei = 1,
and oriented so that H+

ei is the half space that contains the other hyperplanes/hyperspheres.
Then the tangency conditions and the orientationsmean thematrix Jρ = [ei ◦e j ] has 1’s along
the diagonal and −1 off the diagonal. Note that J has eigenvalues λ = 2 with multiplicity
ρ − 1, and λ = 2 − ρ with multiplicity 1, so J has signature (ρ − 1, 1) and hence yields a
Lorentz product. (This is one way to show that it is possible to arrange ρ mutually tangent
hyperspheres in R

ρ−2.)

2.1 The classical obstruction (part one)

The classical temptation is to invert He1 in the hypersphere Hs1 that is perpendicular to all
the other hyperspheres Hei for i �= 1. Solving for s1, we get

s1 = (3 − ρ)e1 + e2 + · · · + eρ,

and hence

Rs1(x) = x − 2
x ◦ s1
s1 ◦ s1

s1 = x − 2x1
ρ − 3

s1.

For ρ = 4 and 5, this is in O+(Z), but not for ρ ≥ 6, hence the perceived obstruction.
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e1 e2

e3

s1

Fig. 4 A cross section of the strip version of the sphere packing. The cross section goes through the centers
of He1 , He2 , and He3 , and is parallel to the planes He4 and He5 . The dotted line represents Hs1 , and Rs1
restricted to this cross section is reflection through the dotted line. The lower right inset is the inverse of this
packing in the circle at that position. It is the cross section of the sphere packing that appears in Soddy’s paper
[19, Figure 1]

2.2 Intuition

We should think of the underlying lattice, 	ρ = e1Z⊕· · ·⊕ eρZ, as a fundamental property
of the packings. When we look at the strip version of the Apollonian packing (see Fig. 3),
we see a Euclidean translational symmetry, which generates a one-dimensional sub-lattice
of 	4. The strip version of the sphere packing has a similar symmetry. This is where we take
three mutually tangent congruent spheres and sandwich them between two planes. The three
spheres represent He1 , He2 , and He3 , while the two planes represent He4 and He5 . The two
planes are tangent at the point at infinity, so we have a configuration of five mutually tangent
spheres. The packing includes an infinite set of congruent spheres, laid out in a honeycomb
pattern, and sandwiched between the planes He4 and He5 . A cross section appears in Fig. 4.
Again, we see a two-dimensional sub-lattice of	5. Note that the reflection Rs1 is a symmetry
of this two-dimensional sub-lattice.

By analogy, we should build the four-dimensional Apollonian packing as follows: Let
us begin with four mutually tangent congruent spheres in R

3, representing He1 , …, He4 ,
which should be thought of as the analog of the three circles shown in Fig. 4. Let us use
translations to extend this tetrahedral arrangement into a three-dimensional Euclidean lattice
of congruent spheres in R

3 arranged in a cannon-ball like packing. Let us think of this as
a cross section of the (hypothetical) four-dimensional Apollonian packing. To get the four-
dimensional packing,we thicken this configurationwith a dimension and sandwich it between
two hyperplanes, He5 and He6 . To get the group of isometries, we first identify the isometries
of the Euclidean lattice, lift these to isometries in R

5,1, and then change our choice of point
of tangency for the point at infinity, giving us more elements of the group of symmetries.

2.3 The classical obstruction (part two)

In the initial tetrahedral configuration of the spheres mentioned above, consider the bottom
layer of three spheres He2 , He3 , and He4 . These three spheres create a cradle on which we rest
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the fourth sphere, He1 . Now let us extend the bottom layer into an infinite planar arrangement
of spheres in a honeycomb pattern. In one of the infinitely many cradles created by this layer,
we have nested He1 . Note that the adjacent cradles now cannot be filled, as He1 is in the
way. Filling in the second layer of spheres as prescribed by the lattice structure, we note
that half of the cradles receive a sphere, while the other half remain empty. Now consider
the layer below what we called the bottom layer, and in particular consider the other cradle
formed by the spheres He2 , He3 , and He4 . If we follow the pattern governed by our lattice,
this cradle remains empty, and its adjacent cradles receive spheres. This requisite emptiness
is the classical obstruction. The inversion Rs1 when restricted to this cross section, sends He1
into this cradle.

3 The Apollonian packing in four dimensions

As suggested in the previous section, we should begin with isometries of the cannon-ball
sub-lattice in R

3. There are of course the translations, but the fundamental building blocks
are the −1 maps through the centers of the spheres, and through the points of tangency of
pairs of tangential spheres. Such maps appear in [5]. Let E, P ∈ L+. Then the −1 map on
∂HE through the point P is given by

φ = φP,E (x) = 2((P ◦ x)E + (E ◦ x)P)

P ◦ E
− x.

It is straight forward to verify that φ ∈ O+(R), φ2 = id , and that P and E are eigenvectors
associated to the eigenvalue λ = 1. The space perpendicular to E and P ,

V⊥P,E = {x ∈ R
ρ−1,1 : x ◦ E = x ◦ P = 0},

is the eigenspace associated to λ = −1. We would like to verify that φ ∈ O+(Z) for
appropriate choices of P and E .

Note that ei ◦ (ei +e j ) = 0, so ei +e j is on both Hei and He j , and (ei +e j ) ◦ (ei +e j ) = 0.
Thus, ei + e j is the point of tangency between Hei and He j . Let

S = {ei + e j : i �= j}.
For E ∈ S and ei ◦ E �= 0, let Pi,E be the center of the sphere Hei in ∂HE :

Pi,E = Rei (E) = E + 4ei .

Let

TE = {ei + e j : ei ◦ E �= 0, e j ◦ E �= 0, i �= j} ∪ {Pi,E : ei ◦ E �= 0}.

Lemma 3.1 Suppose x ∈ 	 and E = ei + e j ∈ S for some fixed i and j . Then

x ◦ E ≡ 0 (mod 2).

Proof It is enough to calculate ek ◦ E for all k. If k �= i, j , then ek ◦ E = −2. If k = i or j ,
then ek ◦ E = 0. 
�
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Corollary 3.2 If E ∈ S, and P ∈ TE , then φP,E ∈ O+(Z).

Proof Case 1, P = ei + e j ∈ TE : Note that E ◦ P = −4, so it is enough to verify that the
numerator in the definition of φP,E is 0 modulo 4. This is straight forward, using the above
lemma.

Case 2, P = Pi,E : Then E ◦ P = E ◦ (E + 4ei ) = −8, so we check the numerator
modulo 8:

2((P ◦ x)E + (E ◦ x)P) ≡ 2(((E + 4ei ) ◦ x)E + (E ◦ x)(E + 4ei ))

≡ 2((E ◦ x)E + (E ◦ x)E) ≡ 0 (mod 8). 
�

Because of symmetry, O+(Z) clearly includes the map that switches the i-th and
j-th component of x when written in the basis β. Geometrically, this is the reflection Rvi j
where vi j = ei − e j . Composition of these maps gives us the group of permutations of the
components of x.

We now have a large group of isometries that preserves the lattice. Of course,O+(Z) also
includes the reflections Rei , but we want to avoid these, as we did in our definition for � in
the circle packing case. Let �′ be the subgroup of O+(Z) generated by the maps φE,P for
E ∈ S and P ∈ TE , and the reflections Rvi j , and let us look at the image of the hyperspheres
Hei ,E under the action of this group (in ∂HE ∼= R

ρ−2).
For ρ = 4 and 5, it is clear that �′ is a subgroup of symmetries of the Apollonian circle

packing, as we used those as inspiration to create �′. Thus, �′ ≤ �. On the other hand, the
packings are generated by the inversions Rsi , and the reflections Rvi j . For ρ = 4, we have
Rs2 = Rv34 ◦ φP1,e3+e4 , so �′ = �. For ρ = 5, we have Rs1 = Rv23 ◦ Rv45 ◦ φe2+e3,e4+e5 , so
again �′ = �.

From here until the end of this section, we fix ρ = 6 and E = e5 + e6.
We use �′ to generate what we will call the Apollonian strip packing in four dimensions:

A4,E = {Hγ e1,E ⊂ ∂HE ∼= R
4 : γ ∈ �′}. (3)

We will be more precise in the following sections, but for now, we have enough to see (sort
of) what the packing looks like. Like we did in Fig. 4 for the sphere packing, we look at
cross sections. If we let x1 = x2 = 0 then we get the circle packing in Fig. 3. If we let
x1 = 0 then we get the sphere packing, and if we let x1 = 0 and x5 = x6 then we get the
cross section in Fig. 4. Our first interesting cross section is shown in Fig. 5. This is the cross
section with x2 = x3 and x5 = x6. The condition x5 = x6 means we are looking at the
cannon-ball packing inR3, the cross section parallel to and midway between the hyperplanes
He5 and He6 . In this 3-dimensional cross section, we are taking the plane that passes through
the centers of He1 and He4 , and through the point of tangency e2 + e3.

Let Ti j ∈ �′ be translation from Pi to Pj (for i, j ∈ {1, . . . , 4}), so
Ti j = φPi,E ,E ◦ φei+e j ,E .

The translations T12, T13, and T14 generate the three-dimensional sub-lattice of 	 in ∂HE .
We let fi = T1 j ◦ T1k(ei ) = T1k ◦ T1 j (ei ), where i, j, k is a permutation of 2, 3, 4; and we
let f1 = T12 ◦ T13 ◦ T14(e1). The canonical fundamental domain for the sub-lattice is the
parallepiped with vertices the centers of the spheres He1 , He2 , He3 , He4 , Hf2 , Hf3 , Hf4 , and
Hf1 . The cross section shown in Fig. 6 goes through the center of the parallelepiped, as well
as He4 and Hf4 , and is perpendicular to the hyperplanes He5 and He6 . It is the cross section
x2 = x3 and x1 + x2 = 0. As an Apollonian-like packing in two dimensions, it is Example
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e1

e4

f4

f1

Fig. 5 The cross section of the 4-dimensional strip version of the Apollonian packing (with E = e5 + e6),
corresponding to x2 = x3 and x5 = x6. The limit point of circles midway between He1 and Hf4 is the point
e2 + e3, which is where the hyperspheres He2 and He3 are tangent

e4 f4

e6

e5

Fig. 6 The cross section through the centers of He4 and Hf4 , and in a plane perpendicular to He5 and He6

e1 f1

Fig. 7 The cross section along the long diagonal of the parallelepiped and perpendicular to He5 and He6

2.6 in Boyd’s paper [8]. It was also studied by Guettler andMallows [13], who drew pictures,
but seemed to be unaware of Boyd’s result.

The strip cross section along the long diagonal of the parallepiped is shown in Fig. 7. This
is the cross section x2 = x3 = x4.

It is natural to consider the strip cross section through the centers of He1 and Hf4 , and
this is shown in Fig. 8. However, since x4 = 0, this can also be thought of as a cross section
of the sphere packing. In Fig. 4, our cross section is along the line perpendicular to s1 and
through the center of He1 . It is the cross section x2 = x3.

A couple more cross sections are shown in Figs. 9 and 10.
In the caption of Fig. 5, we note that the limit point midway between He1 and Hf4 is the

point of tangency of the two hyperspheres He2 and He3 ; it is the point e2 + e3. The cross
sections in Figs. 8, 9 and 10 all have points with the same type of feature, where one can
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e1 f4

Fig. 8 The strip cross section through the centers of He1 and Hf4 . It is a cross section of the sphere packing

Fig. 9 The strip cross section through the tangent points e1 + e4 and e2 + e3. The constraints are x1 = x4
and x2 = x3

Fig. 10 The strip cross section through the tangent point e2 + e3 and the center of the parallelepiped. The
constraints are x2 = x3 and x1 + x4 = 0

imagine tangent spheres above and below the page. To better understand the packing near
these points, we can invert (as we did with Fig. 4) so that these points are sent to infinity. If
we do this to Fig. 8 then we get Fig. 4. If we do this to Fig. 9 then we get Fig. 5. If we do this
to Fig. 10 then we get Fig. 11, which appears to be generated by a cross section of a square-
based canon ball packing. Indeed, the triangular and square-based canon ball packings are
the same. With a little imagination, this can be seen in Fig. 5: Four spheres creating a square
base are He4 ; Hf4 ; the sphere He2 , which is the sphere above the page at the point midway
between He1 and Hf4 ; and the sphere Hf2 , which is the sphere below the page and tangent to
the page at the point midway between He4 and Hf1 . One can also see it in the parallelpiped,
which can be thought of as the union of an octahedron and two tetrahedrons (see Fig. 13 on
page 22). The octahedron is the union of two square-based pyramids, and the vertices of that
square are the centers of the four canon balls. The packing in Fig. 11 also appears in [20,
Fig. 2].

4 A formal definition of Apollonian packings

Let β = {e1, . . . , eρ} be a basis for a ρ-dimensional vector space. Define the bilinear form ◦
by

ei ◦ e j =
{
1 if i = j
−1 if i �= j.

As noted above, the set β together with ◦ represent a configuration of ρ mutually tangent
hyperspheres in Rρ−2; the signature of J = [ei ◦ e j ] is (ρ − 1, 1); ◦ is a Lorentz product; and
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Fig. 11 The cross section in Fig. 10, inverted in the point e2 + e3

β is a basis of Rρ−1,1. Let 	 = 	ρ = e1Z ⊕ · · · ⊕ eρZ. Fix D ∈ 	 such that D ◦ D < 0
and D ◦ n �= 0 for any n ∈ 	 such that n ◦ n = 1. (Such a D exists, as we will see.) Let L+
be the cone that contains D:

L+ = {x ∈ R
ρ−1,1 : x ◦ x = 0, x ◦ D < 0}.

Let

E1 = {n ∈ 	 : n ◦ n = 1,n ◦ D < 0}
and

K =
⋂

n∈E1
H−
n .

That is, for every n ∈ 	 with n ◦ n = 1, we consider the half space that contains D and is
bounded by Hn, and take the intersection of all these half spaces. Thus K is a polyhedral
cone with an infinite number of faces. For ρ = 4 and 5, the faces do not intersect (the
circles/spheres do not intersect except tangentially), but there is also no open space at infinity
(the circles/spheres are space filling).

Let

E∗
1 = {n ∈ E1 : Hn is a face of K}.

Then the Apollonian packing Aρ is the set of hyperplanes

Aρ = {Hn ⊂ H ∼= H
ρ−1 : n ∈ E∗

1 }.
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Given a point E ∈ L+ and setting it as our point at infinity, we define the perspective with
respect to E to be the set

Aρ,E = {Hn,E ∈ ∂HE ∼= R
ρ−2 : n ∈ E∗

1 }.
So for example, the Apollonian circle packing shown in Fig. 3 is A4,e3+e4 = A4,(0,0,1,1),
while the one shown is Fig. 2 is A4,(1,1,1,3+2

√
3). The strip version of the sphere packing is

A5,e4+e5 , while the model built by Soddy (see [19, Figure 2]) is A5,2e1+e5 .
For fixed ρ, Aρ exists and is unique. There are infinitely many perspectives Aρ,E . It

is a priori not clear that the spheres in Aρ,E are space filling and do not intersect except
tangentially, though it is clear that these properties are independent of the choice of E .

As we did for the Apollonian circle packing (ρ = 4), let us define

O+(Z) = O+
ρ (Z) = {T ∈ O+(R) : T	 = 	},

and define the group of symmetries of K to be

� = �ρ = {T ∈ O+(Z) : TK = K}.
To describe Aρ for small values of ρ, we describe � (or a sufficiently large subgroup of

�).
We first establish property (e) (as outlined in the Introduction):

Lemma 4.1 Suppose we have a configuration of ρ = N + 2 mutually tangent hyperspheres
inAρ and suppose these ρ hyperspheres all have integer curvature. Then every hypersphere
in Aρ has integer curvature.

Proof Because the ρ hyperspheres are in Aρ , they have normal vectors {f1, . . . , fρ} that are
in 	. Let us define 	′ = f1Z + · · · + fρZ, so 	′ ⊂ 	. Note that both ± fi ∈ 	, so let
us choose the orientation so that H+

fi
contains Hf j for all j �= i . This is how we chose the

orientations of ei , so the matrix

J ′ = [fi ◦ f j ]
is the same as J . In particular, det(J ′) = det(J ), so 	′ = 	 and β ′ = {f1, . . . , fρ} is a basis
of 	. As in the proof of Theorem tDescartes, J ′E = k where k is the vector of curvatures
of the hyperspheres. If Hn ∈ Aρ , then n ∈ E∗

1 , so n ∈ 	 and |n| = 1. Thus the curvature of
Hn is n ◦ E = nt J ′E = ntk, so is an integer. 
�
Remark 2 Given a different initial configuration of ρ circles He1 , …, Heρ , we can define a
J = [ei ◦ e j ], where we again choose ei ◦ ei = 1, but ei ◦ e j is defined by the separation
between the spheres Hei and He j . Boyd’s polyspherical coordinates yield the negative of
J , which he calls a separation matrix [8]. For example, in Fig. 6, we can select the ordered
basis β = {e5, e6, e4, f4}. We calculate f4 = (−1, 1, 1, 0, 1, 1) and f4 ◦ e4 = −3, giving
us the separation between e4 and f4. (Since the cross section goes through the centers of the
hyperspheres He4 and Hf4 , the curvatures of the circles are the same as the curvatures of the
hyperspheres, so the separation in four dimensions is the same as in the two dimensional
cross section.) We therefore get the matrix

J =

⎡

⎢⎢
⎣

1 −1 −1 −1
−1 1 −1 −1
−1 −1 1 −3
−1 −1 −3 1

⎤

⎥⎥
⎦ ,
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which is the negative of Boyd’s separation matrix in his Example 2.6.
Boyd also observed that the off diagonals can be half integers and still lead to Apollonian

like packings, so it seems reasonable to look at−2J instead. That is, require ei to have square
norm ei ◦ ei = −2. (Note that Rei is still inO+(Z), but this is not guaranteed if ei ◦ ei < −2.)
With this new Lorentz product, if ei ◦e j ∈ Z for all i and j , then the lattice	 is even, meaning
for any x ∈ 	, x ◦ x is even. The set E1 is replaced with E−2 and yields the same K.

If X is a K3 surface, then the Picard group for X is a lattice	 together with the intersection
pairing. The lattice is even and the matrix J is the intersection matrix. If we choose D to
be ample (so n · D �= 0 for any n ∈ E−2), then the set E∗−2 is the set of divisor classes of
irreducible −2 curves on X , and K is the ample cone [14].

Given an even lattice	 of dimensionρ ≤ 10, there exists aK3 surface X with Pic(X) = 	

[17]. Thus, the Apollonian packing in dimensions two through 8 (4 ≤ ρ ≤ 10) can be thought
of as representing the ample cones for classes of K3 surfaces.

5 The details

In Sect. 3, we described a packing A6 by looking at the orbit of a hypersphere under the
action of a group of isometries �′. In this section, we aim to justify what we did. We begin
with a D and use that to define K. We show that Rvi j and φP,E are in � so �′ ≤ �. We use
�′ to describe an a priori different coneK′ and use �′ ≤ � to concludeK ⊂ K′. We then use
a descent argument to show K′ = K. The descent argument is dimension specific, so in this
section we state its main consequence (Statement 1), which we prove in Sect. 6 for ρ = 6,
7, and 8.

Let us choose

D =
ρ∑

i=1

ei

and use this to define K. We need to know that D ◦ n �= 0 for any n ∈ E1.
For any n ∈ E1, there exists an E ∈ S so that n ◦ E �= 0, for otherwise, n ◦ ei = 0 for all i ,

which has the unique solution n = 0. Let us use this E for our point at infinity. By Lemmas
1.1 and 3.1, the radius of the sphere Hn,E ∈ ∂HE is no more than 1/2. But D is too high in
the Poincaré model HE , since by Lemma 1.2, its distance above ∂HE is

||D||
|D ◦ E | =

√
ρ(ρ − 2)

2(ρ − 2)
= 1

2

√
ρ

ρ − 2
> 1/2.

Thus D ◦ n �= 0 for any n ∈ E1. In the above calculation, and some that follow, it is useful to
note that D ◦ ei = 2 − ρ, so D ◦ D = ρ(2 − ρ) and D ◦ E = 2(2 − ρ).

Suppose γ ∈ O+(Z). Then by definition we have that if γK = K then γ ∈ �. The
condition that γK = K is equivalent with γ E1 = E1, which is satisfied if and only if

γ E∗
1 = E∗

1 .

But

γ E1 = {γn : n ∈ 	,n ◦ n = 1,n ◦ D < 0}
= {m ∈ 	 : m ◦ m = 1, γ −1m ◦ D < 0}
= {m ∈ 	 : m ◦ m = 1,m ◦ γ D < 0}.

Note that Rvi j D = D (it switches the i-th and j-th component), so Rvi j ∈ �.
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Lemma 5.1 The planes Hei are faces of K.

Proof Let n ∈ E1 and letψ be the distance from D/||D|| ∈ H to Hn. Then 2ψ is the distance
between D/||D|| and its image Rn under reflection through Hn, so

cosh(2ψ) = D ◦ Rn(D)

D ◦ D

= 1

D ◦ D
D ◦

(
D − 2n ◦ D

n ◦ n
n
)

= 1 − 2(n ◦ D)2

D ◦ D

= 1 + 2(ρ − 2)2

ρ(ρ − 2)

(
ρ∑

i=1

ni

)2

.

Since n ◦ D �= 0, this is minimal when the sum is one, which occurs when n = ei . Thus,
the planes Hei are all faces of K, as there are no planes Hn with n ∈ E1 that are closer to
D/||D||. 
�

As a consequence, the initial configuration of ρ mutually tangent hyperspheres represent
faces of K, so the packing Aρ contains those hyperspheres. This establishes property (a)
outlined in the Introduction.

Lemma 5.2 Suppose E ∈ S and P ∈ TE . Then φP,E ∈ �.

Proof Let n ∈ E∗
1 , and let us first suppose that n ◦ E �= 0. Then in the Poincaré model HE ,

the point D is above the highest point on Hn,E , as we saw earlier. Now φP,E (D) ◦ E =
D ◦ φ−1

P,E (E) = D ◦ E , so the image of D is at the same height and hence is still above Hn,E .
Thus, φP,E (n) ∈ E1.

The case when n ◦ E = 0 is a bit more difficult. Without loss of generality, we may assume
E = eρ−1 + eρ . We first note that

0 = n ◦ E = −2
ρ−2∑

i=1

ni , (4)

so

n ◦ eρ = −
ρ∑

i=1

ni + 2nρ = nρ − nρ−1.

Since both Hn and Heρ contain E , the two intersect, so n ◦ eρ = 0 or ±1 (see Eq. 1). We note
that

1 = n ◦ n =
ρ∑

i=1

n2i − 2
∑

i �= j

ni n j

≡
ρ∑

i=1

n2i (mod 2)

≡
(

ρ∑

i=1

ni

)2

(mod 2)
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≡ n2ρ−1 + n2ρ (mod 2) (using Equation 4).

Thus nρ−1 �≡ nρ (mod 2), so n ◦ eρ = ±1. That is, Hn and Heρ are tangent at E . There are
therefore at most two faces ofK through E . Since Heρ−1 and Heρ are two faces ofK through
E , we get that n = eρ−1 or eρ .

Finally,

φP,E (eρ) = 2(eρ ◦ P)E

P ◦ E
− eρ = E − eρ = eρ−1,

and φP,E (eρ−1) = eρ . Thus φP,E (n) ∈ E∗
1 for all n ∈ E∗

1 , so φP,E ∈ �. 
�
Let

�′ = 〈{Rvi j , φP,E : i �= j, E ∈ S, P ∈ TE }〉
and define

K′ =
⋂

n∈�′(eρ)

H−
n .

Then clearly K ⊂ K′, as �′(eρ) ⊂ E1. We wish to show that K′ = K. It is enough to show
that the packing that corresponds toK′ is space filling. If it is not, then there exists a gap in the
packing where we can fit a sphere. This sphere represents a halfspace in H that is contained
in K′. Let us formalize this property with the following:

Statement 1 Let n ∈ 	ρ and suppose D ∈ H−
n . Then H+

n �⊂ K′.

Establishing the veracity of this statement for 4 ≤ ρ ≤ 8 is the main result of the next
section.

Lemma 5.3 Suppose Statement 1 is true for a given ρ. Then K′ = K. Furthermore, the
hyperplanes inAρ do not intersect, so the hyperspheres inAρ,E intersect tangentially or not
at all.

Proof Suppose there exists m ∈ E∗
1 that is not in �′(eρ). Then Hm is a face of K but is

not a face of K′. If Hm does not intersect any faces of K′ except tangentially, then H+
m ⊂

K′, contradicting Statement 1. Thus, Hm intersects Hγ eρ transversely for some γ ∈ �′.
Consequently, m ◦ γ eρ = 0, as this product is an integer and is in the interval (−1, 1) (see
Eq. 1). Hence, γ −1m ◦ eρ = 0. Note that γ −1m ∈ E∗

1 , since γ ∈ �′. Letm′ = γ −1m, so

0 = m′ ◦ eρ = m′
ρ −

ρ−1∑

i=1

m′
i .

But then

1 = m′ ◦ m′ =
ρ∑

i=1

(m′
i )
2 − 2

∑

i �= j

m′
im

′
j

≡
(

ρ∑

i=1

m′
i

)2

(mod 2)

≡ (m′ ◦ eρ)2 ≡ 0 (mod 2),

a contradiction. Thus no suchm exists, soK′ = K. The same argument shows the hyperplanes
in Aρ do not intersect, so the hyperspheres in Aρ,E intersect tangentially or not at all. 
�
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This shows that the definition ofA4,E given in Eq. 3 is consistent with the formal definition
given in Sect. 4. It also establishes properties (c) and (d) as outlined in the Introduction. Note
that the proof of Lemma 5.3 depends on showingK′ = K, so does not follow from the results
of Kovacs and Morrison. Finally, we have property (b):

Corollary 5.4 Suppose Statement 1 is true for a given ρ. Then every hypersphere in Aρ is
a member of ρ mutually tangent hyperspheres in Aρ .

Proof Let Hn be a hypersphere in Aρ . Then n = γ (eρ) for some γ ∈ �′. But then Hn is a
member of the ρ mutually tangent spheres Hγ e1 , . . . , Hγ eρ . 
�

6 The descent argument

In this section, we establish Statement 1 for ρ = 6, 7, and 8. Our approach is a method of
descent on curvature, which is roughly equivalent to establishing a fundamental domain for
�′.

Suppose Hn,E is a hypersphere in ∂HE with E = eρ−1 + eρ . Its curvature is unchanged
under the action of �′

E , the stabilizer of E in �′, as those maps are Euclidean isometries on
∂HE . In ∂HE , there are many points of tangency E ′ between spheres (e.g. the set S), which
are essentially no different than E . Our intuitive idea is to use �′

E to move Hn,E close to one
of these points E ′, and check to see if the curvature of Hn,E ′ with respect to E ′ is strictly
smaller, thereby giving us a method of descent.

We will begin in three dimensions (the sphere packing, ρ = 5), where our geometric
intuition is strongest (and the packing is not too trivial), with a view to describing our
geometric arguments algebraically, so that we may lift them to higher dimensions.

6.1 The case ρ = 5 (the sphere packing)

Let E = e4 + e5 be our point at infinity for the Poincaré model. Consider the cross section
of HE given by x4 = x5. This is the cross section shown in Fig. 4. Recall, we define the
translations Ti j in HE by

Ti j = φPi,E ,E ◦ φei+e j ,E .

This is the translation that sends Pi,E to Pj,E . The canonical fundamental domain for the
group G1 = 〈T12, T13〉 on this cross section is the parallelogram shown in Fig. 12, which we
will use as a reference. Consider now the group G2 = 〈Rv12 , Rv23 , φe2+e3,E 〉, which includes
G1. The two reflections Rv12 and Rv23 give us two natural faces for a fundamental domain
for G2, namely the faces Hv12 and Hv23 . Let Q1 be the center of P1,E P2,E P3,E , the point
of intersection between these two faces and on this cross section. Then Q1 has coordinates
(x, x, x, y, y), satisfies Q1 ◦ Q1 = 0, and is oriented so that Q1 ◦ D < 0, from which we
conclude Q1 = (4, 4, 4,−1,−1). For the third face of a fundamental domain for G2, let us
use the plane

Hn = {x ∈ R
4,1 : x ◦ Q1 = x ◦ φe2+e3,E (Q1)}.

This is the plane midway between Q1 and φe2+e3,E (Q1), which has normal vector the
difference of Q1 and its image. Solving for n, we find n = s1 (up to a multiple). Using
a method of descent (using distance from Q1), we find every point in the cross section is
the image of a point in the region bounded by these three planes and under the action of
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Fig. 12 With ρ = 5: A
fundamental domain for G2
(shaded triangle Q1Q2Q3),
inside a fundamental domain for
G1 (the parallelogram)

e1 e2

e3
v23

v12

Q1

Q2

Q3

an element of G2. Those familiar with Dirichlet domains (which I learned from [12]) may
recognize this construction.

Note that we could have made the argument easier by using Rs1 = Rv23 ◦φe2+e3,E instead
of φe2+e3,E , but we want to stay away from Rs1 , as its canonical analog for larger ρ is not in
�′

ρ .
The vertices of this region are the points Qi which satisfy the linear equations x4 = x5,

Qi ◦ Qi = 0, Qi ◦ D < 0, and two of the three equations

x1 = x2 (on Hv12)

x2 = x3 (on Hv23)

x1 = 0 (on Hs1). (5)

We get Q1 (using the first two equations), Q2 = e2 + e3 = (0, 1, 1, 0, 0) (using the first and
third), and Q3 = P3,E = 4e3 + E = (0, 0, 4, 1, 1) (using the second and third equations).

Suppose there existsm ∈ 	 such thatm◦D < 0 and H+
m ⊂ K′ (so contradicting Statement

1). Then the center of Hm,E lies between the planes He4 and He5 . Using G3 = 〈G2, Rv45〉,
we can move this center to a point in the right prism bounded by the plane He5 , Hv45 , and
the planes we found above: Hv12 , Hv23 , and Hs1 . The prism has the vertices Q1, Q2, and Q3,
as well as the points Q′

i which satisfies Q
′
i ◦ e5 = 0, and pairs of the equations in (5) (and of

course, Q′
i ◦ Q′

i = 0 and Q′
i ◦ D < 0). We get the vertices

Q′
1 = (1, 1, 1,−1, 2)

Q′
2 = (0, 0, 1, 0, 1) = e3 + e5

Q′
3 = (0, 2, 2,−1, 3).

Our intuition is that, once we have moved Hm,E so that its center is inside this prism, then
the curvature of Hm,E ′ should be smaller for some E ′. The intuitive choice is E ′ = e3 + e5.
We note that Rv34(E

′) = E (it switches the third and fourth components). Thus, all we need
to check is that the prism lies entirely within Hv34,E , for if it does, then the center of this
moved Hm,E will also be inside it. Its reflection through that plane, which is inversion in the
sphere, will be a sphere with strictly smaller curvature, as desired.

Recall that v34 = e3 − e4, and note that (e3 − e4) ◦ E = −2, so the inside of Hv34,E is
H+
v34,E

. Thus, we need only check that (e3 − e4) ◦x ≥ 0 for all x in the prism. Since the prism
is convex, it is enough to check it for its vertices Qi and Q′

i , which just means checking the
third component is larger than the fourth component. This is easily verified.

This gives us a fundamental domain for 〈�′, Re5〉 in H, namely the region above the half
hypersphere Hv34 (in the Poincaré modelHE ), and in the infinite prism inHE that lies above
the three dimensional prism in ∂HE described above. This fundamental domain has finite
hypervolume, so this group has finite index in O+(Z). A fundamental domain for �′ is the
region with the face He5 removed.
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Fig. 13 With ρ = 6: A
parallelepiped that is the
fundamental domain for G1,
together with the tetrahedron
Q1Q2Q3Q4, which is a
fundamental domain for G2 Q1

Q2

Q3

Q4

In terms of our descent argument for Hm,E , since the property is preserved under the
action of elements in �′, we have found an m′ with the same property but such that Hm′,E
has strictly smaller curvature than Hm,E . Since m ∈ 	, m ◦ E and m′ ◦ E are integers.
Therefore descent cannot continue indefinitely, so at some point we get anm′ with curvature
0 (so Hm′,E has no center), meaning Hm′ goes through E . No such m′ exists, as we cannot
fit such a half space between the planes He4 and He5 . Thus, Statement 1 holds for ρ = 5.

6.2 The case ρ = 6

Let E = e5+e6 be our point at infinity in the Poincaré modelHE . Consider the cross section
given by x5 = x6, which has a lattice of congruent spheres in a canon-ball stacking. Let
G1 = 〈T12, T13, T14〉 and let its canonical fundamental domain be the parallelepiped shown
in Fig. 13. Let G2 = 〈Rv12 , Rv23 , Rv34 , φe3+e4,E 〉. As before, let Q1 be the center of the
tetrahedron, the point of intersection of Hv12 , Hv23 , Hv34 and Hv56 . Solving (together with
Q1 ◦ Q1 = 0 and Q1 ◦ D < 0), we get Q1 = (2, 2, 2, 2,−1,−1). We use this to get the plane

Hn = {x ∈ R
5,1 : x ◦ Q1 = x ◦ φe3+e4,E (Q1)},

giving us n = (1, 1,−1,−1,−1,−1) and the equation x1 + x2 = 0. We therefore have, as
an analog of Eq. (5), the following:

x1 = x2 (from Rv12)

x2 = x3 (from Rv23)

x3 = x4 (from Rv34)

x1 + x2 = 0 (from φe3+e4,E and using Q1). (6)

The vertices are Qi where Qi is the solution to all but the (4− i)-th constraint (together with
Qi ◦ Qi = 0 and Qi ◦ D < 0). Solving, we get

Q1 = (2, 2, 2, 2,−1,−1)

Q2 = (0, 0, 0, 4, 1, 1) = P4,E

Q3 = (0, 0, 1, 1, 0, 0) = e3 + e4
Q4 = (−2, 2, 2, 2, 1, 1).

Note that Q4 is the center of the parallelepiped. This gives us a tetrahedral fundamental
domain for G2, as pictured in Fig. 13.

Extending to ∂HE , we get a prism with vertices Qi and their corresponding points on
He6 :

Q′
1 = (2, 2, 2, 2,−3, 5)
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Q′
2 = (0, 0, 0, 1, 0, 1) = e4 + e6

Q′
3 = (0, 0, 2, 2,−1, 3)

Q′
4 = (−1, 1, 1, 1, 0, 2).

As before, we assume that E ′ = e4 + e6 will be our best choice, so we consider the reflection
Rv45 . Again, v45 ◦ E = (e4 − e5) ◦ E = −2, so we wish to check that the vertices of the
prism are in H+

v45 . That is, we verify that v45 ◦ Qi ≥ 0 and v45 ◦ Q′
i ≥ 0 for all i , which again

just means checking that the fourth component is larger than the fifth. We come to the same
conclusions: Statement 1 is true for ρ = 6; and we have fundamental domains for a subgroup
with finite index inO+(Z), and for�′. The fundamental domain for�′ is geometrically finite,
which may be of interest to some.

6.3 The case ρ = 7

We are ready to tackle a case without a picture. We let E = e6 + e7. The parallelepiped will
be important, but not at this step. We let Q1 be the intersection of the planes Hv12 , Hv23 , Hv34 ,
Hv45 , and Hv67 . As before, we require Q1 ◦ Q1 = 0 and Q1 ◦ D < 0. As before, we solve for
n and find our set of equations is

x1 = x2, x2 = x3, x3 = x4, x4 = x5

x1 + x2 + x3 = 0, (7)

giving us

Q1 = (4, 4, 4, 4, 4,−3,−3) Q′
1 = (1, 1, 1, 1, 1,−2, 3)

Q2 = (0, 0, 0, 0, 4, 1, 1) = P5,E Q′
2 = (0, 0, 0, 0, 1, 0, 1) = e5 + e7

Q3 = (0, 0, 0, 1, 1, 0, 0) = e4 + e5 Q′
3 = (0, 0, 0, 2, 2,−1, 3)

Q4 = (−4,−4, 8, 8, 8, 3, 3) Q′
4 = (−4,−4, 8, 8, 8,−1, 15)

Q5 = (−4, 2, 2, 2, 2, 3, 3) Q′
5 = (−2, 1, 1, 1, 1, 1, 3).

Because we have no picture, we should give some thought as to whether these five vertices
generate a four-dimensional polytope. This is easily verified by noting that the five equations
in (7) together with x6 = x7 yield the unique solution E . That means that each equation is
a hyperplane in ∂HE ∼= R

5 and do not have a common point of intersection. That we could
solve for the points Qi means no two hyperplanes are parallel, so they bound a polytope.

As before, our intuition is that the point is now close enough to E ′ = e5 + e7, which is
the image of E under Rv56 . We check that all the vertices are in H+

v56 , which means the fifth
component is greater than or equal to the sixth. This is true for all except Q5.

This is where the parallelepiped comes in again. When ρ = 5, the vertices of the
parallelepiped (parallelogram) are P1,E , T12(P1,E ) = P2,E , T13(P1,E ) = P3,E , and
T12T13(P1,E ) = T13T12(P1,E ). Notice the 1 − 2 − 1 pattern (think binomial coefficients).
When ρ = 6, the endpoints of the long diagonal are P1,E and the center of Hf1 ; and the two
rings of vertices Pi,E for i = 2, 3, 4, and the centers of Hfi for i = 2, 3, 4. Note again the
1 − 3 − 3 − 1 pattern.

For ρ = 7, we have the endpoints of the long diagonal P1,E and T12T13T14T15(P1,E );
the first ring of four vertices T1i (P1,E ) = Pi,E for i = 2, 3, 4, 5; its complement at the
other end; and the ring in the center, which are the six points T1i T1 j (P1,E ) = T1 j T1i (P1,E )

for {i, j} ⊂ {2, 3, 4, 5}. We found that E ′ = e5 + e7 was not enough, as it is not close
enough to Q5, so we pick another point using a point of tangency between the hyperplane
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He7 and a sphere centered at a point on the middle ring. Intuition guides us to pick E ′ =
T14T15(e1) + e7 = T14e5 + e7. This leads us to consider reflection in the plane with normal
vector T14e5 − e6 = T14(e5 − e6), which is T14Rv56T

−1
14 , so is in �′.

We now have two hyperballs H+
v56 and H+

T14v56
that we hope together will cover the right

prism. The edges of this right prism that include the vertex Q5 are Q5Q′
5 and the edges Q5Qi

for i = 1, . . . , 4. We can find the points where Hv56 cut these edges and if we can verify that
they are in H+

T14v56
, then we will be done. We note that H+

T14v56
includes Q′

5, Q3, and Q4, so
we need only check the edges Q1Q5 and Q2Q5.

The line Q1Q5 is the intersection of the span of {Q1, Q5, E} with ∂H. We write P =
xQ1 + yQ5 + zE , solve P ◦ v56 = 0, P ◦ P = 0, orient P so that P ◦ D < 0, and verify that
P ◦ T14v56 ≥ 0. We do the same for the line Q2Q5.

Since H+
v56 and H+

T14v56
cover the prism, we conclude as before to get our method of

descent and our fundamental domains.

6.4 The case ρ = 8

Cutting to the chase: E = e7 + e8; the equations are

x1 = x2 x2 = x3 x3 = x4 x4 = x5 x5 = x6

x1 + x2 + x3 + x4 = 0,

giving us

Q1 = (1, 1, 1, 1, 1, 1,−1,−1) Q′
1 = (2, 2, 2, 2, 2, 2,−5, 7)

Q2 = (0, 0, 0, 0, 0, 4, 1, 1) = P6,E Q′
2 = (0, 0, 0, 0, 0, 1, 0, 1) = e6 + e8

Q3 = (0, 0, 0, 0, 1, 1, 0, 0) = e5 + e6 Q′
3 = (0, 0, 0, 0, 2, 2,−1, 3)

Q4 = (−1,−1,−1, 3, 3, 3, 1, 1) Q′
4 = (−2,−2,−2, 6, 6, 6,−1, 11)

Q5 = (−1,−1, 1, 1, 1, 1, 1, 1) Q′
5 = (−2,−2, 2, 2, 2, 2, 1, 5)

Q6 = (−3, 1, 1, 1, 1, 1, 3, 3) Q′
6 = (−6, 2, 2, 2, 2, 2, 5, 9).

This time there are two points not captured in H+
v67 , namely Q6 and Q′

6. As before, we look
at the reflection RT15v67 . Only Q1, Q2, and Q′

1 are not in H+
T15v67

, so we need only check the
lines Q1Q6, Q2Q6, and Q′

1Q
′
6. Again, we find the balls overlap on these line segments, so

together they cover the prism.

6.5 The case ρ = 9 (no conclusion)

The relative simplicity of the case ρ = 8 is a bit deceptive, as this line of reasoning breaks
down in the case ρ = 9. We get the equations

x1 = x2 x2 = x3 x3 = x4 x4 = x5 x5 = x6 x6 = x7

x1 + x2 + x3 + x4 + x5 = 0,

giving us the vertices of the prism:

Q1 = (4, 4, 4, 4, 4, 4, 4,−5,−5) Q′
1 = (1, 1, 1, 1, 1, 1, 1,−3, 4)

Q2 = (0, 0, 0, 0, 0, 0, 4, 1, 1) = P7,E Q′
2 = (0, 0, 0, 0, 0, 1, 0, 1) = e7 + e9

Q3 = (0, 0, 0, 0, 0, 1, 1, 0, 0) = e6 + e7 Q′
3 = (0, 0, 0, 0, 0, 2, 2,−1, 3)

Q4 = (−4,−4,−4,−4, 16, 16, 16, 5, 5) Q′
4 = (−4,−4,−4,−4, 16, 16, 16,−3, 29)
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Q5 = (−4,−4,−4, 6, 6, 6, 6, 5, 5) Q′
5 = (−2,−2,−2, 3, 3, 3, 3, 1, 7)

Q6 = (−12,−12, 8, 8, 8, 8, 8, 15, 15) Q′
6 = (−12,−12, 8, 8, 8, 8, 8, 11, 27)

Q7 = (−4, 1, 1, 1, 1, 1, 1, 5, 5) Q′
7 = (−8, 2, 2, 2, 2, 2, 2, 9, 13).

The ball H+
v78 covers all except Q6, Q7, Q′

6, and Q′
7. Since the parallelepiped now has seven

rings, we do not expect to be able to cover the prism with just two balls. However, even when
adding another ball from the middle ring, we still do not have enough to cover the prism.
This case seems sufficiently different that we will leave its analysis for another time.
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