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Abstract AHeintze group is a Lie group of the form N�α R, where N is a simply connected
nilpotent Lie group and α is a derivation of Lie(N ) whose eigenvalues all have positive real
parts. We show that if two purely real Heintze groups equipped with left-invariant metrics
are quasi-isometric, then up to a positive scalar multiple, their respective derivations have
the same characteristic polynomial. Using the same techniques, we prove that if we restrict
to the class of Heintze groups for which N is the Heisenberg group, then the Jordan form of
α, up to positive scalar multiples, is a quasi-isometry invariant.
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1 Introduction

Negatively curved homogeneous manifolds were characterized by Heintze [6]. Each such
manifold is isometric to a solvable Lie group Xα equipped with a left invariant metric, and
the group is a semi-direct product N �α R where N is a connected, simply connected,
nilpotent Lie group, and α is a derivation of Lie(N ) whose eigenvalues all have positive real
parts. Such a group is called a Heintze group.
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A purely real Heintze group is a Heintze group Xα as above, for which α has only real
eigenvalues. Every Heintze group is quasi-isometric to a purely real one, see [3, Section 5B].
We will focus only on purely real Heintze groups.

An important conjecture regarding the large scale geometry of purely real Heintze groups
states that two such groups are quasi-isometric if, and only if, they are isomorphic [3, Con-
jecture 6.B.2]. This question is motivated by the original works of Pansu and Hamenstädt
[4,11,12]. The conjecture is known to be true in some particular cases, but is still open in
its full generality. It was proved by Pansu when both groups are of Carnot type. Recall that
a purely real Heintze group is of Carnot type if the eigenspace associated to the smallest
eigenvalue of α generates Lie(N ).

If we restrict to the family of abelian type Heintze groups, i.e. when N is Abelian, Xie
showed that the canonical Jordan form of the derivation α, up to scalar multiples, is a quasi-
isometry invariant [14–16]. This is enough to prove the conjecture in the abelian case. In [17],
Xie worked out the case when N is the Heisenberg group and α is a diagonalizable derivation.
We refer the reader to [3] for a more detailed survey on the quasi-isometric classification of
locally compact groups, including Heintze groups.

In this note we focus on the quasi-isometry invariants associated to the derivation α. Our
main motivation is the following question: let Xα = N1 �α R and Xβ = N2 �β R be two
quasi-isometric purely real Heintze groups, have the derivations α and β the same (up to
scalar multiples) Jordan form? In this generality, the question is far from being answered,
even if N1 and N2 are the same group.

The main tools to define quasi-isometry invariants for this class of groups are the L p-
cohomology and its related cousins, like the Orlicz cohomology, the space of functions of
finite p-variation, and other similar invariant functional spaces defined on the boundary of
the group. For p ∈ [1,∞), the local continuous L p-cohomology of Xα can be identified with
the Fréchet algebra Ap(N , α) of measurable functions u : N → R (up to a.e. constants) such
that the discrete derivative �u(x, y) = u(x)− u(y) has finite p-norm on any compact set of
N×N . The p-norm is with respect to themeasure on N×N given by dx⊗dy/�α(x, y)2tr(α),
with �α an Ahlfors regular parabolic visual quasi-metric on N . See Sect. 2 for the definition
of the parabolic visual boundary.

Since the local continuous L p-cohomology is invariant by quasi-isometries, the function
sN ,α : [1,∞) → R which associates to p the dimension of the spectrum of Ap(N , α)

is also an invariant. This function is locally constant on the complement of the finite set
{tr(α)/λ : λ is an eigenvalue of α}, and can have jumps at these points. In many concrete
examples, onemay use this fact to show that the eigenvalues of α are invariants. Nevertheless,
in the general case, it provides not enough information to deal with the entire spectrum of α.

Let us explain this point by an example. Consider a finite simple directed graph �, with
set of vertices V = {v1, . . . , vp} and set of edges E = {e1, . . . , eq}. We associate to � a
2-step nilpotent Lie algebra of dimension n = p + q ,

n� = Span (X1, . . . , X p, Z1, . . . , Zq),

defined by

[Xi , X j ] =
{
Zk if ek = (vi , v j ),

0 otherwise.

Two such Lie algebras are isomorphic if, and only if, the graphs from which they arise are
isomorphic [9].
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Fig. 1 In (i) the graph �1 and in
(ii) the graph �2
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Let �1 and �2 be the two graphs shown in Fig. 1, n1 and n2 be the corresponding Lie
algebras, and N1 and N2 be the corresponding Lie groups. Define α to be the derivation of
n1 given by

α(X1) = X1, α(X2) = 2X2, α(X3) = 3X3, α(Z1) = 3Z1, α(Z2) = 5Z2, α(Z3) = 4Z3;
and β to be the derivation of n2 given by

β(X1) = X1, β(X2) = 2X2, β(X3) = 3X3, β(X4) = 3X4, β(Z1) = 3Z1, β(Z2) = 6Z2.

Consider the associated Heintze groups N1 �α R and N2 �β R. As far as we know, even
though α and β are diagonal derivations, there is no previous known result that can be
applied to show that these groups are not quasi-isometric. For instance, for all p ∈ [1,∞),
the dimension of the spectrum of the local continuous L p-cohomology is the same for both
groups; see Fig. 2. That is, the L p-cohomology is not able to capture all the eigenvalues of
the respective derivations. We refer the reader to [2, Theorem 1.4] and [10, Corollaire 4.4]
for the computation of the spectrum of the L p-cohomology.

Let us state our main results. We denote by 0 < λ1 < · · · < λd the eigenvalues of α, and
let n = V1 ⊕· · ·⊕Vd be the direct-sum decomposition of n into the generalized eigenspaces
of α. Here n denotes the Lie algebra of N . Our first result says that the data consisting of d ,
λi/λ1, and dimVi for all i = 1, . . . , d , is a quasi-isometry invariant of the group.

Theorem 1.1 Let Xα = N1 �α R and Xβ = N2 �β R be two quasi-isometric purely real
Heintze groups. Then there exists s > 0 such that α and sβ have the same characteristic
polynomial.

The next corollary follows immediately.

Corollary 1.2 Under the same hypothesis of Theorem 1.1, if α and β are diagonalizable
derivations, then their respective diagonal forms must be proportional.

The proof of Theorem 1.1 relies on two important results. The first, is that the boundary
extensionof anyquasi-isometry between twopurely realHeintze groups, that are not ofCarnot
type, induces a homeomorphism between N1 and N2 which preserves a certain foliation [2,
Theorem1.1]. This foliation is given by the left cosets of a proper subgroup of N1; respectively

1
p

5=mid 6=mid3=mid0=mid

tr(α) = tr(β(rt 81=)α)/(rt 9=2α)/3 = 6

Fig. 2 Dependence on p of the dimension of the spectrum of the local continuous L p-cohomology for the
groups N1 �α R and N2 �β R in the example above
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N2. The second, is that such a homeomorphism is necessarily a bi-Lipschitz map when N1

and N2 are endowed with their respective parabolic visual metrics [8, Theorem 1.1]. This
fact implies that a nicer foliation, given by the left cosets of normal subgroups, is preserved.
This allows us to argue by induction.

Our second result shows that the Jordan form of the derivation is a quasi-isometry invariant
if we restrict to the class of Heintze groups for which N is the Heisenberg group.

Theorem 1.3 Let α and β be two derivations of the 2n+1-dimensional Heisenberg algebra
kn. Denote by Kn the corresponding Heisenberg group. Let Kn �α R and Kn �β R be two
purely real quasi-isometric Heintze groups, then there exists s > 0 such that α and sβ have
the same Jordan canonical form.

This result improves the work done in [17,18]. The key point in the proof of Theorem 1.3
is that the relative simplicity of the algebraic structure of the Heisenberg group, allows us
to explicitly compute the normal subgroups that define the invariant foliations. We can then
perform a finer induction argument.

Theorem1.3 does not provide yet a complete characterization of the quasi-isometry classes
of Heintze groups over the Heisenberg group. The difference between this case and the
diagonalizable case studied in [17] is that here the invariance of the Jordan formdoes not imply
that the groups are isomorphic. We can see it with an example. Let us consider in k2 a basis
B = {X1, Y1, X2, Y2, Z} such that the center is generated by Z , [X1, Y1] = [X2, Y2] = Z ,
and all the other brackets are zero. Let α and β be two derivations of k2 whose matrices with
respect to this basis are given by

α =

⎛
⎜⎜⎜⎜⎝
1 1
1
1 1
1
2

⎞
⎟⎟⎟⎟⎠ and β =

⎛
⎜⎜⎜⎜⎝
1 −1
1

1
1 1

2

⎞
⎟⎟⎟⎟⎠ .

These two derivations have the same Jordan form but the corresponding Heintze groups are
not isomorphic. Indeed suppose there is an isomorphism φ : k2 �α R → k2 �β R, then φ

induces an automorphism γ of k2 such that γαγ −1 − t0β = adX0 , for some t0 ∈ R and
X0 ∈ k2. This implies that the quadratic forms

Qα(X) = 〈[α(X), X ], Z〉 and Qβ = 〈[β(X), X ], Z〉
are equivalent up a scalar multiple. In particular, they must have the same signature. But the
signature of Qα is (3, 2, 0) and that of Qβ is (3, 1, 1), which is a contradiction. We do not
know if these Heintze groups are quasi-isometric. A possible approach to prove that they are
not would be to show that the quadratic form considered above is a quasi-isometry invariant.

2 Preliminaries on Heintze groups and their quasi-isometries

In this section we introduce the notations used throughout this note and recall some known
results which are used in the proofs of Theorems 1.1 and 1.3.

Let Der(n) be the Lie algebra of derivations of n. The group structure of Xα is given by
an expanding action τ : R → Aut(N ), where τ satisfies deτ(t) = etα . We will identify the
subgroup N × {0} with N . Let B = {∂1, . . . , ∂n} be a basis of TeN on which α assumes its
Jordan canonical form, and denote by ∂t the tangent vector at s = 0 to the vertical curve
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s 	→ (e, s). By [6], Xα admits a left-invariant metric of negative curvature. In particular,
Xα is Gromov hyperbolic when equipped with any left-invariant metric. We will restrict our
attention to metrics of the form

g(x,t) = τ(t)∗gN ,x ⊕ dt2, (1)

where gN is a left invariant metric on N . The vertical lines γx : t 	→ (x, t) are unit-speed
geodesics, and they define when t → +∞ a boundary point denoted ∞. The boundary at
infinity of Xα is a topological n-sphere,whichwe identifywith the one-point compactification
N ∪ {∞}.

In N = ∂Xα \ {∞}, we can define a bi-Lipschitz class of quasi-metrics, called parabolic
visual metrics, which are characterized by the following properties:

(V1) � : N × N → R+ is continuous;
(V2) � is left invariant;
(V3) and τ(t)∗� = et� for all t ∈ R.

Notice that if a quasi-metric � satisfies (V1), (V2) and (V3) above, then for any x0 ∈ N the
function x 	→ �(x0, x) is proper.

A particular choice of visual metric is the following. The orbits of N , the sets N × {t},
correspond to the horospheres centered at ∞. We denote by dt the Riemannian distance
induced on N × {t}. Then

�(x, y) = et , where t = inf
{
s ∈ R : ds

(
γx (s), γy(s)

) ≤ 1
}
, x, y ∈ N , (2)

defines a visual metric on N . We refer to [5,7] for more details. Notice that (N , �) is Ahlfors
regular of Hausdorff dimension tr(α). When necessary, we will write �α to indicate the
dependence of the visual metric on the derivation α. Notice that the bi-Lipschitz class of the
visual metrics is unchanged when the metric gN of N is changed. This is not the case for
changes involving the vertical direction ∂t .

Denote by 0 < λ1 < · · · < λd the eigenvalues of α, and let n = V1 ⊕ · · · ⊕ Vd be the
direct sum decomposition of n into the generalized eigenspaces of α. One easily checks that

[Vi , Vj ] is
{
contained in Vk if λk = λi + λ j ,

trivial otherwise.
(3)

In particular, Vd is always contained in the center of n. This also implies that if α = δ + ν is
the decomposition of α into its diagonal and nilpotent parts, then both δ and ν are derivations
of n.

A special role in this theory is played by the purely real Heintze groups of Carnot type.
This is the case when the Lie algebra spanned by the eigenspaceW1 = Ker(α−λ1) coincides
with n. More precisely, if we let Wi+1 = [W1,Wi ], then these subspaces form a grading of
n; that is

n =
d⊕

i=1

Wi and [Wi ,Wj ] ⊂ Wi+ j ,

and we have α = iλ1 on Wi . Thus α is diagonalizable, its eigenvalues are λ1, 2λ1, . . . , dλ1,
andW1, . . . ,Wd are its eigenspaces. Any norm onW1 induces a Carnot–Carathéodorymetric
�CC on N that satisfies properties (V1), (V2) and (V3) above. In particular, this distancemakes
N a geodesic space. Examples of Carnot type groups are the symmetric spaces of rank one.
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When Xα is not of Carnot type, we denote by mir , for i = 1, . . . , d and r = 1, . . . , ni ,
the sizes of the Jordan blocks corresponding to the generalized eigenspace Vi , and let mi =
max{mir : r = 1, . . . , ni }. We consider the Lie algebras

uα = LieSpan(V1) and hα = LieSpan(V ∗
1 ), (4)

where V ∗
1 is the vector space spanned by the λ1-eigenvectors corresponding to Jordan blocks

of maximal sizem1. Notice that hα is a proper sub-algebra of n. Finally, letUα and Hα be the
corresponding connected Lie subgroups of N whose Lie algebras are uα and hα respectively.

Suppose Xα = N1 �α R and Xβ = N2 �β R are two quasi-isometric purely real Heintze
groups. Then there exists a quasi-isometry between them whose boundary extension sends
∞1 to ∞2 [3, Lemma 6.D.1]. In particular, there exists a quasi-symmetric map between
(N1, �α) and (N2, �β). Conversely, any such quasi-symmetric map induces a quasi-isometry
between Xα and Xβ [1,13].
Let us end this section by outlining the following known results which will be important in
the proofs of Theorems 1.1 and 1.3:

(Fact 1) A Carnot type Heintze group cannot be quasi-isometric to a non-Carnot type one,
see [2, Corollary 1.9].

(Fact 2) If two Carnot type Heintze groups are quasi-isometric, then they are isomorphic,
see [12].

(Fact 3) If � : (N1, �1) → (N2, �2) is a quasisymmetric map between the boundaries of
non-Carnot type Heintze groups, then � sends the left cosets of Hα (resp.Uα) into
the left cosets of Hβ (resp. Uβ ), see [2, Theorem 1.4].

(Fact 4) If � is like in (Fact 3) and the smallest eigenvalue of α and β coincide, then � is
a bi-Lipschitz map, see [8, Theorem 1.1] and [2, Corollary 1.8].

This last point allows us to use bi-Lipschitz invariants to study quasi-isometries between non-
Carnot type Heintze groups. It is a consequence of (Fact 3) and a general theorem proved by
Le Donne and Xie on rigidity of fibre-preserving quasisymmetric maps [8].

3 Hausdorff distance between left cosets

In this section we fix a parabolic visual metric �α on N , and let h be a proper sub-algebra
of n. The goal is to determine which are the lefts cosets of H , the connected subgroup of N
whose Lie algebra is h, that are at finite Hausdorff distance from H .

The normalizer of h is the subalgebraN(h) = {X ∈ n : [X, h] ⊂ h}. We denote by N (H)

the corresponding normalizer of H in N . Also, recall that the Hausdorff distance between
two subsets of N is given by

dist(A, B) = max

{
sup
a∈A

dist(a, B), sup
b∈B

dist(b, A)

}
,

where dist(a, B) = infb∈B �α(a, b). We first prove the following estimate for the visual
metric �α .

Lemma 3.1 Let 〈·, ·〉 be an inner product on n. For any μ > λd , there exists a constant
c > 0 such that

c ‖X‖ ≤ �α(e, exp X)μ

for all X ∈ n with �α(e, exp X) ≥ 1.
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Proof Let us define C = max{‖X‖ : X ∈ n, �α(e, exp X) = 1}, which is finite because
{x ∈ N : �α(e, x) = 1} is a compact set. Fix X ∈ n with �α(e, exp X) ≥ 1, and let
x = exp X . We choose t ∈ R such that

�α(e, τ (t)x) = et�α(e, x) = 1.

Notice that t ≤ 0. Since τ(t)x = exp(etαX), we have ‖etαX‖ ≤ C . Also, the following
lower bound holds:

‖etαX‖ ≥ etλd ‖X‖
p(t)

,

where p(s) ∼ c1|s|nd−1 when s → −∞, c1 > 0 is a constant, and nd is the dimension of the
generalized eigenspace associated to λd . Given μ > λd , we can choose a constant c2 > 0
such that

esλd

p(s)
≥ c2e

sμ for all s ≤ 0.

From the above inequalities, we get c2etμ‖X‖ ≤ C , and then

c2
C

‖X‖ ≤ �α(e, exp X)μ.

This finishes the proof. ��
Suppose that K is a connected Lie subgroup of N , and let k be its Lie algebra. Since �α

is left invariant, for any x ∈ N , we have

distH (Kx, K ) = dist(x, K ).

In particular, if x ∈ N (K ), then

distH (xK , K ) = distH (Kx, K ) = dist(x, K ) < ∞. (5)

This shows that if x, y ∈ N (K ), then the left cosets xK and yK are at finite Hausdorff
distance. Moreover, (5) implies that xK and yK are parallel in the following sense:

distH (xK , yK ) = dist(xk, yK ) = dist(xK , yk) (6)

for all k ∈ K .
Suppose in addition that K is a τ -invariant normal subgroup. We can define using (6) a

quasi-metric �̃α on the quotient N/K , and with this quasi-metric, the canonical projection
π : N → N/K is a 1-Lipschitz map. Consider τ̃ : R → Aut(N/K ) the morphism induced
on the quotient by τ . We identify the Lie algebra Lie(N/K ) with n/k via the isomorphism
induced by deπ . With this identification, the action τ̃ is generated by the derivation

α̃(X + k) = α(X) + k, for X ∈ n.

Denote by pα and pα̃ the characteristic polynomials of α and α̃. Since pα̃ divides pα , the
eigenvalues of α̃ are all positive.

One can check that the quotient quasi-metric �̃α satisfies the conditions (V1), (V2) and
(V3) of Sect. 2. In particular, �̃α is in the same bi-Lipschitz class as the parabolic visual
metrics on the boundary of N/K �α̃ R.

Lemma 3.2 Let H be a Lie subgroup of N. Two left cosets of H are at finite Hausdorff
distance if, and only if, they are contained in the same left coset of N (H). Moreover, in that
case they are parallel in the sense of (6).
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8 Geom Dedicata (2017) 189:1–16

This lemma is proved for Carnot groups with Carnot–Carathéodory metrics in [8,
Lemma 4.4].

Proof The direct implication was already proved in (5), so let us prove the converse. We will
argue by induction on the nilpotency of N . The Abelian case is obvious because N (H) = N .
Let us assume the claim true for nilpotent groups of nilpotency less than m.

Let Z be the center of N . Then the quotient group N/Z has nilpotency at most (m − 1).
Let us take two left cosets of H , contained in different left cosets of N (H). Since �α is
left-invariant, we may assume that they are H and xH with x /∈ N (H). This means that there
is h0 ∈ H such that x−1h0x /∈ H . Let π : N → N/Z be the canonical projection, there are
two posibilities:

1. π(x) /∈ N (π(H)); or
2. π(x) ∈ N (π(H)) and therefore π(x−1hx) ∈ π(H) for all h ∈ H .

We apply the induction hypothesis in the first case: π(x)π(H) = π(xH) and π(H) must
be at infinite Hausdorff distance. Since π is a contraction, the Hausdorff distance between
the cosets H and xH is also infinite.

Suppose the second case holds. Let X, Y0 ∈ n be such that exp X = x and exp Y0 = h0,
and define h(t)

0 := exp(tY0) for t ∈ R. Notice that h(t)
0 is also in H . For each t ∈ R, there exists

ht ∈ H such that h−1
t x−1h(t)

0 x ∈ Z . This is because π(x−1h(t)
0 x) ∈ π(H). In particular,

x−1h(t)
0 x ∈ N (H).

By the Baker-Campbell-Hausdorff formula, since

x−1h0x = exp

⎛
⎝ ∞∑

j=0

ad j
−X (Y0)

j !

⎞
⎠ /∈ H,

we then have that

W :=
∞∑
j=0

ad j
−X (Y0)

j ! − Y0 /∈ h.

Also, notice that for any t we have

x−1h(t)
0 x = exp

⎛
⎝ ∞∑

j=0

ad j
−X (tY0)

j !

⎞
⎠ = exp(tY0 + tW ).

Let h be any point in H , and consider Y ∈ h such that exp Y = h. Then, since tY0 + tW is
in N(h), we can write

h−1x−1h(t)
0 x = exp(Y (t) + tW )

with Y (t) ∈ h and tW /∈ h.
Let us endow n with an inner product making W orthogonal to h. Then

‖Y (t) + tW‖2 = ‖Y (t)‖2 + ‖tW‖2 ≥ t2‖W‖2.
Since W is a fixed non trivial vector, we can find a big enough uniform t , such that
�α(exp(Y (t)+ tW ), e) ≥ 1. We fix any μ > λd , then by Lemma 3.1, there exists c > 0 such
that

inf
h∈H �α

(
h, x−1h(t)

0 x
)

≥ inf
h∈H c‖Y (t) + tW‖ 1

μ ≥ c(t‖W‖) 1
μ .
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This implies that

distH (xH, Hx) = distH (H, x−1Hx) ≥ sup
t≥0

c(t‖W‖) 1
μ = ∞.

Recall that by (5), H and Hx are always at finite Hausdorff distance. We then conclude that
distH (xH, H) = ∞. ��

4 Proof of Theorem 1.1

By (Fact 1) and (Fact 2), we can suppose that Xα and Xβ are not of Carnot type. We may
also assume, after multiplying by a positive number, that α and β have the same smallest
eigenvalue. Let F : Xα → Xβ be a quasi-isometry, and let � be its boundary extension.
By [3, Lemma 6.D.1], we may assume that � sends ∞1 to ∞2. By (Fact 4), we know that
� : (N1, �α) → (N2, �β) is a bi-Lipschitz homeomorphism. Theorem 1.1 follows from the
next lemma.

Lemma 4.1 Let N1 and N2 be two simply connected nilpotent Lie groups and α ∈
Der(n1), β ∈ Der(n2) with positive eigenvalues. If � : (N1, �α) → (N2, �β) is a bi-
Lipschitz homeomorphism, then α and β have the same characteristic polynomial.

Proof Let hα and hβ be the Lie sub-algebras defined in (4), and let Hα ≤ N1 and Hβ ≤ N2

be the corresponding connected Lie subgroups.
By (Fact 3), the left cosets of Hα are mapped by � into the left cosets of Hβ . Let us

consider the increasing sequence of normalizers

Hα = Hα
0 � Hα

1 � Hα
2 � ...

where Hα
i+1 is the normalizer of Hα

i , and

hα = hα
0 � hα

1 � hα
2 � ...

the correspondingLie algebras. In the sameway let Hβ
i and hβ

i be the corresponding sequence

for β. Notice that there exist k1 and k2 such that Hα
k1

= N1 and Hβ
k2

= N2. This is because
the normalizer of a proper subgroup of a nilpotent Lie group is always strictly bigger than
the subgroup [8, Lemma 4.2].

By Lemma 3.2, the left cosets of Hα
j are mapped into the left cosets of Hβ

j for all j . This
follows because � is bi-Lipschitz. In particular, k1 = k2 = k.

We will argue by induction on the dimension n of the groups. The case n = 1 is triv-
ial. Let us suppose that the lemma is true for dimension strictly smaller than n. Composing
� with a translation if necessary, we can assume that Hα

k−1 is mapped into Hβ
k−1. The

restriction of the quasi-metric �α to Hα
k−1 is bi-Lipschitz equivalent to the quasi-metric

induced by the derivation α|hα
k−1

. The same holds for the restriction of �β to Hβ
k−1. Since

dim(Hα
k−1) = dim(Hβ

k−1) < n, then α|hα
k−1

and β|
h

β
k−1

have the same characteristic polyno-

mial; i.e. pα|hα
k−1

= pβ|
h

β
k−1

.

As we did in Lemma 3.2, one can prove that the quasi-metric �α induces a quasi-metric
�̃α on the quotient N1/Hα

k−1 bi-Lipschitz equivalent to the quasi-metric induced by α̃ ∈
Der(n1/hα

k−1). We similarly define �̃β .
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The homeomorphism � induces a bi-Lipschitz homeomorphism

�̃ : (
N1/H

α
k−1, �̃α

) →
(
N2/H

β
k−1, �̃β

)
.

Then by induction hypothesis, α̃ and β̃ have the same characteristic polynomial; i.e. pα̃ = pβ̃ .
Putting it all together pα = pα̃ pα|hα

k−1
= pβ̃ pβ|

h
β
k−1

= pβ . ��

Remark 4.1 [Remark 4.1.] In the proof of Lemma 5.1 of the next section, we will use again
the fact that the restriction of a parabolic visual metric to an α-invariant subgroup H is
bi-Lipschitz equivalent to the visual metrics on H induced by the derivation α|h.

5 Minimal Hausdorff-dimensional curves

The goal of this section is to give an alternative and more elementary proof of the second part
of (Fact 3), i.e. that the left cosets of Uα are invariant under bi-Lipschitz maps. This follows
from Lemma 5.3 below.Wewill use it in Sect. 6 for the proof of Theorem 1.3. It also provides
an elementary proof that λ1 is invariant. Lemma 5.2may be useful in further investigations for
defining higher-dimensional bi-Lipschitz invariants, like the minimal Hausdorff dimension
of embedded surfaces in N .

If (M, �) is a quasi-metric space, the t-dimensional Hausdorff measure and the Hausdorff
dimension of a subset A ⊂ M are defined exactly in the same way as for metric spaces.When
� is a distance, the Hausdorff dimension of a non-degenerate connected set is always bounded
below by 1. It is well known that when � is just a quasi-metric, there exists ε > 0 such that
�ε is bi-Lipschitz equivalent with a distance in M . Moreover, the Hausdorff dimensions of a
subset A for the quasi-metrics � and �ε are related by

Hdim�ε (A) = Hdim�(A)

ε
.

This implies that d0(�) = inf
{
Hdim�(A) : A is a non-degenerate connected set

}
is a posi-

tive number. We will compute the invariant d0 for the parabolic visual quasi-metrics on N in
terms of the smallest eigenvalue of α.

Lemma 5.1 Let (N , �) be the parabolic visual boundary of Xα , and let λ1 > 0 be the
smallest eigenvalue of α. Then d0(�) = λ1.

In the proof of Lemma 5.1 we will use another lemma which reduces the computation
to the case when α is diagonalizable. We decompose α = δ + ν where δ is diagonalizable
and ν is nilpotent. By (3), both δ and ν are derivations on n. Consider the Heintze group
Xδ = N �δ R defined by the diagonal part of α. We use the same inner product on n to define
the left-invariant Riemannian metrics on Xα and Xδ . Let �α and �δ be the parabolic visual
quasi-metrics on N induced by α and δ respectively.

Lemma 5.2 For any subset A of N, we have Hdim�α (A) = Hdim�δ (A).

Proof We will show that for any μ > 1, there exists a constant C = C(μ) ≥ 1 such that

1

C
�δ(x, y)

μ ≤ �α(x, y) ≤ C�δ(x, y)
1/μ, (7)

for all x, y ∈ N . The constant C usually explodes when μ → 1.
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We first compare the Riemannian metrics on the tangent bundle of N × {t} for t ≤ 0
induced by α and δ. Since these Riemannian metrics are left-invariant, we can think of them
as one-parameter families of inner products on TeN , given by

‖v‖δ
t = ∥∥e−tδv

∥∥
0 and ‖v‖α

t = ∥∥e−tαv
∥∥
0 (v ∈ TeN ),

respectively. Fix v ∈ TeN , and let v = v1 + · · · + vd with vi ∈ Vi , be the decomposition of
v as a sum of vectors belonging to the generalized eigenspaces of α. Then∥∥e−tαv

∥∥
0 = ∥∥e−tνe−tδv

∥∥
0 ≤ p(t)

∥∥e−tδv
∥∥
0 ,

where

p(t) = K
m−1∑
j=0

|t | j
j ! ,

and m is the order of nilpotency of ν and K = max{1, ‖ν‖0, . . . , ‖ν‖m−1
0 }. Let us also fix

μ > 1. Since the generalized eigenspaces Vi are orthogonal, we have

p(t)2
∥∥e−tδv

∥∥2
0 =

d∑
i=1

p(t)2e−2tλi ‖vi‖20 ≤ C
d∑

i=1

e−2μtλi ‖vi‖20 = C
∥∥e−tμδv

∥∥2
0 ,

where the inequality holds for all t ≤ 0 if C is chosen big enough depending only on μ, the
data defining p(t), and the eigenvalues λi for i = 1, . . . , d . Therefore C depends only on μ

and α.
To show the reverse inequality, notice that∥∥e−tδv

∥∥
0 = ∥∥etνe−tαv

∥∥
0 ≤ p(t)

∥∥e−tαv
∥∥
0 ,

and therefore ∥∥e−tαv
∥∥2
0 ≥ p(t)−2

∥∥e−tδv
∥∥2
0 =

d∑
i=1

p(t)−2e−2tλi ‖vi‖20

≥ 1

C

d∑
i=1

e−2 1
μ
tλi ‖vi‖20 = 1

C

∥∥∥e−t 1
μ

δ
v

∥∥∥2
0
.

Here, as before, the inequality holds for all t ≤ 0 and the constant C depends only on μ and
the derivation α.

In summary, we have shown that for any μ > 1, there is a constant C such that for all
t ≤ 0 and v ∈ TeN we have

1

C

∥∥∥e−t 1
μ

δ
v

∥∥∥
0

≤ ∥∥e−tαv
∥∥
0 ≤ C

∥∥e−tμδv
∥∥
0 .

Since �μδ = �
1/μ
δ and �1/μδ = �

μ
δ , the conclusion (7) follows from the last inequalities. ��

Proof of Lemma 5.1 By Lemma 5.2, we may assume that α is diagonalizable. We will prove
by induction on the nilpotency of N that d0 ≥ λ1.

First, suppose N is Abelian. Then the parabolic visual quasi-metric is bi-Lipschitz equiv-
alent to the quasi-metric given by

�̂(x, y) =
d∑

i=1

‖xi − yi‖
1
λi
0 .

Since ‖ · ‖0 is an Euclidean norm, it follows that d0(�) = λ1 in this case.
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Suppose now that the assertion holds for every k-nilpotent group, and let N be (k + 1)-
nilpotent with k ≥ 0. Let Z be the center of N and let π : N → N/Z be the canonical
projection. Let A be a non-degenerate connected subset of N , thenπ(A) is a connected subset
of N/Z . Since N/Z is at most k-nilpotent, if π(A) is non-degenerate we have by induction
hypothesis that

λ1 ≤ Hdim�̃(π(A)) ≤ Hdim�(A),

where �̃ is the parabolic visual metric on N/Z , and the second inequality follows since π is
a 1-Lipschitz map for this quasi-metric.

Suppose that π(A) consists of a singleton, so A is contained in a left coset x Z for some
x ∈ N . Recall that the center z of n is α-invariant, so we can restrict the action of α to z.
Moreover, the eigenvalues of the restriction of α to z are bounded below by λ1. Since Z is
Abelian, by the induction hypothesis we have that Hdim(A) ≥ λ1. This concludes the proof
of the claim.

We now show the reverse inequality. Let uα = Lie(V1) and Uα ≤ N its associated
subgroup. By definition,Uα�αR is a Carnot typeHeintze group, and therefore, the restriction
of the parabolic visual quasi-metric � to Uα is bi-Lipschitz equivalent to the snow-flake
�
1/λ1
CC , where �CC is the Carnot–Carathéodory distance onU . In particular, �CC is a geodesic

distance, so there are many one-dimensional curves. From this it follows that d0(�) ≤ λ1. ��
Let x and y be two points in N , then define x ∼1 y if they are equal or if there exists a

connected set A with Hausdorff dimension λ1 containing both points. It is clear that any left
coset of Uα is contained in an equivalence class of ∼1.

Lemma 5.3 The equivalence classes of ∼1 coincide with the left cosets of Uα .

Proof It remains to prove that an equivalence class of ∼1 is contained in a left coset of Uα .
Consider the increasing chain of normalizers

Uα = N0 � N1 � N2 � · · · ,

where N j+1 is the normalizer of N j . Let k be such that Nk = N .
Let x, y ∈ N be twodifferent points contained in a connected set A ofHausdorff dimension

λ1. Denote by π : N → N/Nk−1 the canonical projection. Then since Nk−1 containsU , the
eigenvalues of the derivation α̃, induced by α on n/nk−1, are all strictly bigger than λ1. If
π(A) is non-degenerate, then by Lemma 5.1, we have

λ1 < Hdim(π(A)) ≤ Hdim(A) = λ1,

which is a contradiction. Therefore π(A) is a singleton, and A is contained in a left coset of
Nk−1. Arguing by induction we deduce that A is contained in a left coset of Uα . ��

6 Proof of Theorem 1.3

Let Kn be the Heisenberg group of dimension 2n + 1, kn be its corresponding Lie algebra
and z be the center of kn . Let B = {X1, ...Xn, Y1, ..., Yn, Z} be a canonical basis of kn , so
that Span(Z) = z. Recall that the Lie brackets in kn are given by [Xi , X j ] = [Yi , Y j ] = 0
for all i, j , and

[Xi , Y j ] =
{
Z if i = j;
0 if i �= j.
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Wewill proveTheorem1.3 by induction on d , the number of eigenvalues of the derivations.
To do this we need the base cases d = 2 and d = 3. The first case will be solved in a slightly
more general context.

In the Lemmas 6.1, 6.2 and 6.3, we will consider the class of nilpotent Lie algebras of
the form kn ⊕ R

p . This class consists of all 2-nilpotent Lie algebras with derived algebra of
dimension at most one. Denote this class by C.

Let n be a non-abelian algebra of C. Observe that if k is a sub-algebra of n that does not
contain the derived algebra n′ = [n, n], then the normalizer of k coincides with its centralizer.
Moreover, if n = V ⊕ n′ and k ⊂ V , then

N(k) = (N(k) ∩ V ) ⊕ n′. (8)

If n1 and n2 are Lie algebras in C, and α and β are derivations of n1 and n2 respectively, with
the same positive eigenvalues λ1 < . . . < λd , we write

n1 = V1 ⊕ · · · ⊕ Vd and n2 = W1 ⊕ · · · ⊕ Wd , (9)

the direct-sum descomposition into the generalized eigenspaces of α and β respectively.

Lemma 6.1 Let N1 and N2 be two arbitrary groups with Lie algebras in C. Suppose that
there exists a bi-Lipschitz homeomorphism � : (N1, �α) → (N2, �β), where α and β have
two eigenvalues and dim V2 = dimW2 = 1. Then α and β have the same Jordan form.

Wewill first prove some useful properties of the derivations of the algebras corresponding
to the class C. Let n be in C and α as in (9). We fix in the sequel a Jordan basis

{Xk
ir : 1 ≤ i ≤ d, 1 ≤ r ≤ ni , 1 ≤ k ≤ mir }

of n associated to α where ni is the number of Jordan blocks corresponding to the eigenspace
Vi . X1

ir are the eigenvectors and α(Xk
ir ) = λi Xk

ir + Xk−1
ir when k > 1.

Notice that the derived algebra n′ is α-invariant, and if it has dimension one, it is spanned
by an eigenvector of α of eigenvalue λp for some p.

Lemma 6.2 If
[
X1
ir , X

l
js

]
�= 0 then l = m js . In particular, if two eigenvectors satisfy[

X1
ir , X

1
js

]
�= 0, then mir = m js = 1.

Proof If m js = 1 there is nothing to prove, so we may assume that m js > 1. Since[
X1
ir , X

l
js

]
�= 0, by (3) λi + λ j = λp . For l > 1, we have

λp

[
X1
ir , X

l
js

]
= α

[
X1
ir , X

l
js

]
=

[
α X1

ir , X
l
js

]
+

[
X1
ir , α Xl

js

]
= λi

[
X1
ir , X

l
js

]
+ λ j

[
X1
ir , X

l
js

]
+

[
X1
ir , X

l−1
js

]
= λp

[
X1
ir , X

l
js

]
+

[
X1
ir , X

l−1
js

]
.

Then
[
X1
ir , X

l
js

]
= 0 for all l < m js . ��

Lemma 6.3 If
[
X1
ir , X

m js
js

]
�= 0 and mir ≥ m js , then m js = mir .
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Proof Ifm js = 1, the conclusion follows fromLemma 6.2. So wemay assume thatm js > 1.

Let k, l > 1 and suppose that
[
X1
ir , X

m js
js

]
�= 0. As before, let λi + λ j = λp . Then

λp

[
Xk
ir , X

l
js

]
= α

[
Xk
ir , X

l
js

]
=

[
α Xk

ir , X
l
js

]
+

[
Xk
ir , α Xl

js

]
= λi

[
Xk
ir , X

l
js

]
+ λ j

[
Xk
ir , X

l
js

]
+

[
Xk
ir , X

l−1
js

]
+

[
Xk−1
ir , Xl

js

]
= λp

[
Xk
ir , X

l
js

]
+

[
Xk
ir , X

l−1
js

]
+

[
Xk−1
ir , Xl

js

]
.

This implies that
[
Xk−1
ir , Xl

js

]
= −

[
Xk
ir , X

l−1
js

]
. If mir ≥ m js , we have

0 �=
[
X1
ir , X

m js
js

]
= −

[
X2
ir , X

m js−1
js

]
= · · · = (−1)m js−1

[
X
m js
ir , X1

js

]
.

By Lemma 6.2, this implies that mir = m js . ��
Proof of Lemma 6.1 By [2, Theorem 1.4], the maximal size m1 of the λ1-blocks is a quasi-
isometry invariant; i.e. mα

1 = mβ
1 = m. We will argue by induction on m.

If m = 1, then the derivations α and β are diagonalizable. This case follows clearly since
α and β both have diag(λ1, . . . , λ1, λ2) as diagonal form.

Suppose that m > 1, and that the lemma is true whenever the maximal size of the λ1-
blocks is smaller than m. As we said above, the derived algebras n′

1 and n
′
2 (if are not trivial)

are contained in eigenspaces, which in this case must be V2 and W2.
Notice that Lemmas 6.2 and 6.3 imply

ker(α − λ1 I )
m−1 ⊂ N(hα) ∩ V1 ⊂ V1.

Then we can choose {Xk
ir }i,r,k a Jordan basis of n1 for α, where Xm

11, X
m
12, . . . , X

m
1qα

belong
to N(hα) and

Span{Xm
11, X

m
12, . . . , X

m
1qα

} ⊕ ker
(
(α − λ1 I )

m−1) = N(hα) ∩ V1.

In the same way we can choose a Jordan basis {Y k
ir }i,r,k of n2 for β. We have that

qα = dim (N(hα) ∩ V1) − dim ker(α − λ1 I )
m−1;

qβ = dim
(
N(hβ) ∩ W1

) − dim ker(β − λ1 I )
m−1.

By Lemmas 6.2 and 6.3, the Lie algebras hα and hβ are abelian and their dimensions are
given by

dim hα = number of maximal size λ1 − subblocks of α;
dim hβ = number of maximal size λ1 − subblocks of β.

After composing with a left translation, we may suppose that � maps Hα into Hβ , so
dim(hα) = dim(hβ) = a and

dim ker(α − λ1 I )
m−1 = dim ker(β − λ1 I )

m−1 = dim V1 − a.

By Lemma 3.2, � maps N (Hα) into N (Hβ) and since

N(hα) = (N(hα) ∩ V1) ⊕ V2 and N(hβ) = (
N(hβ) ∩ W1

) ⊕ W2,

we have dim (N(hα) ∩ V1) = dim
(
N(hβ) ∩ W1

)
and therefore qα = qβ = q .
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The map � induces a bi-Lipschitz map between N (Hα)/Hα and N (Hβ)/Hβ , where the
quotients are equipped with the quasi-metrics �̃α and �̃β , induced by �α and �β respectively.
Observe that the quotient Lie algebras N(hα)/hα and N(hβ)/hβ are isomorphic to the sub-
algebras

m1 = Span{Xk
ir : (i, r, k) �= (1, s,m) with s > q and (i, r, k) �= (1, s, 1) with m1s =m};

m2 = Span{Y k
ir : (i, r, k) �= (1, s,m) with s > q and (i, r, k) �= (1, s, 1) with m1s = m}

respectively. Since α̃ = α|m1 and β̃ = β|m2 correspond with the induced derivations on the
quotients by α and β respectively we have that the quasi-metrics �̃α and �̃β are bi-Lipschitz
equivalent with �α̃ and �β̃ . Notice that the Jordan blocks of these derivations have size at
most m − 1.

Nowwe have a bi-Lipschitz homeomorphism �̃ : (N (Hα)/Hα, �α̃) → (N (Hβ)/Hβ, �β̃)

where the groups N (Hα)/Hα and N (Hβ)/Hβ have their Lie algebras in C. We use the
induction hypothesis to claim that α̃ and β̃ have the same Jordan form.

We can recover the Jordan form of α from that of α̃. This is done by choosing q λ1-
subblocks from α̃ of size m − 1 and adding to them one column, and choosing a − q
λ1-subblocks of size m − 2 and adding two columns. The same holds for β. This shows that
α and β have the same Jordan form and completes the proof. ��
Lemma 6.4 Suppose that d = 3. Let � : (Kn, �α) → (Kn, �β) be a bi-Lipschitz homeo-
morphism. Then α and β have the same Jordan form.

Proof ByLemma5.3,�maps the left cosets ofUα into the left cosets ofUβ . After composing
� with a left translation we may assume that �(Uα) = Uβ . So we have a bi-Lipschitz map
between (Uα, �α|V1 ) and (Uβ, �β|W1

). Since these groups are abelian, by [16] we have that
α|V1 and β|W1 have the same Jordan form.

It is easy to see that N(V1) = V1 ⊕ V3 and N(W1) = W1 ⊕ W3. Then kn/N(V1) and
kn/N(W1) are isomorphic to V2 and W2 respectively, and are therefore abelian. The quasi-
metrics induced on these quotients by �α and �β are bi-Lipschitz equivalent with �α|V2 and
�β|W2

. Since � induces a bi-Lipschitz homeomorphism

�̃ :
(
Kn/N (Uα), �α|V2

)
→

(
Kn/N (Uβ), �β|W2

)
,

we conclude that α|V2 and β|W2 have the same Jordan form. This implies that α and β have
the same Jordan form. ��

Let α and β be as in the statement of Theorem1.3. By Theorem 1.1, their eigenvalues are
the same up to a scalar multiple, so we may assume that they have the same eigenvalues.
We will write V1, . . . , Vd and W1, . . . ,Wd the generalized eigenspaces associated to α and
β respectively. By (Fact 4), the quasi-isometry induces a bi-Lipschitz homeomorphism � :
(Kn, �α) → (Kn, �β). We will prove by induction on d that this implies that α and β have
the same Jordan form.

Lemmas 6.1 and 6.4 are the base cases of the induction. Suppose that the claim is true for
d ′ < d and d > 3. By Lemma 5.3, we may assume that � sends Uα into Uβ . As in 6.4, we
know that α|V1 and β|W1 have the same Jordan form.

Observe thatN(V1) = ⊕
i �=d−1 Vi andN(W1) = ⊕

i �=d−1 Wi . Moreover, we identify the
quotients

N(V1)/V1 =
⊕

i �=1,d−1

Vi and N(W1)/W1 =
⊕

i �=1,d−1

Wi .
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We have that � maps N (Uα) into N (Uβ), and therefore induces a bi-Lipschitz map

�̃ : N (Uα)/Uα,→ N (Uβ)/Uβ,

where the quasi-metrics are the induced by α|N(V1)/V1 and β|N(W1)/W1 respectively. These
quotient groups are Heisenberg groups with less eigenvalues than d . Then α|N (V1)/V1 and
β|N (W1)/W1 have the same Jordan form.

Finally, using that � induces a bi-Lipschitz homeomorphism between the abelian groups
Kn/N (Uα) and Kn/N (Uβ), by [16], we have that α|Vd−1 and β|Wd−1 have the same Jordan
form. This completes the proof.
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