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Abstract We study the asymptotic behavior of convex Cauchy hypersurfaces on maximal
globally hyperbolic spatially compact space–times of constant curvature. We generalise the
result of Belraouti (Annales de l’institut Fourier 64(2):457–466, 2015) to the (2+1) de Sitter
and anti de Sitter cases. We prove that in these cases the level sets of quasi-concave times
converge in the Gromov equivariant topology, when time goes to 0, to a real tree. Moreover,
this limit does not depend on the choice of the time function. We also consider the problem
of asymptotic behavior in the flat (n + 1) dimensional case. We prove that the level sets
of quasi-concave times converge in the Gromov equivariant topology, when time goes to 0,
to a CAT (0) metric space. Moreover, this limit does not depend on the choice of the time
function.

Keywords Lorentzian geometry · Constant curvature space–time · Quasi-concave time
function · Equivariant Gromov topology
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1 Introduction

Space–times of constant curvature occupy an important place inLorentzian geometry.Despite
their trivial local geometry, these spaces have a very rich global geometry and constitute
an important family of space–times in which we hope to understand many fundamental
questions. The existence of time functions with levels of prescribed geometry constitutes one
of these questions both from the geometrical and the physical point of view.We refer to these
functions as geometric time functions. This question was amply studied in the literature in the
works of Andersson, Barbot, Béguin, Benedetti, Bonsante, Fillastre, Galloway, Guadignini,
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Howard, Moncrief, Seppi, Zeghib (we cite for example [1,3–7,13–16]). The main object of
this article is to study the asymptotic behavior of geometric time functions levels.

Recall that a Lorentzian manifold is a differentiable manifold endowed with a pseudo-
Riemannian metric of signature (−,+, · · · ,+). A space–time is an oriented and chronolog-
ically oriented Lorentzian manifold. A space–time is said to be globally hyperbolic (GH ) if
it possesses a function, called Cauchy time function, which is strictly increasing along causal
curves (curves for which the norm of the tangent vectors are non positive) and surjective on
inextensible causal curves. The levels of such function are called Cauchy hypersurfaces. If
in addition the Cauchy time function is proper then we say that the space–time is globally
hyperbolic spatially compact and we write GHC . By a classical result of Geroch [19], every
GH space–time is diffeomorphic to the product of a Cauchy hypersurface S by an interval I
of R. A globally hyperbolic spatially compact space–time, solution of the Einstein equation,
is said to be maximal if it doesn’t extend to a constant curvature GHC space–time which
is also solution of the Einstein equation. A maximal globally hyperbolic spatially compact
space–time is denoted by MGHC . A space–time is said to be of constant curvature if it is
endowed with a (G, X) structure where X is a constant model space and G his isometry
group. Recall that the models of constant curvature space–times are:

(1) The Minkowski space R
1,n . That is the vector space R

n+1 endowed with the standard
Lorentzian metric q1,n = −dx20 + dx21 +· · ·+ dx2n . It’s a globally hyperbolic spactime
whose group of isometry is the Poincaré group O(1, n) � R

1,n ;
(2) The de Sitter space DSn . That is the one sheeted hyperboloid q1,n = +1 endowed with

the Lorentzian metric induced by q1,n . It is the positive curvature model space. It’s a
globally hyperbolic space–time whose group of isometry is O(1, n).

(3) The anti de Sitter space ADSn . That is the quadric q2,n−1 = −1 endowed with the
Lorentzian metric induced by q2,n−1 = −1, where q2,n−1 = −dx20 − dx21 + · · · + dx2n
in the appropriate coordinates. It is the negative curvature model space. Unlike the
Minkowski and the de Sitter space–times, the anti de Sitter space–time is not globally
hyperbolic. His group of isometry is O(2, n).

In [24], Mess gives a full classification of MGHC space–times in the 2 + 1 flat and
anti de Sitter cases giving rise in the same time to a particular interest for MGHC space–
times of constant curvature. Following Mess work’s Scannell, Barbot, Béguin, Bonsante and
Zeghib ([3,6,14,32]) completed this classification in all constant curvature and all dimension
cases. In the 2 + 1 special case Mess [24], Benedetti and Bonsante [12] proved that there
is a one to one correspondence between measured geodesic laminations on a given closed
hyperbolic surface S andMGHC constant curvature space–times admitting aCauchy surface
diffeomorphic to S.

Up to inversion of timeorientation, theMGHC space–times of constant curvature have the
particularity to be geodesically complete in the future, but on the other hand often incomplete
in the past; we say that they admit an initial singularity. These space–times have also the
particularity to possess remarkable geometric time functions:

(1) The cosmological time, which is defined at a point p as the supremum of length of
past causal curves starting at p. It gives a simple and important first example of quasi-
concave time functions i.e those which the levels are convex, to which all other time
functions can be compared (see [14,32]).

(2) The CMC time function i.e a time function where the levels have constant mean curva-
ture. The existence and uniqueness of such a function in a given space–time was studied
by Andersson, Barbot, Béguin and Zeghib in the flat, de Sitter and anti de Sitter cases
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[3,8,9]. These functions define a regular foliation and play an important role in physics.
In the flat case they have the particularity to be quasi-concave.

(3) The k-time (dimension 2 + 1) i.e a time function where the levels have constant Gauss
curvature. The existence and uniqueness of such a function in a given space–time was
done by Barbot, Béguin and Zeghib [7]. They are by definition quasi-concaves.

Giving a mathematical sense to the notion of initial singularity constitutes an important
problem in general relativity (see [20–23,27,31]). There are in the literature different ways
to attach a boundary to a space–time; we cite for example the Penrose boundary [18], the
b-boundary [33]. However, these constructions are not unique in general and all have disad-
vantages. We hope, through the study of asymptotic behavior of Cauchy hypersurfaces, to
give a more intrinsic meaning to this notion of initial singularity.

Let M be a MGHC space–time of constant curvature. A C1 Cauchy time function
T : M → R defines naturally a 1-parameter family (T−1(a), ga)a∈R of Riemannian mani-
folds or equivalently a 1-parameter family (T−1(a), da)a∈R ofmetric spaces. One can ask the
natural important question of asymptotic behavior of this familywith respect to the time in the
following two cases:when time goes to 0 andwhen it goes towards infinity. In our casewe con-
sider the equivalent equivariant problem: the asymptotic behavior of the π1(M)-equivariant
family (π1(M), T̃−1(a), d̃a)a∈R. Several notions of topology appear when we deal with the
convergence of equivariant metric spaces. In this article our favorite convergences will be
the compact open convergence and the Gromov equivariant convergence [29,30].

The study of such problemwas first initiated by Benedetti–Guadagnini [13]. They noticed
that the cosmological levels of MGHC flat space–times of dimension 2+ 1 converge, when
time goes to 0, to the real tree dual to the measured geodesic lamination associated to M . This
problem was finally treated by Bonsante, Benedetti in [12,14]. In the case of the CMC time
Benedetti–Guadagnini [13] conjectured that in a flat globally hyperbolic spatially compact
non elementary maximal space–time M of dimension 2 + 1, the level sets of the CMC
time converge when time goes to 0 to the real tree dual to the measured geodesic lamination
associated to M and when time goes to the infinity to the hyperbolic structure associated to
M . In Andersson [2] gives a positive answer to the Benedetti–Guadagnini conjecture in the
case of simplicial flat space–time. A complete positive answer to this conjecture is given in
[11]. Our goal here is to extend the result of [11] to the 2+1 de Sitter and anti de Sitter cases
as well as to the flat n + 1 dimensional case.

In the 2+1 case, one can formulate the asymptotic problem in the Teichmüller space. Let S
be a closed hyperbolic surface and M be a constant curvature MGHC space–time admitting
a Cauchy surface diffeomorphic to S. A Cauchy time function T : M →]0,+∞[ defines
naturally a curve (S, gTa )a in the space Met(S) of Riemannian metrics of S. This allows
us to study the behavior of the projection curve (S, [gTa ])a of (S, gTa )a in the Teichmüller
space Teich(S) which is, as a topological space, much more pleasant to study than Met(S).
In the flat case and thanks to the work of Benedetti and Bonsante [12], one can identify the
curve (S, [gTcosa ])a in Teich(S) associated to the cosmological time Tcos . It corresponds to the
grafting curve (gra λ

a
(S))a defined by the measured geodesic lamination (λ, μ) associated

to M . The curve (gra λ
a
(S))a is real analytic and converges when time goes to +∞, to the

hyperbolic structure H
2/π1(M).

In the case of the CMC time Tcmc, Moncrief [25] proved that the curve (S, [gTa ])a
is the projection in Teich(S) of a trajectory of an non-autonomous Hamiltonian flow on
T ∗ Teich(S): we call this flow the Moncrief flow, and the curves the Moncrief lines. It is
natural to ask whether the curve defined by the CMC time converges when time goes to 0
to the point, in the Thurston boundary of the Teichmüller space Teich(S), corresponding to
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the measured geodesic lamination, and when time goes to +∞, to the hyperbolic structure
H

2/π1(M). One also can ask this question for the curve defined by the k-time. In this paper,
we will be concerned with the behavior of such curves when time goes to infinity.

2 Statement of results

Let M be a future complete MGHC space–time of constant curvature. Let T : ˜M →
R be a π1(M)-invariant quasi-concave C1 Cauchy time. Up to reparametrization we can
suppose that T takes its values in R

∗+. Consider the family of π1(M)-inveriant metric spaces
(π1(M), STa , dTa )a∈R∗+ associated to T . Let γ ∈ π1(M) and a > 0, denote by lTa (γ ) :=
inf x∈STa dTa (x, γ .x) the marked spectrum of dTa .

Benedetti and Guadignini [13] conjectured that:

Conjecture 1 Let M be a future complete MGHC non elementary flat space–time of dimen-
sion 2 + 1 and let Tcmc be the associated CMC time. Then:

• (1) lima→0 lTa (γ ) = l�(γ ), where � is the real tree dual to the measured geodesic
lamination associated to M.

• (2) lima→+∞ a−1lTa (γ ) = lH2(γ ).

Andersson [2] gives a positive answer to the first part of this conjecture in the case of
simplicial space–times. In [11] we studied the past asymptotic behavior of quasi-concave
Cauchy times in a 2+ 1 flat space–times. We gave in particular a positive answer to the first
part of the Benedetti–Guadignini conjecture.

Theorem 2.1 ([11, Theorem 1.1]) Let M be a future complete MGHC non elementary flat
space–time of dimension 2 + 1. Let T be a C2 quasi-concave Cauchy time function on ˜M.
Then the levels (π1(M), STa , dTa )a∈R∗+ converge in the Gromov equivariant topology, when
a goes to 0, to the real tree dual to the measured geodesic lamination associated to M. In
particular this limit does not depend on the time function T .

Our two first results concern the asymptotic behavior in the flat n + 1 dimensional case.
In dimension bigger than 3, the situation is more complicated. The initial singularity is no
longer a real tree in general (see [14]). However, we have the following partial result which
is a generalization of Theorem 2.1 to the n + 1-dimensional flat case:

Theorem 2.2 Let M be a future complete MGHC flat non elementary space–time of
dimension n + 1. Let T be a C2 quasi-concave Cauchy time on ˜M. Then the levels
(π1(M), STa , dTa )a∈R∗+ converge in the Gromov equivariant topology, when a goes to 0, to a
C AT (0) metric space. Moroever, the limit does not depend on the time function T .

Near the infinity we obtain the following result:

Theorem 2.3 Let M be a future complete standard flat space–time of dimension n + 1 (See
Sect. 3.1). Then,

• (1) There is a constant C such that for every C ′ > C and every C1 quasi-concave
Cauchy time T on ˜M, the renormalized T -levels (π1(M), STa , (supSTa Tcos)−1dTa )a∈R∗+
are, for a big enough, C ′-quasi-isometric to (π1(M), H

n, dHn ). In particular all the limit
points, for the Gromov equivariant topology, of (π1(M), STa , (supSTa Tcos)−1dTa )a∈R∗+ are
C-bi-Lipschitz to (π1(M), H

n, dHn );
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• (2) In dimension 2 + 1, the renormalized CMC-levels (respectively k-levels) converge
in the Gromov equivariant topology, when time goes to +∞, to (π1(M), H

n, dHn ).

Remark 2.4 In fact Theorem 2.3 is the best result we can get in this generality. Indeed, in a
static flat space–time (�, C) (See Sect. 3.1 for the definition), consider a�-invariant complete
convex surface S different than the cosmological ones. The family (aS)a>0 constitutes a
foliation of C. The associated renormalized family of metric spaces converges in the Gromov
equivariant topology, when a goes to +∞, to (�, S, dS).

Now focus on the 2+1 dimensional case. In this article we obtain the analogue of Theorem
2.1 in the de Sitter and anti de Sitter cases. More precisely:

Theorem 2.5 Let M be MGHC de Sitter (or anti de Sitter) space–time of dimension 2+ 1.
Let T be a C2 quasi-concave Cauchy time on ˜M. Then the levels (π1(M), STa , dTa )a∈R∗+
converge in the Gromov equivariant topology, when a goes to 0, to the real tree dual to the
measured geodesic lamination associated to M. In particular this limit does not depend on
the time function T .

Remark 2.6 (1) Theorem 2.2 and Theorem 2.5 are based essentially on Proposition 4.1
which was proven for C2 quasi-concave time functions. However, one can hope to get a
more general statement since Proposition 4.1 remains true in more general cases, as for
the cosmological time.

(2) Theorem 2.5 is proven in the 2 + 1 case. This is essentially due to our strategy of proof
based on Wick rotations. However, we believe that it is possible to extend this result to
the n + 1 dimensional de Sitter and anti de Sitter cases.

Now look to the asymptotic behavior in the Teichmüller space. Our fourth result concern
the future behavior of the curve associated to the k-time and the CMC time. Let S be a
closed hyperbolic surface and let (λ, μ) be a measured geodesic lamination on S. Let M be
the MGHC space–time of constant curvature associated to (λ, μ).

Theorem 2.7 Let Tk and Tcmc be respectively the k-time and the CMC time of M. Then,

• In the flat case: the curves ([gTka ])a>0 and ([gTcmc
a ])a>0 in the Teichmüller space Teich(S)

of S converge, when time goes to +∞, to the hyperbolic structure of S.
• In the de Sitter case: The curve ([gTka ])a>0 in the Teichmüller space Teich(S) of S stays

at a bounded Teichmüller distance, when time goes to +∞, from the grafting metric
graλ(S).

3 Backgrounds on constant curvature space–times

In all this paper and for the sake of simplicity we will denote by 〈., .〉 (respectively by |.|2)
the scalar product (respectively the quadratic form) associated to the Lorentzian metric under
consideration.

3.1 Flat space–times, initial Singularity and Horizon

LetR1,n be theMinkowski space. An hyperplane P is said to be lightlike if it is orthogonal to
a lightlike direction. LetP be the space of all lightlike hyperplanes inR

1,n . Let� be a closed
subset ofP and consider� := ⋂

P∈� I+(P). By [6], the subset� is an open convex domain
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of R
1,n . It is non empty as soon as � is compact. If � contains more than two elements, then

the open convex domain �, if not empty, is called a future complete regular domain. In the
same way one can define a past complete regular domain.

Let � be a future complete regular domain. By [14], the boundary ∂� of � is the graph
of a 1-Lipschitz convex function f : R

n → R.
Let L be the set of Lipschitz curves contained in ∂�. For every α ∈ L, consider l(α) :=

∫
√

|α̇(t)|2dt the Lorentzian length of α. Let d be the pseudo-distance defined on ∂� by:

d∂�(p, q) = inf {l(α), where α is a curve in L joining p and q} .

The cleaning (∂�/ ∼, d̄∂�) i.e the quotient of the pseudo metric space (∂�, d∂�) by the
equivalence relation p ∼ q if and only if d∂�(p, q) = 0, is a length metric space (see for
instance [10, Corollaire 2.2.14] ).

Definition 3.1 The metric space (∂�/ ∼, d̄∂�) is the Horizon associated to �.

An hyperplane P is a support hyperplane of � if � ⊂ J+(P). Note that if � admits two
lightlike support hyperplanes then it admits a spacelike support hyperplane. Let � be the set
of points p ∈ ∂� such that � have a spacelike support hyperplane passing through p. By a
result of Bonsante (see [14, Proposition 7.8] ), the restriction of the pseudo-distance d∂� to
� is a distance denoted by d� .

Definition 3.2 The metric space (�, d�) is the initial Singularity associated to �.

Example 3.1 The future cone of the origin C is a typical example of regular domain. In this
case the metric spaces (∂C/ ∼, d̄∂C) and (�, d�) are identified with the trivial metric space
({0}, d = 0).

In, Bonsante [14] shows that to each point p in � corresponds a unique point r(p) in

∂� realizing the cosmological time i.e such that Tcos(p) =
√

− |p − r(p)|2. He proved also
that the application r : � → ∂�, called retraction map, is continuous and that r(�) = �.
Moreover, the cosmological time Tcos of � is a C1,1 regular Cauchy time whose Lorentzian
gradient is given by Np = −∇pTcos = 1

Tcos (p)
(p − r(p)). Every point p in � can be

decomposed as

p = r(p) + Tcos(p)Np.

Actually all this remain true in any future complete convex domain of R
1,n .

Let � be a torsion free uniform lattice of SO+(1, n). A cocycle of � is an application
τ : � → R

1,n such that τ(γ1.γ2) = γ1τ(γ2) + τ(γ1). An affine deformation of � associated
to τ is the morphism ρτ : � → SO+(1, n) � R

1,n defined by ρτ (γ ).x = γ.x + τ(γ ) for
every γ ∈ � and x ∈ R

1,n . By a result of Bonsante [14], to every affine deformation of
� corresponds a unique future complete maximal flat regular domain � on which �τ =
ρτ (�) acts freely properly discontinuously. In this case, the cosmological normal application
N and the retraction map r of � are equivariant under the action of �. This means that
Nγτ .p = γ.Np and r(γτ .p) = γτ .r(p) for every p in � and γ in �. By [14, Lemma 4.15]
and [14, Lemma 3.12, Corollary 4.5], the normal application N : � → H

n , when restricted
to each cosmological level STcosa , is a surjective proper function. The MGHC space–time
M[τ ] := �/�τ is called a standard flat space–time. In the special case of the trivial cocycle
the space–time M[0] := C/� is the static flat space–time.

A future complete MGHC flat space–time M is said to be non elementary if L(π1(M)) is
a non elementary subgroup of SO+(1, n), where L : π1(M) → SO+(1, n) is the linear part
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of the holonomy morphism ρ : π1(M) → SO+(1, n) � R
1,n of M . The following theorem

gives a full classification of MGHC flat non elementary space–times.

Theorem 3.1 ([6, Theorem4.11])Every future complete MGHC flat non elementary space–
time M is up to finite cover the quotient of a future complete regular domain by a discrete
subgroup of SO+(1, n) � R

1,n.

3.2 De Sitter space–times

Let S be a simply connected Möbius manifold. That is a manifold equipped with a (G, X)-
structure, where G = O+(1, n) and X = S

n is the Riemannian sphere. A Möbius manifold
is elliptic (respectively parabolic) if it is conformally equivalent to S

n (respectively S
n minus

a point). A non elliptic neither parabolic Möbius manifold is called hyperbolic Möbius
manifold.

Let d : S → S
n be a developing map of S. A round ball of S is an open convex setU of S

on which d is an homeomorphism. It is said to be proper if d(Ū ) is a closed round balls of S
n .

Let B(S) be the space of proper round ball of S. By a result of [3], there is a natural topology
on B(S) making it locally homeomorphic to DSn+1. By [3], the space B(S) endowed with
the pull back metric of DSn+1 is a simply connected future complete globally hyperbolic
locally de Sitter space–time called dS-standard space–time.

In general B(S) is not isometric to a part of DSn+1. However, there are some regions in
B(S) which embedd isometrically in DSn+1. Indeed, let x in S and let U (x) be the union of
all round ball containing x . Then by [3], the dS–standard spacetime B(U (x)) is isometric to
an open domain of DSn+1. Moreover, for every proper round ball V containing x , the causal
past of V in B(S) is contained in B(U (x)).

In the case of dS–standard space–time of hyperbolic type, the cosmological time is regular
(see [3]). One can attach to each hyperbolic type dS–standard space–time B(S) a past bound-
ary ∂B(S), which can be seen locally as a convex hypersurface of DSn+1. Moreover, to every
point p in B(S) corresponds a unique point r(p) on ∂B(S) realizing the cosmological time.
Actually the point r(p) is the limit point in B(S) ∪ ∂B(S) of the past timelike geodesique
starting at p with initial velocity −Np , where Np is the future oriented cosmological normal
vector at p. The application N is the cosmological normal application and r is the retraction
map.

Let p be a point in B(S). The causal past of p is contained in a domain of B(S) isometric
to an open domain of DSn+1. So, after identification of DSn+1 with the pseudo-sphere in
R
1,n+1, the point p can be decomposed as:

p = cosh (Tcos(p)) r(p) + sinh (Tcos(p)) Nr(p);
Np = sinh (Tcos(p)) r(p) + cosh (Tcos(p)) Nr(p).

We have the following classification theorem:

Theorem 3.2 ([32, Theorem 1.1]) Every MGHC de Sitter space–time is the quotient of a
standard dS space–time by a free torsion discret subgroup of SO+(1, n + 1).

3.3 Anti de Sitter space–times

Let M be a MGHC anti de Sitter space–time of dimension n + 1. By [3,24], the universal
cover ˜M of M is isometric to an open convex domain, called regular domain, of the anti de
Sitter space. Denote by ˜M− the tight past of ˜M i.e the strict past in ˜M of the cosmological
level STcosπ

2
.
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By [3], the cosmological time of a ˜M− is regular. One can attach a past boundary ∂ ˜M−
to ˜M− which can be seen as a convex hypersurface of ADSn+1. Moreover, to every point
p in ˜M− corresponds a unique point r(p) on ∂ ˜M− realizing the cosmological time. The
point r(p) is the limit point in ˜M− ∪ ∂ ˜M− of the past timelike geodesique starting at p
with initial velocity −Np , where Np is the future oriented cosmological normal vector at p.
The application N is the cosmological normal application and r is the retraction map. After
identification of ADSn+1 with the pseudo-sphere in R

2,n , we get that every point p in ˜M−
can be decomposed as:

p = cos (Tcos(p)) r(p) + sin (Tcos(p)) Nr(p);
Np = − sin (Tcos(p)) r(p) + cos (Tcos(p)) Nr(p).

4 Quasi-concave times and their expansive character

Let M be a MGHC space–time of constant curvature. Let S be a C2 complete π1(M)-
invariant spacelike hypersurface of ˜M . Let S be its second fundamental form defined by
S (X, Y ) = 〈∇Xn, Y 〉, where n is the future oriented normal vector field. Recall that the
mean curvature HS at a point p of S is defined by HS = tr()

n i.e HS = λ1+λ2+...+λn
n ,

where λi are the principal curvatures of S. Recall that in the case of dimension 2, the Gauss
curvature kS at a point p of S is defined by kS = −det () i.e kS = −λ1λ2.

Definition 4.1 The hypersurface S is said to be convex if its second fundamental form is
negative-definite. In this case, the principal curvatures are negative.

The convexity of S is equivalent to the geodesic convexity of J+(S). Thus using this last
characterisation one can generalise the notion of convexity to non smooth hypersurfaces.

A π1(M)-invariant Cauchy time function T : ˜M → R
∗+ is quasi-concave if its levels are

convex. The cosmological time, theCMC time and the k time provide us important examples
of quasi-concave times.

Definition 4.2 The cosmological time Tcos is defined by: Tcos(p) = supα

∫
√

− |α̇(s)|2
where the supremum is taken over all the past causal curves starting at p.

In the flat case the cosmological time is a concave (and hence quasi-concave) Cauchy time
(see [14]). By [3,32] the cosmological time is a regular quasi-concave time in the de Sitter
case. In the anti de Sitter case it fails to be quasi-concave. However, by [3] the cosmological
levels are convex near the initial singularity.

Definition 4.3 The CMC time is a π1(M)-invariant Cauchy time T : ˜M → R such that
every level T−1(t), if not empty, is of constant mean curvature t .

The existence and uniqueness of such time was studied in [1,3,5,8,9]. In the flat case and
by a result of Treibergs [34] the CMC time is quasi-concave. It is no more true in the anti
de Sitter case. Unfortunately we don’t now if it is the case in the de Sitter case.

In the flat case, the CMC time takes its values over R
∗−. Up to the reparametrization

b → − 1
b , we will consider that the CMC time takes its values in R

∗+. In other words: for

every b > 0, the CMC level STcmc
b is of constant mean curvature − 1

b .

Definition 4.4 Suppose that M is of the dimension 2 + 1. The k time is a Cauchy time
T : ˜M → R such that every level T−1(t), if not empty, is of constant Gauss curvature t .
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Barbot, Béguin and Zeghib [7] proved the existence and uniqueness of such time in the
flat and de Sitter case. In the anti de Sitter case there is no globally defined k-time. However,
the two connected components of the convex core admit a unique k-time. By definition, the
k-time is quasi-concave.

In the flat and the anti de Sitter cases, the k-time is defined over R
∗−. Up to the

reparametrization b → √−b−1, we will consider that the k-time takes its values over R
∗+.

In the de Sitter case, the k-time is defined over ] − ∞,−1[. So we will consider it defined
over R

∗+ up to the reparametrization b →
√

− (b + 1)−1.
Let T : ˜M → R

∗+ be a π1(M)-invariant C2 quasi-concave Cauchy time. Denote by
ξT = ∇T

|∇T |2 , where ∇T is the Lorentzian gradient of T and let �t
T be the corresponding flow

generated by ξT . Denote by ST1 the level set T−1(1) of T .

Proposition 4.1 Let α : [a, b] → ˜M be a spacelike curve contained in the past of ST1 . Then

the length of α is less than the length of α1 where α1(s) = �
1−T (α(s))
T (α(s)) is the projection

of α on ST1 along the lines of �T .

Proof We proved this proposition in the 2+1 flat case [11, Proposition 4.2]. The proof does
not use the fact that space–time is flat of dimension 2 + 1 and remains true in our case (see
[11, Remark 1.2]). ��
Remark 4.2 Even if in Proposition 4.1 we restrict ourselves to C2 quasi-concave times, one
can prove analogue Propositions for the cosmological time, which is just C1,1, in the Sitter
and anti de Sitter cases (see Remark 6.11 and Remark 6.15).

5 Quasi-concave times versus cosmological time

Let M be a non negative constant curvature MGHC space–time of dimension n + 1 and
let Tcos be the cosmological time of ˜M . The purpose of this section is to highlight the
comparability between the cosmological time and the other quasi-concave times.

5.1 The flat case

Let us start with the following proposition which gives an estimate on the cosmological
barriers in the flat n + 1 dimensional case.

Proposition 5.1 Let M � �/�τ be a standard flat space–time, where� is a future complete
flat regular domain, � a torsion free uniform lattice of SO+(1, n) and �τ its affine deforma-
tion in SO+(1, n) � R

1,n. Let S be a convex complete �-invariant Cauchy hypersurface of
�. There is a constant C depending only on � such that for every C ′ > C

supS Tcos
inf S Tcos

≤ C ′,

for supS Tcos big enough.

Proof Fix an origin of the Minkowski space R
1,n . Let N and r be respectively the normal

application and the retraction map of �.
For simplicity denote by a = supS Tcos and by b = inf S Tcos . Let F ⊂ H

n be a compact
fundamental domain for the action of � on H

n . Note that F ′ = r
(

N−1(F)
)

is a fundamental

123



112 Geom Dedicata (2017) 190:103–133

domain for the action of �τ on �. The closure of F ′ in R
1,n is compact. Denote then by

C1 = supF ′×F ′×F |〈r1 − r2, n〉|.
Now let p ∈ S such that Tcos(p) = a. Up to isometry we can suppose that Np ∈ F and

r(p) ∈ F ′. The convexity of S implies that the tangent hyperplane Pp to S at p is the tangent

hyperplane to STcosa at p. Thus for every γ in �, γτ .Pp is the tangent hyperplane of S and

STcosa at γτ .p. Hence, we obtain that for every x in S and every γ in �:
〈

γτ p − x, γ .Np
〉 ≥ 0.

But γτ p = γ.p + τ(γ ), x = r(x) + Tcos(x)Nx and p = r(p) + Tcos(p)Np , so

Tcos(x)
〈

Nx , γ .Np
〉 ≤ 〈

p, Np
〉 − 〈

γ −1r(x) + τ(γ −1), Np
〉

.

Therefore

Tcos(x)
〈

Nx , γ .Np
〉 ≤ −Tcos(p) + 〈

r(p) − r(γ −1
τ x), Np

〉

.

Thus
∣

∣

∣

∣

∣

Tcos(p)
〈

Nx , γ .Np
〉

∣

∣

∣

∣

∣

−
∣

∣

∣

∣

∣

〈

r(p) − r(γ −1
τ x), Np

〉

〈

Nx , γ .Np
〉

∣

∣

∣

∣

∣

≤ Tcos(x),

and hence
∣

∣

∣

∣

∣

1
〈

γ −1.Nx , Np
〉

∣

∣

∣

∣

∣

− 1

a

〈

r(p) − r(γ −1
τ x), Np

〉

∣

∣

〈

γ −1.Nx , Np
〉∣

∣

≤ Tcos(x)

a
.

On the other hand, for every x in S, there exists a γx in � such that γ −1
x .Nx ∈ F and

r((γx )−1
τ x) ∈ F ′. Thus,

1

C
− 1

a
C1 ≤ Tcos(x)

a
,

where C = supF×F

∣

∣

〈

n, n′〉∣
∣

Since the last inequality is true for every x in S, we obtain that

1

C
− 1

a
C1 ≤ b

a
= inf S Tcos

supS Tcos
.

When a goes to infinity, 1
a C1 goes to 0 and this finishes the proof. ��

As a direct consequence of this proposition we obtain:

Corollary 5.2 Let T : � →]0,+∞[ be a �τ -invariant quasi-concave Cauchy time. Then

lim
t→∞

supSTt Tcos

inf STt Tcos
≤ C.

Proof When t goes to infinity, at := supSTt Tcos goes to infinity. Then we conclude using
Proposition 5.1. ��
Remark 5.3 By a result of Andersson, Barbot, Béguin and Zeghib [3] we have that in the

particular case of the CMC time :
sup

STt
Tcos

inf
STt

Tcos
≤ n for every t > 0. Moreover,

1

n
sup
STt

Tcos ≤ t ≤ sup
STt

Tcos .
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Proposition 5.4 Let M � �/�τ be a non elementary future complete MGHC flat space–
time of dimension 2 + 1 and let Tk : � →]0,+∞[ be the k-time of �. The cosmological
time and the k-time are comparable near the infinity. Moreover

lim
t→+∞

inf
S
Tk
t

Tcos

t
= lim

t→+∞
sup

S
Tk
t

Tcos

t
= 1.

For the proof we need the following Maximum Principle.

Lemma 5.5 Let S and S′ two spacelike hypersurfaces in a space–time M such that S′ is in
the future of S and S∩ S′ �= ∅. For every p ∈ S∩ S′ we have that the principal curvatures of
S at p are bigger than the principal curvatures of S′ at p. In particular the Gauss curvature
of S is bigger than the Gauss curvature of S′.

Remark 5.6 This lemma remains true in the case of C0 hypersurfaces with generalized
principal curvatures (See for instance [3, Proposition 4.4]). Thus one can apply theMaximum
Principale on the cosmological levels.

Proof of Proposition 5.4 Let STk1 be the k-level of constant Gauss curvature −1. Let H0 =
inf H

S
Tk
1

and H1 = sup H
S
Tk
1
, where H

S
Tk
1

is the mean curvature of STk1 .

Consider the �τ -invariant future complete convex domain A := J+(STk1 ). Denote respec-
tively by T ′

cos , r
′ the associated cosmological time and retraction map. For every t > 1, the

�τ -invariant k-level S
Tk
t is entirely contained in A. As the action of �τ on STkt is cocom-

pact, the restriction of the cosmological time T ′
cos of A achieves its minimum on STkt . Let

p ∈ STkt such that inf
S
Tk
t

T ′
cos = T ′

cos(p) := a. By applying the Maximum Principle to the

hypersurfaces S
T ′
cos

a and STkt we get

k
S
T ′
cos

a
(p) ≥ − 1

t2
,

where k
S
T ′
cos

a
is the Gauss curvature of S

T ′
cos

a .

On the one hand we have

k
S
T ′
cos

a
(p) = − 1

1 − 2H
S
Tk
1

(r ′(p))a + a2
.

Hence

a ≥ H0 +
√

H2
1 − 1 + t2.

But

inf
S
Tk
t

Tcos ≥ inf
S
T ′
cos

a

Tcos ≥ a.

So

inf
S
Tk
t

Tcos ≥ H0 +
√

H2
1 − 1 + t2.
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On the other hand and by applying the Maximum Principle to the hypersurfaces STkt and
STcossup

S
Tk
t

Tcos
we get

sup
S
Tk
t

Tcos ≤ t.

Thus

1 ≥
sup

S
Tk
t

Tcos

t
≥

inf
S
Tk
t

Tcos

t
≥ H0

t
+

√

H2
1

t2
− 1

t2
+ 1.

which concludes the proof. ��
Corollary 5.7 We have:

lim
t→+∞

inf STcmc
t

Tcos

t
= lim

t→+∞
supSTcmc

t
Tcos

t
= 1.

Proof Let STcmc
t be a CMC level of constant mean curvature − 1

t . For every p ∈ STcmc
t we

have λ1(p)+λ2(p)
2 = − 1

t . So

kSTcmc
t

(p) = −λ1(p)λ2(p) =
(

λ1(p) + 2

t

)

λ1(p).

The function f (λ) = (

λ + 2
t

)

λ achieves its minimum at − 1
t , thus kSTcmc

b
≥ − 1

t2
.

Then by [7, Remark 10.3], STcmc
t is in the future of the k-level STkt . We conclude using

Proposition 5.4 and Remark 5.3. ��
For every a > 0, let �a be the regular domain defined by �a := 1

a�. Note that �a is the
regular domain associated to the cocycle τ

a . The regular domain �a converge when a goes
to ∞ to the cone C. Denote by T a

cos , T
a
k and T a

cmc respectively the cosmological time, the
k-time and the CMC time of �a . It is not hard to see that aT a(x) = T 1(ax) for each of the
three times.

Corollary 5.8 The Cauchy times T a
k (respectively T a

cmc) converge in the compact open topol-
ogy, when a goes to +∞, to the cosmological time of C. That is for every compact F of C
and for a big enough, the Cauchy time T a

k (respectively T
a
cmc) converge uniformly on F to the

cosmological time of C.

Proof Let F be a compact set in the interior of C. Note that for a big enough F ⊂ �a . By
[14, Proposition 6.2], the cosmological time T a

cos converge uniformly on F to the cosmo-
logical time of C. So to proof that T a

k (respectively T a
cmc) converge unifomly on F to the

cosmological time of C, it is sufficent to proof that supx∈F
∣

∣T a
k (x) − T a

cos(x)
∣

∣ (respectively
supx∈F

∣

∣T a
cmc(x) − T a

cos(x)
∣

∣) goes to 0, when a goes to +∞.
1) The k-time case. We have

sup
x∈F

∣

∣T a
k (x) − T a

cos(x)
∣

∣ ≤
[

1 − inf
x∈F

T 1
cos(ax)

T 1
k (ax)

]

sup
x∈F

T a
k (x).

Using Proposition 5.4, one can see that T a
k (x) is bounded on F and inf x∈F T 1

cos (ax)
T 1
k (ax)

goes to 1

when a goes to +∞. Thus we get that supx∈F
∣

∣T a
k (x) − T a

cos(x)
∣

∣ goes to 0 when a goes to
+∞.
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2) The CMC-time case. We have

sup
x∈F

∣

∣T a
cmc(x) − T a

cos(x)
∣

∣ ≤
[

sup
x∈F

T 1
cos(ax)

T 1
cmc(ax)

− 1

]

sup
x∈F

T a
cmc(x).

Then by Corollary 5.7, we have that supx∈F
∣

∣T a
cmc(x) − T a

cos(x)
∣

∣ goes to 0 when a goes to
+∞. ��
5.2 The de Sitter case

Let M � B(S)/� be a 2+ 1-dimensional MGHC de Sitter space–time of hyperbolic type.
Let Tk be the k-time of B(S).

Proposition 5.9 We have:

• (1) There exists a constant D > 0 such that limb→+∞
[

sup
S
Tk
b

Tcos − inf
S
Tk
b

Tcos

]

≤ D;

• (2) limb→+∞
inf

S
Tk
b

Tcos

argcoth

(

√

b2+1
b2

) = limb→+∞
sup

S
Tk
b

Tcos

argcoth

(

√

b2+1
b2

) = 1.

Proof The proof is similar to the flat case. The k-level STk1 is of constant Gauss curvature

−2. Let H0 = inf H
S
Tk
1

and H1 = sup H
S
Tk
1
, where H

S
Tk
1

is the mean curvature of STk1 .

Denote respectively by T ′
cos , r

′ the cosmological time and retractionmap of the�-invariant
future complete convex domain A := J+(STk1 ) of B(S). For every b > 1, let p ∈ STkb such
that inf

S
Tk
b

T ′
cos = T ′

cos(p) := a.

By the Maximum Principle we have

k
S
T ′
cos

a
(p) ≥ − 1

b2
− 1.

But

k
S
T ′
cos

a
(p) = −

(

λ1(r ′(p)) − tanh(a)

1 − λ1(r ′(p)) tanh(a)

)(

λ2(r ′(p)) − tanh(a)

1 − λ2(r ′(p)) tanh(a)

)

,

where λ1(r ′(p)) and λ2(r ′(p)) are the principal curvatures of the k-level STk1 at r ′(p). Hence

k
S
T ′
cos

a
(p) = −

2 − 2H
S
Tk
1

(r ′(p)) tanh(a) + tanh2(a)

1 − 2H
S
Tk
1

(r ′(p)) tanh(a) + 2 tanh2(a)
.

Thus

inf
S
Tk
b

Tcos ≥ argth

(

H0

b2 + 2
+ 1

b2 + 2

√

H2
1 + (b2 − 1)(b2 + 2)

)

.

On the other hand and by the Maximum Principle we have

sup
S
Tk
b

Tcos ≤ argcoth

⎛

⎝

√

b2 + 1

b2

⎞

⎠ .

Then a simple computation shows that:
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• limb→+∞
[

sup
S
Tk
b

Tcos − inf
S
Tk
b

Tcos

]

≤ 1
2 log (3 − H0).

• limb→+∞
inf

S
Tk
b

Tcos

argcoth

(

√

b2+1
b2

) = limb→+∞
sup

S
Tk
b

Tcos

argcoth

(

√

b2+1
b2

) = 1.

��

6 Bilipschitz control of convex hypersurfaces

Let us consider M to be a n + 1-dimensional

• future complete flat standard MGHC space–time;
• or a future complete MGHC de Sitter space–time of hyperbolic type;
• or the tight past of a MGHC anti de Sitter space–time.

Our next proposition shows that the geometry of a convex spacelike surface can be compared
uniformly to the cosmological one. More precisely:

Proposition 6.1 Let S ⊂ ˜M be a π1(M)-invariant convex Cauchy hypersurface of ˜M the
universal cover of M. Letn itsGauss application and N the cosmological normal application.
Then for every p in S we have,

• ∣

∣

〈

Np, np
〉∣

∣ ≤ (

supS Tcos
)

(inf S Tcos)−1 if M is flat;
• ∣

∣

〈

Np, np
〉∣

∣ ≤ (

sinh(supS Tcos)
)

(sinh(inf S Tcos))−1 if M is locally de Sitter;
• ∣

∣

〈

Np, np
〉∣

∣ ≤ (

tan(supS Tcos)
)

(tan(inf S Tcos))−1 if M is locally anti de Sitter.

For the proof we need the following lemma:

Lemma 6.2 Let STcosa et STcosb be two cosmological levels of ˜M the universal cover of M,

with b < a. Then for every p in STcosb and every unitary future oriented timelike tangent

vector x ∈ Tp ˜M such that STcosa ⊂ J+(Pp), where Pp = x⊥ ⊂ Tp ˜M, we have:

• ∣

∣

〈

Np, x
〉∣

∣ ≤ (a)(b)−1 if M is flat;
• ∣

∣

〈

Np, x
〉∣

∣ ≤ (sinh(a)) (sinh(b))−1 if M is locally de Sitter;
• ∣

∣

〈

Np, x
〉∣

∣ ≤ (tan(a)) (tan(b))−1 if M is locally anti de Sitter.

Proof of Lemma 6.2 in the flat case Fix an origin of R
1,n and suppose that M � �/�τ is

flat. Let p in STcosb ⊂ ˜M and let x ∈ H
n such that STcosa ⊂ J+(p + x⊥). For every y in STcosa

we have:

〈y, x〉 ≤ 〈p, x〉 .

Then

a
〈

Ny, x
〉 ≤ b

〈

Np, x
〉 + 〈r(p) − r(y), x〉 .

The normal application N : STcosa → H
n is surjective. So to conclude it is sufficient to take

y in STcosa such that Ny = x . ��
Remark 6.3 We restrict ourselves to standard space–times to get the surjectivity of the normal
cosmological application. However, it still true in any future regular domain. Indeed, consider
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two cosmological levels STcosa and STcosb withb < a. Let p in STcosb and let Sa be the hyperboloid
defined by: Sa = {

y ∈ J+(r(p)) ⊂ R
1,n such that |y − r(p)|2 = −a2

}

. Remark that Sa is

in the future of STcosa . Thus for every y in Sawe have : 〈y, x〉 ≤ 〈p, x〉 and so 〈y − r(p), x〉 ≤
b
〈

Np, x
〉

. Then it is sufficient to take y such that y − r(p) = ax . ��
Proof of Lemma 6.2 in the de Sitter case
Fix an origin of R

1,n+1 and identify DSn+1 with the pseudo sphere in R
1,n+1. Suppose that

M � B(S)/� is locally de Sitter. Let p in STcosb and let x be a unitary future oriented timelike

tangent vector in Tp ˜M such that STcosa ⊂ J+(Pp), where Pp = x⊥ ⊂ TpB(S). The proof is
similar to the one of Remark 6.3 which depends only on J+(r(p)). Note that J+(r(p)) is
isometric to a domain of DSn+1. So we can, without losing generality, restric ourselves and
work in DSn+1.

For every y in the hypersurface Sa = {

y ∈ J+(r(p)) ⊂ DSn+1 such that dLor
(y, r(p)) = a} we have,

〈x, p − y〉 ≥ 0,

where 〈., .〉 is the scalar product of R
1,n+1. Thus

0 = 〈x, p〉 ≥ 〈x, y〉 .

Let us write:

• r(p) = −〈r(p), x〉 x + u′, where u′ ∈ x⊥;
• p = cosh (b) r(p) + sinh (b) Nr(p), where Nr(p) ∈ H

n+1 ∩ Tr(p)DSn+1 is the cosmo-
logical normal vector;

• y = cosh (a) r(p) + sinh (a) vy , where vy ∈ H
n+1 ∩ Tr(p)DSn+1.

Now take vy =
(
√

1 + 〈r(p), x〉2
)

x − 〈r(p),x〉
|u′| u′.

On the one hand 〈x, p〉 = 0 and Np = sinh (b) r(p) + cosh (b) Nr(p) so,

〈

x, Np
〉 = − 1

sinh (b)
〈x, r(p)〉 .

On the other hand 〈x, y〉 ≤ 0 and hence,

〈x, r(p)〉 ≤ sinh (a) .

Thus

∣

∣

〈

x, Np
〉∣

∣ ≤ sinh (a)

sinh (b)
.

��
Proof of Lemma 6.2 in the anti de Sitter case
Fix an origin of R

2,n and identify ADSn+1 with the pseudo sphere in R
2,n . Suppose

that M is locally anti de Sitter. Note that ˜M is isometric to a domain of ADSn+1. Let
p in STcosb and let x ∈ ADSn+1 ⊂ R

2,n such that Pp = x⊥ ⊂ Tp ˜M , x is future

oriented (with respect to the orientation of ADSn+1) and STcosa ⊂ J+(Pp). Let Sa =
{

y ∈ J+(r(p)) ⊂ ADSn+1 such that dLor (y, r(p)) = a
}

. For every y in Sa we have,

〈x, p − y〉 ≥ 0,
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where 〈., .〉 is the scalar product of R
2,n . Thus

0 = 〈x, p〉 ≥ 〈x, y〉 .

Let us write:

• r(p) = −〈r(p), x〉 x − 〈p, r(p)〉 p + u′, where u′ ∈ Vect (x, p)⊥;
• p = cos (b) r(p) + sin (b) Nr(p), where Nr(p) ∈ ADSn+1 ∩ Tr(p)ADSn+1 is the cosmo-

logical normal vector;
• Np = − sin (b) r(p) + cos (b) Nr(p);
• y = cos (a) r(p) + sin (a) vy , where vy ∈ ADSn+1 ∩ Tr(p)ADSn+1 is future oriented.

We get then:

• 〈

x, Np
〉 = − 1

sin(b) 〈x, r(p)〉;
• 〈x, r(p)〉 ≤ − tan (a)

〈

x, vy
〉

.

For every β ∈ R let,

v (β) = (−〈p, r(p)〉) x + βp +
√

〈p, r(p)〉2 + β2 − 1

|u′| u′.

For every β ∈ R we have |v(β)|2 = −1. A direct computation shows that there exists β0

such that 〈v(β0), r(p)〉 = 0. In this case v(β0) is future oriented. Indeed, x is future oriented
and 〈v(β0), x〉 = 〈p, r(p)〉 = − cos(b) < 0.

Thus the point y := cos (a) r(p) + sin (a) v(β0) belongs to Sa and hence

∣

∣

〈

Np, x
〉∣

∣ = 1

sin(b)
|〈x, r(p)〉| ≤ 1

sin(b)
tan(a) |〈x, v(β0)〉| = (tan (a)) (tan (b))−1 .

��

Proof of Proposition 6.1 Denote by a = supS Tcos and b = inf S Tcos . The hypersurface S
is in the past of STcosa and in the future of STcosb . Let p in S and let Pp = n⊥

p the tangent

hyperplane to S at p. As S is convex, we have that STcosa ⊂ J+(Pp). By Lemma 6.2 we have:

• ∣

∣

〈

Np, np
〉∣

∣ ≤ a
Tcos (p)

≤ a
b in the flat case;

• ∣

∣

〈

Np, np
〉∣

∣ ≤ sinh(a)
sinh(Tcos (p))

≤ sinh(a)
sinh(b) in the de Sitter case;

• ∣

∣

〈

Np, np
〉∣

∣ ≤ tan(a)
tan(Tcos (p))

≤ tan(a)
tan(b) in the anti de Sitter case.

and this concludes the proof. ��
6.1 The (n+ 1)-flat case

Let M � �/�τ be a future complete MGHC flat non elementary space–time of dimension
n + 1.

Proposition 6.4 Let S ⊂ � be a C2 convex �τ invariant Cauchy hypersurface and let gS
be the Riemannian metric defined on S by the restriction of the ambient Lorentzian metric
of the Minkowski space R

1,n. Then (S, gS) is K 4-bi-Lipschitz to (STcossupS Tcos
, gTcossupS Tcos

), where

K = supS Tcos
inf S Tcos

.
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Remark 6.5 The fact that (S, gS) is bi-Lipschitz to (STcossupS Tcos
, gTcossupS Tcos

) is a direct con-
sequence of the cocompactness of the �τ -action. What we are proving here is that the
bi-Lipschitz constant K depend only on the cosmological barrier and not on the hypersurface
S.

Let us start with the following proposition due to Bonsante:

Proposition 6.6 ([14, Lemme 7.4]). The cosmological levels STcosa and STcosb with b < a are
( a
b

)2
-bi-Lipschitz one to the other. More precisely,

gb ≤ ga ≤
(a

b

)2
gb.

Proof of Proposition 6.4 Let S be a convex �τ invariant Cauchy hypersurface of � and let
gS its induced Riemannian metric. Denote by a = supS Tcos and by b = inf S Tcos .

Let α : [0, 1] → S be a Lipschitz curve in S. For almost every s in [0, 1], we have
α̇(s) = ṙ(s) + Ṫcos(s)Ns + Tcos(s)Ṅ (s)

and hence

|α̇(s)|2 = ∣

∣ṙ(s) + Tcos(s)Ṅ (s)
∣

∣

2 − Ṫcos(s)
2.

For every t > 0 and every s ∈ [0, 1] the vector ṙ(s) + t Ṅ (s) is tangent to the cosmological
level STcost . Thus by Proposition 6.6

|α̇(s)|2 ≥ ∣

∣ṙ(s) + bṄ (s)
∣

∣

2 − Ṫcos(s)
2.

Note that

Ṫcos(s) = dα(s)Tcos .α̇(s) = −〈N (α(s)), α̇(s)〉 .

Let us write N (α(s)) = h(s)n(α(s)) + v(s), where n is the normal map of S and v(s) is in
n(α(s))⊥.

By Proposition 6.1,
∣

∣

〈

Nα(s), n(α(s))
〉∣

∣ ≤ a

b
,

and hence

|v(s)|2 ≤
(a

b

)2 − 1.

But
∣

∣Ṫcos(s)
∣

∣ = |〈v(s), α̇(s)〉| ≤ |v(s)| |α̇(s)| .
Thus

Ṫcos(s)
2 ≤

(

(a

b

)2 − 1

)

|α̇(s)|2 .

Which proves that
(

b

a

)2
∣

∣ṙ(s) + bṄ (s)
∣

∣

2 ≤ |α̇(s)|2 .

123



120 Geom Dedicata (2017) 190:103–133

On the other hand and by Proposition 6.6 we have

|α̇(s)|2 ≤ ∣

∣ṙ(s) + aṄ (s)
∣

∣

2 ≤
(a

b

)2 ∣
∣ṙ(s) + bṄ (s)

∣

∣

2
.

Thus
(

b

a

)4
∣

∣ṙ(s) + aṄ (s)
∣

∣

2 ≤ |α̇(s)|2 ≤ ∣

∣ṙ(s) + aṄ (s)
∣

∣

2
.

This proves that the cosmological flow induces a
( b
a

)4
-bi-Lipschitz identification between

(S, gS) and (STcosa , gTcosa ). ��
Corollary 6.7 Let M be a MGHC flat future complete non elementary space–time. Let
Tcmc : ˜M → R+ its associated CMC time. Then for every a > 0, the hypersurface
(STcmc

a , gTcmc
a ) is n4-bi-Lipschitz to the hypersurface (STcosa , gTcosa ).

Proof The corollary follows from Remark 5.3 and Proposition 6.4. ��
6.2 The (2+1)-de Sitter case

Definition 6.1 Let M be a differentiable manifold endowed with two Lorentzian metrics g
and g. Let ξ be a vector fields everywhere non zero. The Lorentzian metric g is obtained by
a Wick rotation from the Lorentzian metric g along the vector fields ξ if:

• (1) For every p in M , the sub-spaces g-orthogonal and g-orthogonal to ξp are the same;
• (2) there exists a positive function f such that g = f g on the sub-space spanned by ξp;
• (3) There exists a positive function h such that : g = hg on ξ⊥

p .

Let � be a flat future complete regular domain of dimension 2+ 1. Consider �1 the past
in� of the cosmological level STcos1 and g its induced Lorentzian metric. By [12], there exists
a C1 local diffeomorphism D̂ : �1 → DS3 such that the pullback by D̂ of the de Sitter
metric is the Lorentzian metric g obtained from g by a Wick rotation along the cosmological
gradient with g = 1

(1−T 2
cos )

2 g on RξTcos and g = 1
1−T 2

cos
g on

〈

ξTcos
〉⊥. The space (�1, g)

is a dS-standard spacetime of hyperbolic type i.e associated to some hyperbolic projective
structure (given also by the canonical Wick rotation) on STcos1 . In fact, this Wick rotation
provides us a one to one correspondence between standard 2 + 1 de Sitter space–times of
hyperbolic type and flat future complete regular domains of dimension 2+ 1. Moreover, this
construction can be done in an equivariant way giving hence a one to one correspondence
between future complete flat MGHC non elementary space–times of dimension 2 + 1 and
future complete MGHC de Sitter space–times of hyperbolic type of dimension 2 + 1.

Proposition 6.8 ([12, Proposition 5.2.1]) The cosmological time Tcos of (�1, g) is a Cauchy
time. Moreover,

Tcos = argth (Tcos) ,

where Tcos is the cosmological time of (�1, g).

Suppose now that M � B(S)/� is a MGHC de Sitter space–time of hyperbolic type
and of dimension 2+ 1. Let (�1, g) be the hyperbolic dS-standard space–time of dimension
2 + 1 associated to M obtained by a Wick rotation from a flat regular domain (�, g). Let
Tcos and Tcos be respectively the cosmological time of (�, g) and (�1, g).
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Proposition 6.9 The cosmological levels STcos
a and STcos

b of B(S) with b < a are
(

sinh(a)
sinh(b)

)2
-

bi-Lipschitz one to the other. More precisely,

g
Tcos
b ≤ gTcos

a ≤
(

sinh(a)

sinh(b)

)2

g
Tcos
b .

Proof We have

gTcos
a = 1

(

1 − tanh2(a)
)gTcostanh(a).

But by Proposition 6.6

gTcostanh(b) ≤ gTcostanh(a) ≤
(

tanh (a)

tanh (b)

)2

gTcostanh(b)

Thus

g
Tcos
b ≤ gTcos

a ≤
(

sinh (a)

sinh (b)

)2

g
Tcos
b .

��
Proposition 6.10 Let S ⊂ B(S) be a convex � invariant Cauchy hypersurface and let gS be
the metric of S. Then, (S, gS) is K 4-bi-Lipschitz to (STcos

supS Tcos
, g

Tcos
supS Tcos

), where

K = sinh(supS Tcos)
sinh(inf S Tcos )

.

Proof Let us denote for simplicity by a = supS Tcos , by b = inf S Tcos and by |.|1 the de
Sitter norm of �1. Let α : [0, 1] → S be a Lipschitz curve in �1. For almost every s in [0, 1]
we have,

α̇(s) = ṙ(s) + Tcos(s)Ṅ (s) + Ṫcos(s).

Note that for every s in [0, 1], the vector ṙ(s) + Tcos(s)Ṅ (s) is tangent to the cosmological
level STcosTcos (s)

. Using the Wick caracterisation of the de Sitter norm |.|1 we get,

|α̇(s)|21 = 1

1 − T 2
cos(s)

∣

∣ṙ(s) + Tcos(s)Ṅ (s)
∣

∣

2 − 1
(

1 − T 2
cos(s)

)2 Ṫ
2
cos(s).

Thus by Proposition 6.9,
∣

∣ṙ(s) + tanh (b) Ṅ (s)
∣

∣

2
1 − Ṫ 2

cos(s) ≤ |α̇(s)|21
≤ ∣

∣ṙ(s) + tanh (a) Ṅ (s)
∣

∣

2
1 .

Using the same arguments as in the flat case we get that,

Ṫ 2
cos(s) ≤

(

(

sinh (a)

sinh (b)

)2

− 1

)

|α̇(s)|21 .

Hence

|α̇(s)|21 ≥
(

sinh (b)

sinh (a)

)2
∣

∣ṙ(s) + tanh(b)Ṅ (s)
∣

∣

2
1 .

Then by Proposition 6.9 we get
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(

sinh (b)

sinh(a)

)4
∣

∣ṙ(s) + tanh (a) Ṅ (s)
∣

∣

2
1 ≤ |α̇(s)|21 ≤ ∣

∣ṙ(s) + tanh (a) Ṅ (s)
∣

∣

2
1 .

��
Remark 6.11 Actually in Proposition 6.10 we proved that if α is a spacelike curve contained
in the past of the cosmological level STcosa , then the length l(α) of α is less than the length of
�

a−Tcos (α)
Tcos

, where �Tcos is the cosmological flow.

6.3 The (2+1)-anti de Sitter case

Let � be a flat future complete regular domain of dimension 2 + 1 and let g be its induced
Lorentzian metric. By [12] there exists a C1 local diffeomorphism D̂ : � → ADS3 such
that the pullback by D̂ of the anti de Sitter metric is the Lorentzian metric g obtained from
g by a Wick rotation along the cosmological gradient with g = 1

(1+T 2
cos )

2 g on RξTcos and

g = 1
(1+T 2

cos )
g on

〈

ξTcos
〉⊥. In fact (�, g) is the tight past region of its maximal anti de Sitter

extension.Moreover, thisWick rotation provide us a one to one correspondence between 2+1
anti de Sitter regular domains and flat future complete regular domains of dimension 2 + 1.
This construction can be done in an equivariant way giving hence a one to one correspondence
between future complete flat MGHC non elementary space–times of dimension 2 + 1 and
future complete MGHC anti de Sitter space–times of dimension 2 + 1.

Proposition 6.12 ([12, Proposition 6.2.2]) The cosmological time Tcos of (�, g) is a Cauchy
time. Moreover,

Tcos = arctan (Tcos) ,

where Tcos is the cosmological time of (�, g).

Let M be the tight past of a MGHC anti de Sitter space–time of dimension 2+ 1. Recall
that ˜M � (�, g), where (�, g) is obtained by a Wick rotation from a flat regular domain
(�, g). Let Tcos and Tcos be respectively the cosmological time of (�, g) and (�, g).

Proposition 6.13 The cosmological levels STcos
a and STcos

b of ˜M with b < a are
(

tan(a)
tan(b)

)2
-

bi-Lipschitz one to the other. More precisely,
(

cos (a)

cos (b)

)2

g
Tcos
b ≤ gTcos

a ≤
(

sin (a)

sin (b)

)2

g
Tcos
b .

Proof We have

gTcos
a = 1

1 + tan2(a)
gTcostanh(a).

But by Proposition 6.6

gTcostan(b) ≤ gTcostan(a) ≤
(

tan (a)

tan (b)

)2

gTcostan(b).

Thus
(

cos (a)

cos (b)

)2

g
Tcos
b ≤ gTcos

a ≤
(

sin(a)

sin(b)

)2

g
Tcos
b .

��
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Proposition 6.14 Let S ⊂ ˜M bea convex� invariant Cauchy surface and let gS be themetric

of S. Then (S, gS) is K 4-bi-Lipschitz to (STcos
supS Tcos

, g
Tcos
supS Tcos

), where K = tan(supS Tcos)
tan(inf S Tcos )

.

Proof Let us denote for simplicity by a = supS Tcos , by b = inf S Tcos and by |.|−1 the anti
de Sitter norm of�. Let α : [0, 1] → S be a Lipschitz curve in S. For almost every s in [0, 1]
we have,

α̇(s) = ṙ(s) + Tcos(s)Ṅ (s) + Ṫcos(s).

Note that for every s in [0, 1], the vector ṙ(s) + Tcos(s)Ṅ (s) is tangent to the cosmological
level STcosTcos (s)

. Using the Wick caracterisation of the anti de Sitter norm |.|−1 we get,

|α̇(s)|2−1 = 1

1 + T 2
cos(s)

∣

∣ṙ(s) + Tcos(s)Ṅ (s)
∣

∣

2 − 1
(

1 + T 2
cos(s)

)2 Ṫ
2
cos(s).

Thus by Proposition 6.13,

(

cos (a)

cos (b)

)2
∣

∣ṙ(s) + tan(b)Ṅ (s)
∣

∣

2
−1 − Ṫ 2

cos(s) ≤ |α̇(s)|2−1

≤
(

cos (b)

cos (a)

)2
∣

∣ṙ(s) + tan(a)Ṅ (s)
∣

∣

2
−1 .

Using the same arguments as in the flat and the de Sitter case we get that,

Ṫ 2
cos(s) ≤

(

(

tan (a)

tan (b)

)2

− 1

)

|α̇(s)|2−1 .

Hence

|α̇(s)|2−1 ≥
(

sin (b)

sin (a)

)2
∣

∣ṙ(s) + tan(b)Ṅ (s)
∣

∣

2
−1 .

Then by Proposition 6.13 we get

(

tan (b)

tan (a)

)4
∣

∣ṙ(s) + tan (a) Ṅ (s)
∣

∣

2
−1 ≤ |α̇(s)|2−1 ≤

(

tan(a)

tan(b)

)4
∣

∣ṙ(s) + tan (a) Ṅ (s)
∣

∣

2
−1 .

��

Remark 6.15 Actually in Proposition 6.14 we proved that if α is a spacelike curve contained
in the past of the cosmological level STcosa and in the future of the cosmological level STcosb ,

then the length l(α) of α is less than cos(b)
cos(a)

l(�a−Tcos (α)
Tcos

), where �Tcos is the cosmological
flow.

7 Asymptotic behavior in flat (n+ 1)-space–times

The purpose of this section is to prove Theorem 2.2 and Theorem 2.3.
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7.1 Generalities on geometric metric spaces

Let (X, d) be a metric space. The length Ld(α) of a path α : [a, b] → X is defined to be the
supremum, on finite subdivion of [a, b], of∑ d(α(ti ), α(ti+1)). The length distance dL(x, y)
between two points x and y is the infimum of the length of paths joining x and y. The metric
space (X, dL) is then called a length metric space. A path α joining two points x and y is
a geodesic of the length metric space (X, dL) if Ld(α) = dL(x, y). A length metric space
such that every two points are joined by a geodesic is called geodesic metric space.

Let (X, d) be a geodesic metric space. Let �(x, y, z) be a geodesic triangle in X . A
comparison triangle of�(x, y, z) in the model space (R2, dR2) is the unique (up to isometry)
triangle �̄(x̄, ȳ, z̄) of (R2, dR2) such that d(x, y) = deuc(x̄, ȳ), d(y, z) = deuc(ȳ, z̄) and
d(x, z) = deuc(x̄, z̄). The comparison map from �(x, y, z) to �̄(x̄, ȳ, z̄) is the unique map
which sends the points x , y, z to the points x̄ , ȳ, z̄ and the geodesic segments [x, y], [x, z],
[y, z] to the geodesic segments [x̄, ȳ], [x̄, z̄], [ȳ, z̄].
Definition 7.1 A geodesic metric space (X, d) is CAT(0) if every comparison map is 1-
Lipschitz.

A length metric space (X, d) is said to possess the approximative midpoints property if:
for every x , y in X and ε > 0 there exists z in X such that d(x, z) ≤ 1

2d(x, y) + ε and
d(y, z) ≤ 1

2d(x, y) + ε. The length metric space X satisfies the CAT(0) 4-points condition
if for any 4-tuple of points (x1, y1, x2, y2) there exists a 4-tuple of points (x̄1, ȳ1, x̄2, ȳ2) in
R
2 such that: d(xi , y j ) = d(x̄i , ȳ j ) for i, j ∈ {1, 2}, and d(x1, x2) ≤ d(x̄1, x̄2), d(y1, y2) ≤

d(ȳ1, ȳ2). Note that a CAT(0) metric space satisfies the CAT(0) 4-points condition and have
the approximative midpoints property. The converse is true in the complete case:

Proposition 7.1 ([17, Proposition II.1.11]) Let (X, d) be a complete metric space. The fol-
lowing conditions are equivalent:

• (1) X is a CAT(0) metric space;
• (2) X possesses the approximative midpoints property and satisfies the CAT(0) 4-points

condition.

A geodesic metric space (X, d) is a real tree if any two points are joined by a unique path.
Clearly a real tree is a CAT(0) metric space. An important example of real tree is the one
given by a measured geodesic lamination (see for example [26,28]).

Let � be a finitely generated group. A metric space on which � acts by isometry is a
�-metric space. Recall that a correspondence between two sets X1 and X2 is a subset R of
X1 × X2 such that the projections π1 : R → X1 and π2 : R → X2 are onto.

Definition 7.2 A sequence (Xn, dn, �)n∈N of �-metric spaces converge to a �-metric space
(X, d, �) for the Gromov equivariant topology if and only if, for every finite set K of X , for
every finite part P of � and for every ε > 0, there exists N0 such that for every n ≥ N0, there
is a finite set Kn of Xn and a correspondence Rn between K and Kn satisfying: ∀x, y ∈ K ,
∀xn, yn ∈ Kn , ∀γ ∈ P , if xRnxn and yRn yn , then

|d(x, γ y) − dn(xn, γ yn)| < ε.

7.2 Geometric properties of the initial singularity

Let � be a flat future complete regular domain and let (�, d�), (∂�/ ∼, d̄∂�) be the Initial
Singularity and theHorizon associated to�. Denote by (��, d�

� ) the completion of (�, d�).
By a result of Bonsante [14] the metric space (�, d�) embed isometrically in (∂�/ ∼, d̄∂�).
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Proposition 7.2 The Horizon (∂�/ ∼, d̄∂�) embeds isometrically in (��, d�
� ).

Proof Let �∞ be the set of Cauchy sequences of (�, d�) and let d∞ the pseudo-
distance defined by: if (xi )i∈N and (yi )i∈N are two Cauchy sequences of (�, d�), then
d∞((xi )i , (yi )i ) = limi→∞ d�(xi , yi ). Denote by π ′ : �∞ → �� the projection of �∞ in
��.

Let x in ∂� \ � and let (pi )i∈N be a sequence of � converging to x and such that
Tcos(pi+1) < Tcos(pi ), for every i in N. Note that the sequence r(pi ) stays in a compact
of ∂�. Thus extract a subsequence if necessary, we can suppose that r(pi ) converges to y
in ∂�. The timelike vectors pi − r(pi ) converge to x − y. So the vector x − y is a causal
vector. But ∂� is achronal so x − y is lightlike. Hence y should belong to the lightlike ray
passing through x which is unique by Lemma [14, Lemma 4.11]. Thus for every x in ∂�,
there exists a sequence (xi )i∈N of � converging to a point y ∈ � such that d∂�(x, y) = 0.

Now let f : ∂� → �� be the function which associates to each x in ∂� the image
by π ′ of a sequence (xi )i∈N in � converging to a point y of � such that d∂�(x, y) = 0.
This function is well defined and induces an isometric embedding from (∂�/ ∼, d̄∂�) to
(��, d�

� ).

��
Proposition 7.3 For every x and y in �, there exists a geodesic in (∂�/ ∼, d̄∂�) joining x
and y.

We will need the following lemma:

Lemma 7.4 Consider the Lorentzian model H
n of the hyperbolic space. For every n1 �=

n2 in H
n, the subset defined by F = {v ∈ DSn such that 〈v, n1〉 ≥ 0 and 〈v, n2〉 ≤ 0} is

precompact.

Proof Fix an origin of the Minkowski space R
1,n . Let n1 and n2 in H

n and v in R
1,n such

that |v|2 = 1, 〈v, n1〉 ≥ 0 and 〈v, n2〉 ≤ 0.
One can write v = −〈v, n1〉 n1 + v1, where v1 is in n⊥

1 . We have then

−〈v, n1〉2 + |v1|2 = 1,

And hence

||v||2 = 1 + 2 〈v, n1〉2 ,

where ||.|| is the euclidean norm of R
n+1.

Thus if we want to proof that v stays in a compact, we need to proof that 〈v, n1〉 is bounded
independently of v.

In the same way we can write n2 = −〈n1, n2〉 n1 + u1, where u1 is in n⊥
1 . Thus

−(〈n2, n1〉)2 + |u1|2 = −1.

But 〈v, n2〉 ≤ 0, so

−〈n1, n2〉 〈n1, v〉 + 〈v1, u1〉 ≤ 0,

Hence

0 ≤ 〈v, n1〉 ≤ 〈v1, u1〉
〈n1, n2〉 .
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Let’s write v1 = −〈v1, u1〉 u1 + v′
1, where v′

1 is in n⊥
1 ∩ u⊥

1 . Thus

−〈v, n1〉2 + 〈v1, u1〉2 + ∣

∣v′
1

∣

∣

2 = 1,

Then

〈v1, u1〉2 ≤ 〈n1, n2〉2
〈n1, n2〉2 − 1

.

And this proves that

0 ≤ 〈v, n1〉 ≤ 1
√

〈n1, n2〉2 − 1
.

��
Proposition 7.5 Let α : [0, l] → STcosa be the geodesic joining two point p and q of STcosa .
Then for every s in [0, l] we have

〈

α̇(s), Np
〉 ≤ 0 and

〈

α̇(s), Nq
〉 ≥ 0,

where Np and Nq are the normal vectors of STcosa at p and q respectively.

Proof Let (x0, x1, . . . , xn) be a coordinate system of R
1,n such that p = (0, . . . , 0) and

Np = (1, 0, . . . , 0). The hypersurface STcosa is the graph of 1-Lipschitz convex C1 function
φ : R

n → R. We have
〈

α̇(s), Np
〉 = −φ̇(s). By [14, Lemma 7.7], φ is increasing, hence

〈

α̇(s), Np
〉 ≤ 0. In the same way we prove that

〈

α̇(s), Np
〉 ≥ 0. ��

Let Tcos the cosmological time of� and consider XTcos the space of gradient lines of Tcos .
Note that the normal application and the retraction map of � can be seen as maps on XTcos .

Proof of Proposition 7.3 Let π : ∂� → ∂�/ ∼ be the projection of ∂� in ∂�/ ∼. Note
that if F is a compact of ∂� ⊂ R

1,n , then π(F) is a compact of (∂�/ ∼, d̄∂�). Let deuc be
the euclidean metric of R

n+1 and Leuc its associated euclidean length structure. Denote by
L the length structure defined on ∂�/ ∼ by the distance d̄∂� and by L the one induced by
the Minkowski metric on ∂�.

We want to prove that for every p and q in XTcos , there is a geodesic in (∂�/ ∼, d̄∂�)

joining r(p) and r(q). There are two distinct cases:

(1) If Np = Nq. Then by Proposition [14, Proposition 4.14], r(p) + s(r(p) − r(q)) is
contained in ∂� for every s in [0, 1]. Clearly r(p) + s(r(p) − r(q)) is a geodesic in
(∂�/ ∼, d̄∂�) joining r(p) and r(q).

(2) If Np �= Nq. For every 0 < a < 1, let αa : [0, la] → STcosa be the geodesic joining p
and q i.e joining the intersection point of p and STcosa with the intersection point of q
and STcosa . By Proposition 7.5 we have

〈

α̇a(s), Np
〉 ≤ 0 and

〈

α̇a(s), Nq
〉 ≥ 0, for every

s in [0, la]. Therefore, by Lemma 7.4, there is a compact F ⊂ dSn ⊂ R
n+1 such that

α̇a(s) ∈ F for every 0 < a < 1 and every s in [0, la]. There is hence a constant C > 0
such that Leuc(αa) ≤ C for every 0 < a < 1. This means that the geodesics αa are
contained in a compact F ′ of �.

On the one hand, as J−(F ′)∩∂� is compact in ∂�, the curves π ◦r ◦αa stay in a compact
of (∂�/ ∼, d̄∂�).

On the other hand, for every 0 < a < 1 and every s1, s2 in [0, la] we have,
d̄∂� (π (r (αa(s1))) , π (r (αa(s2)))) = d� (r (αa(s1)) , r (αa(s2))) .
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But by [14, Lemma 7.4, Proposition 7.8],

d� (r (αa(s1)) , r (αa(s2))) ≤ dTcosa (αa(s1), αa(s2)) .

And hence,

d̄∂� (π (r (αa(s1))) , π (r (αa(s2)))) ≤ |s1 − s2| .
This proves that the family (π ◦ r ◦ αa)0<a<1 is an equicontinuous family of curves.
Thus by the Ascoli–Arzéla Theorem we deduce that π ◦ r ◦ αa converges uniformly in
(∂�/ ∼, d̄∂�) to a curve α joining r(p) and r(q). Since L(π ◦ r ◦ αa) ≤ L(r ◦ αa)

and lima→0 L(r ◦ αa) = d�(r(p), r(q)) = d̄∂�(π ◦ r(p), π ◦ r(q)), we have that
lima→0 L(π ◦ r ◦ αa) = d̄∂�(r(p), r(q)). But the length structure L is lower semi con-
tinuous, thus L(α) = d̄∂�(r(p), r(q)). ��
Proposition 7.6 For every a > 0, the cosmological level (STcosa , dTcosa ) is a C AT (0) metric
space.

Proof The cosmological hypersurface STcosa is the graphof aC1 convex functionφ : R
n → R.

Using convolution, one can get a uniformC1 approximation of φ by smooth convex functions
ψi : R

n → R. Thus, on the one hand the hypersurface STcosa is a geodesic metric space. On
the other hand, by the Gauss’s Theorema Egrugium and the Theorem [17, Theorem II.1A.6]
we have that every smooth convex surface is CAT (0). Hence the cosmological level STcosa is
CAT (0). ��
Proposition 7.7 The completion (��, d�

� ) of the initial singularity (�, d�) is a C AT (0)
metric space.

Proof We are first going to prove that (��, d�
� ) possesses the approximative midpoints

property. For that, it is sufficient to prove it for (�, d�).
Let p, q two points of XTcos the space of gradient lines of the cosmological time Tcos

and let ε > 0. For every a > 0, denote by pa (respectively qa) the intersection point of
p and STcosa (respectively the intersection point of q and STcosa ). Since every (STcosa , dTcosa ) is
geodesic, it possesses the midpoints property. So for every a > 0, let za be the point in STcosa

such that da(pa, za) = da(qa, za) = 1
2da(pa, qa) . For every a > 0, let us denote by za the

cosmological gradient line passing through za .
By [14, Proposition 7.6, Proposition 7.8], the distances dTcosa (pa, qa) converge, when a

goes to 0, to d�(r(p), r(q)). Then let,

• a0 > 0 such that for every 0 < a ≤ a0 we have |d�(r(p), r(q)) − da(pa, qa)| < ε;
• a1 > 0 so that for every 0 < a ≤ a1 we have

∣

∣d�(r(p), r(za0)) − da(pa, za0)
∣

∣ < ε
2 .

For every 0 < a < min(a0, a1) we have,

d�(r(p), r(za0)) ≤ da(pa, za0) + ε

2
.

But da(pa, za0) ≤ da0(pa0 , za0), for 0 < a < min(a0, a1). Hence

d�(r(p), r(za0)) ≤ 1

2
da0(pa0 , qa0) + ε

2
≤ 1

2
d�(r(p), r(q)) + ε.

In the same way we show that

d�(r(q), r(za0)) ≤ 1

2
d�(r(p), r(q)) + ε.
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We obtain in this way an ε-approximative midpoint r(za0).
By [14, Proposition 7.6, Proposition 7.8], the CAT (0) metric spaces (STcosa , dTcosa ) con-

verge in the compact open topology to (�, d�). Thus the metric spaces (�, d�) and
(��, d�

� ) satisfy the CAT (0) 4-points condition. As (��, d�
� ) is complete, by Propo-

sition 7.1 it is CAT (0). ��
7.3 Asymptotic convergence in the past

In this part we will prove the last point of Theorem 2.2. Let M � �/�τ be a future complete
MGHC flat non elementary space–time of dimension n + 1, where � is a future complete
regular domain and �τ a discrete subgroup of SO+(1, n) � R

1,n .
Let Tcos be the cosmological time of � and let and T be a quasi-concave �τ -invariant

Cauchy time of�. Denote respectively by XTcos , XT the space of gradient lines of Tcos and the
space of gradient lines of T . The gradient lines of Tcos (respectively T ) being inextensible
temporal curves, they intersect every level set of Tcos (respectively every level set of T ),
which are Cauchy hypersurfaces, at a unique point. It follows that every level set of Tcos
and every level set of T is identified with the space XTcos and the space XT respectively.
Denote by dTcosa (respectively δ

Tcos
a ) the distance of STcosa transported on XTcos (respectively

on XT ). In the samewaywe define the distances dTa on XT and δTa on XTcos . Since the Cauchy
hypersurfaces are homeomorphic one to each other, the distances dTcosa and δTa (respectively
dTa and δ

Tcos
a ) define the same topology on XTcos (respectively on XT ).

The three following results were proved in [11] (see for instance [11, Remark 1.2]).

Proposition 7.8 The distances dTa defined on XT converge in the compact open topology to
a pseudo-distance dT0 .

In the case of the cosmological time, the cleaning of the pseudo-metric space (XTcos , d
Tcos
0 )

is isometric to the Initial Singularity (�, d�).

Proposition 7.9 Up to a subsequence, the sequence (δ
Tcos
an )n≥0 (respectively (δTan )n≥0) con-

verge in the compact open topology to a pseudo-distance δ
Tcos
0 (respectively δT0 ) when n goes

to ∞. Moreover,

δ
Tcos
0 ≤ dT0 ;
δT0 ≤ dTcos0 .

Corollary 7.10 The marked spectrum of dTcosa , dTa , δ
Tcos
0 and δT0 are two by two equals.

The next proposition gives a more precise description of the behavior of the distances δTa
near the initial singularity.

Proposition 7.11 The distances δTa , converge in the compact open topology to the pseudo-

distance dTcos0 .

Proof By Proposition 7.9, it is sufficient to proof that every compact-open limit point δT0 of

(δTa )a>0 verifies δT0 ≥ dTcos0 .
Let (δTai )i∈N a subsequence of (δTa )a>0 converging to δT0 . Let p and q in XTcos . For every

i ∈ N, denote respectively by pi , qi the intersection points of STai and p, q. Note that

J−(pi )∩� (respectively J−(qi )∩� ) is a decreasing sequence of compacts which converge
to r(p) (respectively r(q)).

123



Geom Dedicata (2017) 190:103–133 129

Let i ∈ N, there exists f (ai ) such that the hypersurface STcosf (ai )
is in the past of the

hypersurface STai . Denote respectively by xi, yi the gradient lines of T passing through the
points pi , qi of STai . Let us denote again by x f (ai ), y f (ai ) respectively the intersection points

of xi and yi with STcosf (ai )
. We get then:

dTcosf (ai )
(p, q) ≤ δ

Tcos
f (ai )

(xi, yi) + dTcosf (ai )
(p, xi ) + dTcosf (ai )

(q, yi ).

But by Proposition 4.1, we have,

δ
Tcos
f (ai )

(xi, yi) ≤ dTai (xi, yi) = δTai (p, q).

Hence

dTcosf (ai )
(p, q) ≤ δTai (p, q) + dTcosf (ai )

(p, xi ) + dTcosf (ai )
(q, yi ).

On the one hand we have that dTcosf (ai )
(p, xi ) (respectively d

Tcos
f (ai )

(q, yi )) is bounded from above

by
∣

∣

∣

∣p f (ai ) − xi
∣

∣

∣

∣ (respectively
∣

∣

∣

∣q f (ai ) − yi
∣

∣

∣

∣), where ||.|| is the euclidean norm of R
n+1.

But xi , p f (ai ) (respectively yi , q f (ai )) converge when i goes ton ∞ to the same point

which is r(p) (respectively r(q)). This proves that dTcosf (ai )
(p, xi ) and dTcosf (ai )

(q, yi ) converge
to 0 when i goes toward ∞.

On the other hand, the distances dTcosf (ai )
and δTai converge respectively, when i goes to ∞,

to dTcos0 and δT0 . Thus we have

dTcos0 ≤ δT0 .

and hence dTcos0 = δT0 . ��
This proposition proves that the �τ -metric spaces (�τ , STa , dTa )a>0 converge in the com-

pact open topology,whena goes to 0, to the initial singularity (�τ ,�, d�). Thus the�τ -metric
spaces (�τ , STa , dTa )a>0 converge in the Gromov equivariant topology, when a goes to 0 to

the initial singularity (�τ ,�, d�) and hence to its completion (�τ ,�
�, d�

� ). This finishes
the proof of Theorem 2.2.

7.4 Asymptotic convergence in the future

The object of this part is to prove Theorem 2.3. We use the same notation as in the previous
part. Let T : � → R+ be a C1 quasi-concave �τ -invariant Cauchy time.

Proposition 7.12 There exists a constant C > 0 (depending only on �) such that:

• (1) for everyC ′ > C , the renormalizeddistances δTa
sup

STa
Tcos

are, near the infinity,C ′-quasi-
isometric to the hyperbolic metric dHn . In particular, the limit points, for the compact

open topology, of the family (
δTa

sup
STa

Tcos
)a are all C-bi-Lipschitz to dHn ;

• (2) In the 2+1 case, the renormalizedCMC distances (respectively k distances) converge
for the compact open topology, when times goes to infinity, to the hyperbolic distance
dH2 .

Proof Let a > 0. Denote by a+ = supSTa Tcos and by a− = inf STa Tcos . By Proposition 6.4
we have that for every x and y in XTcos ,

a−
a+

dTcosa− (x, y) ≤ δTa (x, y) ≤ dTcosa+ (x, y).
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So
(

a−
a+

)2 dTcosa− (x, y)

a−
≤ δTa (x, y)

a+
≤ dTcosa+ (x, y)

a+
.

(1) The general case: by Proposition 5.1, there exists a constant C ′ such that a+
a− ≤ C ′ for

a big enough. Together with Proposition [14, Proposition 7.1] we conclude that for a
big enough the distance δTa is C ′-quasi-isometric to the hyperbolic hyperbolic dHn . In
particular, all the limit points (for the compact open topology) of the family (δTa )a>0 are
C-bi-Lipschitz to the hyperbolic distance dHn where C is the constant depending only
on � given in Proposition 5.1.

(2) In the 2 + 1 case: if T is the CMC time or the k-time then by Proposition 5.4 and the
Corollary 5.7, the constant C is equal to one and hence the family (δTa )a>0 converges
in the compact open topology, when a goes to infinity, to dH2 .

��
This last proposition together with the fact that compact open convergence of�-metric spaces
is stronger than the Gromov equivariant one conclude the proof of Theorem 2.3.

8 Past convergence in (2+1)-de Sitter space–times

In this section we will proof Theorem 2.5 in de Sitter case. Let M � B(S)/� be a 2 + 1
dimensionalMGHC future complete de Sitter space–time of hyperbolic type, where B(S) �
(�1, g) is the associated hyperbolic dS-standard spacetime of dimension obtained by aWick
rotation from a flat regular domain (�, g). Let (λ, μ) be the measured geodesic lamination
on H

2 associated to (�, g). Let’s denote respectively by Tcos and Tcos the cosmological time
of (�, g) and (�1, g).

Proposition 8.1 The cosmological level (�, STcos
a , dTcos

a )a>0 converge in the compact open
topology, when a goes to 0, to (�,�, d�) the real tree dual to the measured geodesic lami-
nation (λ, μ).

Proof Note that the space of cosmological gradient lines of (�1, g) is the same as the space
of cosmological gradient lines of (�1, g). Let’s denote it by Xcos . For every a > 0, the
distance dTcos

a of STcos
a transported to Xcos is also denoted by dTcos

a .
On the one hand, by Proposition 7.8 the distances dTcos

a (respectively dTcostanh(a)) converge in

the compact open topology to the pseudo-distance dTcos
0 (respectively dTcos0 ) on Xcos .

On the other hand and for every a > 0 we have: dTcos
a (x, y) = 1

1−tanh2(a)
dTcostanh(a)(x, y).

Thus, the distances dTcos
a converge in the compact open topology, when a goes to 0, to the

pseudo-distances dTcos0 . But the cleaning of (XTcos , d
Tcos
0 ) is isometric to (�, d�), which is

by [12, Proposition 3.7.2] isometric to the real tree dual to the measured geodesic lamination
(λ, μ). So the�metric spaces (�, STcos

a , dTcos
a )a>0 converge, when a goes to 0, in the compact

open topology to the real tree (�,�, d�). Then the � metric spaces (�, STcos
a , dTcos

a )a>0

converge, when a goes to 0, in the Gromov equivariant topology to the real tree (�,�, d�).
��

Proof of Theorem 2.5 in the de Sitter case Thanks to Proposition 4.1, Proposition 8.1 and
Remark 6.11, one can reproduce the proof of Theorem 2.1 without any modification and
proves Theorem 2.5 in the de Sitter case. ��
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9 Past convergence in (2+1)-anti de Sitter space–times

In this section we will proof Theorem 2.5 in the anti de Sitter case. Let M � ˜M/� be the
tight past of a 2 + 1 dimensional MGHC anti de Sitter space–time, where ˜M � (�, g) is
obtained by a Wick rotation from a flat regular domain (�, g). Let (λ, μ) be the measured
geodesic lamination on H

2 associated to (�, g). Let’s denote respectively by Tcos and Tcos
the cosmological time of (�, g) and (�, g).

Proposition 9.1 The cosmological level (�, STcos
a , dTcos

a )a>0 converge in the compact open
topology, when a goes to 0, to (�,�, d�) the real tree dual to the measured geodesic lami-
nation (λ, μ).

Proof Note that the space of cosmological gradient lines of (�1, g) is the same as the space
of cosmological gradient lines of (�1, g). Let’s denote it by Xcos . For every a > 0, the
distance dTcos

a of STcos
a transported to Xcos is also denoted by dTcos

a .
On the one hand, by Proposition 7.8 the distances dTcos

a (respectively dTcostan(a)) converge in

the compact open topology to the pseudo-distance dTcos
0 (respectively dTcos0 ) on Xcos .

On the other hand and for every a > 0 we have: dTcos
a (x, y) = 1

1+tan2(a)
dTcostan(a)(x, y).

Thus, the distances dTcos
a converge in the compact open topology, when a goes to 0, to the

pseudo-distances dTcos0 . So the � metric spaces (�, STcos
a , dTcos

a )a>0 converge, when a goes
to 0, in the Gromov equivariant topology to the real tree (�,�, d�). ��
Proof of Theorem 2.5 in the anti Sitter case Thanks to Proposition 4.1, Proposition 9.1 and
Remark 6.15, one can reproduce the proof of Theorem 2.1 without any modification and
proves Theorem 2.5 in the anti de Sitter case. ��

10 Asymptotic behavior in the Teichmüller space

The aim object of this part is to proof Theorem 2.7. Let S � H
2/� be a closed hyperbolic

surface. Denote by Teich(S) the Teichmüller space of S. On Teich(S) consider the Teich-
müller metric dTeich. As a K -bilipschitz diffeomorphism is K 2-quasiconformal we have the
following result:

Proposition 10.1 Let g1 and g2 two Riemmannian metric on S such that (S, g1) is K -
bilipchitz to (S, g2). Then dTeich([g1] , [g2]) ≤ log K.

Let (λ, μ) be a measured geodesic lamination on S. Let M be the unique flat (or de Sitter,
or the tight past of anti de Sitter) MGHC space–time of dimension 2 + 1 associated to
(λ, μ). Let Tcmc and Tk be respectively the CMC time and the k time of ˜M . For each of the
cosmological time, the k time and the CMC time, let us consider respectively the associated

curves a →
[

gTcosa

]

, a →
[

gTka
]

and a →
[

gTcmc
a

]

in the Teichmüller space Teich(S) of S.

Proposition 10.2 The flat case. The curves a →
[

gTka
]

and a →
[

gTcmc
a

]

converge when a

goes to infinity to the hyperbolic structure H
2/�.

Proof On the one hand and by Proposition 6.4, gTka (respectively gTcmc
a ) is C4

a bi-Lipschitz to
gTcosa for every a > 0.Moreover by Proposition 5.4 and theCorollary 5.7,Ca goes to onewhen
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a goes to ∞. Thus by Proposition 10.1 we have that dTeich
([

gTka
]

,
[

gTcosa

])

(respectively

dTeich
([

gTcmc
a

]

,
[

gTcosa

])

goes to 0 when a goes to ∞.

On the other hand, by a result of Bonsante–Benedetti [12], the cosmological curve a →
[

gTcosa

]

corresponds to the grafting associated to the measured geodesic lamination (λ, μ).

The grafting curve converges when times goes to +∞, to the hyperbolic structure H
2/�.

Hence
[

gTka
]

(respectively
[

gTcmc
a

]

) converges when a goes to infinity to to the hyperbolic

structure H
2/�. ��

Proposition 10.3 The de Sitter case. The limit points, when time goes to +∞, of the curve

a →
[

gTka
]

are at bounded Teichmüller distance from the hyperbolic structure H
2/�.

Proof On the one hand and by Propositions 6.10, 5.9 we have that dTeich(
[

gTka
]

,
[

gTcosa

]

) ≤
log(3 − H0) where H0 is the constant given in the proof of Proposition 5.9.

On the other hand
[

gTcosa

]

, goes to the grafting metric graλ(S) when time goes to +∞.

Hence the limit points, when a goes to infinity, of
[

gTka
]

stay at log(3 − H0) Teichmüller

distance from the grafting metric graλ(S). ��
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