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Abstract The curvature measures of a set X with singularities are measures concentrated
on the normal bundle of X , which describe the local geometry of the set X . For given finitely
many convex bodies or, more generally, sets with positive reach, the translative integral
formula for curvature measures relates the integral mean of the curvature measures of the
intersections of the given sets, one fixed and the others translated, to the mixed curvature
measures of the given sets. In the case of two sets of positive reach, a representation of these
mixed measures in terms of generalized curvatures, defined on the normal bundles of the
sets, is known. For more than two sets, a description of mixed curvature measures in terms of
rectifiable currents has been derived previously. Here we provide a representation of mixed
curvature measures of sets with positive reach based on generalized curvatures. The special
case of convex polyhedra is treated in detail.
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1 Introduction

The reach of a set X ⊂ R
d , denoted reach X , is the supremum of all r ≥ 0 such that for

each point z ∈ R
d with dist(X, z) < r there is a unique nearest point ΠX (z) in X . Sets

with positive reach were studied by Federer [1] who showed that they satisfy a local Steiner
formula, that is, for any 0 < r < reach X and any Borel set B ⊂ R

d ,

Hd(Xr ∩ Π−1
X (B)) =

d∑

k=0

κd−kr
d−kCk(X, B), (1)

where Xr := {z ∈ R
d : dist(z, X) ≤ r}, κ j := π

j
2 /Γ (1 + j

2 ) and Hd denotes the
d-dimensional Hausdorff measure. The coefficients Ck(X, ·) are signed Radon measures,
called curvature measures of order k of X if 0 ≤ k ≤ d − 1, and Cd(X, ·) = Hd(X ∩ ·).
The curvature measures possess the usual properties of curvature measures of sets with C2

smooth boundaries and of convex sets, in particular, they satisfy the Gauss-Bonnet formula
and the Principal Kinematic Formula (see [1]). Sets with positive reach constitute a common
generalization of smooth submanifolds and convex sets. Although they have been studied for
quite some time now, a complete structural understanding of sets with positive reach is still
missing; see [11] for recent work on sets with positive reach and further references.

The main difference to the smooth case is that the Gauss map is not defined uniquely on
the boundary of a set X with positive reach. Therefore, the unit normal bundle

nor X := {(x, u) ∈ R
d × Sd−1 : x ∈ X, u ∈ Nor(X, x)}

is used instead [here Nor(X, x) is the normal cone of X at x ∈ X , defined as the dual convex
cone to the tangent cone Tan(X, x)], and the role of the Gauss map from the smooth case
is played by the projection (x, u) �→ u to the second component. Thus, in generalization of
the curvature measures Ck(X, ·) on R

d , it is convenient to consider curvature measures as
measures onRd × Sd−1 which are supported by the unit normal bundle of X . Such measures
are determined by the refined local Steiner formulawhich states that, for any 0 < r < reach X
and any bounded Borel set A ⊂ R

d × Sd−1,

Hd((Xr \ X) ∩ ξ−1
X (A)) =

d−1∑

k=0

κd−kr
d−kCk(X; A), (2)

where

ξX : z �→
(

ΠX (z),
z − ΠX (z)

‖z − ΠX (z)‖
)

, for z ∈ Xr \ X.

The coefficients Ck(X; ·) are signed Radon measures on R
d × Sd−1, their first component

projections agree with the curvaturemeasures from (1) and they are called generalized curva-
ture measures [17], support measures [14] or curvature-direction measures. In the following,
we shall also use the short name curvature measures for the measures in (2).

One starting point of the present work are kinematic formulas of integral geometry for
sets X, Y ⊂ R

d of positive reach. Let Gd denote the Euclidean motion group of Rd and let
μd denote the suitably normalized Haar measure on Gd . For bounded Borel sets α, β ⊂ R

d

and k ∈ {0, . . . , d}, the principal kinematic formula for curvature measures states that
∫

Gd

Ck(X ∩ gY, α ∩ gβ)μd(dg) =
∑

0≤i, j≤d
i+ j=d+k

c(d, i, j)Ci (X, α)C j (Y, β),
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where c(d, i, j) are explicitly knownconstants (see [8,14]). Inmany applications in stochastic
geometry it is, however, necessary to consider integration with respect to translations only.
In particular, this is crucial for the investigation of stationary random sets which are not
isotropic (see [14]). The basic formula of translative integral geometry thus deals with the
integrals

∫

Rd
Ck(X ∩ (Y + z), α ∩ (β + z)) dz,

which are expressed as a sum of mixed curvature measures depending on both sets X and
Y . More generally, using the generalized curvature measures and an arbitrary nonnegative,
Borel measurable function h : R2d × Sd−1 → [0,∞] with compact support (allowing to
include directional information), we are interested in the translative integrals

∫

Rd

∫
h(x, x − z, u)Ck(X ∩ (Y + z); d(x, u)) dz,

for k ∈ {0, . . . , d−1}, which again can be expressed in terms of integrals of mixed curvatures
measures of X and Y . The iterated version of such a relation works with a finite number q of
sets, q − 1 of them being shifted independently. For q ≥ 2 and given subsets X1, . . . , Xq of
R
d with positive reach, the iterated translative integral formula involves the mixed curvature

measures

Cr1,...,rq (X1, . . . , Xq ; ·) ,

for r1, . . . , rq ∈ {0, . . . , d} with (q − 1)d ≤ r1 + · · ·+ rq ≤ qd − 1, which are signed Borel
measures on Rqd × Sd−1, and reads
∫

Rd
. . .

∫

Rd

∫
h(x, x − z2, . . . , x − zq , u)Ck(X(z); d(x, u)) dzq . . . dz2

=
∑

0≤r1,...,rq≤d
r1+···+rq=(q−1)d+k

∫
h(x1, . . . , xq , u)Cr1,...,rq (X1, . . . , Xq ; d(x1, . . . , xq , u)), (3)

where k ∈ {0, . . . , d−1}, X(z) := X1∩ (X2 + z2)∩· · ·∩ (Xq + zq), and h : Rqd × Sd−1 →
[0,∞] is an arbitrary nonnegative, Borel measurable function with compact support.

This iterated integral formulawas first proved in the setting of convex geometry by Schnei-
der and Weil [13] for q = 2 and by Weil [15] for q ≥ 2 in a less general form, namely for
a function h which is independent of the direction vector u. Subsequently, formula (3) was
established in [8] for q = 2, and in [7] for general q , in the setting of sets with positive reach.
An extension to relative curvature measures, that is, curvature measures defined with respect
to a non-Euclidean metric, has been obtained in [6, Section 3].

For the mixed curvature measures of arbitrary sets with positive reach and q ≥ 3, up to
now only a representation was available which involves the notion of a rectifiable current
(see [7]). In the special case of mixed curvature measures of two sets of positive reach
(that is, for q = 2) an integral representation based on generalized curvature functions,
defined on the normal bundles of the sets, has already been proved in [8,9], while the case of
convex bodies and general q is covered in [6, Section 4]. In the present paper, we extend all
these results by treating the case of a finite sequence of sets with positive reach. For convex
polyhedra we obtain a simple description of the mixed curvature measures which has an
intuitive geometric interpretation (see also [6, Section 4]) and extends the important special
case considered in [16].
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In Sect. 2 we introduce the notions and notation required in the following and provide two
auxiliary results, one from multilinear algebra and the other from measure theory. In Sect. 3
we formulate our main result (Theorem 2) and provide sufficient conditions for the validity
of its assumption. We also deal with some important particular cases such as that of convex
polyhedra. The last section (Sect. 4) contains the proof of the main result.

2 Preliminaries

The basic setting for this paper will be the d-dimensional Euclidean space R
d , d ≥ 2,

with scalar product x · y and norm |x | = √
x · x , x, y ∈ R

d . The same notation will be
adopted in any Euclidean space which will be considered, independent of its dimension. In
particular, we shall investigate cartesian products such as Rd × · · · ×R

d , with k factors, for
which we also write Rkd . In this case, we endow each factor with the same scalar product,
and the cartesian product will carry the natural scalar product which is derived from its
components by summation. LetHs , for s ≥ 0, denote the s-dimensional Hausdorff measure.
The Euclidean spaces where Hausdorff measures will be considered, will always be clear
from the context. We write ωn := 2πn/2/Γ (n/2) for the (n − 1)-dimensional Hausdorff
measure of the (n − 1)-dimensional unit sphere Sn−1 in R

n .
We shall use the standard notation of multilinear algebra as introduced in [2]. In particular,

for k ∈ {0, . . . , d} we denote by ∧k V and
∧k V the spaces of k-vectors and k-covectors,

respectively, of a vector space V , and 〈α, φ〉 stands for the bilinear pairing, where α ∈∧k V
andφ ∈∧k V .We denote byΩd = e′

1∧· · ·∧e′
d the volume d-form inRd , where {e′

1, . . . , e
′
d}

is the basis which is dual to the canonical orthonormal basis {e1, . . . , ed} of Rd . The scalar
product inRd induces a natural linear isomorphism v �→ v′ fromR

d to the dual space
∧1

R
d

which in turn induces a natural linear isomorphism α �→ α′ from
∧

k R
d to its dual

∧k
R
d .

By means of this correspondence, the mapping α �→ ∗α from
∧

k R
d to

∧
d−k R

d is defined
(cf. [2]) by

∗α = (e1 ∧ · · · ∧ ed) � α′,

where · � · denotes the standard inner multiplication (see [2, §1.5.1 and §1.7.8]). It follows
from the definition that

〈α ∧ ∗α,Ωd 〉 = |α|2. (4)

Let p be a natural number and let p multivectors α1, . . . , αp in Rd be given such that the
sum of their multiplicities equals (p − 1)d . Then we define the p-product of α1, . . . , αp as

[α1, . . . , αp] := 〈(∗α1) ∧ · · · ∧ (∗αp),Ω
d〉. (5)

Note that this definition is consistent with that given in [7]. Moreover, if αi is a unit simple
multivector and Li is the linear subspace corresponding to αi , for i = 1, . . . , p, then the
p-product [α1, . . . , αp] coincides, up to sign, with the subspace determinant [L1, . . . , L p]
defined in [15] (see also [14, §14.1]).

Let q ≥ 1, d ≥ 2 and r1, . . . , rq ∈ {0, . . . , d} be given with

(q − 1)d ≤ r1 + · · · + rq ≤ qd − 1.

We set R1 := r1, R2 := r1 + r2, …, Rq := r1 + · · · + rq , rq+1 := qd − 1 − Rq and
k := r1+· · ·+rq −(q−1)d ∈ {0, . . . , d−1}; hence rq+1 = d−1−k. Let Sh(r1, . . . , rq+1)

denote the set of all permutations of {1, . . . , qd −1} which are increasing on each of the sets
{1, . . . , R1}, {R1 + 1, . . . , R2}, …, {Rq + 1, . . . , qd − 1}.
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We write ϕr1,...,rq ∈ Dqd−1(R(q+1)d) for the differential form which is defined by

〈qd−1∧

i=1

(
a1i , . . . , a

q+1
i

)
, ϕr1,...,rq (x1, . . . , xq , u)

〉

= 1

ωd−k
(−1)c1(d,r1,...,rq )

∑

σ∈Sh(r1,...,rq+1)

sgn(σ )

×
⎡

⎣
R1∧

i=1

a1σ(i),

R2∧

i=R1+1

a2σ(i), . . . ,

Rq∧

i=Rq−1+1

aqσ(i),

qd−1∧

i=Rq+1

aq+1
σ(i) ∧ u

⎤

⎦ ,

where aij ∈ R
d , for i ∈ {1, . . . , q + 1} and j ∈ {1, . . . , qd − 1}, is arbitrarily chosen and

c1(d, r1, . . . , rq) = d
q∑

i=1

ri + d
q∑

i=1

iri +
∑

1≤i< j≤q

ri r j .

Since ϕr1,...,rq (x1, . . . , xq , u) depends only on the last vector component, we shall write
briefly ϕr1,...,rq (u).

In particular, for q = 1, r1 =: r ∈ {0, . . . , d − 1}, r2 = d − 1 − r1 and k = r1, we have
(−1)c1(d,r) = 1 and ϕr is the kth Lipschitz–Killing curvature form on R

2d involved in the
definition of the kth curvature measure (see [8,17] for an alternative representation of this
differential form). The sign determined by c1(d, r1, . . . , rq) differs from that given in [7],
see the proof of Lemma 1 below for a correction of the last step of the proof of [7, Lemma 2].

Let Gi , π be the projections defined on (Rd)q+1 by

Gi (x1, . . . , xq , u) := x1 − xi , π(x1, . . . , xq , u) := (x1, u),

i = 2, . . . , q .

Lemma 1 ([7, Lemma 2]) For any q ≥ 2 and 0 ≤ k ≤ d − 1, we have

G#
2Ω

d ∧ · · · ∧ G#
qΩ

d ∧ π#ϕk =
∑

0≤r1,...,rq≤d
r1+···+rq=(q−1)d+k

ϕr1,...,rq .

Proof This result was shown in [7, Lemma 2]. In the last but one line of the proof, the sign
was still correct and given by (−1)c1 with

c1 = (k − 1)(q − 1)d +
q∑

i=2

(d − ri )(ki − (i − 2)d − 1),

with ki = Ri − (i − 1)d . Using the symbol m ∼ n whenever two integers m, n differ by an
even number, we have

c1(d, r1, . . . , rq)

∼ (q − 1)dRq +
q∑

i=1

(d − ri )(Ri − d − 1)

∼ (q − 1)dRq + d
q∑

i=1

Ri +
q∑

i=1

ri Ri + (d − 1)
q∑

i=1

ri
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∼ (q − 1)dRq + d
q∑

i=1

(q + 1 − i)ri +
∑

1≤i≤ j≤q

ri r j + (d − 1)
q∑

i=1

ri

∼ ((q − 1)d + d(q + 1) + 1 + (d − 1))
q∑

i=1

ri + d
q∑

i=1

iri +
∑

1≤i< j≤q

ri r j

∼ d
q∑

i=1

ri + d
q∑

i=1

iri +
∑

1≤i< j≤q

ri r j ,

which agrees with the value given in the definition above. ��
Let X ⊂ R

d have positive reach, and let nor X be its unit normal bundle, as defined in
the introduction (cf. [1]). Then nor X is locally (d − 1)-rectifiable, and for Hd−1-almost all
(x, u) ∈ nor X , the tangent cone of nor X at (x, u) is the linear subspace spanned by the
vectors

1√
1 + ki (x, u)2

(
ai (x, u), ki (x, u)ai (x, u)

)
, i = 1, . . . , d − 1, (6)

where k1(x, u), . . . , kd−1(x, u) ∈ (−∞,∞] are the (generalized) principal curvatures and
where a1(x, u), . . . , ad−1(x, u) are the corresponding principal directions at (x, u) (cf. [17]).
In the case of infinite principal curvatures, we use the conventions 1√

1+∞2 = 0 and ∞√
1+∞2 =

1. The unit normal bundle is oriented by a unit simple (d − 1)-vector field aX (x, u) which
can be given as the wedge product of the vectors from (6) which are oriented in such a way
that

〈a1(x, u) ∧ · · · ∧ ad−1(x, u) ∧ u,Ωd〉 = 1.

Then the normal cycle of X is the integer rectifiable current

NX = (Hd−1 � nor X) ∧ aX

and the kth curvature measure of X , for k ∈ {0, . . . , d − 1}, can be represented as

Ck(X; A) = (NX � 1A)(ϕk),

where A is a bounded Borel subset of Rd × Sd−1.

2.1 Mixed curvature measures and the translative integral formula

Let q, d ≥ 2, and let X1, . . . , Xq ⊂ R
d be sets with positive reach. For unit vectors

u1, . . . , uq ∈ Sd−1 we set

cone{u1, . . . , uq} :=
{ q∑

i=1

λi ui : λi ≥ 0 for i = 1, . . . , q,

q∑

i=1

λ2i > 0

}
.

Note that cone{u1, . . . , uq} contains a line if and only if it contains the origin, or if and only
if o ∈ conv{u1, . . . , uq} (the origin is contained in the convex hull of u1, . . . , uq ). If one of
these equivalent conditions is violated, then cone{u1, . . . , uq} is a proper convex cone. Next
we introduce the joint unit normal bundle

nor (X1, . . . , Xq) := {(x1, . . . , xq , u) ∈ R
qd × Sd−1 : u ∈ cone{u1, . . . , uq} for some

(xi , ui ) ∈ nor Xi , i = 1, . . . , q, o /∈ cone{u1, . . . , uq}} ;
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compare [7]. Note that the open cone was used in [7]. However, in order that [7, Lemma 3]
and further results hold, the definition of the cone given here should be applied. Further, we
define the Borel sets

Rc := {(x1, u1, . . . , xq , uq) ∈ (Rd × Sd−1)q : o /∈ cone{u1, . . . , uq}} ,

N (X) := (nor X1 × · · · × nor Xq) ∩ Rc

and

Sq−1
+ := {(t1, . . . , tq) ∈ Sq−1 : ti ≥ 0 for i = 1, . . . , q}.

The map

T : N (X) × Sq−1
+ → nor (X1, . . . , Xq)

is defined by

T (x1, u1, . . . , xq , uq , t) :=
(
x1, . . . , xq ,

∑q
i=1 ti ui

|∑q
i=1 ti ui |

)
.

It is easy to see that T is well-defined, locally Lipschitz and onto. Although T is not injective,
the following lemma (proved for the case q = 2 in [18]) is sufficient for our purposes.

Lemma 2 ForHqd−1-almost all elements of im(T ), the pre-image under T is a single point.

Proof We write

�(q − 1) :=
{

(t1, . . . , tq) ∈ [0, 1]q :
q∑

i=1

ti = 1

}

for the (q − 1)-dimensional simplex embedded in R
q . Clearly, to prove the lemma it is

sufficient to show that the map

G : N (X) × �(q − 1) → R
qd × Sd−1 ,

(x1, u1, . . . , xq , uq , t1, . . . , tq) �→
(
x2 − x1, . . . , xq − x1, x1,

∑q
i=1 ti ui

|∑q
i=1 ti ui |

)
,

has a unique pre-image for Hqd−1-almost all elements of im(G). Excluding a set of Hqd−1

measure zero from im(T ), we see that it is sufficient to consider the restriction G̃ of G to
the subset N (X) × �̃(q − 1) with �̃(q − 1) = �(q − 1) \ {(0, . . . , 0, 1)}.

For the proof we proceed by induction. The case q = 2 has been established in [18]. Now
we assume that the assertion has already been proved for q − 1 convex bodies. Set

R̄c := {(y1, . . . , yq−1, u, y, v) ∈ R
(q−1)d × Sd−1 × R

d × Sd−1 : o /∈ cone{u, v}}.
To establish the assertion for q sets X1, . . . , Xq with positive reach, q ≥ 3, we introduce the
maps

ϕq : Rqd × R
d → R

qd × R
d , (x1, . . . , xq , u) �→ (x2 − x1, . . . , xq − x1, x1, u) ,

G2 : N (X) × �̃(q − 1)

→ ([ϕq−1(nor (X1, . . . , Xq−1)) × nor Xq ] ∩ R̄c) × (0,∞) ,

(x1, u1, . . . , xq , uq , t1, . . . , tq)

�→
(
x2 − x1, . . . , xq−1 − x1, x1,

∑q−1
i=1 ti ui

|∑q−1
i=1 ti ui |

, xq , uq ,
tq

|∑q−1
i=1 ti ui |

)
,
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and

G1 : ([ϕq−1(nor (X1, . . . , Xq−1)) × nor Xq ] ∩ R̄c) × [0,∞)

→ ϕq(nor (X1, . . . , Xq)) ,

(z2, . . . , zq−1, x1, v, xq , uq , s) �→
(
z2, . . . , zq−1, xq − x1, x1,

v + suq
|v + suq |

)
;

hence, G̃ = G1 ◦ G2. By the inductive hypothesis and since (q − 1)d − 1 + d = qd − 1, it
follows that, forHqd−1-almost all elements of im(G2), the map G2 has a unique pre-image.
Thus, since G1 is locally Lipschitz, the image under G1 of the set of all elements of im(G2)

for which the pre-image under G2 is not uniquely determined has (qd − 1)-dimensional
Hausdorff measure zero.

Furthermore, for Hqd−1-almost all

(z2, . . . , zq−1, x1, v, xq , uq , s)

∈ ([ϕq−1(nor (X1, . . . , Xq−1)) × nor (Xq)] ∩ R̄c) × (0,∞)

we have

(x1, v) ∈ nor (X1 ∩ (X2 − z2) ∩ · · · ∩ (Xq−1 − zq−1)) ,

and therefore the result in [18] shows thatHqd−1-almost all elements of G1(im(G2)) have a
unique pre-image under G1. In fact, here we use that

v + suq
|v + suq | =

1
s+1v + s

s+1uq

| 1
s+1v + s

s+1uq |
and that [0,∞) → [0, 1), s �→ (1+s)−1s, is locally bi-Lipschitz. Thus the assertion follows.

��
We recall now the description of the mixed curvature measures from [7]. Since T is locally

Lipschitz, nor (X1, . . . , Xq) is countably (qd − 1)-rectifiable. We equip nor (X1, . . . , Xq)

with the orientation given by the unit simple tangent (qd−1) vector field aX1,...,Xq associated
with nor (X1, . . . , Xq) and fulfilling

〈aX1,...,Xq , ψε(u)〉 > 0 (7)

for sufficiently small ε > 0, where

ψε(u) =
∑

0≤r1,...,rq≤d
(q−1)d≤r1+···+rq≤qd−1

εqd−1−r1−···−rqϕr1,...,rq (u).

It follows from the proof of Theorem 2 below that condition (7) is satisfied if ε > 0 is small
enough.

Let 0 ≤ r1, . . . , rq ≤ d−1 be integers with (q−1)d ≤ r1+· · ·+rq . Themixed curvature
measure of X1, . . . , Xq of order r1, . . . , rq is a signed Radonmeasure onRqd ×Sd−1 defined
by

Cr1,...,rq (X1, . . . , Xq ; A)

:=
[(

Hqd−1 � nor (X1, . . . , Xq)
)

∧ aX1,...,Xq

]
(1Aϕr1,...,rq ), (8)
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where A ⊂ R
qd × Sd−1 is a Borel measurable set, provided that the integral on the right-

hand side is well defined. Note that since T is only locally Lipschitz, it may happen that
nor (X1, . . . , Xq) has not locally finite Hqd−1 measure. Therefore, in order that the mixed
curvature measures are well defined as Radon measures, we shall assume that the total
variation measure ‖C‖r1,...,rq (X1, . . . , Xq ; ·) corresponding to (8) is locally finite [Eq. (9)].

The mixed curvature measures are symmetric in the sense that for any permutation σ of
{1, . . . , q}, we have

Crσ(1),...,rσ(q)
(Xσ(1), . . . , Xσ(q); Aσ(1) × · · · × Aσ(q) × B)

= Cr1,...,rq (X1, . . . , Xq ; A1 × · · · × Aq × B)

(see [7, Proposition 1 (c)]). The definition ofmixed curvaturemeasures is extended to arbitrary
indices 0 ≤ ri ≤ d by setting

Cd,...,d,rm+1,...,rq (X1, . . . , Xq ; ·)
:= (Hd � X1) ⊗ · · · ⊗ (Hd � Xm) ⊗ Crm+1,...,rq (Xm+1, . . . , Xq ; ·)

form ∈ {1, . . . , q−1} and rm+1, . . . , rq ≤ d−1, provided that rm+1+· · ·+rq ≥ (q−m−1)d ,
and by applying the symmetry. Consequently, the mixed curvature measures are defined for
all integers 0 ≤ r1, . . . , rq ≤ d with (q − 1)d ≤ r1 + · · · + rq ≤ qd − 1.

As already mentioned, we will assume that

‖C‖r1,...,rq (X1, . . . , Xq ; ·) is locally finite for all 0 ≤ r1, . . . , rq ≤ d

with (q − 1)d ≤ r1 + · · · + rq ≤ qd − 1. (9)

Due to the definition, this is equivalent to

‖C‖ri1 ,...,rim (Xi1 , . . . , Xim ; ·) is locally finite whenever 2 ≤ m ≤ q,

1 ≤ i1 < · · · < im ≤ q, 0 ≤ ri1 , . . . , rim ≤ d − 1 and ri1 + · · · + rim ≥ (m − 1)d.

(10)

Condition (10) can be also written in the form
∫

nor (Xi1 ,...,Xim )

1A
∣∣∣〈aXi1 ,...,Xim

, ϕri1 ,...,rim 〉
∣∣∣ dHmd−1 < ∞

for all bounded Borel sets A ⊂ R
md × Sd−1 and all i1, . . . , im, ri1 , . . . , rim as in (10). From

Theorem 2 below we obtain, in particular, a more explicit description of these total variation
measures [see Remark 1(a)].

In the case q = 2, this condition has been considered in [10]; see also [9]. In Remark 1(b)
below we explain why (9) is satisfied whenever X1, . . . , Xq are convex sets. Moreover, for
sets X1, . . . , Xq ⊂ R

d of positive reach, it is proved in Proposition 1 that (9) holds for
X1, ρ2X2, . . . , ρq Xq for almost all rotations ρ2, . . . , ρq ∈ SO(d).

We say that the sets X1, . . . , Xq of positive reach osculate if there exist (x, ui ) ∈ nor Xi ,
i = 1, . . . , q , such that o ∈ cone{u1, . . . , uq} (equivalently, o ∈ conv{u1, . . . , uq}).

As already mentioned in the Introduction, the mixed curvature measures appear in the
translative integral formula for curvature measures of intersections.

Theorem 1 ([7, Theorem 1]) Let X1, . . . , Xq be sets with positive reach in Rd (for q ≥ 2)
which satisfy (9) and are such that

H(q−1)d({(z2, . . . , zq) : X1, X2 + z2, . . . , Xq + zq osculate}) = 0. (11)

Then, for any k ∈ {0, 1, . . . , d − 1}, the translative formula (3) holds.
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For conditions sufficient for (11), see [7] and [8]. In particular, (11) is satisfied if all sets
are convex, or if all sets are sufficiently smooth, or for arbitrary sets with positive reach
in case d = 2. Moreover, if X1, . . . , Xq are arbitrary sets with positive reach in R

d , then
X1, ρ2X2, . . . , ρq Xq satisfy (11) for (νd)

q -almost all rotations ρ2, . . . , ρq ∈ SO(d) (see [9,
Remark 3.2]). Here, νd denotes the normalized invariant measure on the group SO(d) of
proper rotations of Rd .

In any case, it should be emphasized that condition (11) is not required for the definition
of the mixed curvature measures and hence it is also not needed for the present study.

3 An integral representation of mixed curvature measures

In this section we derive a representation of mixed curvature measures as integrals over the
product of unit normal bundles of the sets involved.

Let q ≥ 2 and let X1, . . . , Xq be sets with positive reach. The principal curvatures and the

principal directions of curvature of X j at (x j , u j ) ∈ nor X j will be denoted by k( j)
i (x j , u j )

and a( j)
i (x j , u j ), respectively, for i = 1, . . . , d−1. In the following,we use the short notation

K
( j)(x j , u j ) :=

d−1∏

i=1

√
1 + (k( j)

i (x j , u j )
)2

,

arguments of the curvature functions will often be omitted if these will be clear from the
context. We shall also shortly write x := (x1, . . . , xq) and

(x, u) := (x1, u1, . . . , xq , uq) ∈ N (X).

For (x, u) ∈ Rc, s ∈ R
q and t ∈ Sq−1

+ , we set

ũ(s) :=
q∑

i=1

si ui and u(t) :=
∑q

i=1 ti ui

|∑q
i=1 ti ui |

.

Further, given r = (r1, . . . , rq) with 0 ≤ r1, . . . , rq ≤ d − 1, r1 + · · · + rq ≥ (q − 1)d and
a Borel set A ⊂ R

qd × Sd−1, we set k := r1 + · · · + rq − (q − 1)d and define

μr ((x, u); A) := 1

ωd−k

∫

Sq−1
+

1A(x, u(t))
q∏

i=1

td−1−ri
i |ũ(t)|−(d−k) Hq−1(dt),

if u1, . . . , uq ∈ Sd−1 are linearly independent (and hence o /∈ cone{u1, . . . , uq}), and
otherwise we define μr ((x, u); A) := 0. Note that the conditions 0 ≤ ri ≤ d − 1, for
i = 1, . . . , q , and r1 + · · · + rq ≥ (q − 1)d imply that q ≤ d .

Now we can state our main result.

Theorem 2 Let q, d ≥ 2, let X1, . . . , Xq ⊂ R
d be sets with positive reach satisfying (9), and

let r1, . . . , rq ∈ {0, . . . , d − 1} with r1 + · · · + rq ≥ (q − 1)d. Further, let A ⊂ R
qd × Sd−1

be Borel measurable and bounded. Then
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Cr1,...,rq (X1, . . . , Xq ; A) =
∫

N (X)

μr ((x, u); A)
∑

|I j |=r j
j=1,...,q

q∏

j=1

∏
i∈I cj k

( j)
i

K( j)

×

∣∣∣∣∣∣∣

q∧

j=1

∧

i∈I cj
a( j)
i ∧ u1 ∧ · · · ∧ uq

∣∣∣∣∣∣∣

2

Hq(d−1)(d(x, u)). (12)

We postpone the proof of this theorem to the next section and first discuss assumption (9)
and consider some special cases of Theorem 2.

Remark 1 (a) Theorem 2 and its proof show that condition (9) is equivalent to the require-
ment that for each bounded and Borel measurable set A ⊂ R

qd × Sd−1 we have

∫

N (X)

μr ((x, u); A)

∣∣∣∣
∑

|I j |=r j
j=1,...,q

q∏

j=1

∏
i∈I cj k

( j)
i

K( j)

×

∣∣∣∣∣∣∣

q∧

j=1

∧

i∈I cj
a( j)
i ∧ u1 ∧ · · · ∧ uq

∣∣∣∣∣∣∣

2 ∣∣∣∣Hq(d−1)(d(x, u)) < ∞.

In this case, the total variationmeasure ‖C‖r1,...,rq (X1, . . . , Xq ; ·) of themixed curvature
measure Cr1,...,rq (X1, . . . , Xq ; ·), evaluated at A, is given by this multiple integral.

(b) For convex bodies K1, . . . , Kq , condition (9) is always satisfied for the following reason.
All themixed curvaturemeasures are nonnegative in this case. Therefore they are always
well defined, though possibly not finite. Nevertheless, the translative formula (3) must
be true in this case and since its left-hand side is clearly locally bounded, the mixed
curvature measures on the right-hand side will be locally bounded as well (cf. [10]).

(c) For convex bodies K1, K2 ∈ Kd and α ∈ {1, . . . , d − 1}, the relationship
(
d

α

)
V (K1[α], K2[d − α]) = Cα,d−α(K1,−K2;R2d × Sd−1)

is well-known. A curvature based representation of general mixed volumes is provided
in [6] and will be developed further in future work.

(d) By definition and using the preceding notation, we have
∣∣∣∣∣∣∣

q∧

j=1

∧

i∈I cj
a( j)
i ∧ u1 ∧ · · · ∧ uq

∣∣∣∣∣∣∣

2

=
[
lin{a(1)

i : i ∈ I1}, . . . , lin{a(q)
i : i ∈ Iq}

]2
,

where the bracket (subspace determinant) on the right-hand side was already defined in
(5); see also the references after (5) and [16] or [14, p. 598].

To prepare the proof of a condition, stated in Proposition 1, which ensures that (9) is
satisfied, we first provide the bounds given in the next lemma.

Lemma 3 Let the assumptions of Theorem 2 (except for (9)) be satisfied with A = B×Sd−1,
for a Borel set B ⊂ R

dq , and let k = r1 + · · · + rq − (q − 1)d. Then, μr ((x, u); A) = 0 if
u1, . . . , uq are linearly dependent or x /∈ B, and
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c μr ((x, u); A) ≤
{

(1 + | ln(|u1 ∧ · · · ∧ uq |)|)|u1 ∧ · · · ∧ uq |−1 if k = d − q,

|u1 ∧ · · · ∧ uq |−(d−k−q+1) if k < d − q,
(13)

with some constants c = cd,q,k , otherwise. In particular,

‖C‖r1,...,rq (X1, . . . , Xq ; B × Sd−1)

≤ const
∫

N (X)

1B(x)|u1 ∧ · · · ∧ uq |−(d−q) Hq(d−1)(d((x, u))). (14)

Proof Assume that u1, . . . , uq are linearly independent and x ∈ B. Then, from the definition
of μr ((x, u); A), we easily get

μr ((x, u); A) ≤ 1

ωd−k

∫

Sq−1
+

|ũ(t)|−(d−k) Hq−1(dt).

For the given linearly independent vectors, put u = (u1, . . . , uq) and letΔu denote the convex
hull of u1, . . . , uq . Further, let w ∈ Sq−1 be a unit vector in the linear hull of u1, . . . , uq and
perpendicular to Δu . Note that the origin o is not contained in the affine hull of {u1, . . . , uq},
the smallest (hence (q − 1)-dimensional) affine subspace containing this set.

Consider the differentiable, one-to-one mapping

h : Sq−1
+ → Δu, t �→ (t1 + · · · + tq)

−1ũ(t).

In order to compute the Jacobian Jq−1h(t) of h at t ∈ Sq−1
+ , let {v1, . . . , vq−1, t} be an

orthonormal basis of Rq and note that

Dht (v j ) = (t1 + · · · + tq)
−1(v1j u1 + · · · + v

q
j uq) + α j (t)ũ(t), j = 1, . . . , q − 1,

for some α j (t) ∈ R and

∣∣∣∣∣∣

q−1∧

j=1

Dht (v j ) ∧ ũ(t)

∣∣∣∣∣∣
= |u1 ∧ · · · ∧ uq |

(t1 + · · · + tq)q−1 .

Hence, for t ∈ Sq−1
+ we have

Jq−1h(t) =
∣∣∣∣∣∣

q−1∧

i=1

Dht (v j )

∣∣∣∣∣∣
= |u1 ∧ · · · ∧ uq |

(t1 + · · · + tq)q−1|ũ(t) · w| ≥ |u1 ∧ · · · ∧ uq |
q(q−1)/2|ũ(t)| .

Since clearly |ũ(t)| ≥ |h(t)|, t ∈ Sq−1
+ , the area formula implies that

q−(q−1)/2ωd−k |u1 ∧ · · · ∧ uq |μr ((x, u); Sq−1
+ )

≤
∫

Δu

|z|−(d−k−1) Hq−1(dz)

≤
∫

B(q−1)
1

(ρ2 + |x |2)− d−k−1
2 Hq−1(dx),
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where ρ := dist(o,Δu) ≤ 1 and B(q−1)
1 denotes the unit ball in R

q−1 with centre at the
origin. The last integral can be bounded from above by

ωq−1

∫ 1

0
rq−2(ρ2 + r2)−

d−k−1
2 dr

= ωq−1ρ
−(d−k−1)

∫ 1

0

rq−2

(1 + ( r
ρ
)2)

d−k−1
2

dr

= ωq−1ρ
−(d−k−q)

∫ ρ−1

0

sq−2

(1 + s2)
d−k−1

2

ds

≤ ωq−1ρ
−(d−k−q)

(
1 +

∫ ρ−1

1
s−(d−k−q+1)

)
ds,

and the last integral can be easily evaluated.
The proof of (13) will be finished by the following estimate. The norm |u1 ∧ · · · ∧ uq |

is equal to the q-volume of the parallelepiped spanned by the vectors u1, . . . , uq , and since
these are unit vectors, we get

|u1 ∧ · · · ∧ uq | ≤ κq−1
2

q
ρ,

where κn is the volume of the n-dimensional unit ball. Applying now Remark 1 (a) and the
fact that |ξ ∧ u1 ∧ · · · ∧ uq | ≤ |u1 ∧ · · · ∧ uq | for any simple unit multivector ξ , we
obtain (14). ��

Using Lemma 3 we now show that mixed curvature measures are defined for generic
rotations of sets with positive reach (cf. [9, Proposition 4.6]). We emphasize that the upper
bound in (14) is not finite for arbitrary sets with positive reach, but we will show that it
is indeed finite for generic rotations of sets with positive reach. Recall the remarks after
Theorem 1 where it is pointed out that the assumptions of Proposition 1 also imply that
condition (11) is satisfied, although this follows from a different argument.

Proposition 1 Let q, d ≥ 2 and let X1, . . . , Xq ⊂ R
d be sets with positive reach. Then (9)

is satisfied by X1, ρ2X2, . . . , ρq Xq for (νd)
q−1-almost all rotations ρ2, . . . , ρq ∈ SO(d).

Proof It suffices to show that ‖C‖r1,...,rm (X1, ρ2X2, . . . , ρm Xm; B × Sd−1) < ∞ for all
2 ≤ m ≤ q , 0 ≤ r1, . . . , rm ≤ d − 1 with r1 + · · · + rm ≥ (m − 1)d , any ball B ⊂ R

md and
almost all rotations ρ2, . . . , ρm ∈ SO(d). Due to (14), and since (x, u) ∈ nor (ρXi ) if and
only if (ρ−1x, ρ−1u) ∈ nor Xi , it is sufficient to show that

∫

N (X)

1B(x)|u1 ∧ ρ2u2 ∧ · · · ∧ ρmum |−(d−m) Hm(d−1)(d((x, u))) < ∞

and almost all ρ2, . . . , ρm ∈ SO(d). Clearly, for any given u ∈ Sd−1, the image of the
normalized Haar measure on SO(d) by the mapping ρ �→ ρu is the uniform distribution on
Sd−1. Thus, the (m − 1)-fold integral of the last integral expression over ρ2, . . . , ρm equals

∫

N (X)

1B(x) H(u1)Hm(d−1)(d((x, u))),

where

H(u1) =
∫

Sd−1
· · ·
∫

Sd−1
|u1 ∧ u2 ∧ · · · ∧ um |−(d−m) Hd−1(dum) . . .Hd−1(du2).
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Thus, it will be sufficient to show that H(u1) is bounded from above by a constant. First,
observe that

|u1 ∧ · · · ∧ um | = |u1 ∧ · · · ∧ um−1||pV uq |,
where V is the orthogonal complement to the linear hull of u1, . . . , um−1 (note that dim V =
d − m + 1) and pV denotes the orthogonal projection to V . Moreover, a direct calculation
shows that if L is an l-dimensional linear subspace of Rd , l ∈ {1, . . . , d − 1}, and p+ l > 0,
then

∫

Sd−1
|pLu|p Hd−1(du)

=
∫

Sd−1∩L

∫

Sd−1∩L⊥

∫ π
2

0
(cos t)l−1(sin t)d−l−1(cos t)p dt Hd−l−1(dx)Hl−1(dy)

= ωlωd−l

Γ
( d−l

2

)
Γ
(
p+l
2

)

2Γ
(
d+p
2

) . (15)

Applying (15) with L = V , l = d − m + 1 and p = −d + m in a first step, it remains to be
shown that

u1 �→
∫

Sd−1
· · ·
∫

Sd−1
|u1 ∧ · · · ∧ um−1|−(d−m) Hd−1(dum−1) . . .Hd−1(du2)

is bounded by a constant from above. Repetition of the preceding argument yields the asser-
tion. ��

Theorem 2 can be specified in various ways. First, let X1, . . . , Xq be sets with positive
reach, A ⊂ R

qd × Sd−1 a Borel set, and r1 = · · · = rq = d − 1 with q, d ≥ 2. Then
k = d − q and

μd−1((x, u); A) = 1

ωq

∫

Sq−1
+

1A(x, u(t)) |ũ(t)|−q Hq−1(dt),

if u1, . . . , uq ∈ Sd−1 are linearly independent, and zero otherwise. Furthermore,

Cd−1,...,d−1(X1, . . . , Xq ; A) = 2q
∫

. . .

∫
μd−1((x, u); A) |u1 ∧ · · · ∧ uq |2

× Cd−1(Xq ; d(xq , uq)) . . .Cd−1(X1; d(x1, u1)).

The special case where the sets X1, . . . , Xq are convex polytopes, but r1, . . . , rq ∈
{0, . . . , d − 1} are arbitrary, is of particular interest, since it shows that the representation of
mixed curvature measures given in Theorem 2 extends the defining relationship (3.1) in [16]
in a natural way.

For a polytope P ⊂ R
d and j ∈ {0, . . . , d − 1}, we write F j (P) for the set of all j-

dimensional faces of P (see [12, p. 16]), and N (P, F) for the normal cone of P at a face
F of P (see [12, p. 83]). For faces Fi ∈ Fri (Pi ), i = 1, . . . , q , the bracket [F1, . . . , Fq ] is
defined as in [16] or [14, p. 598].

Corollary 1 Let q, d ≥ 2, and let P1, . . . , Pq be convex polytopes (or polyhedral sets). Let
r1, . . . , rq ∈ {0, . . . , d −1} with r1 +· · ·+ rq ≥ (q −1)d and k := r1 +· · ·+ rq − (q −1)d.
Further, let B ⊂ R

qd and C ⊂ Sd−1 be Borel measurable sets. Then
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Cr1,...,rq (P1, . . . , Pq ; B × C)

=
∑

F1∈Fr1 (P1)

. . .
∑

Fq∈Frq (Pq )

Hd−1−k
((∑q

i=1 N (Pi , Fi )
) ∩ C

)

ωd−k

× [F1, . . . , Fq ]
(⊗q

i=1

(Hri � Fi
))

(B).

In particular, Corollary 1 is an extension of the defining relation in [16, (3.1)], since

γ (F1, . . . , Fq ; P1, . . . , Pq) = Hd−1−k
((∑q

i=1 N (Pi , Fi )
) ∩ Sd−1

)

ωd−k
,

provided that lin N (P1, F1), . . . , lin N (Pq , Fq) are linearly independent subspaces. Also
note that if these subspaces are not linearly independent, then

dim

(( q∑

i=1

N (Pi , Fi )

)
∩ Sd−1

)
< d − r1 + · · · + d − rq − 1 = d − k − 1,

and hence γ (F1, . . . , Fq ; P1, . . . , Pq) = 0 in this case.

Proof We continue to use the previous notation. Under the present special assumptions, the
formula of Theorem 2 yields

Cr1,...,rq (P1, . . . , Pq ; B × C)

=
∑

F1∈Fr1 (P1)

. . .
∑

Fq∈Frq (Pq )

[F1, . . . , Fq ]
(⊗q

i=1

(Hri � Fi
))

(B)

× 1

ωd−k

∫

Sq−1
+

∫

N (P1,F1)∩Sd−1
. . .

∫

N (Pq ,Fq )∩Sd−1

⎛

⎝
q∏

j=1

t
d−1−r j
j

⎞

⎠

×

∣∣∣∣∣∣∣

q∧

j=1

∧

i∈I cj
a( j)
i ∧ u1 ∧ . . . ∧ uq

∣∣∣∣∣∣∣
1C (u(t))|ũ(t)|−(d−k)

× Hd−1−rq (duq) . . .Hd−1−r1(du1)Hq−1(dt) ,

where {a( j)
i : i ∈ I cj } is an orthonormal basis ofTan(N (Pj , Fj )∩Sd−1, u j ) and {a( j)

i : i ∈ I j }
spans lin(Fj − Fj ), j = 1, . . . , q . Here we adopt the convention that the integrand is zero if
u1, . . . , uq are linearly dependent.

Let Fj ∈ Fr j (Pj ), for j = 1, . . . , q , be fixed and assume that the linear subspaces
lin N (P1, F1), . . . , lin N (Pq , Fq) are linearly independent. Consider the bijective map

T : (N (P1, F1) ∩ Sd−1) × · · · × (N (Pq , Fq) ∩ Sd−1) × Sq−1
+

→
( q∑

i=1

N (Pi , Fi )

)
∩ Sd−1 ,

(u1, . . . , uq , t) �→ u(t).
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Then the required equality for any such summand follows by an application of the area
formula once we have checked that

Jd−k−1T (u, t) = |ũ(t)|−(d−k)

⎛

⎝
q∏

j=1

t
d−1−r j
j

⎞

⎠

∣∣∣∣∣∣∣

q∧

j=1

∧

i∈I cj
a( j)
i ∧ u1 ∧ · · · ∧ uq

∣∣∣∣∣∣∣
.

In fact, using the previous notation, we find that

∂T

∂a( j)
i

(u, t) = t j a
( j)
i

|ũ(t)| + λ
( j)
i u(t) ,

where i ∈ I cj , j ∈ {1, . . . , q}, and λ
( j)
i ∈ R,

∂T

∂ fl
(u, t) = ũ( fl)

|ũ(t)| + λl u(t) ,

where l ∈ {1, . . . , q − 1} and λl ∈ R, and
〈

∂T

∂a( j)
i

(u, t), u(t)

〉
=
〈
∂T

∂ fl
(u, t), u(t)

〉
= 0.

Here f1, . . . , fq−1, t is an orthonormal basis of Rq . Thus

Jd−k−1T (u, t) =

∣∣∣∣∣∣∣

q∧

j=1

∧

i∈I cj

(
t j a

( j)
i

|ũ(t)| + λ
( j)
i u(t)

)
∧

q−1∧

i=1

(
ũ( fi )

|ũ(t)| + λi u(t)

)
∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣

q∧

j=1

∧

i∈I cj

(
t j a

( j)
i

|ũ(t)|

)
∧

q−1∧

i=1

(
ũ( fi )

|ũ(t)|
)

∧ u(t)

∣∣∣∣∣∣∣

= |ũ(t)|−(d−k)

∣∣∣∣∣∣∣

q∧

j=1

∧

i∈I cj
(t j a

( j)
i ) ∧

q−1∧

i=1

ũ( fi ) ∧ ũ(t)

∣∣∣∣∣∣∣
,

from which the formula for the Jacobian immediately follows.
If lin N (P1, F1), . . . , lin N (Pq , Fq) are not linearly independent, then [F1, . . . , Fq ] = 0,

and thus the requested equality is also true in this case. ��
Further representation formulas, which are needed for the analysis of Boolean models in

stochastic geometry can be derived from Theorem 2 and Corollary 1. Various examples of
such results and their applications are provided in [3], [4, Section 3] and [5].

4 Proof of Theorem 2

For given t ∈ Sq−1
+ we denote by f1, . . . , fq−1, t an orthonormal basis of Rq whose orien-

tation is chosen in such a way that

det( f1, . . . , fq−1, t) = (−1)(d−1)(q2).
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Denote

ã((x, u), t) = (∧d−1Π1) aX1(x1, u1) ∧ · · · ∧ (∧d−1Πq
)
aXq (xq , uq)

∧ (∧q−1Πq+1
)
( f1 ∧ · · · ∧ fq−1),

where Πi , i = 1, . . . , q + 1, are the canonical embeddings into (R2d)q × R
q such that

(a1, . . . , aq , aq+1) =
q+1∑

i=1

Πi ai ;

note that ã((x, u), t) is a (qd − 1) vector field tangent to N (X) × Sq−1. Using the area
formula for currents [2, §4.1.30] and Lemma 2, we obtain

Cr1,...,rq (X1, . . . , Xq ; A)

=
∫

N (X)

∫

Sq−1
+

〈∧qd−1ap DT ((x, u), t)ã((x, u), t), ϕr1,...,rq (u(t))
〉

× 1A(x, u(t))Hq−1(dt)Hq(d−1)(d(x, u)) ,

provided that the orientation is chosen properly, i.e., such that

∧qd−1apDT ((x, u), t)ã((x, u), t)

is a positive multiple of aX1,...,Xq ; this will be verified later.

A direct calculation shows that, for Hqd−1-almost all ((x, u), t) ∈ N (X) × Sq−1
+ ,

∧qd−1ap DT ã((x, u), t) = 1

K1

d−1∧

i=1

(
a(1)
i , o, . . . , o,

t1k
(1)
i

|ũ(t)|a
(1)
i + λ

(1)
i ũ(t)

)
∧

...

∧ 1

Kq

d−1∧

i=1

(
o, . . . , o, a(q)

i ,
tqk

(q)
i

|ũ(t)| a
(q)
i + λ

(q)
i ũ(t)

)

∧
q−1∧

j=1

(
o, . . . , o,

ũ( f j )

|ũ(t)| + λ j ũ(t)

)
,

where λ
( j)
i , i ∈ {1, . . . , d − 1} and j ∈ {1, . . . , q}, and λ j , j ∈ {1, . . . , q − 1}, are suitably

chosen. We write Sh∗(r1, . . . , rq+1) for the set of all σ ∈ Sh(r1, . . . , rq+1) which satisfy

σ({1, . . . , R1}) ⊂ {1, . . . , d − 1}
...

σ ({Rq−1 + 1, . . . , Rq}) ⊂ {(q − 1)(d − 1) + 1, . . . , q(d − 1)} ,

and then we define

Iσ (i) = σ({Ri−1 + 1, . . . , Ri }) − (i − 1)(d − 1)

and

Iσ (i)c = {1, . . . , d − 1} \ Iσ (i), i = 1, . . . , q,
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for σ ∈ Sh∗(r1, . . . , rq+1). By Iσ ( j)Iσ ( j)c we shall denote the permutation of {1, . . . , d−1}
mapping the first r = |Iσ ( j)| elements increasingly on Iσ ( j) and the remaining d − 1 − r
elements increasingly on Iσ ( j)c. Thus we arrive at

〈∧qd−1ap DT ã((x, u), t), ϕr1,...,rq (u(t))
〉 = 1

ωd−k
(−1)c1(d,r1,...,rq )

×
∑

σ∈Sh∗(r1,...,rq+1)

sgn(σ )

⎛

⎝
q∏

j=1

t
d−1−r j
j

⎞

⎠
q∏

j=1

∏
i∈Iσ ( j)c k

( j)
i

K j
|ũ(t)|−(d−k)

×
⎡

⎣
∧

i∈Iσ (1)

a(1)
i , . . . ,

∧

i∈Iσ (q)

a(q)
i ,

∧

i∈Iσ (1)c
a(1)
i ∧ · · · ∧

∧

i∈Iσ (q)c

a(q)
i ∧

q−1∧

i=1

ũ( fi ) ∧ ũ(t)

⎤

⎦ .

(16)

Observe that

q−1∧

i=1

ũ( fi ) ∧ ũ(t) = det( f1, . . . , fq−1, t) u1 ∧ · · · ∧ uq , (17)

sgn(σ ) =
⎛

⎝
q∏

j=1

sgn(Iσ ( j)Iσ ( j)c)

⎞

⎠ (−1)c2(d,r1,...,rq ) (18)

with

c2(d, r1, . . . , rq)

=
q∑

j=1

(d − 1 − r j )(Rq − R j )

∼ q(d − 1)Rq + (d − 1)
q∑

i=1

Ri + Rq

q∑

i=1

ri +
q∑

i=1

ri Ri

∼ q(d − 1)Rq + (d − 1)

(
(q + 1)

q∑

i=1

ri −
q∑

i=1

iri

)
+ Rq +

q∑

i=1

ri +
∑

1≤i< j≤q

ri r j

∼ (d − 1)
q∑

i=1

ri + (d − 1)
q∑

i=1

iri +
∑

1≤i< j≤q

ri r j ,

∗
⎛

⎝
∧

i∈Iσ ( j)

a( j)
i

⎞

⎠ = sgn(Iσ ( j)Iσ ( j)c)
∧

i∈Iσ ( j)c
a( j)
i ∧ u j

and

q∧

j=1

⎛

⎝
∧

i∈Iσ ( j)c
a( j)
i ∧ u j

⎞

⎠ = (−1)c3
q∧

j=1

∧

i∈Iσ (q)c

a( j)
i ∧

q∧

i=1

ui

with

c3 =
q∑

j=2

( j − 1)(d − 1 − r j ) ∼ (d − 1)

(
q

2

)
+
∑

i

iri +
∑

i

ri .
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Using (5), we thus have

sgn σ

⎡

⎣
∧

i∈Iσ (1)

a(1)
i , . . . ,

∧

i∈Iσ (q)

a(q)
i ,

∧

i∈Iσ (1)c
a(1)
i ∧ · · · ∧

∧

i∈Iσ (q)c

a(q)
i ∧

q−1∧

i=1

ũ( fi ) ∧ ũ(t)

⎤

⎦

= (−1)c2
〈 q∧

j=1

( ∧

i∈Iσ ( j)c
a( j)
i ∧ u j

)
∧ ∗
( q∧

j=1

∧

i∈Iσ ( j)c
a( j)
i ∧

q−1∧

i=1

ũ( fi ) ∧ ũ(t)

)
,Ωd

〉

= (−1)c
∗
〈 q∧

j=1

∧

i∈Iσ ( j)c
a( j)
i ∧

q∧

j=1

u j ∧ ∗
( q∧

j=1

∧

i∈Iσ (q)c

a( j)
i ∧

q∧

i=1

u j

)
,Ωd

〉

= (−1)c
∗
∣∣∣∣∣∣

q∧

j=1

∧

i∈Iσ ( j)c
a( j)
i ∧

q∧

j=1

u j

∣∣∣∣∣∣
, (19)

where c∗ := c2 + c3 + (d − 1)
(q
2

)
and we have used (4) in the last step. Combining (16) and

(19) and observing that

c1 + c2 + c3 + (d − 1)

(
q

2

)
∼ 0,

we finally obtain the required formula.
It remains to verify that the orientation of the joint unit normal bundle has been chosen

appropriately, i.e., that
〈
∧qd−1apDT ((x, u), t)ã((x, u), t),

∑
εqd−1−r1−···−rqϕr1,...,rq (u(t))

〉
> 0, (20)

where the sum extends over all r1, . . . , rq ∈ {0, . . . , d} such that (q −1)d ≤ r1 +· · ·+ rq ≤
qd − 1 for sufficiently small ε > 0. Consider first the case when X1, . . . , Xq have C1,1

smooth boundaries. Since all curvatures are finite in this case, we get from (16) and (19) that

〈∧qd−1apDT ((x, u), t)ã((x, u), t), ϕd−1,...,d−1(u(t))〉 > 0.

But since ϕr1,...,rq vanishes over nor (X1, . . . , Xq) if r j = d for some j ∈ {1, . . . , q}, this is
the leading term in the polynomial expressionof (20)which thereforewill be positive for small
ε > 0. General sets X1, . . . , Xq of positive reach can be approximated by parallel bodies
with C1,1 smooth boundaries so that the corresponding unit normal cycles are arbitrarily
close in the flat norm (see [9]). Thus, the expression in (20) can be approximated by the
corresponding one for the parallel bodies and since it can never be zero for sufficiently small
ε > 0, it will remain positive.
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