CrossMark

ORIGINAL PAPER

On a functional equation related to convex bodies with SU(2)-congruent projections

Dmitry Ryabogin¹

Received: 19 September 2016 / Accepted: 15 March 2017 / Published online: 22 March 2017 © Springer Science+Business Media Dordrecht 2017

Abstract Let K and L be two convex bodies in \mathbb{R}^5 . Assume that their orthogonal projections $K \mid H$ and $L \mid H$ onto every 4-dimensional subspace H are directly SU(2)-congruent, i.e., they coincide up to a SU(2)-rotation for some complex structure in H and a translation in H. We prove that the bodies coincide up to a translation and a reflection in the origin, provided that the set of diameters of one of the bodies is contained in a finite union of two-dimensional subspaces of \mathbb{R}^5 . We obtain this result as a consequence of a more general statement about a functional equation on the unit sphere.

Keywords Projections of convex bodies · Spherical Funk Transform · Bodies with directly congruent projections

1 Introduction

In this paper we address the following problem (cf., for example, [2, Problem 3.2, p. 125]).

Problem 1 Let $2 \le k \le d-1$. Assume that K and L are convex bodies in \mathbb{R}^d such that the projections $K \mid H$ and $L \mid H$ are congruent for all $H \in \mathcal{G}(d, k)$. Is K a translate of $\pm L$?

Here we say that K|H, the projection of K onto H, is congruent to L|H if there exists an orthogonal transformation $\varphi \in O(k, H)$ in H such that $\varphi(K|H)$ is a translate of L|H; $\mathcal{G}(d, k)$ stands for the Grassmann manifold of all k-dimensional subspaces in \mathbb{R}^d .

Recently, Myroshnychenko [6] together with the author gave an affirmative answer to Problem 1 in the class of polytopes. We refer the reader to [1,3,5,7] and [8], for the history and some partial results related to Problem 1.

Our first result is

The author is supported in part by U.S. National Science Foundation Grant DMS-1600753.

 [□] Dmitry Ryabogin ryabogin@math.kent.edu

Department of Mathematics, Kent State University, Kent, OH 44242, USA

Theorem 1 Let K and L be two convex bodies in \mathbb{R}^5 . Assume that for every $\xi \in S^4$ the projections $K|\xi^{\perp}$ and $L|\xi^{\perp}$ are directly SU(2)-congruent, i.e., for every $\xi \in S^4$ there is a rotation $\varphi_{\xi} \in SU(2,\xi^{\perp})$ for some complex structure in ξ^{\perp} and a vector $a_{\xi} \in \xi^{\perp}$ such that

$$\varphi_{\xi}(K|\xi^{\perp}) + a_{\xi} = L|\xi^{\perp}. \tag{1}$$

Then K + b = L or -K + b = L for some $b \in \mathbb{R}^5$, provided that the set of diameters of one of the bodies is contained in a finite union of two-dimensional subspaces of \mathbb{R}^5 .

We obtain Theorem 1 as a consequence of a more general statement about a functional equation on the unit sphere. Let

$$M(g_e) = \left\{ x \in S^4 : g_e(x) = \max_{S^4} g_e \right\}$$
 (2)

be the set of directions of the maxima of the even part of a continuous function g defined on S^4 . We have

Theorem 2 Let f and g be two continuous functions on S^4 . Assume that for every $\xi \in S^4$ there is a rotation $\varphi_{\xi} \in SU(2, \xi^{\perp})$ for some complex structure in ξ^{\perp} and a vector $a_{\xi} \in \xi^{\perp}$ such that

$$f(\varphi_{\xi}(x)) + a_{\xi} \cdot x = g(x) \quad \forall x \in S^4 \cap \xi^{\perp}. \tag{3}$$

Then there exists $b \in \mathbb{R}^5$ such that $f(x)+b\cdot x=g(x)$ for all $x \in S^4$ or $f(-x)+b\cdot x=g(x)$ for all $x \in S^4$, provided that $M(g_e)$ is contained in a finite union of large 1-dimensional circles of S^4 .

The paper is organized as follows. In the next section we recall some definitions and prove several auxiliary Lemmata that will be used later. We prove Theorems 2 and 1 in Sects. 3 and 4.

1.1 Notation

We denote by $S^4 = \{x \in \mathbb{R}^5 : |x| = 1\}$ the set of all unit vectors in the Euclidean space \mathbb{R}^5 . For any unit vector $\xi \in S^4$ we let ξ^{\perp} to be the orthogonal complement of ξ in \mathbb{R}^5 , i.e., the set of all $x \in \mathbb{R}^5$ such that $x \cdot \xi = 0$; here $x \cdot \xi$ stands for a usual scalar product of x and ξ in \mathbb{R}^5 . The notation for the orthogonal group O(k) and the special orthogonal group SO(k), $k \geq 2$, is standard; $span(a_1, a_2, \ldots, a_m)$ stands for a m-dimensional subspace that is a linear span of linearly independent vectors $a_1, \ldots, a_m, m \geq 1$. We will write f_e and f_o for the even and odd parts of the function f,

$$f_e(x) = \frac{f(x) + f(-x)}{2}, \quad f_o(x) = \frac{f(x) - f(-x)}{2}, \quad x \in \mathbb{R}^5.$$

2 Auxiliary definitions and results

We introduce a complex structure in \mathbb{R}^4 by identifying it with \mathbb{C}^2 . We will say that two bodies A and B in $\mathbb{R}^4 = \mathbb{C}^2$ are directly SU(2)-congruent if there exists a vector $a \in \mathbb{R}^4$ and a SU(2)-rotation $\varphi_{\mathbb{R}^4}$ such that $\varphi(A) + a = B$.

Consider any 4-dimensional subspace ξ^{\perp} of \mathbb{R}^5 orthogonal to $\xi \in S^4$. We say that $\varphi_{\xi} \in SO(4, \xi^{\perp})$, meaning that there exists a choice of an orthonormal basis in \mathbb{R}^5 and a rotation $\Phi \in SO(5)$, with a matrix written in this basis, such that the action of Φ on ξ^{\perp} is the rotation φ_{ξ} in ξ^{\perp} , and the action of Φ on $l(\xi) = (\xi^{\perp})^{\perp}$ is trivial, i.e., $\Phi(y) = y$ for every $y \in l(\xi)$.

We say that a rotation φ_{ξ} is in $SU(2, \xi^{\perp})$ if its matrix A_{ξ} with respect to a certain basis in ξ^{\perp} " =" \mathbb{R}^4 " =" \mathbb{C}^2 is of the form (see [9], page 130):

$$A_{\xi} = \begin{bmatrix} e^{i\varphi} & 0 \\ 0 & e^{-i\varphi} \end{bmatrix}, \qquad \varphi \in [-\pi, \pi].$$

Here the invariant subspaces of φ_{ξ} (for $\varphi \neq 0, \pi$) are the orthogonal complex lines (two-dimensional real subspaces of ξ^{\perp}) $l_1 = l_1(\xi)$ and $l_2 = l_2(\xi)$; the restriction $\varphi_{\xi}|_{l_1}$ is equivalent to a multiplication by $e^{i\varphi}$, and the restriction $\varphi_{\xi}|_{l_2}$ is equivalent to a multiplication by $e^{-i\varphi}$.

We identify $SU(2, \xi^{\perp})$ with a subgroup of $SO(4, \xi^{\perp})$ of the so-called *isoclinic* rotations, [11].

Lemma 1 If f and g verify the conditions of Theorem 2, then $f_e = g_e$ on S^4 .

Proof Comparing the even parts of Eq. (3) we have

$$f_e(\varphi_{\xi}(u)) = g_e(u)$$
 for any $\xi \in S^4$ and any $u \in S^4 \cap \xi^{\perp}$.

Integrating over $S^4 \cap \xi^{\perp}$ and using the invariance of the Lebesgue measure under rotations, we obtain

$$\int\limits_{S^4\cap \xi^\perp} f_e(\varphi_\xi(u)) d\sigma(u) = \int\limits_{S^4\cap \xi^\perp} f_e(u) d\sigma(u) = \int\limits_{S^4\cap \xi^\perp} g_e(u) d\sigma(u).$$

In other words, $Ff_e = Fg_e$ on S^4 , where

$$Ff_e(\xi) = \int_{S^4 \cap \xi^{\perp}} f_e(u) d\sigma(u), \quad \xi \in S^4,$$

is the Funk transform on S^4 . Since it is injective on even functions (see [4], Corollary 2.7, p. 128), we obtain the desired result.

From now on in this section we will assume that the functions are odd.

Lemma 2 (cf. Lemma 1 [7]). Let $z \in S^4$ and let $S^4 \cap z^{\perp} = \Lambda_0 \cup \Lambda_{\pi}$, where

$$\Lambda_0 = \left\{ \xi \in S^4 \cap z^{\perp} : f_o(x) = g_o(x) \quad \forall x \in S^4 \cap \xi^{\perp} \right\},$$

$$\Lambda_{\pi} = \left\{ \xi \in S^4 \cap z^{\perp} : -f_o(x) = g_o(x) \quad \forall x \in S^4 \cap \xi^{\perp} \right\}.$$

Then $f_o = g_o$ on S^4 or $f_o = -g_o$ on S^4 .

Proof Observe that

$$\forall x \in S^4, \qquad S^4 = \bigcup_{\{\xi \in S^4 \cap z^\perp \cap x^\perp\}} (S^4 \cap \xi^\perp). \tag{4}$$

Indeed, for any $y \in S^4$ we take $\xi \in S^4 \cap z^{\perp} \cap x^{\perp} \cap y^{\perp}$ to obtain that $y \in S^4 \cap \xi^{\perp}$.

Assume that there exists $x \in S^4$ such that $(S^4 \cap z^{\perp} \cap x^{\perp}) \subset \Lambda_0$, then, using (4), we see that $f_o = g_o$ on S^4 . Similarly, if there exists $x \in S^4$ such that $(S^4 \cap z^{\perp} \cap x^{\perp}) \subset \Lambda_{\pi}$, then, $f_o = -g_o$ on S^4 .

On the other hand, if for any $x \in S^4$ there exists two directions ξ_1 and $\xi_2 \in S^4 \cap z^{\perp} \cap x^{\perp}$, $\xi_1 \neq \pm \xi_2$, such that $\xi_1 \in \Lambda_0$ and $\xi_2 \in \Lambda_{\pi}$, then $f_o(x) = g_o(x) = -f_o(x) = 0$. Hence, $f_o = g_o = 0$ on S^4 .

Let $z \in S^4$. Define

$$\Xi_0 = \left\{ \xi \in S^4 \cap z^\perp : \ f_o(x) + a_\xi \cdot x = g_o(x) \qquad \forall x \in S^4 \cap \xi^\perp \right\},$$

and

$$\Xi_{\pi} = \left\{ \xi \in S^4 \cap z^{\perp} : -f_o(x) + a_{\xi} \cdot x = g_o(x) \qquad \forall x \in S^4 \cap \xi^{\perp} \right\}.$$

Theorem 3 (cf. Theorem 1.3 [5]). Let f and g be two odd continuous functions on S^4 and let $z \in S^4$. Assume that $S^4 \cap z^{\perp} = \Xi_0 \cup \Xi_{\pi}$. Then there exists $b \in \mathbb{R}^5$ such that for all $u \in S^4$ we have $g_0(u) = f_0(u) + b \cdot u$, or for all $u \in S^4$ we have $g_0(u) = -f_0(u) + b \cdot u$.

Proof Since the proof is very similar to the one of Theorem 1.3, [5], we sketch it briefly. Take n=5 in Theorem 1.3 and Lemma 4.3 [5]. Repeating the argument, we obtain $S^4 \cap z^{\perp} = \Lambda_0 \cup \Lambda_{\pi}$ (except an obvious difference with the definitions of Ξ_0 and Ξ_{π} in this note and in [5], Lemmata 3.7 and 3.8 follow without any changes). It remains to apply the previous lemma with the sets Λ_0 and Λ_{π} that are defined analogously to those in Lemma 4.2, [5], and with the functions \tilde{f}_o and \tilde{g}_o that appear in the proof of Lemma 4.3 [5].

3 Proof of Theorem 2

Assume at first that the set of maxima of g_e consists of two opposite points, i.e.,

$$M(g_e) = \left\{ x \in S^4 : g_e(x) = \max_{S^4} g_e \right\} = \{ \pm z \}$$
 (5)

for some $z \in S^4$. Consider any $\xi \in S^4 \cap z^{\perp}$. We claim that

$$M_{\xi}(f_e) = \left\{ x \in S^4 \cap \xi^{\perp} : f_e(x) = M(f_e) \right\} = \{ \pm z \}.$$
 (6)

To show (6), observe at first that

$$\max_{S^4 \cap k^{\perp}} f_e = g_e(z). \tag{7}$$

Indeed, let $y \in S^4 \cap \xi^{\perp}$ be such that $f_e(y) = \max_{S^4 \cap \xi^{\perp}} f_e > g_e(z)$. Since the identity

$$f_e(\varphi_{\xi}(x)) = g_e(x) \quad \forall x \in S^4 \cap \xi^{\perp},$$
 (8)

obtained by taking even parts of (3), is equivalent to

$$f_e(y) = g_e(\varphi_{\xi}^{-1}(y)) \qquad \forall y \in S^4 \cap \xi^{\perp}, \tag{9}$$

we see that (9) does not hold, for, $f_e(y) > g_e(z) \ge g_e(\varphi_{\xi}^{-1}(y))$. Hence, $\max_{S^4 \cap \xi^{\perp}} f_e \le g_e(z)$. Since $f_e(\varphi_{\xi}^{-1}(z)) = g_e(z)$, a similar argument shows that $\max_{S^4 \cap \xi^{\perp}} f_e$ may not be smaller than $g_e(z)$. We have proved (7).

Next, we observe that for each $\xi \in S^3 \cap z^{\perp}$, the set $M_{\xi}(f_e)$ consists of two opposite points on S^4 . Indeed, if the maximum were reached at two points $y_1, y_2 \in S^4 \cap \xi^{\perp}$, $y_1 \neq \pm y_2$, then, using (9), we see that g_e would reach the maximum at two different points $\varphi_{\xi}^{-1}(y_1)$ and $\varphi_{\xi}^{-1}(y_2) \neq \pm \varphi_{\xi}^{-1}(y_1)$. This contradicts (5).

Now we show (6). If it is $\{\pm y\}$ for some $y \neq z, y \in S^4 \cap \xi^{\perp}$, we take $\zeta \in (S^3 \cap z^{\perp}) \setminus (S^3 \cap y^{\perp})$. Since $y \notin S^4 \cap \zeta^{\perp}$, Eq. (8) may not hold with $\xi = \zeta$. Thus, (6) holds, and we obtain $M(f_e) = M(g_e) = \{\pm z\}$.

Using the previous identity and (8), we see that $\varphi_{\xi}(z) = \pm z$ for all $\xi \in S^4 \cap z^{\perp}$. For, $\varphi_{\xi}(z)$ must be a point where the maximum of f_e is reached. Hence, we can assume that for every $\xi \in S^3 \cap z^{\perp}$ the angle of rotation of $\varphi_{\xi} \in SU(2, \xi^{\perp})$ is zero or π (since the rotations φ_{ξ} are all *isoclinic* [11], any ray r in ξ^{\perp} emanating from the origin is not parallel to $\varphi_{\xi}(r)$, unless the angle of rotation is zero or π).

Thus, we can assume that for all $\xi \in S^4 \cap z^{\perp}$, there exists $a_{\xi} \in \xi^{\perp}$ such that

$$f(x) + a_{\xi} \cdot x = g(x) \quad \forall x \in S^4 \cap \xi^{\perp},$$
 (10)

or

$$f(-x) + a_{\xi} \cdot x = g(x) \quad \forall x \in S^4 \cap \xi^{\perp}.$$
 (11)

The proof of Theorem 2 in the case when $M(g_e)$ consists of a pair of opposite points on S^4 now follows from Lemma 1 and Theorem 3.

Consider the general case. Assume that $M(g_e)$ is a subset A of finitely many one-dimensional large circles of S^4 , $A \subset \bigcup_{j=1}^k \mathbb{S}_j$, $\mathbb{S}_j = S^4 \cap \Pi_j$, where Π_j is a two-dimensional subspace of \mathbb{R}^5 .

Let $z \in A$ and let $\xi \in S^4 \cap z^{\perp}$. Then, $\xi^{\perp} \supset \Pi_j$ if and only if $\xi \in \Pi_j^{\perp}$, $j = 1, \ldots, k$. Consider

$$G_z = (S^4 \cap z^{\perp}) \setminus \left(\bigcup_{j=1}^k \left(S^4 \cap \Pi_j^{\perp} \right) \right).$$

For every $\xi \in G_z$, the subspace ξ^{\perp} does not contain any Π_j , and we have $\xi^{\perp} \cap A = \{\pm z\}$. Then, for any $\xi \in G_z$, $M_{\xi}(g_e) = \{\pm z\}$. Repeating the argument of the first part of the proof, we obtain (10), (11) for any $\xi \in G_z$. Since G_z is dense in $S^4 \cap z^{\perp}$, we have (10) and (11) for any $\xi \in S^4 \cap z^{\perp}$ (for any $\xi \in S^4 \cap z^{\perp}$ it is enough to consider a sequence of subspaces $\{\xi_k^{\perp}\}_{k=1}^{\infty}$, $\xi_k \in G_z$, $\xi_k \to \xi$ as $k \to \infty$, for which (10) or (11) holds in the corresponding ξ_k^{\perp} , and pass to the limit as $k \to \infty$; one can use a converging subsequence of $\{a_{\xi_k}\}_{k=1}^{\infty}$ if necessary). It remains to apply Lemma 1 and Theorem 3.

The proof of Theorem 2 is complete.

4 Proof of Theorem 1

We denote by $h_K(x)$ the support function of a convex body $K \subset \mathbb{R}^n$. For $x \in \mathbb{R}^n$ it is defined as $h_K(x) = \sup_{y \in K} x \cdot y$, ([10], page 37), and it is a homogeneous function of degree 1. The width of a set $A \subset \mathbb{R}^n$ in the direction $x \in \mathbb{R}^n$, is defined as $\omega_A(x) = h_A(x) + h_A(-x)$. A segment $[z, y] \subset K$ is called a *diameter* of the convex body K if $|z-y| = \max_{\{\theta \in S^{n-1}\}} \omega_K(\theta)$. We also define $M(\omega_L|_{S^4})$ as in (2).

We will use the following well-known properties of the support function. For every convex body K,

$$h_{K|\xi^{\perp}}(x) = h_K(x) \text{ and } h_{\varphi_{\xi}(K|\xi^{\perp})}(x) = h_{K|\xi^{\perp}}(\varphi_{\xi}^{-1}(x)), \quad \forall x \in \xi^{\perp},$$
 (12)

(see, for example [2, (0.21), (0.26), pages 17–18]); here φ_{ξ}^{-1} stands for the inverse of $\varphi_{\xi} \in SO(4, \xi^{\perp})$.

Theorem 1 can be reformulated in terms of support functions as follows.

Theorem 4 Let K and L be two convex bodies in \mathbb{R}^5 . Assume that for every $\xi \in S^4$ there is a rotation $\varphi_{\xi} \in SU(2, \xi^{\perp})$ for some complex structure in ξ^{\perp} and a vector $a_{\xi} \in \xi^{\perp}$ such that

$$h_{K|\xi^{\perp}}\left(\varphi_{\xi}^{-1}(x)\right) + a_{\xi} \cdot x = h_{L|\xi^{\perp}}(x) \quad \forall x \in \xi^{\perp}. \tag{13}$$

Assume also that $M(\omega_L|_{S^4})$ is contained in finitely many 1-dimensional great circles of S^4 . Then there exists $b \in \mathbb{R}^5$ such that $h_K(x) + b \cdot x = h_L(x)$ for all $x \in \mathbb{R}^5$, or $h_K(x) + b \cdot x = h_L(-x)$ for all $x \in \mathbb{R}^5$.

The proof of Theorems 4 and 1 now follows directly from Theorem 3, provided we take $f = h_K$ and $g = h_L$.

References

- Alfonseca, M., Cordier, M., Ryabogin, D.: On bodies with directly congruent projections and sections. Israel J. Math. 215, 765–799 (2016)
- Gardner, R.J.: Geometric Tomography, Second edition. Encyclopedia of Mathematics and Its Applications, vol. 58. Cambridge University Press, Cambridge (2006)
- Golubyatnikov, V.P.: Uniqueness Questions in Reconstruction of Multidimensional Objects from Tomography Type Projection Data, Inverse and Ill-Posed Problems Series. Utrecht, Boston (2000)
- 4. Helgason, S.: The Radon Transform. Birkhäuser, Stuttgart (1980)
- Myroshnychenko, S.: On a functional equation related to a pair of hedgehogs with congruent projections. A special issue of JMAA dedicated to Richard Aron, 445 (2017), Issue 2, pp. 1492–1504 (see also http://www.sciencedirect.com/science/journal/0022247X)
- Myroshnychenko, S., Ryabogin, D.: On polytopes with congruent projections or sections. Adv. Math. (accepted)
- 7. Ryabogin, D.: On the continual Rubik's cube. Adv. Math. 231, 3429–3444 (2012)
- Ryabogin, D.: On symmetries of projections and sections of convex bodies, Discrete Geometry and Symmetry. In: Marston, D.E., Conder, A.D. and Weiss, A.I. (eds.) Honor of Károly Bezdek's and Egon Schulte's 60th Birthdays. Springer Proceedings in Mathematics and Statistics, 2017 (to appear)
- Saveliev, N.: Lectures on Topology of 3-Manifolds: An Introduction to the Gasson Invariant. de Gruyter textbook. New York (1999)
- Schneider, R.: Convex bodies: The Brunn–Minkowski theory, Encyclopedia of Mathematics and Its Applications, vol. 44. Cambridge University Press, Cambridge (1993)
- 11. Wikipedia. https://en.wikipedia.org/wiki/Rotations_in_4-dimensional_Euclidean_space

