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Abstract We investigate orbit spaces of isometric actions on unit spheres and find a universal
upper bound for the infimum of their curvatures.
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1 Introduction

Let G be a compact Lie group acting by isometries on the unit sphere Sn . The space of orbits
X = Sn/G is an Alexandrov space of curvature at least 1 and diameter at most π with respect
to the natural quotient metric. The following question of K. Grove has been investigated in
[1,6,14,15] and remains widely open in general:

How small can the diameter of the orbit space X be?

The group G can act transitively on Sn , in which case X is a point and has diameter
zero. Also, the quotient spaces S1/G for large cyclic groups G have arbitrary small nonzero
diameters. On the other hand, in has been shown in [6] that for any fixed n ≥ 2 there is a gap
theorem: for some positive ε(n), the diameter of any X = Sn/G is at least ε(n) if X is not a
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point. It seems plausible that a universal, dimension-independent bound ε should exist, and
the analysis of special classes of actions suggests that such an ε might be rather large [6,14].
The case X is 1-dimensional is well understood [1, Theorem B]. In this paper, we consider
the case dim(X) ≥ 2 and provide an answer to the following closely related question:

How curved can the orbit space X be?

Denote by κX the largest number κ such that the orbit space X is an Alexandrov space of
curvature≥κ . Note that κX equals the infimum of the Riemannian sectional curvatures in the
regular part of X , see Sect. 2.1. Due to the theorem of Bonnet-Myers, κX provides an upper
bound for the diameter, namely diam(X) ≤ π/

√
κX . Therefore the existence of a uniform

upper bound for κX is necessary for the existence of a uniform lower bound for the diameter.
The main result of this paper confirms this necessary condition and shows that κX ≤ 4:

Theorem 1 Let X = Sn/G be the orbit space of an isometric action of a compact Lie
group G on the unit sphere Sn and assume that dim(X) ≥ 2. If X is an Alexandrov space of
curvature ≥κ , then κ ≤ 4.

This result is sharp as the Hopf action of the circle on S3 shows. Moreover, there are fami-
lies of actions for which X an orbifold of constant curvature 4, see [4] for their classification.
On the other hand, one can see that for most actions the infimum of the sectional curvatures
κX of the orbit space X is equal to 1. It seems to be possible, but much more technical, to
determine all actions for which the corresponding number κX is larger than 1. We hope to
address this classification problem in a forthcomingwork. To put Theorem 1 in context, recall
that the supremum of sectional curvatures in the regular part of X can be infinite, and it is
finite precisely in case X is a Riemannian orbifold [12]; such actions are classified in [4]. We
mention that the size and general structure of orbit spaces of unit spheres as in Theorem 1
may have applications to isometric actions on general Riemannian manifolds, cf. [7,9] and
the references therein.

The proof of Theorem 1 uses few simple ideas. Strata in the orbit space are locally convex,
thus inheriting the lower curvature bound from their ambient space. On the other hand, any
stratum is contained in the principal stratum of the orbit space of another isometric action on
a unit sphere, as has been observed in [4, §5.1]. This allows for an inductive approach to the
problem and reduces the question to the case where no singular strata of dimension larger
than 2 are present. But the absence of such strata implies that the rank of the original group is
at most 3. The remaining cases are excluded by an index comparison argument and, in final
instance, by the classification of irreducible representations of compact simple Lie groups.

It is an interesting question if our theorem has a geometric explanation not relying on the
classification of representations, and if it can be extended to the case of singular Riemannian
foliations on the unit sphere. Recently, a large family of singular Riemannian foliations has
been constructed in [17], most of which are inhomogeneous (see also [5]). All quotient spaces
X arising from these foliations are Alexandrov spaces with curvature ≥4, but always have
some tangent planes with curvature equal to 4.

2 Preliminaries

2.1 Orbit spaces and strata

We recall some basic results about orbit spaces and refer, for instance, to [4, §2] for more
details. An isometric action of a compact Lie group G on a unit sphere is the restriction of an
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orthogonal representation ρ of G on an Euclidean space V . If S(V ) denotes the unit sphere
of V and X = S(V )/G, then the cohomogeneity c(ρ) of ρ satisfies c(ρ) = dim(X)+ 1. Let
κX = κρ be defined as in the introduction.

The orbit space X is an Alexandrov space stratified by smooth Riemannian manifolds,
namely, the sets of orbits with the same isotropy groups up to conjugation. Any such stratum
Y is a locally convex subset of X , so that the infimum of the sectional curvatures along Y is
also bounded below by κX . There is exactly one maximal stratum, the set of principal orbits
Xreg of X , corresponding to the unique minimal conjugacy class of isotropy groups. The
corresponding isotropy groups are called the principal isotropy groups. The set of regular
points Xreg is open, dense and convex in X . The restriction of the projection to the regular set
Snreg → Xreg is a Riemannian submersion. Moreover, the orbit space X is the completion of
the convex open submanifold Xreg. Hence Toponogov’s globalization theorem, for instance
the version in [16], shows that κX is equal to the infimum of sectional curvatures of Xreg.

2.2 Strata and rank

Denote the rank of the group G by k. Then there exists a point p ∈ S(V ) such that the
isotropy group Gp has rank at least k − 1 cf. [19, Lemma 6.1]. We infer:

Lemma 1 Let a group G act by isometries on S(V ). If G has rank k, then the minimal
dimension � of a G-orbit is at most dim(G) − k + 1.

We will need another simple observation:

Lemma 2 Let a group G of rank k act by isometries on S(V ). If the G-action has trivial
principal isotropy groups, then X = S(V )/G contains a non-maximal stratum of dimension
at least k − 2.

Proof We proceed by induction on k. In the initial case k = 2, there exists a point with non-
trivial isotropy group, so the quotient X contains non-regular points, and therefore at least one
non-maximal stratum (of dimension at least 0). In general, we first find a point p ∈ S(V ) such
that the isotropy groupGp has rank at least k−1. The slice representation ofGp on the normal
spaceHp has again trivial principal isotropy groups, so the inductive assumption yields that
the quotient of the unit sphere S(Hp) by Gp has a non-regular stratum of dimension at least
k − 3. The corresponding stratum inHp/Gp , and thus also in a neighborhood of x = G · p
in X , has dimension at least k − 3 + 1 = k − 2, which completes the induction step. ��
2.3 Enlarging group actions and polar representations

Let τ :H → O(V ) be a representation of a compact Lie group. Consider a closed subgroupG
of H and the representation ρ:G → O(V ) obtained by restriction. The canonical projec-
tion S(V )/G → S(V )/H restricts to a Riemannian submersion on an open and dense set,
hence this map does not decrease the sectional curvatures by the formula of O’Neill [8,
Corollary 1.5.1]. This shows:

Proposition 1 Suppose an orthogonal representation ρ:G → O(V ) is the restriction of
another representation τ :H → O(V ), where G is a closed subgroup of H. If c(τ ) ≥ 3 then
κρ ≤ κτ .

Recall that polar representations ρ:G → O(V ) are exactly those whose induced action on
S(V ) has orbit space of constant curvature 1 [3, Introd.]. In particular, all polar representations
τ with c(τ ) ≥ 3 satisfy κτ = 1. We now have:
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Corollary 1 Let ρi :Gi → O(Vi ) for i = 1, 2 be F-linear representations, where F = R, C,
H. If dimF(Vi ) ≥ 3 for i = 1, 2, then the tensor product representation ρ of G = G1 × G2

on V = V1 ⊗F V2 satisfies κρ = 1.

Proof It follows directly from Proposition 1 by taking H = O(V1) ⊗O(V2), H = U(V1) ⊗
U(V2), H = Sp(V1) ⊗Sp(V2) if F = R, C, H, respectively. Indeed, the representation τ of
H on V is polar and enlarges ρ. Moreover, the cohomogeneity c(τ ) is the minimum of the
two numbers dimF(Vi ) ≥ 3. ��
2.4 Reductions and strata as subquotients

Let a compact Lie group G act by isometries on an unit sphere S(V ). Fix an arbitrary point
p ∈ S(V ), denote its isotropy group by Gp , consider its orbit x = G · p ∈ X = S(V )/G,
and denote by Y the stratum of X which contains x . The set of all points in V fixed by Gp is
a subspaceW on which the normalizer N of Gp in G acts isometrically. There is a canonical
map S(W )/N → X = S(V )/G, which is length-preserving and a local isometry on an open
dense subset of S(W )/N [4, Lemma 5.1]. Moreover, Y is dense in the image of this map.
We deduce that the infimum of the curvatures on S(W )/N is also bounded from below by
κX . Finally, note that Gp acts trivially on W and that the induced action of H = N/Gp on
S(W ) has trivial principal isotropy groups. This shows:

Proposition 2 Let ρ:G → O(V ) be a representation with c(ρ) ≥ 3. Let X = S(V )/G and
assume that X has a singular stratumY of dimension d ≥ 2. Then there exists a representation
τ :H → O(W ) with trivial principal isotropy groups such that S(W )/H has dimension d
and κρ ≤ κτ .

2.5 An index estimate

Let G act on S(V ) as above and consider the restriction π of the projection S(V ) → X to the
regular part. Applying O’Neill’s formula for the curvature of the Riemannian submersion π ,
we see that planes with curvature 1 exist in X = S(V )/G if and only if O’Neill’s tensor of π

vanishes at some pair of linearly independent, horizontal vectors. Therefore, κρ > 1 directly
implies that the dimension of a regular orbit G · p is at least dim(X) − 1. On the other hand,
using index estimates one can say slightly more.

Indeed let F = G · p be a principal orbit and let γ :[0, π] → Sn be a unit speed F-
geodesic, namely, a geodesic starting perpendicularly to F . The index of γ as F-geodesic
(which equals the sum of focal multiplicities of F along γ ) is equal to dim(F). On the other
hand, the index of γ is also obtained as the sum of the vertical index indvert(γ ) and the
horizontal index indhor(γ ), see [12, Lemma 5.1] and [13, §3]. The vertical index counts the
intersections of γ with singular orbits:

indvert(γ ) =
∑

t∈(0,π)

(dim(F) − dim(G · γ (t))).

Moreover, the horizontal index is the index of the transversal Jacobi equation defined by
Wilking in [20]. This Jacobi equation has the form J ′′ + Rt (J ) = 0 for a time-dependent
symmetric operator Rt :U → U on a Euclidean vector space U of dimension dim(X) − 1.
Around a regular point γ (t), the Jacobi equation J ′′+Rt (J ) = 0 is just the Jacobi equation in
the Riemannian manifold Xreg along the projected geodesic π ◦ γ . Therefore, if all sectional
curvatures at regular points of X along γ are at least κ , then Rt ≥ κ · I d . Thus the standard

123



Geom Dedicata (2017) 190:135–142 139

index comparison [10, Lemma 2.6.1] implies that indhor(γ ) ≥ dim(X) − 1 in case κρ > 1,
and indhor(γ ) ≥ 2(dim(X) − 1) in case κρ > 4.

Now we can easily deduce:

Proposition 3 Let ρ:G → O(V ) be as above. Denote by � the smallest dimension of a
G-orbit in S(V ), and by m ≥ 2 be the dimension of the orbit space X = S(V )/G. Then:

1. if κ > 1, then � ≥ m − 1;
2. if κ > 4, then � ≥ 2(m − 1).

Proof Let L be an orbit of smallest dimension �. Take a regular orbit F and a horizontal
unit speed geodesic γ :[0, π ] → S(V ) starting in F and going through L . The index of γ is
dim(F). On the other hand, the vertical index is at least dim(F) − �. Since the index of γ is
the sum of the vertical and the horizontal indices, we see that � cannot be smaller than the
horizontal index of γ . Thus the result follows from the index estimates above. ��

3 Main result

3.1 Formulation

In this section, we prove Theorem 1. Suppose to the contrary that there exists a representation
ρ:G → O(V ) a compact Lie group G such that X = S(V )/G has dimension m ≥ 2 and
satisfies κρ > 4. We may assume that m is minimal among all such examples. Namely, for
any representation τ :H → O(W ) of a compact Lie group H such that the dimension m′ of
the orbit space Y = S(W )/H satisfiesm > m′ ≥ 2, we have κτ ≤ 4.We assume further that,
for this m, g := dim(G) is minimal among all such examples, and we fix the representation
ρ throughout the proof.

3.2 Principal isotropy and identity component

By the assumption on the minimality of g, the representation of ρ is reduced in the sense
of [2, §1.2]: for any other representation τ :H → O(W ) such that S(W )/H is isometric to
X , we have dim(H) ≥ g. In particular, this implies that the action of G on S(V ) has trivial
principal isotropy groups.

Let ρ0 be the restriction of ρ to the identity component G0 of G. Then the projection
X0 = S(V )/G0 → X = S(V )/G is a Riemannian covering over the set of regular points
of X . We deduce κρ = κρ0 . Hence, we may replace G by G0 and assume from now on that
G is connected.

3.3 Strata and rank

The minimality assumption on m together with Proposition 2 show that X does not contain
singular strata of dimensions larger than 1. From Lemma 2 we deduce that the rank k of G
is at most 3.

3.4 Irreducibility

Our assumption yields diam(X) ≤ π/
√

κX < π/2. This implies that the representation
ρ:G → O(V ) is irreducible [2, §5].

123



140 Geom Dedicata (2017) 190:135–142

3.5 Basic identity and inequality

Now ρ is an irreducible representation of a connected group G of dimension g and rank 1 ≤
k ≤ 3. The representation is also reduced, so the principal isotropy groups are trivial and the
dimension n of S(V ) satisfies

g + m = n.

From Lemma 1 and Proposition 3 we deduce

g − k ≥ 2m − 3.

In particular, we have n ≤ 3
2 g + 1.

3.6 The case m = 2

Due to [18], in this case the only reduced representations ρ:G → O(V ) of a connected non-
trivial group G are representations of the circle group U(1) of R4. But such representations
are reducible.

3.7 The case m = 3

Due to the classification of irreducible representations of cohomogeneity 4 of connected
compact Lie groups [2, Theorem 1.8], in this case the only reduced representations are given
by the actions of SO(3) on R

7 and by U(2) on R
8. Both cases contradict the inequality

g − k ≥ 2m − 3 = 3.

3.8 The case m = 4

Due to the classification of irreducible representations of cohomogeneity 5 of connected
compact Lie groups [2, Theorem 1.8], in this case the only reduced representations are given
by the action of SU(2) on R8 and by the action of SO(3) ×U(2) on R12 = R

3 ⊗R R
4. Both

cases contradict the inequality g − k ≥ 2m − 3 = 5.

3.9 Consequences

Henceforth wemay assume thatm ≥ 5. Therefore g ≥ 2m−3+k ≥ 7+k. This immediately
excludes the possibility thatG have rank 1 or thatG be covered by a product of (two or three)
groups of rank 1. Moreover, G cannot be covered by SU(3) or U(1) × SU(3).

3.10 Type of representation

We claim that the normalizer N of ρ(G) in O(V ) has ρ(G) as its identity component.
Otherwise, we find a subgroup H of O(V ) containing ρ(G) with one dimension more. The
inclusion τ :H → O(V ) is an enlargement of ρ. The quotient space Y = S(V )/H has
dimension at least m − 1 ≥ 4, and κρ ≤ κτ owing to Proposition 1. By our minimality
assumption on m, we must have dim(Y ) = dim(X). But then τ and ρ have the same orbits.
This implies that τ has non-trivial principal isotropy groups, so it cannot be reduced. It follows
that neither ρ is reduced, in contradiction to our assumption.

We deduce that ρ cannot be of quaternionic type, and if ρ is of complex type then G is
covered by U(1) × G ′ for some connected compact Lie group G ′.
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3.11 Representations of complex type

Assume that ρ is of complex type, namely, V admits an invariant complex structure; in
particular, dim(V ) is even. It follows from the preceding two subsections that G must be
covered by U(1) × G ′, where G ′ a connected compact simple Lie group of rank 2 and
G ′ �= SU(3). Hence G ′ = Sp(2) or G2.

If G ′ = Sp(2), we have g = 11 and 11 ≥ 2m, which gives m = 5. Then the dimension
n + 1 of V is 17, which is odd and thus impossible.

If G ′ = G2, we obtain g = 15, hence 15 ≥ 2m. Since the dimension of V is even, we
deduce that m must be even as well, hence m = 6. Now V has dimension g + m + 1 = 22.
But there are no irreducible representations of G2 on C11 (cf. appendix in [11]).

There remains only the case ρ is of real type.

3.12 Non-simple groups

If G is not simple then, up to a finite covering, it must have the form G = G1 × G2 where
rk(G1) = 2 and rk(G2) = 1 and where G1 is simple. Now G1 is one of SU(3), Sp(2) or
G2. Since ρ is irreducible and there is no G-invariant complex structure on V , G2 cannot
be U(1), so it is covered by SU(2). The representation ρ is a tensor product ρ = ρ1 ⊗F ρ2
where the ρi :Gi → O(Vi ) are irreducible F-linear representations and F = R,C orH. Since
the representation ρ is of real type, we cannot have F = C. From Corollary 1, we see that
the F-dimensions of Vi cannot be both larger than 3. We deduce that F cannot be R either,
thus F = H.

Note that SU(3) andG2 do not have irreducible representations of quaternionic type. We
are left with the case G1 = Sp(2), G2 = SU(2). Then g = 13 and 13 ≥ 2m. Since the
dimension g + m + 1 of V must be divisible by 4, we get m = 6 and dim(V ) = 20. Then
20 = 4rs, where r and s are the dimensions over H of V1 and V2, respectively. We deduce
r = 5 and s = 1. However, there does not exist irreducible quaternionic representation of
Sp(2) on H or H5 (cf. again the appendix in [11]).

3.13 Kollross’ table and the case of simple groups

Weare leftwith the caseG is a simple group of rank 2 ≤ k ≤ 3. The dimension n+1 ofV , thus
the degree of the corresponding complexified representation satisfiesn+1 ≤ 3

2 g+2 < 2g+2.
Thus we may apply Lemma 2.6 from [11] to deduce that ρ is one of the representations listed
in the tableau therein. Only four of those representations are representations of groups of
rank 2 ≤ k ≤ 3, namely two representations ofG2 and two representations of Spin(7). Two
of these representations satisfy g ≥ dim(V ) (they also have cohomogeneity one), which
is impossible under our assumptions. For the two remaining representations the condition
n ≤ 3

2 g + 1 is violated. This finishes the proof of Theorem 1.
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