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Abstract Let K and L be two convex bodies in R3. Assume that their orthogonal projections
K|H and L|H onto every 4-dimensional subspace H are directly SU (2)-congruent, i.e., they
coincide up to a SU (2)-rotation for some complex structure in A and a translation in H. We
prove that the bodies coincide up to a translation and a reflection in the origin, provided that
the set of diameters of one of the bodies is contained in a finite union of two-dimensional
subspaces of R. We obtain this result as a consequence of a more general statement about
a functional equation on the unit sphere.

Keywords Projections of convex bodies - Spherical Funk Transform - Bodies with directly
congruent projections

1 Introduction

In this paper we address the following problem (cf., for example, [2, Problem 3.2, p. 125]).

Problem 1 Let2 < k < d — 1. Assume that K and L are convex bodies in R? such that the
projections K |H and L|H are congruent for all H € G(d, k). Is K a translate of £L7?

Here we say that K |H, the projection of K onto H, is congruent to L|H if there exists
an orthogonal transformation ¢ € O(k, H) in H such that ¢(K|H) is a translate of L|H;
G(d, k) stands for the Grassmann manifold of all k-dimensional subspaces in R4,

Recently, Myroshnychenko [6] together with the author gave an affirmative answer to
Problem 1 in the class of polytopes. We refer the reader to [1,3,5,7] and [8], for the history
and some partial results related to Problem 1.

Our first result is
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Theorem 1 Let K and L be two convex bodies in R>. Assume that for every & € S* the
projections K&+ and L|EL are directly SU (2)-congruent, i.e., for every & € S* there is a
rotation gz € SU (2, Sl)for some complex structure in £+ and a vector ag € £+ such that

@s (KIED) +ag = LIE. 4))

Then K +b = L or —K +b = L for some b € R, provided that the set of diameters of one
of the bodies is contained in a finite union of two-dimensional subspaces of R>.

We obtain Theorem 1 as a consequence of a more general statement about a functional
equation on the unit sphere. Let

M(ge) = {x €5t ge(x) = max ge} @

be the set of directions of the maxima of the even part of a continuous function g defined on
S*. We have

Theorem 2 Let f and g be two continuous functions on S*. Assume that for every & € S*
there is a rotation gz € SU(2,§ 1) for some complex structure in £+ and a vector ag €& L
such that

flpe() +ag-x=gx) VreStngt 3)

Then there exists b € R> such that fX)+b-x =g(x)forallx € S*or f(=x)+b-x = g(x)
for all x € S* provided that M(g.) is contained in a finite union of large I1-dimensional
circles of S*.

The paper is organized as follows. In the next section we recall some definitions and prove
several auxiliary Lemmata that will be used later. We prove Theorems 2 and 1 in Sects. 3
and 4.

1.1 Notation

We denote by S§* = {x € R? : |x| = 1} the set of all unit vectors in the Euclidean space RS,
For any unit vector £ € S* we let £+ to be the orthogonal complement of £ in R, i.e., the set
of all x € R? such that x - & = 0; here x - £ stands for a usual scalar product of x and £ in R3.
The notation for the orthogonal group O (k) and the special orthogonal group SO (k), k > 2,

is standard; span(ay, aa, . .., ay) stands for a m-dimensional subspace that is a linear span
of linearly independent vectors ay, ..., a,, m > 1. We will write f, and f, for the even and
odd parts of the function f,
(x) + f(=x) (x) — f(—=x)
felry = TOETCD oy S TOZTED s

2 Auxiliary definitions and results

We introduce a complex structure in R* by identifying it with C2. We will say that two bodies
A and B in R* = C? are directly SU (2)-congruent if there exists a vector @ € R* and a
SU (2)-rotation ¢g4 such that ¢(A) +a = B.

Consider any 4-dimensional subspace &1 of R orthogonal to & € S*. We say that Qe €
S04, &L, meaning that there exists a choice of an orthonormal basis in R5 and a rotation
® € SO(5), with a matrix written in this basis, such that the action of ® on £ is the rotation
@ in &+, and the action of ® on [(§) = (¢1)1 is trivial, i.e., d(y) =y forevery y € [(§).
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We say that a rotation @g is in SU (2, & LY if its matrix Ag with respect to a certain basis
in g1« =" R** =" C? is of the form (see [9], page 130):

ip 0
A%‘ = |:eo e—itp:| , (NS [—T[, 7T].

Here the invariant subspaces of ¢ (for ¢ # 0, ) are the orthogonal complex lines (two-
dimensional real subspaces of & NI = 11(&)and lh = [»(£); the restriction @g |1, is equivalent
to a multiplication by ¢’¢, and the restriction @e 1, 1s equivalent to a multiplication by eie,

We identify SU (2, & Ly witha subgroup of SO (4, & 1) of the so-called isoclinic rotations,
[11].

Lemma 1 If f and g verify the conditions of Theorem 2, then f, = g. on S*.

Proof Comparing the even parts of Eq. (3) we have
folpe)) = go(u) forany & e S* andany ue S*net.

Integrating over S* N &+ and using the invariance of the Lebesgue measure under rotations,
we obtain

| fewndow = [ fwdow = [ sdow.
S4ngL s4ngt S4ngL
In other words, Ff, = Fg, on S*, where
Ffo(§) = / fewydo @), & eS*
S4ngL

is the Funk transform on S*. Since it is injective on even functions (see [4], Corollary 2.7,
p- 128), we obtain the desired result. O

From now on in this section we will assume that the functions are odd.
Lemma 2 (cf. Lemma 1 [7]). Let z € $* and let $* Nzt = Ao U Ay, where

no={eestnet: ) =g Vrestngt],
Ay = [s €SNzt —f(0) = go(x) Vxe S4ﬁ.§l}.
Then f, = g, on S* or fo=—goo0n s4,
Proof Observe that
veest, st= |J  *ngh. @
{es*nztnxt)

Indeed, for any y € §* we take £ € $* Nzt Nx! Nyt to obtain that y € S* N &L,

Assume that there exists x € S* such that (S* Nz Nx1) C Ay, then, using (4), we see
that f, = g, on S4. Similarly, if there exists x € $% such that (S4 Nzt n xJ‘) C Ay, then,
fo = —goon S%.

On the other hand, if for any x € S* there exists two directions £; and & € S* Nzt Nxt,

&1 # &, suchthat £ € Ag and & € Ay, then f,(x) = g,(x) = — f,(x) = 0. Hence,
fg=g0=00nS4. O
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Let z € S*. Define
Go={eestnet: fo) +ag v =g () Vrestngt],
and
B, = [s €Stz —f(0) tasx = go(x) Vie s“nsi}.
Theorem 3 (cf. Theorem 1.3 [5]). Let f and g be two odd continuous functions on S* and

let 7 € S*. Assume that S* N z+ = B¢ U Ey. Then there exists b € R such that for all
u € S* we have g,(u) = f,(u) + b - u, or for all u € S* we have g,(u) = — f,(u) + b - u.

Proof Since the proof is very similar to the one of Theorem 1.3, [5], we sketch it briefly. Take
n = 5 in Theorem 1.3 and Lemma 4.3 [5]. Repeating the argument, we obtain §* N z- =
Ao U A, (except an obvious difference with the definitions of Ep and E; in this note and
in [5], Lemmata 3.7 and 3.8 follow without any changes). It remains to apply the previous
lemma with the sets Ao and A that are defined analogously to those in Lemma 4.2, [5], and
with the functions f:, and g, that appear in the proof of Lemma 4.3 [5]. O

3 Proof of Theorem 2
Assume at first that the set of maxima of g, consists of two opposite points, i.e.,
M(ge) = {x €5 gel) = max ge} = (#2) ®)
for some z € S*. Consider any & € §* N z. We claim that
Me(f) =[x e st net: fo) =Mt = (2 ©)

To show (6), observe at first that

SIP%XL Je = 8e(2). (7

Indeed, let y € $* N &1 be such that f,(y) = maxgenz 1 fe > ge(2). Since the identity

felge() = ge(x)  Vxe SNt ®)
obtained by taking even parts of (3), is equivalent to
fe) =g (@' ()  V¥yestnegt, ©)

we see that (9) does nothold, for, f.(y) > g.(z) > ge(gagl(y)).Hence,masztmgL fe < 8.(2).

Since f, (<p§_ ! (2)) = ge(2), a similar argument shows that max s4ngL fe may not be smaller
than g.(z). We have proved (7).

Next, we observe that for each & € §3 Nzt the set M ( f.) consists of two opposite points
on S*. Indeed, if the maximum were reached at two points yi, y» € S* N &L, y; # £y,,
then, using (9), we see that g, would reach the maximum at two different points (pg ! (y1) and

(p%__l(yz) #~ :i:(pgl(yl). This contradicts (5).

Now we show (6). If it is {&=y} for some y # z, y € S* N &L, wetake ¢ € (3 Nzh)\
($3Nyl). Since y ¢ $*ne¢t, Eq. (8) may not hold with & = ¢. Thus, (6) holds, and we
obtain M(fe) = M(g.) = {£z}.
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Using the previous identity and (8), we see that ¢ (z) = £z forall £ € $* Nzt For,
@¢(z) must be a point where the maximum of f, is reached. Hence, we can assume that for
every £ € $3 Nzt the angle of rotation of ¢z € SU(2,§ 1) is zero or 7 (since the rotations
¢ are all isoclinic [11], any ray 7 in £+ emanating from the origin is not parallel to @ (1),
unless the angle of rotation is zero or ).

Thus, we can assume that for all £ € %N 71, there exists ag €& L such that

f(x)4as-x=gkx) VrxeStngt, (10)

or
f(=x)+as-x=gx) VrxeS‘netl (11)

The proof of Theorem 2 in the case when M (g.) consists of a pair of opposite points on $*
now follows from Lemma 1 and Theorem 3.

Consider the general case. Assume that M(g.) is a subset A of finitely many one-
dimensional large circles of S*AC Ul;zl S;.S; = S4NII j»where IT; is a two-dimensional
subspace of R°.

Letz € Aandlet € S* Nzt Then, £+ O I1; if and only if £ € n]#,j =1,...,k
Consider

k
G.=*nzH\ U (s‘*mn]%) .
j=1

For every & € G_, the subspace & L does not contain any IT;, and we have ELNA={%z).
Then, forany £ € G, Ms(g.) = {£z}. Repeating the argument of the first part of the proof,
we obtain (10), (11) for any £ € G;. Since G, is dense in $* N zL, we have (10) and (11)
for any & € §* Nz (for any & € §* Nz it is enough to consider a sequence of subspaces
{SkJ‘},‘{’il, & € G, & — & as k — oo, for which (10) or (11) holds in the corresponding
5,3-, and pass to the limit as k — 0o; one can use a converging subsequence of {ag, }7° | if
necessary). It remains to apply Lemma 1 and Theorem 3.
The proof of Theorem 2 is complete.

4 Proof of Theorem 1

We denote by % g (x) the support function of a convex body K C R”. For x € R" it is defined
ashg(x) = SUPyeg X * Vs ([10], page 37), and it is a homogeneous function of degree 1. The
width of a set A C R" in the direction x € R”, is defined as wa(x) = ha(x) + ha(—x). A
segment [z, y] C K iscalled adiameter of the convex body K if |[z—y| = maxecgn-1y @k (0).
We also define M (wy |g4) as in (2).

We will use the following well-known properties of the support function. For every convex
body K,

s (0 = hi () and hy e () = hger (05 (0), Yxegh,  (12)
(see, for example [2, (0.21), (0.26), pages 17-18]); here gog_ ! stands for the inverse of

g: € SO(4,§1).
Theorem 1 can be reformulated in terms of support functions as follows.
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Theorem 4 Let K and L be two convex bodies in R>. Assume that for every € € §* there is
a rotation gz € SU(2, & LY for some complex structure in £+ and a vector ag €& L such that

hier (051 (0) +ag - x =hper (v Vxe gt (13)

Assume also that M (wy |g4) is contained in finitely many 1-dimensional great circles of sS4,
Then there exists b € R> such thathg (x)+b-x = hp(x) forall x € R3, orhg(x)+b-x =
hp(—x) forall x € R>.

The proof of Theorems 4 and 1 now follows directly from Theorem 3, provided we take
f:hKandg:hL.
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