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Abstract An interesting question is whether two 3-manifolds can be distinguished by com-
puting and comparing their collections of finite covers; more precisely, by the profinite
completions of their fundamental groups. In this paper, we solve this question completely
for closed orientable Seifert fibre spaces. In particular, all Seifert fibre spaces are distin-
guished from each other by their profinite completions apart from some previously-known
examples due to Hempel. We also characterize when bounded Seifert fibre space groups have
isomorphic profinite completions, given some conditions on the boundary.
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1 Introduction

One possible algorithm to solve the homeomorphism problem for 3-manifolds could run as
follows. Given two triangulated 3-manifolds M and M», perform Pachner moves on M
to try to establish a homeomorphism with M>. In parallel, compute a list of finite-sheeted
covers of the two manifolds, along with regularity of the covers and the group of deck
transformations. If at some covering degree a difference appears, the two manifolds will be
shown to be non-homeomorphic.

The question arises, to what extent will this algorithm work? That is, could the collections
of covers of two distinct 3-manifolds have the same structure? This is a manifestation of the
wider question of when two groups have the same set of finite quotients. The naive statement in
terms of sets of finite quotients is usually replaced with an equivalent formulation concerning
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the profinite completions of the two groups. The question is then one of ‘profinite rigidity’.
We make the following definition:

Definition 1.1 An (orientable) 3-manifold is profinitely rigid if the profinite completion
distinguishes its fundamental group from all other fundamental groups of (orientable) 3-
manifolds.

In dimension 2, the analogous property is known to hold by work of Bridson et al. [6], who
showed that the profinite completion distinguishes 2-orbifold groups not just from each other,
but from all lattices in connected Lie groups.

For 3-manifolds, only a few examples are known to be profinitely rigid. Bridson and Reid
[7] and Boileau and Friedl [5] have proved that the figure-eight knot group is profinitely rigid
among 3-manifold groups, along with a handful of other knot groups. By contrast, there are
large families known not to be profinitely rigid. Funar [11] built on work of Stebe [21] to give
infinite families of Sol manifolds with the same finite quotients. Hempel [13] gave Seifert
fibred families, with geometry H? x R.

These examples notwithstanding, the profinite completion of the fundamental group of a
low-dimensional manifold is known to contain a large amount of information. For instance,
Wilton and Zalesskii [24] have shown that the geometry (if any) of a 3-manifold is detected
by the profinite completion. In particular, Seifert fibre spaces are distinguished from all other
3-manifolds. Lackenby [14] has shown that the pro-2 completion of a 3-manifold group
determines whether that 3-manifold contains a pair of embedded surfaces which do not
disconnect the manifold.

In this paper, we provide the full solution of the profinite rigidity question for closed
orientable Seifert-fibred 3-manifolds. In effect, the above-cited examples of Hempel [13] are
the only failures of profinite rigidity among these manifolds. The precise statement, when
combined with the work in [24], is:

Theorem 1.2 Let M be a (closed orientable) Seifert fibre space. Then either:

— M is profinitely rigid; or

— M has the geometry H? x R, is a surface bundle with periodic monodromy ¢ and the
only 3-manifolds whose fundamental groups have the same finite quotients as m1 M are
the surface bundles with monodromy ¥, for k coprime to the order of ¢.

The theorems of [24] are stated for closed manifolds, so we will be a little more circumspect
about asserting profinite rigidity among all 3-manifolds. However we may still resolve the
rigidity question among Seifert fibre spaces. For the precise statements see Theorems 5.8
and 5.9; in summary

Theorem 1.3 Let M|, M, be Seifert fibre spaces with non-empty boundary. Then the fol-
lowing are equivalent:

— 1My = My, by an isomorphism inducing an isomorphism of peripheral systems.
— M, is a surface bundle with periodic monodromy ¢, and M> is a bundle over the same
surface with monodromy ¢*, where k is coprime to the order of ¢.

The author would like to thank Marc Lackenby for suggesting this field of study and
for many enlightening conversations during the development of this theorem. The author
was supported by the EPSRC and by a Lamb and Flag Scholarship from St. John’s College,
Oxford.
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Remark 1.4 In this document, we will use the following conventions:

— All manifolds and orbifolds will be assumed compact, connected and without boundary
unless otherwise stated; all 3-manifolds will be orientable;

— Abstract groups will be assumed finitely presented and will be denoted with Roman
letters G, H, . . .; they will be assumed to have the discrete topology.

— Profinite groups will be assumed topologically finitely generated and will be denoted
with capital Greek letters I, A, ...

— The symbols <f, <, <1, will denote ‘normal subgroup of finite index’, ‘open normal
subgroup’, ‘normal subgroup of index a power of p’ respectively; similar symbols will
be used for not necessarily normal subgroups.

— There is a divergence in notation between profinite group theorists, who use Z, to denote
the p-adic integers, and manifold theorists for whom Z,, is usually the cyclic group of
order p. To avoid any doubt, the cyclic group of order p will be consistently denoted
Z/porZ/pZ.

2 Cohomology of profinite groups
2.1 Goodness

It will important to have control over the cohomology of profinite completions. We recall
here certain theorems of this nature, which will be used freely without future reference. Serre
[20] made the following definition:

Definition 2.1 A finitely generated group G is good if for all finite G-modules A, the natural
homomorphism

H"(G; A) - H"(G; A)
induced by G — G is an isomorphism for all n.
Theorem 2.2 (Grunewald et al. [12]) All finitely generated Fuchsian groups are good.

Under certain finiteness assumptions which hold in our cases of interest, an extension of a
good group by a good group is itself good (see [20]); furthermore, finite index subgroups of
good groups are good. Hence:

Corollary 2.3 The fundamental groups of Seifert fibre spaces are good.

It will not be needed in the sequel, but it seems fitting to mention that in fact all 3-manifold
groups are good. This theorem is of somewhat disputed attribution. It was proved by Wilton
and Zalesskii [23] that a 3-manifold has good fundamental group if all pieces of its JSJ
decomposition do. Seifert-fibred pieces are covered by the above corollary. That hyperbolic
3-manifold groups are good follows from the Virtually Compact Special Theorem and its
various consequences. There are numerous ways one may deduce this; one may use the Virtual
Fibring Theorem of Agol [1] or another route as outlined in [10]. In stating the Theorem as
due to Agol, Wilton—Zalesskii, and Wise we aim to recognise those who contributed most.
A full account and list of references may be found in [4].

Theorem 2.4 (Agol, Wilton—Zalesskii, Wise) Fundamental groups of compact 3-manifolds
are good.
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2.2 Chain complexes

It will be necessary later to work with certain exact sequences of modules over the group
ring of a profinite group. In this section we will recall and prove some of the necessary tools.

Definition 2.5 Given a profinite abelian group A (usually Z, 2( p) or a finite abelian group)
and a profinite group I', the completed group ring A[[I"]] is defined as the inverse limit

lim A/A'[['/N]
A',N

of group rings indexed over the finite index open normal subgroups A’, N of A, I'. It is a
compact Hausdorff topological ring.

Modules over A[[I"]], together with continuous module maps, form an abelian category
with the same formal properties as the category of R-modules for aring R; so the machinery of
homological algebra works and we can define profinite group cohomology by starting from
an arbitrary resolution of Z by projective (left) Z[[I']]-modules and applying the functor
Homz[[ F]](_’ M) giving the continuous homomorphisms from a module to M. If M is a

module with trivial I"-action, we can factor this through the functor 7 ®2[ — which
‘forgets the I"-action’ on the chain complex.

We will need to show that, under certain conditions, a free resolution of Z by Z[G]-
modules yields a free resolution of 2 by Z[[G]]—modules. To this end we use the following

propositions and definitions, which are adapted from results in [15].

i

Definition 2.6 A discrete group G is of type FP(n) if there is a resolution of the trivial module
Z by projective Z[G]-modules P,, such that P; is finitely generated for 0 < i < n.

Proposition 2.7 Let G be a discrete group which is good. Then:
- li—l>nK<,-G HY(K; M) = 0 for every finite G-module M and all ¢ > 1
— If G is of type FP(n), then 1(iI_nK<fG H,(K; M) = 0 for every finite G-module M and all
l<g<n -

Proof First note we may restrict to the case of trivial modules in the conclusions, as any finite
G-module M becomes trivial over K for a cofinal subset of {K <t G}. Thus we may view M
interchangeably as a left or right module. The maps resX g HY(K: M) — HY(K'; M) are
given by restriction of cochains. The direct limit in question (categorically a colimit) is zero if
all elements of H4(K; M) are ‘eventually zero’; that is, for all x € HY(K; M) there is some
K’ < K such that x is mapped to zero under the restriction map H4(K; M) — HY(K'; M).
By goodness of K, there is a natural 1dent1ﬁcat10n HY(K; M) = HY (I% M) so we may
represent x as a contlnuous cochain £ : K4 > M (g > O) The preimage of O under £ is
some open subset of K4; products of open subgroups of K form a neighbourhood basis in
Kq, so we may choose A <, K such that &|a¢e = 0; then setting K’ = K N A (so that
A =K')the commuting diagram

res’lg,
HY(K; M) —— HY(K'; M)

;T ) ;T

res .

HI(K; M) —= HY(K'; M)

K — 0 : q . —
shows that resy, (x) = 0; hence that ll_rr)lKSfG H1(K; M) =0.
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For the second conclusion, assume G is of type FP(n). Then H;(K; M) is finite for all
0 <g <n,K <¢ G and M a finite G-module, and similarly for the cohomology. Recall that
an inverse limit of finite abelian groups A; is trivial if and only if for each i in the indexing
set, there exists j > i such that A; — A; is the zero map; and similarly for a direct limit of
finite abelian groups.

So let K be a finite index subgroup of G, and take K’ such that the restriction map resg,
is zero on each H?. We show that we can dualise this to find that the corestriction map is also
zero. Note that a finite-index subgroup of a group of type FP(n) is also of type FP(n). Let P,
be a projective resolution of Z by left Z K -modules, which is finitely generated in dimension
at most n. There is a natural isomorphism (see [9], Proposition I1.5.2)

Homz g (P,, Homz (M, Q/Z)) = Homz (M ® P,, Q/7Z)

Now take homology; Q/Z is an injective abelian group, so Hom(—, Q/Z) is an exact functor
and commutes with homology; hence we get a natural isomorphism

HY(K; M*) = (Hy(K; M))*

where N* denotes the dual Hom (N, Q/Z) of an abelian group. Finite abelian groups are
isomorphic to their dual and canonically isomorphic to their double-dual; so we get a natural
isomorphism

HI(K; M*)* = Hy(K; M)

in dimensions 0 < ¢ < n where the right hand side is finite. The inclusion K’ — K induces
the zero map on the left hand side by assumption, noting that M is isomorphic to M* so the
restriction map with M* coefficients also vanishes. Hence the map on the right hand side,
the corestriction map, is zero. O

To prove the next proposition, we will need some exactness properties of the functor lim. In
general this functor will not be exact and so will not commute with homology. A well-known
condition for exactness is the Mittag-Leffler condition; roughly, it is an ‘eventual stability’
condition. See [22] for a full treatment; here we merely state the definition and consequence.

Definition 2.8 An inverse system (A;);cs, where (I, <) is a totally ordered inverse system
(not merely partially ordered) satisfies the Mittag-Leffler condition if for all i there exists
j =i such that

im(Ak —> A,‘) = im(Aj —> A,’)
for all k > j. That is, the images of the transition maps into A; are eventually stable.

If all systems C,,; (i € I) in an inverse system of chain complexes C, ; satisfy the Mittag-
Leffler condition, then we will have

lim H, (Ca;) = Hy,(Iim C, ;)

l 1
for all n. In our case, all the groups C,; will be finite, so that the Mittag-Leffler condition
holds (a decreasing sequence of subsets of a finite set is eventually constant). Our indexing
set I = {(m, K)|m € N, K <¢ G} will not be totally ordered; however by passing to the
cofinal subset J = {(m!, K,,)} where K, is the intersection of the finitely many subgroups
of index at most n, we get a totally ordered indexing set without affecting the limit.
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Proposition 2.9 Let (C;)o<i<n — Z be a partial resolution of Z by free finitely generated
Z[G1-modules C; = Z[G]®" where G is a good group. Then (Ci)o<i<n — 7 is a partial
resolution of 7 by free Z[[G]]-modules

Ci = ZIIGN®
Proof Foreachm € Nand K <f G, set

Aimx = (Z/m)G/K]1®z6) Ci = (Z/m)[G/K]¥"i

so that the new chain groups are

Ci = lim A; . x

m,K

The groups A; ,,, k are finite, so the homology of each chain complex (A, k) is finite; as
described above we may now use the Mittag-Leffler condition to conclude
Hi(Cy) = Hi(lim A; k) = lim H; (Ajm k)
m,K m,K

Regarding (C,) as an exact complex of free finitely generated Z[ K ]-modules and noting that
Aim,x = (Z/m) ®zik] Ci

these homology groups H;(A; m k) are precisely H;(K; Z/m). By the goodness of G we
can now use Proposition 2.7 to conclude

H;(C,) = 1(1%1<H,-(K; Z/m) =0

forn—1>i>1;andfori =0

Ho(C,) = lim Ho(K; Z/m) = lim Z/m = 7
m,K m,K

ie. ((:’.) is a free partial resolution of 2. ]

3 Profinite completions of 2-orbifold groups

In this section we recall the results of Bridson et al. [6] concerning Fuchsian groups (i.e.
orbifold fundamental groups of hyperbolic 2-orbifolds), and show that they extend to the
case of Euclidean 2-orbifolds.

Theorem 3.1 (Theorem 1.1 of [6]) Let Gy be a finitely-generated Fuchsian group and G,
be a lattice in a connected Lie group. If G1 = G, then G| = Gj.

Corollary 3.2 Let Oy, O3 be closed 2-orbifolds. If 1" (01) = n{"*(0,) then 7" (0;) =
nf’b(Oz). If)("’b(Ol) < 0, then O and Oy are homeomorphic as orbifolds.

Proof Since 7110’1’(0 1) is finite if and only if the orbifold Euler characteristic is positive, we
can safely ignore these cases as the profinite completion is then simply the original group.

—

Otherwise, assume nfrb (0= nfrb (07). Recall that closed 2-orbifolds of nonpositive Euler
characteristic are determined by their fundamental groups.
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The orbifold has a finite cover which is a surface; take such a cover of O and the corre-
sponding cover of O;. If necessary pass to a further finite cover so that both O and O; are
covered with degree d by surfaces with isomorphic profinite completions. A surface group
is determined by its first homology, which is seen by the profinite completion, so the two
surfaces are homeomorphic to the same surface X. Orbifold Euler characteristic is multi-
plicative under finite covers, so x°™(01) = x(X)/d = x°®(0,). Hence Euclidean and
hyperbolic orbifolds are distinguished from each other.

It only remains, in light of the above theorem of Bridson—Conder—Reid, to distinguish the
Euclidean 2-orbifolds from each other. The profinite completion detects first homology; a
direct computation shows that this suffices to distinguish all the Euclidean 2-orbifolds except
(Sz; 2,4,4)and (]P’z; 2, 2). Recall that an isomorphism of profinite completions would induce
a correspondence between the index 2 subgroups, with corresponding subgroups having the
same profinite completions. But (P?; 2, 2) is covered by the Klein bottle with degree 2, and
the Klein bottle is distinguished from the other 2-orbifolds by its profinite completion, but
does not cover (Sz; 2,4,4). So these two Euclidean orbifolds also have distinct profinite
completions. O

Theorem 3.3 (Theorem 5.1 of [6]) Let G be a finitely generated Fuchsian group. Every
finite subgroup of G is conjugate to a subgroup of G, and if two maximal finite subgroups of
G are conjugate in G then they are already conjugate in G.

Proposition 3.4 Let G be the fundamental group of a closed Euclidean 2-orbifold X. Every
torsion element of G is conjugate to a torsion element of G, and if two torsion elements of
G are conjugate in G then they are already conjugate in G.

Proof The second statement is a special case of the fact that a virtually abelian group is
conjugacy separable [21].

We proceed on a case-by-case basis. If X is a torus or Klein bottle, then G is good and
has finite cohomological dimension, hence G has finite cohomological dimension and so is
torsion free. If X = (S%; 2,2, 2, 2) then G is the amalgamated free product of two copies of
the infinite dihedral group. The result then holds by the same argument as in Theorem 5.1 of
[6]; for a finite subgroup of the fundamental group of a graph of groups must be conjugate into
one of the vertex groups, which here are the copies of Z /2. The same result holds profinitely.
Similarly if X = (P?; 2, 2) then the fundamental group is an amalgamated free product.

In [6] the triangle orbifolds were dealt with by passing to certain finite covers which
decompose as amalgams, and whose fundamental group contains the torsion element of
interest. However for Euclidean orbifolds, it may happen that no such covers exist; indeed no
orbifold whose fundamental group is an amalgam has any cone points of order greater than
2. We will instead exploit the fact that our triangle groups are virtually abelian. We give in
detail the proof for the orbifold X = (S%: 3, 3, 3); the other two triangle orbifolds are similar
but involve checking more cases, so it would be uninformative to include the proofs.

LetG = (a, b ’ a3, b3, (ab)S). We have a short exact sequence

1 N G H\G 1
2 l E
1 72 G (Z)3)* —— 1
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The subgroup N is a subgroup of the translation subgroup of G. The translation subgroup
is generated by the translations x = a~'b, y = ba~'. The action of conjugation is

o —1 —1
xP=xb=y7Ix7l X =4t =y etc

lx, V= x3; note

The subgroup N = {aba~'b~") is then generated by the elements u = y~
that [a, b] = u?v~!. To guide our calculations, note that an element au” v® of G acts on the
plane by rotation about the centroid of a certain triangle, whose location is in fact that of the

fixed point of the rotation a, translated by u’ ™ v" /3.Soin G, we have
r+s.,,r/3 —r—s .
au'vS =g V" =g
and we expect similar equations to hold in G.
We have a short exact sequence for G induced from the one above:

15> 22> G6G— (Z/3)?>1

and see that any torsion element of G is of the form a'b/u”v® where i, j = 0, 1,2 are not
both zero and p, 0 € Z. For example, take i = 1, j = 0; the other cases are very similar.
We now calculate

—0 ,,p+0 —p—0 ,.0

—p—0 .0
a’ Tt =x"% ca-y X

=a-(x )y TPTOx?

—a- (yflel)fa'prrayfpfaxa

30

— +
pr o

=a-y "x’x7 = au’v’

So that torsion elements of this form are indeed conjugates of elements in G. The rest of the
proof consists of similar calculations for other cases and can be safely omitted. O

4 Seifert fibre spaces

We first recall some information about the invariants of a Seifert fibre space before moving
on to profinite matters. For a more comprehensive introduction to Seifert fibre spaces see [8]
and [19].

Recall that a fibred solid torus is formed as a quotient of D? x [0, 1] by identifying the two
end discs by a rotation by 27 g/ p where p, g are coprime integers, called the fibre invariants
of the fibred solid torus. The foliation of D? x [0, 1] by lines {x} x [0, 1] descends to a
foliation of the torus by circles. Such pieces form a local model for a Seifert fibre space. Note
that the quotient of a fibred solid torus obtained by collapsing each fibre naturally has an
orbifold structure, where the image of the exceptional fibre is a cone point of order p. After
fixing an orientation for the disc and fibre, the number ¢ becomes well-defined in the range
0 < g < p; if no orientations are chosen, it is well-defined only in the range 0 < ¢ < p/2.
To give the standard presentation for the fundamental group, it is conventional to define the
Seifert invariants of the exceptional fibre to be (o, ) where @ = p, and fg = 1 mod p.

The orbifold quotients of neighbourhoods of each fibre piece together to form the quotient
of the whole manifold M by the foliation; this is the base orbifold O of the Seifert fibre space.
This quotient induces a short exact sequence

l ><h>— a M — nf’rbO -1
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where n{’rb O is the orbifold fundamental group, and 4 is the element of | represented by a
regular fibre. This subgroup </ > may be finite or infinite cyclic, and is either central (if O
is orientable) or 71 M has an index 2 subgroup which contains /4 as a central element.

The final invariant has various different formulations; see [8,16,19]. It is in some sense
the ‘obstruction to a section’, and coincides with the Euler number of the fibration when there
are no exceptional fibres and the Seifert fibre space is a bona fide fibre bundle. In general it
is still called the Euler number e of the Seifert fibre space, and is a rational number. The key
properties of the Euler number are the above behaviour when there are no exceptional fibres,
and the following naturality property:

Proposition 4.1 If M — Misa degree d cover, where the base orbifold cover 0 — O has
degree m and a regular fibre of M covers a regular fibre of M with degree |

1 <h> mM nf’bé 1
L
1 <h> mM 71'1“’1’0 1

then
- m
e(M) = T -e(M)

The Euler number has no well-defined sign a priori; given a choice of orientation on M,
e acquires a sign, and reversing the orientation (by flipping the direction along the fibres)
changes this sign. This is consistent with the interpretation as the obstruction to a section;
when there are no exceptional fibres, circle bundles with orientable total space are classified by
elements of H? (X; Z), where the Z coefficients are twisted by the orientation homomorphism
for X'; this group is Z whether or not X' is orientable.

The vanishing of the Euler number gives important topological information:

Proposition 4.2 Let M be a Seifert fibre space. The Euler number e(M) vanishes if and only
if M is virtually a surface bundle over the circle with periodic monodromy.

Finally, we can state the classification results of Seifert fibre spaces and characterisations of
their fundamental groups from these invariants.

Proposition 4.3 A Seifert fibre space is uniquely determined by the symbol
(b» 2! (O(l, ﬂl)v sy (Otiﬂ :37'))

where

-beZande=—0b+ Bi/wi);
— X is the underlying surface of the base orbifold;
— (uj, Bi) are the Seifert invariants of the exceptional fibres, and 0 < B; < «; are coprime.

If X is closed and orientable of genus g, w1 M has presentation
(a1,...,ar,u1,v1,...,ug,vg,h|
he Z(mM), al"hPi, ay .. .a[ur, vil---[ug, vl = h)
If X is closed and non-orientable of genus g, then w1 M has presentation
(al,...,ar,vl,...,vg,h‘

W =h, b =h~" @ hP ar .. a] . v = 1)
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Table 1 The geometry of a

orb orb _ orb
Seifert fibre space is determined x°7 >0 x°P =0 x°P <0
by the base orbifold and Euler 2 3 2
number e=0 S“ xR E- H* x R
e#0 s3 Nil SL,(R)

When the Seifert fibre space has boundary, we have similar presentations without the last
relation; the base orbifold group is just a free product of (finite or infinite) cyclic groups.
In these presentations, h represents the regular fibre; killing # gives a presentation of the
orbifold fundamental group of the base. Note also that reversing the orientation of the fibre
h and ‘renormalising’ to get the f; back into the correct range, there is an ambiguity in the
above symbol for a Seifert fibre space, under the transformation

(b» 25 (alaﬂl)7"'7(ar7ﬂr)) - (_b_”,z, (alsal _ﬂl)v"'7(ar7ar _ﬂr))

which flips the sign of e. When the orbifold is orientable, this will be the only ambiguity
provided there is a unique Seifert fibre space structure on the manifold.

Proposition 4.4 [f a closed manifold M has two distinct Seifert fibre space structures, then
it is covered by S} S2 xR, orS! xS! xSl

Proposition 4.5 If h is a regular fibre, then the subgroup < h > is infinite cyclic unless M is
covered by S°.

Proposition 4.6 A manifold M is Seifert fibred if and only if it has one of the six geometries
in Table 1. The geometry is determined by the Euler characteristic of the base orbifold and
the Euler number of M.

5 Theorems

In this section we prove the following result, which with the work of [24] gives the theorem
in the introduction.

Theorem 5.1 Let My, M, be (closed orientable) Seifert fibre spaces. Then m = m
if and only if one of the following holds:

— w1 M| = 1 My, so that unless they have 83-geometry, M1 and M» are homeomorphic;

— My, M, have the geometry H? x R, where for some hyperbolic surface S and some
periodic automorphism ¢ of S, the 3-manifolds M and M, are S-bundles over the circle
with monodromy ¢ and ¢* respectively, where k is coprime to order(¢).

The non-trivial part of the ‘if” direction of this theorem was proved by Hempel [13].
Alternatively one can apply the argument of Theorem 5.9 to get a new proof.

The solution of the problem will proceed in several stages. Firstly, we will show that,
except in the ‘trivial’ geometries, an isomorphism of profinite completions of Seifert fibre
spaces will induce an automorphism of the profinite completion of the base orbifold group B,
which the two Seifert fibre spaces will share; and furthermore that both Seifert fibre spaces
will have the same Euler number (up to sign). We will then constrain the automorphism of B
and compute the action of such an automorphism on H 2B, Intuitively we will be considering
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what can happen to the ‘fundamental class’ of the orbifold. We will then be able to conclude
the result by considering the cohomology classes giving the Seifert fibre spaces as central
extensions of B.

The ‘trivial’ geometries mentioned above are S3,E3, S? xR; they are trivial for the profinite
rigidity problem in the sense that spherical manifolds have finite fundamental group, and
there are only six and two orientable manifolds of the latter two geometries respectively,
all distinguished by their first homology. For the rest of the section, a ‘generic’ Seifert fibre
space will mean any Seifert fibre space not of the above geometries.

We will be using heavily the fact that the subgroup generated by a regular fibre is central;
this is only true for orientable base orbifold, so first note that we can reduce to this case
as follows. Suppose first that we have a closed Seifert fibre space. The orbifold group B
has a canonical index 2 subgroup corresponding to the orientation cover of the underlying
surface of the orbifold. This induces an index 2 cover of the Seifert fibre space. Note that
this cover contains all the information needed to recover the original Seifert fibre space; in
particular, for each exceptional fibre with Seifert invariants (p, g) where 1 < g < p/2 the
cover has 2 exceptional fibres with the same invariant (p, ¢), and has no other exceptional
fibres. Because the index 2 subgroup is canonical, it will follow that any isomorphism of the
profinite completions of the Seifert fibre space groups will induce an isomorphism for these
characteristic covers, to which we may apply the theorem for orientable base orbifold, and
then recover the original manifolds.

When the Seifert fibre space has boundary, the base orbifold group itself does not distin-
guish orientable base orbifold from non-orientable, and hence has no obvious characteristic
subgroup. However if we assume that the peripheral subgroups of the base orbifold groups
are preserved under the isomorphism of profinite completions, we can collapse each of them
to obtain a closed orbifold and take the canonical index 2 cover of this, and hence of the
original orbifold, to recover the above situation.

Throughout we will freely use the fact that Seifert fibre space groups and Fuchsian groups
are subgroup separable. In particular if M is a Seifert fibre space over a base orbifold O, we
may take profinite completions to obtain a short exact sequence

—

1—>Z—>7?1T/I—>7rl°rb0—>l

where 7 is generated by a regular fibre. these facts are theorems of Scott [18].

5.1 Preservation of the fibre

We first prove that the subgroup given by the fibre is still essentially unique for most Seifert
fibre spaces. In the statement of the theorem, a ‘virtually central’ subgroup Z of a group G
will mean that either Z is central in G or that the ambient group G has an index 2 subgroup
containing Z in which Z is central. The fibre subgroup of a Seifert fibre space subgroup is
such a subgroup; it is central when the base orbifold is orientable, or is central in the index
2 subgroup corresponding to the orientation cover of a non-orientable base orbifold.

Theorem 5.2 Let M, N be Seifert fibre spaces and suppose that m )= m ). Call this
common completion I'. Then:

1. M and N have the same geometry;
2. T has a unique maximal virtually central normal procyclic subgroup unless the geometry
of M is 3, S x R, or E3; and
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3. If the geometry is Nil, H? x R, or Sf;(I/R), then M and N have the same base orbifold
and Euler number.

Remark 5.3 The first conclusion of this theorem was already known by the above-cited
theorem of [24]; the proof here, specific to Seifert fibre spaces, is different in some respects,
so we include it for completeness.

Proof As usual, spherical manifolds are distinguished by having finite fundamental groups,

hence finite profinite completions. The four model geometries E3, Nil, H? xR, and SL;(R) are
contractible, so the fundamental groups of all such manifolds have cohomological dimension
exactly 3. All compact S* x R-manifolds are finitely covered by S* x S!, hence have a finite
index subgroup of cohomological dimension 1. All Seifert fibre space groups are good, so
this fact is detected by the profinite completion, hence S*> x R is distinguished from the
other geometries. Henceforth assume that M has one of the four relevant geometries with
contractible universal cover.

Now suppose that I" has two virtually central normal procyclic subgroups, </ > and
<n>, where h is represented by a regular fibre of M and <77 > is not contained in <h >.
We will show first that the base orbifold O is Euclidean. Passing to the quotient by <h >,

—

the image of <7 > is a normal procyclic subgroup of nfrb(O). By Corollary 5.2 of [6] and
Proposition 3.4 above, profinite completions of non-positively curved orbifold groups have

no finite normal subgroups, so <7 > persists as an infinite procyclic subgroup of nfrb(O).

Hence also the subgroup </ > is still maximal even in the profinite completion i.e. is not
contained in some larger normal procyclic subgroup.

We can now pass to a finite index subgroup of I” whose intersections with </ >, <7 > are
central and non-trivial, and then to a further finite index subgroup A so that the corresponding
cover of M has base orbifold an orientable surface X covering O. The image of <7 > now
gives a central subgroup of 711/5 But the profinite completion of a surface group has no
centre unless the surface is a torus (see [2,15] or [3]). Hence O is Euclidean.

The base orbifold X' is now a torus. We know that <7> is a central procyclic subgroup

of T2 = Zz; assume now that it is maximal. Using Theorem 4.3.5 of [17], the quotient
72 /<> is Z; hence we can quotient by the closed subgroup Z? generated by both / and 5
to get an exact sequence

1522 5 A2 1
‘We now calculate that
H'(A;Z/n) = (Z/n)?

for all n. As described in Sect. 2 we can calculate this cohomology group using the spectral
sequence whose E5"? page is given by

ED? = HP(Z; HI(Z*; Z/n))
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3 0 0 0

2 Z/n Z/n 0

g 1 @/m*  @/n?* 0

0 Z/n Z/n 0
0 1 2
p

Now the only arrow that could alter the p 4+ ¢ = 1 diagonal is the arrow shown, which is
trivial; so this diagonal is already stable and the first cohomology is (Z/n)? as required.

But the finite index subgroup A < I" corresponds to a cover M — M where the base
orbifold of M is a torus. Then we have

M = (uy, vy, b |[ur, vi] = h™°, h central)
where e is the Euler number of M ; hence H 11l71 =78 q7 /eZ and
HY (A Z/n) = H' (M; Z/n) = (Z/n)* @ Z/hcf (e, n)

for all n. Comparing with the above, we find that e must be zero; by naturality M also has
trivial Euler number.
We now deal with the case where I has a unique maximal virtually central procyclic

normal subgroup. Note that in this case, the isomorphism 71 (M) = 71 (N) preserves <h >,
and hence induces an isomorphism of the profinite completions of the base orbifold; then by
Theorem 3.1 and Corollary 3.2, M and N have the same base orbifold O.

If we now show that M, N have the same Euler number, then we are finished as the
geometries are distinguished by base orbifolds and whether the Euler number is non-zero.
Again pass to an index d subgroup A of I" with the corresponding cover of M being M — M
where M has base orbifold a surface. Then, as above, for both N and M, the Euler number
is given up to sign by the torsion part of H M, divided by d, because the Euler number has
the naturality property in Proposition 4.1. First homology is a profinite invariant, hence N
and M have the same Euler number and the proof is complete. O

Recall that the Euler number of the Seifert fibre space was of the form
Bi
=—(» Lk
e=—(r+ 22
with b an integer. Thus given the base orbifold (hence the «;) and the Euler number, the only
further ambiguity is whether we can change the §; by values §; (with §; not congruent to 0
modulo ;) such that > §; /o; is an integer. By the Chinese Remainder Theorem, there is no

such collection of §; when all the «; are coprime. Hence we have the following corollary, in
which we change notation to follow the usual conventions for cone points.

Corollary 5.4 Let M be a Seifert fibre space whose base orbifold is an orbifold

(X5 pty--os P)
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where py, ..., px are coprime. Then w1 M is distinguished by its profinite completion from
all other 3-manifold groups.

The above theorem was stated and proved for closed Seifert fibre spaces. A similar result
holds for Seifert fibre spaces with boundary. Much of the above argument holds just as well
when the Seifert fibre space has boundary, except that we must rule out some cases with more
than one geometry, and the Euler number is no longer defined (a section of a surface-with-
boundary always exists). Furthermore, surfaces are no longer determined by their profinite
completion unless we have some information about the boundary.

Theorem 5.5 Let M, N be Seifert fibre spaces with non-empty boundary. Suppose that
w1 (M) = w1 (N). Call this common completion I'. Furthermore assume that M and N have
the same number of boundary components. Then:

1. I' has a unique maximal virtually central normal procyclic subgroup unless M (and
hence N) is a solid torus, S' x S! x 1 or the orientable I-bundle over the Klein bottle;
and

2. except in these cases, M and N have the same base orbifold.

Proof The only positive Euler characteristic orbifolds with boundary are the disc with pos-
sibly one cone point; the Seifert fibre space is then a fibred solid torus.

The only zero Euler characteristic orbifolds with boundary are the annulus (giving the
Seifert fibre space S' x S! x I), the Mébius band and disc with two order 2 cone points (both
giving the orientable I-bundle over the Klein bottle).

These three spaces all have different profinite completions of fundamental groups; one is
7., one is Z2 and the other is non-abelian; and none of the Seifert fibre spaces with hyperbolic
base orbifold have virtually abelian fundamental group, so we can safely proceed assuming
M, N are not any of the three exceptional manifolds above.

Part 1 of the proposition now follows from the same argument as in Theorem 5.1, replacing
“virtually a non-abelian surface group” with “virtually a non-abelian free group” to get the
lack of central subgroups of the base orbifold group. Now the base orbifold groups have
isomorphic profinite completions, so by [6], they are the same group. The ambiguity in the
surface is now resolved by the knowledge that M and N and hence their base orbifolds have
the same number of boundary components; and the fact that I detects whether the unique
maximal virtually central normal subgroup </ > is genuinely central or merely virtually so,
hence whether the base orbifold is orientable or not. O

5.2 Central extensions

A central extension of a group B by a (necessarily abelian) group A consists of a short exact
sequence
1-A—>G—>B—1

where the image of A is contained in the centre of G. Two such extensions are regarded as
equivalent if there is a commutative diagram

1 A G B 1
lid l'% lid
1 A G’ B 1
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Equivalence classes of central extensions are classified by elements of H>(B; A). The proof
of this fact proceeds directly via cochains, but for what follows it will also be convenient to
have the following interpretation.

Let B = (xl, e, Xn | Tlyenns rm) be a presentation for B, let F' be the free group on the
x;, and R the normal subgroup generated by the r ;. From the Serre spectral sequence for the
short exact sequence

1 R—>F—>B—1
we obtain the five-term exact sequence
0— H'(B;A) - H'(F; A) - (H'(R; A))f - H*(B; A) > 0= H*(F; A)

where the third non-zero term denotes those elements of H'! (R; A) invariant under the conju-
gation action of F'; in fact this is the group H! (R/[R, F]; A). Given an element of H2%(B; A),
lift to some

§ e (H'(R; A" = (Hom(R, A)"
Then a central extension of B by A is given by the ‘presentation’ (abusing notation slightly):
G={V.x1,..., x| S, Y CZ(G), ri = (1), P = E(r)

where A = (Y[S). The condition that A does genuinely include into this group is equivalent
to the invariance of £ under the action of F. The ambiguity under choice of lift to an element
£ is an element Y € H'(F; A). However this ambiguity corresponds precisely to changing
the generating set of G to Y and the elements x{ = x; - ¥ (x;). Conversely if two such G, G’
given by &, &' are isomorphic by an isomorphism ® fixing B and A, then & and &’ differ by
¥ € H'(F; A) given by ¥/ (x;) = x; - (P (x;)) .

The question of when two central extensions G, G’ of B by A givenby ¢, ¢’ € H?(B; A)
can be isomorphic allowing arbitrary automorphisms for B and A is more subtle; one needs
to prove whether any automorphisms of B and A can carry ¢ to ¢’ by the induced maps on
H?. This will be the central issue in the proof of Theorem 5.1.

The above theory of central extensions also holds for B profinite, provided that the abelian
group A is finite so that the cohomology group H 2B, A) is reasonably well-behaved. See
Sect. 6.8 of [17]. The fundamental groups of generic Seifert fibre spaces (over orientable
base) are central extensions

1-72Z—->G—B—1

classified by an element ng € H?*(B; Z), where B = n{)rbO is the fundamental group of
the base orbifold. The profinite completion of a generic Seifert fibre space group is a central
extension of B by the infinite group 7. To avoid the complications raised by the presence
of 7, we restrict to a finite coefficient group as follows. Note that since an isomorphism of
profinite completions of two Seifert fibre space groups G, G’ preserves this central subgroup
7 by Theorem 5.2, and since Z has a unique index ¢ subgroup, any isomorphism G=q
induces an isomorphism

r=G/<h>=G/<h">=r'

where I', I'' are now central extensions of B by Z/t. Hence they are classified by elements
£, ¢ of HX(B; Z/t). But B is a good group, hence H2(B; Z/t) is canonically isomorphic
to H>(B; Z/1); and {g, (¢ are the images of 1, ¢’ under the maps

H*(B;Z) — H*(B;Z/t) = H*(B; Z/1)
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It remains to show that no automorphisms of Band Z /t can carry {¢ to {¢ under the
induced maps on H 2(1§; Z/t) for all ¢ unless the manifolds M, M, are homeomorphic or
are covered by the theorem of Hempel [13].

Before moving on, let us calculate the cohomology classes 7 in terms of the five-term
exact sequence; this will be of use later. For a Seifert fibre space over orientable base with
symbol

b, 25 (p1,q1)s -+ (Pr.qr))

the fundamental group has presentation

(al,...,ar,ul,vl,...,ug,vg,h|

he Z(mM), alpihq", ap...arlug,vil... lug, vg]=hb)

Let1 - R — F — B — 1 be the corresponding presentation of the base orbifold group.
Now R/[R, F] is in fact the free Z-module on these relations yp = aj ... vgl, Vi = aip";
comparing to the above general theory we see that the cohomology class 7¢ is the image in

H?(B; Z) of the map
Yor> b, yit> —qi

in Hom(R/[R, F], A). The chain complexes in the following section make rigorous our
treatment of R/[R, F] as a free abelian group on these generators. The calculation is similar
for the bounded case, except that the yy term does not appear.

5.3 Action on cohomology
We first constrain the possible automorphisms of base orbifold that we need to consider:

Proposition 5.6 Let M1, M3 be generic Seifert fibre spaces with 711/(1\71) = 7171\72). Let the
base orbifold group be

1
B=(ai,...,ar,ui,vi...,ug,vg|al’,....al" ar...ar - [ur,v1]- - [ug, vgl)

Then some isomorphism of w1 (M7) with w1 (M3) induces an automorphism of B mapping
each a; to a conjugate of afq , where k; is coprime to p;.

Proof This is a simple corollary of Proposition 3.4; for the induced automorphism of B
from any given isomorphism of the 711/(1\7,-) must induce a bijection on conjugacy classes
of maximal torsion elements; hence a; is sent to a conjugate of aﬁ"(l.) for some permutation
o with psiy = p; and k; coprime to p;. Permuting the a; under the permutation o lis
an automorphism of B, hence of é, so we can force o to be the identity; on the level of
the Seifert fibre spaces we are simply relabelling the exceptional fibres and exploiting the
invariance of the fundamental group under such relabellings. O

Note that this proposition works just as well when there is boundary.
Proposition 5.7 If ¢ is an automorphism of B as in Proposition 5.6, then for any n the action

of ¢* on H2(I§; Z/n) is multiplication by k for some profinite integer k € 7. such that for
all 1 <i <r, k is congruent to ki modulo p;.
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Proof We construct a partial resolution of Z by free Z B-modules, transport this to a partial
resolution of Z by free Z[[ B]]-modules, and use this to compute the action on cohomology
of the above automorphisms of B. Fix the presentation

B:(a1,...,ar,u1,v1 ...,ug,vg|af',...,arp’,a1 ---a,-[ul,vl]--~[ug,vg])
of B, let F = F(a;, u;, v;) and R = ker(F — B).

Set Cp = Z B, interpreted as the free Z-module on the vertices of the Cayley graph of B,
with B-action by left translation on Cay(B); the map € : ZB — Z is the evaluation map.

LetCy = ZB{x;, uj, v;}, the free Z B-module with generators x; (1 <i <r),u;,v; (1 <
j < g). The generator x; represents the edge in Cay(B) starting at 1 and labelled by a;,
and similarly i, v; represent the edges labelled u, vj. Thus C; is the space of linear
combinations of paths in Cay(B), with B-action given by left-translation.

The boundary map d; : C; — Cj sends each path to the sum of its endpoints, so that
for example x; — a; — 1 € ZB. Certainly ed; = 0; exactness at Cyp now follows by
connectedness of the Cayley graph.

Let C» = ZB{yo, - .., y-}. We can interpret C; as representing ‘all the relations of B’;
that is, all closed loops in the Cayley graph. The generator yy will represent the relation
ap--- vg_1 in the above presentation, and y; the relation aip "; now define d; : C; — Cj by
mapping each generator to the loop in the Cayley graph representing it; for instance,

dz(y,')le'-‘rlll')Ci+a%'xi+"'+llipi_1'xi

d(yo) =x14+ar-x2+---+aj...a—1-xr

+ay...ap-uy+--—ap...apfuy, ] [ug, velug

Any loop in the Cayley graph represents some element of R, which can be expressed as a
product of conjugates of the relations in the above presentation. Left conjugation of a relation
corresponds to left-translating the loop around the Cayley graph; so any such product of
conjugates can be realised in the Cayley graph as a Z B-linear combination of the d>(y;).
Hence d;dy = 0 and the image of d5 is precisely the kernel of d;.

Let us analyse the kernel of d; let

s= > nhb-yi €ker(dp)
i b

where >, an € Z B for each i. The coefficient of x; in d(s) is
0= anbal R T +Zn2b (1 + a; +-~-af"71)
b b

Multiplying on the right by (a; — 1) kills the second sum; and reparametrising the first sum
yields ng o = ng forallb € B.If r > 1, the a; generate an infinite subgroup of B; but >_ ngb
is a finite linear combination, so ng = 0 for all . If r = 1, we can analyse the coefficient of
u; instead as g > 0 for a non-spherical orbifold; or we can simply note that profinite rigidity
in the cases r = 0, 1 was already covered by Corollary 5.4, so that we need not worry any
further about them. We are left to conclude that >", an(l +a; +--- aip i_l) = 0, hence
> nﬁab is some multiple of (a; — 1) and the kernel of &5 is spanned by (a; — 1)y;.
Now set C3 = ZB{z1, ..., z,} and d3(z;) = (a; — 1) - y; to find an exact sequence

C3—>Cr—>Ci—>Cy—>7Z

i.e. a partial resolution of Z by free Z B-modules as desired.
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By Proposition 2.9 we have a partial resolution
é3—>éz—>él—>éo—>2
where each éi is the free Z[[é]]—module on the same generators as C;, and the boundary
maps are defined by the same formulae on these generators. We can thus use this resolution

to compute the first and second (co)-homology on B.
Let ¢ B — B be an automorphism of B as in Proposmon 5.6. Construct maps ¢ :

C, — Cl fori = 1,2 as follows. Lift ¢ to ¢ : F — F such that
~ ki _71
Blai) = (a;")%i

for some g; € F. Write the image of each generator of F under ¢ as a limit of words on these
generators; then map the corresponding generator of C) to the associated limit of paths in
the Cayley graph To define ¢ on Cz, note that each relation of B is mapped to an element
of R under ¢, hence can be written as a (limit of) products of conjugates of relations; now
map this to an element of C‘z just like before. We have made a choice of expression of an
element of R in terms of conjugates of relations; the ambiguity is by construction an element
of ker(dz) 1m(d3) which image will soon vanish. For definiteness, choose

G1(yi) =kigi-yi (1 <i=<r)

coming from the obvious expression of ¢(a ") from above. Because the map on R was
induced by the map on F used to define Oy : C, — Cy,we get a commuting diagram

C3 éz él Co
J% lﬂﬁz
6'3 éz él éO

Now apply the functor 2‘8’2[[ py—to the above diagram; i.e., factor out the action of B, to
get a commuting diagram

d o 0 A A

2 @5y €3 —— L4y0. ... yr) —— Lixi, it b} —— 2 ®z5y, Co
ld)j kﬁ:

. A 0 & . 0 A A

Z®Z[[é]]C3*>Z{y(),...,yr}*z>Z{xi,uj,vj}*>Z®Z[[é]]C()

with the rows no longer exact, but with the maps marked as zero becoming trivial because
the image of each generator of the chain group had a factor (@; — 1). We have some good
control over the maps in the above, viz.

Py (xi) = kix;
G (i) = ki yi
dy(y0) = x1 + -+ + X
dy(yi) = pixi

If ¢4 (yo) = kyo + > iiyi, then tracking this around the diagram we find
K+ pipi = ki

forall i.
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For n € N, we now apply Hom, (—, Z/n) to the above diagram, to get a commuting
diagram

¢1T ¢iT
<T(Z/n){ya‘,~~,yr}<d—(Z/n){x 75, U}

in which the homology of each row gives H 2(1@’; Z/n) and ¢° gives an action on this coho-
mology group.

First let us note that this action is genuinely the functorial map ¢* induced by ¢. By
construction 7 ®Z[[ 311 C’z is the free Z-module on our relations. In this construction for the

discrete group, this would be R/[R, F]. In the profinite world, R/[R, F ] may not be free
abelian, as not every closed subgroup of a free profinite group is free; however we do get a
canonical surjection

7 ®Z[[I§]] C> - R/[R, F]

since our chosen set of relations is a generating set for this latter group. But now the map
¢z on 7 118 Cz is easily seen to induce the natural map on R/[R, F] given by ¢; and
naturality of the quotient map

H'(R/IR, F1: Z/n) — H*(B: Z/n)
coming from the five-term exact sequence shows that ¢* will indeed give the correct action

on HZ.
Finally, we can compute this action on H 2(}EA?; Z/n). We have from above

P () = K¥p

O ) = vy + kiy}
d*(x}) = yg + pivi
d*(i}) = 0 = d*(¥)

so that, given a cochain ¢ = by — >, giy}, we have

S*(1C]) = [6°(0)] = [(Kb = > qimi) 3 - Zqik"yi*]
= [ (b — X av7) — D aumi (05 + piv?)]

=«[¢]

O
Proof (Proof of Theorem 5.1) Recall that we have reduced to the case of orientable base
orbifold. As discussed in Sect. 5.2, our manifolds M, M, are determined by cohomology

classes 1, m» € H*(B; 7). If

My =0, X (pr,q1)s -, (Prgr))
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then as a cochain in the basis yg, .. ., y; of Homz g (C2, Z) where C, is the partial resolution
defined above, we have (see Sect. 5.2)

m=|by;— D a4y

1<i<r

and similarly for 7. From these we get cohomology classes ¢; , € H? (B; Z/n). Suppose that
711/(]\71) = n1/(1l72). Then, after possibly reordering the exceptional fibres of M», we have that
the exists k' € Z such thatk ¢ n = {2,p foralln. Itis a consequence of the previous proposition
that an automorphism of the base induces such an effect on the cohomology groups; we may
also rescale the fibres of the M; by an automorphism of Z, giving an automorphism of the
coefficient ring of H?2. But this is simply multiplication of the cohomology class by some
element of 7 X, which we merge into «.

If the M; have non-zero Euler number e > 0 (by reversing the orientation on the fibres
we can always force e > 0 for both manifolds), choose n = me [] p; for some integer m,
and define a group homomorphism E : H2(B; Z/n) — Z./n by

E (Ztiyi*) =-n[]ri+D u[]r
i£0
so that E (k&) = k E(§). Since e = —(b + >_q;/pi), we have E(¢1,,) = e[ p; modulo n;
then

E(cg1n—&2.0) = (c = De [ | pj = 0 modulo n

sothat k¢, = ¢ foralln = me[] p; can only hold if « is congruent to 1 modulo m for
allm,ie.ifk = 1and {1, = &2, for all n, so that n; = n and M1, M, are homeomorphic.

If the M; have Euler number zero, so that they are H2 x R manifolds, choose n = I1 pi and
k € Z such that k is congruent to k mod n. Then M> is a Seifert fibre space with zero Euler
characteristic and Seifert invariants (p;, kg;); there is only one such, and Hempel showed
that these pairs of H? x R manifolds are precisely those surface bundles in the statement of
the theorem. O

Rather easier is the bounded case, given sensible conditions on the boundary.

Theorem 5.8 Let M, M> be orientable Seifert fibre spaces with boundary, and assume that
there exists an isomorphism @ : m — 7T/1ﬂ72 inducing an isomorphism of peripheral
systems, in the following sense. The boundary components of M determine a conjugacy class
of Z2-subgroups in the fundamental group, which gives a conjugacy class of iz—subgroups
in the profinite completion. The isomorphism ® is required to send one such set of conjugacy
classes to the other, inducing isomorphisms on the matched copies of 22

Let M| have Seifert invariants (p;, q;). Then for some k € Z coprime to all p;, M, is the
Seifert fibre space with the same base orbifold and Seifert invariants (p;, kq;)-

Proof We can safely focus on hyperbolic base orbifolds, the other three Seifert fibre spaces
with boundary being easily distinguished from these and each other by their first homology,
hence by the profinite completion. As before, we have already reduced to the case of orientable
base orbifold.

Note that two boundary components of the base orbifolds generate distinct free Z factors
of the base orbifold group, and the standard theory of free profinite products (see Theorem
9.1.12 of [17]) shows that these are not conjugate in the profinite completion; so the number
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of peripheral conjugacy classes remains the same as the number of boundary components.
Then by Theorem 5.5 both Seifert fibre spaces share the same base orbifold O, and there is
an induced automorphism of B = n{’rbO. As before, we can now consider the Seifert fibre
spaces as being represented by elements of H 2(B; 7./n) for arbitrary n.

Take a presentation

afl,...,arp’)

B:(al,...,ar,bl,...,bs,ul,vl,...,ug,vg

for the base orbifold, where the a; are the cone points and the (conjugacy classes of the) b;
give all but one of the boundary components; the remaining boundary component is

b0=a1...ar-bl...bs~[u1,v1]~--[ug,vg]

As before, we are at liberty to permute cone points with the same order, and permuting
boundary components is also permitted. Thus given Proposition 5.6 and the conditions of the
theorem we may assume that the automorphism ¢ of B induced by @ is of the form

a; — (afi)gi ,bj— (bi/)hj

for elements g;, i of B, I; € 2%, and k; coprime to p;.
Now the induced automorphism of

r s
Hi(B) = By = @Z/Pi @@72 ® 2%
i=1 j=1

sends the class of by to

Pu[bol) = ¢ | D_[ail+ D [b;1] = D kilail+ D 1j[b;]
j#0 Jj#0
and on the other hand to
lolbol = > lolail + Y lolb;]
j#0
showing that all the k; are congruent to /o modulo p; and that all the /; are equal.

Using essentially the same chain complex as in the closed case we can now compute that
the action on

2 (B:z/[] i) = éZ/p,-
i=1

is multiplication by /g, or equivalently multiplication by some k € Z congruent to /o modulo
1 pi, thus taking the element (g1, . . ., g,) representing M| to the element representing M»,
which we now see to be (kq1, ..., kq,). O

We finally prove the converse to the last theorem. A mild adjustment to this argument,
with the appropriate modification of the cohomology group considered, provides another
proof of Hempel’s theorem on closed Seifert fibre spaces.

Theorem 5.9 Let M|, M, be Seifert fibre spaces with non-empty boundary and with the same
base orbifold O. Suppose M1 has Seifert invariants (p;, qi) and M> has Seifert invariants
(pi, kqi) where k is some integer coprime to every p;. Then T M| = w1 M5.
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Proof Again it suffices to deal with the case of orientable base orbifold. Let I; = m, let
h; be a generator of the centre of 1 M;, and let

Fi,n = Fi/<ht>

where t = n[] pi.

Note that for each i the I, form a natural inverse system with maps I, — I,
Furthermore, any map from I7; to a finite group must kill some power of /, and hence factors
through some I7 ;. It follows that

I; = L&n E,n
n
Now k maps to an invertible element of Z/ [ | p;; then there is some invertible element
« of 7 congruent to k modulo each p;. One can prove this by noting that by the Chinese
Remainder theorem the natural map (Z/mn)* — (Z/n)* is always surjective, hence so is
the map Z* — (Z/n)*.
As discussed in Sect. 5.2, I , is classified by an element

Ge H (B:Z/t) = EPz/p,

j=1

where B is the base orbifold group; by assumption ¢, = k¢; = «¢;. Multiplication of the
coefficient group k gives an automorphism of the cohomology group taking ¢ to &, hence
induces an isomorphism 17, — I% ,. Moreover this isomorphism is compatible with the
quotient maps I ,,m, — I »; hence we have an isomorphism

I =1limn, =imly, =
n n

as required. O

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made.
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