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Abstract The Dirichlet–Voronoi cell and parallelohedron are fundamental concepts in
Geometry. In particular, they do play important roles in the study of ball packing and ball cov-
ering. However, to study packing and covering of general convex bodies, they are no longer
so useful (see Theorem 0). By introducing Minkowski bisectors and Minkowski cells, this
paper explores a new way to study the density θ∗(C) of the thinnest lattice covering of En by
a centrally symmetric convex body C . Several basic results (Theorems 2 and 4, Corollary 1)
and unexpected geometric phenomena (Theorem 0, Example 1, Remark 4) about Minkowski
bisectors, Minkowski cells and covering densities are discovered.

Keywords Lattice · Bisector · Dirichlet–Voronoi cell · Minkowski metric · Minkowski
bisector · Minkowski cell · Lattice covering
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1 Introduction

Let En denote the n-dimensional Euclidean space with an orthonormal basis {e1, e2, . . . , en}.
For convenience we use small letters to denote real numbers, use small bold letters to denote
points (or vectors) and use capital letters to denote sets of points in the space. In particular, let
o denote the origin of En , and let Bn denote the n-dimensional unit ball {x : ∑ |xi |2 ≤ 1}.

The bisector and theDirichlet–Voronoi cell are two basic concepts in the Euclidean space
(see [8] and [25,26]). They have played very important roles in many geometric problems.
For example, if � is a lattice in E

n , let r be the maximal number such that r Bn + � is a
packing in E

n , let r ′ be the minimal number such that r ′Bn + � is a covering of En , and let
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D denote the Dirichlet–Voronoi cell determined by � with respect to the Euclidean metric
and centered at o, then we have

r Bn ⊂ D ⊂ r ′Bn

and D+� is a lattice tiling of En . Therefore, the Dirichlet–Voronoi cell does provide a basic
tool for investigating both ball packing and ball covering. For the basic knowledge about the
bisector and the Dirichlet–Voronoi cell we refer to [6,9,10] and [17].

Let K denote an n-dimensional convex body and let C denote a centrally symmetric one
centered at the origin of En . In particular, let P denote an n-dimensional parallelohedron,
the polytope which can form a lattice tiling in E

n . In 1885, Fedorov [13] discovered that,
in E

2 a parallelohedron is either a parallelogram or a centrally symmetric hexagon; in E
3

a parallelohedron can be and only can be a parallelotope, a hexagonal prism, a rhombic
dodecahedron, an elongated octahedron, or a truncated octahedron. In 1929, Delone [5]
proved that any n-dimensional parallelohedron is the affine image of a Dirichlet–Voronoi
cell of a suitable lattice when n ≤ 4.

Let θ∗(K ) denote the density of the thinnest lattice covering of En by K . It is well-known
(see [12] or [22]) that, if K + � is a lattice covering of E2, then K contains a centrally
symmetric hexagon H such that H + � is a tiling in E

2. Of course, the similar statement is
true for the ball in any dimensions. In these cases it provides a practical way to determine the
values of θ∗(K ), if all the parallelohedral types in the corresponding dimension are known.
Then a basic problem emerged: Whenever K + � is a lattice covering of En , n ≥ 3, is
there always a parallelohedron P satisfying both P ⊆ K and P + � is a tiling of En?
Unfortunately, as one will see in Sect. 2, this is not the case.

It is well-known that there is a one-to-one correspondence between Minkowski metrics
and centrally symmetric convex bodies in E

n (see page 7 of [17]). Therefore, it is natural and
necessary to study the corresponding objects of the bisector and the Dirichlet–Voronoi cell
in any metric space.

It is easy to show that any bisector in the Euclidean space E
n is a hyperplane. So it

divides the whole space nicely into two parts. However, for other metrics a bisector could
be very strange (not homeomorphic to a hyperplane) and the corresponding cell could be
very complicated. In particular, sometimes the cells of a lattice can no longer form a tiling
of the space. Therefore, a direct generalization of the bisector and the Dirichlet–Voronoi cell
to general metric spaces is not useful to the corresponding packing and covering problems.
Nevertheless, there are many references on these topics (see [21] and [24]).

In this paper, for the purpose to study lattice packings and lattice covering of general cen-
trally symmetric convex bodies, we introduce and studyMinkowski bisectors andMinkowski
cells with respect to a given Minkowski metric. Some basic results and unexpected phenom-
ena such as Example 1, Theorems 0, 2 and 4, and Corollary 1 about Minkowski bisectors,
Minkowski cells and covering densities are discovered.

2 A basic example

For convenience,wewriteα = cos π
3 ,β = sin π

3 and take γ to be a small positive number.We
note that (1,0), (α, β), (−α, β), (−1, 0), (−α,−β) and (α,−β) are the vertices of a regular
hexagon. Let C denote a three-dimensional centrally symmetric convex polytope as shown
in Fig. 1 with twelve vertices v1 = (1, 0, 1 + γ ), v2 = (α, β, 1 − γ ), v3 = (−α, β, 1 + γ ),
v4 = (−1, 0, 1 − γ ), v5 = (−α,−β, 1 + γ ), v6 = (α,−β, 1 − γ ), v7 = (1, 0,−1 + γ ),
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Fig. 1 A basic example for
covering
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v8 = (α, β,−1−γ ),v9 = (−α, β,−1+γ ),v10 = (−1, 0,−1−γ ),v11 = (−α,−β,−1+γ )

and v12 = (α,−β,−1 − γ ), and let � to be the lattice with a basis a1 = (1 + α, β, 0),
a2 = (1+ α,−β, 0) and a3 = (0, 0, 2). In fact, C can be obtained from an hexagonal prism
of height 2(1 + γ ) by cutting off six tetrahedra, all of them are congruent to each others.

It can be easily verified that

vi = v6+i + a3

holds for all i = 1, 2, . . . , 6 and C + � is a lattice covering of En . If C contains a parallelo-
hedron P such that P + � is a tiling of E3, then P must contain all the twelve vertices v1,
v2, . . ., v12 of C and therefore P = C . However, C is not a parallelohedron. Thus, C + � is
a counterexample to the basic problem in E

3.
If K is a counterexample in E

n−1, defining K ′ to be the cylinder over K , one can easily
show that K ′ will be a counterexample to the basic problem inEn . Therefore, we have proved
the following result by explicit examples:

Theorem 0 Whenever n ≥ 3, there is a lattice coveringC+� ofEn by a centrally symmetric
convex body C such that C does not contain any parallelohedron P that P + � is a tiling of
E
n.

3 The Minkowski bisectors

Let ‖ · ‖C denote a Minkowski metric determined by a centrally symmetric convex body C
and let ‖x, y‖C = ‖y− x‖C denote theMinkowski distance between two points x and y with
respect to the metric. For two distinct points p and q in E

n we define

H(p,q) = {
y ∈ E

n : 〈y,q − p〉 = 0
}

and

L(p,q, x) = {x + λ(q − p) : λ ∈ R} ,

where x ∈ H(p,q). In other words, H(p,q) is a hyperplane containing the origin and
perpendicular to the vector q − p, and L(p,q, x) is the straight line determined by the point
x and the vector q − p. Then, for every x ∈ H(p,q), we define
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p q

u v

u + p− q

v + p− q

Fig. 2 Structure of the bisectors

S(C,p,q, x) = {y ∈ L(p,q, x) : ‖p, y‖C = ‖q, y‖C } .

Now let us introduce a basic result about S(C,p,q, x)which is essential for the definition
of the Minkowski bisectors.

Lemma 1 (Horváth [18]). For every x ∈ H(p,q), the set S(C,p,q, x) is either a single
point or a closed segment.

Proof Since C is a centrally symmetric convex body, both f (y) = ‖p, y‖C and g(y) =
‖q, y‖C are continuous functions of y. On the other hand, when λ is sufficiently large, we
have

f (x + λ(q − p)) > g(x + λ(q − p))

and

f (x − λ(q − p)) < g(x − λ(q − p)).

Thus it follows that S(C,p,q, x) is nonempty. In addition, it can be easily deduced that
S(C,p,q, x) is always a compact set.

Now we show that if both u and v belong to S(C,p,q, x) (see Fig. 2) then the whole
segment [u, v] belongs to S(C,p,q, x).

Assume that

‖p − u‖C = ‖q − u‖C = α,

‖p − v‖C = ‖q − v‖C = β

and α < β. It is easy to see that both u + p − q and v + p − q belong to L(p,q, x), u is
between v and u + p − q and therefore

u − p = μ(v − p) + (1 − μ)(u + p − q − p)

holds for some μ with 0 < μ < 1. Thus we get

α = ‖p − u‖C ≥ μ‖p − v‖C + (1 − μ)‖p − u‖C
≥ μβ + (1 − μ)α = α + μ(β − α) > α.

By this contradiction we can conclude that α = β. Then it follows by convexity (since all
u + p − q, v + p − q, u and v belong to the boundary of p + αC) that the whole segment
[u+p−q, v] belongs to the boundary of p+αC , the whole segment [u, v+q−p] belongs
to the boundary of q + αC , and therefore [u, v] belongs to S(C,p,q, x). �
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Definition 1 Let p and q be fixed distinct points. For x ∈ H(p,q) let x denote the middle
point of S(C,p,q, x). Then we define

B(C,p,q) = {x : x ∈ H(p,q)}
and call it a Minkowski bisector of pq with respect to ‖ · ‖C .
Remark 1 In the literature like [4,16,18–21] and [27], the bisector was defined by

B ′(C,p,q) = {S(C,p,q, x) : x ∈ H(p,q)} .

Clearly we have

B(C,p,q) ⊆ B ′(C,p,q),

where the equality holds if and only if the surface of C has no segment in the direction of pq.
As one will see from Sect. 4 that, for the purpose to study packing and covering, B(C,p,q)

is more natural than B ′(C,p,q).

Let f (x) be a map from H(p,q) to B(C,p,q) defined by f (x) = x. Clearly it is a
one-to-one map. However it is less obvious if it is continuous in general. We note that in
some references such as [18] and [21] our “continuous” is referred as “homeomorphic to a
hyperplane”. In fact, as one can see from the following lemma and example, the situation is
quite complicated.

Lemma 2 In E
2, for any given metric ‖ · ‖C and given distinct points p and q, the map

f (x) = x from H(p,q) to B(C,p,q) is continuous.

Proof Without loss of generality, we assume that p = o and q = e2. Then the set H(p,q)

is the x-axis. Let R1 denote the set of points x ∈ H(p,q) such that S(C,p,q, x) is a single
point and write R2 = H(p,q) \ R1.

By repeating partial argument of Lemma 1, it can be deduced that R1 is closed and if
(x1, 0) ∈ R2, then (x2, 0) ∈ R2 whenever |x2| ≥ |x1|. In addition, if x0 = max{x : (x, 0) ∈
R1}, x0 = (x0, 0) and f (x0) = (x0, y0), then f (x) (for (x, 0) ∈ R2 and x > 0) is the middle
point of [g1, g2], where g1 = (x, y0

x0
x) and g2 = (x, 1+ y0−1

x0
x), as shown in Fig. 3. In other

words f (x) is an half straight line for x ≥ x0. Similarly, one can deal with the case that
(x, 0) ∈ R2 and x ≤ −x0.

Then the continuity of f (x) follows easily, by considering two cases x ∈ R1 and x ∈ R2.
�

p

q

x0

x0

x

x

g1

g2

Fig. 3 Structure of the Minkowski bisectors
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Fig. 4 A Minkowski bisector which is not continuous

Example 1 In E
3 let us define

C = conv{v, S,−v},
where S = {(x, y, 0) : x2 + y2 ≤ 1} and v = (1, 0, 1). It is easy to see that C is a centrally
symmetric convex body and its surface has only two vertical segments, they are [e1, v] and
[−e1,−v]. Take p = (0, 0, 0) and q = (0, 0, 1) and let H denote the set of all planes which
containing both p and q. By considering the intersections with planes H ∈ H, one can deduce
that the Minkowski bisector B(C,p,q) with respect to ‖ · ‖C consists of two parts L and
M , where L is a straight line {(x, 0, 1

2 (x + 1)) : x ∈ R} and M is a set between two planes
M1 = {(x, y, z) : z = 0} and M2 = {(x, y, z) : z = 1}, as shown in Fig. 4. Therefore it is
easy to see that the map f (x) = x is not continuous at the points (x, 0, 0) whenever |x | > 1.
By adding more edges similar to [e1, v], one can make the situation much more complicated.

Let C denote the set of all n-dimensional centrally symmetric convex bodies centered at
the origin o and let δ(·, ·) denote the Hausdorff metric defined on C. In other words,

δ(C1,C2) = min{γ : C1 ⊆ C2 + γ Bn; C2 ⊆ C1 + γ Bn}.
Let p and q be two fixed distinct points, let C0 be a centrally symmetric convex body, and let
C1, C2, . . . be a sequence of centrally symmetric convex bodies. It is natural to ask, would
B(Ci ,p,q) converges to B(C0,p,q) if

lim
i→∞ δ(Ci ,C0) = 0?

Unfortunately, as one will see from the next example, the answer to this question is negative,
even in the plane.

Example 2 In the plane we define

C0 = {(x, y) : −1 ≤ x ≤ 1; −1 ≤ y ≤ 1}
and

Ci = conv

{

±(1, 1),±(1, 0),±
(

1 − 1

i
,−1

)}
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p

q

Ci

Ci + q

B(Ci,p,q)

(−2, 0)

(1i − 1, 1)

(2, 2)

(1− 1
i , 1)

Fig. 5 Non-convergence of the Minkowski bisectors

for i = 1, 2, . . . . Then we have

lim
i→∞ δ(Ci ,C0) = 0.

Let p = (0, 0) and q = (0, 2), we have

B(C0,p,q) = {(x, 1) : x ∈ R}.
However, as shown by Fig. 5, the Minkowski bisector B(Ci ,p,q) consists of points (x, y)
satisfying

y =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1
2 x + 1, if |x | ≥ 2,
i

i+1 (x + 2), if − 2 ≤ x ≤ 1
i − 1,

1, if |x | ≤ 1 − 1
i ,

i
i+1 x + 2

i+1 , if 1 − 1
i ≤ x ≤ 2,

Therefore the sequence B(Ci ,p,q) does not converge to B(C0,p,q).

If B(C,p,q) is a continuous surface, then it divides the whole space nicely into two half
spaces. Unfortunately, as it was shown by Example 1, theMinkowski bisectors are not always
continuous. Nevertheless, for many important metrics, the continuity can be guaranteed by
the next lemma.

Lemma 3 If C is a centrally symmetric strictly convex body or a centrally symmetric poly-
tope, for any pair of distinct points p and q, the map f (x) = x from H(p,q) to B(C,p,q)

is continuous.

Proof First let us deal with the strictly convex case. Then, for any point x ∈ H(p,q),
S(C,p,q, x) is a single point. If the map is not continuous at point x0, then one can deduce
that S(C,p,q, x0) is not a single point. The strictly convex case follows.

Now we consider the polytope case. Let P be an n-dimensional centrally symmetric
convex polytope, let P ′ denote its projection on H(p,q), and let ∂(P ′) denote the relative
boundary of P ′. Clearly P ′ is a (n−1)-dimensional centrally symmetric polytope and ∂(P ′)
is a polytope complex of dimension less than or equal to n − 2.
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p

q

1
h(v)C + p

1
h(v)C + q

f1(αv)

f2(αv)

f (αv)

αv

Fig. 6 From a bisector to a Minkowski bisector

Let v be a point in ∂(P ′), let v∗ denote the point v + μ(q − p) ∈ P with maximal μ, let
v′ denote the corresponding point with minimal μ, and write

h(v) = ‖v∗ − v′‖
‖q − p‖ .

Since P is a polytope, by convexity, it is easy to see that both g1(v) = v∗ and g2(v) = v′ are
continuous maps for v ∈ ∂(P ′), and h(v) is a continuous function for v ∈ ∂(P ′).

Let Q(p,q, v) denote the two-dimensional hyperplane determined by p, q and v. By
studying the intersections with Q(p,q, v), it can be shown that S(P,p,q, αv) is a single
point if and only if α ≤ 1/h(v) (when h(v) = 0, α can be any number). Forαv ∈ H(p,q), let
f1(αv) denote the point αv+μ(q−p) in S(P,p,q, αv) with the maximal μ and let f2(αv)
denote the corresponding point in S(P,p,q, αv) with the minimal μ. When α > 1/h(v),
illustrated by Fig. 6, it can be shown by similar triangles that

f1(αv) = αv∗,
f2(αv) = αv∗ − (α h(v) − 1)(q − p)

and

f (αv) = αv∗ − 1

2
(α h(v) − 1)(q − p). (1)

Let H1(p,q) denote the set of the points x ∈ H(p,q) such that S(P,p,q, x) is not a
single point. It can be shown that H1(p,q) is an open set and therefore H(p,q) \ H1(p,q)

is a closed set. By (1) it follows that f (x) is continuous in H1(p,q). On the other hand f (x)
is continuous in H(p,q) \ H1(p,q). Therefore f (x) is a continuous map from H(p,q) to
B(P,p,q). The lemma is proved. �

By the previous proof, it is easy to see that the Minkowski bisector B(P,p,q) consists
of (n − 1)-dimensional polytopes if the metric is defined by a polytope P . Let ϕ(P,p,q)

denote the minimal number k such that the Minkowski bisector of p and q with respect to
‖ · ‖P can be divided into k polytopes of (n−1)-dimensional. We have the following results.

Theorem 1 If P is a centrally symmetric polygon with m vertices. Then, we have

ϕ(P,p,q) ≤ m − 1.

123



Geom Dedicata (2017) 188:123–139 131
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u2L2

L3

L
u3

βP + p

βP + q

m

M2

M3

Fig. 7 A Minkowski bisector of a polygon

Proof For convenience, without loss of generality, we take p = (0, 0) and q = (0, 1). Let λ
change from 0 to infinity, it is easy to see that the boundaries of λP +p and λP +q intersect
each other whenever λ ≥ α for some α.

For some β > 0, assume that the boundaries of βP + p and βP + q meet at a vertex v1
of βP + p or βP + q (see Fig. 7), v1v2 is an edge of βP + p, v1v3 is an edge of βP + q.
Let M2 denote the line which is parallel to v1v2 and pass through 2v2, let M3 denote the line
which is parallel to v1v3 and pass through 2(v3 − q) + q, let m be the intersection of M2

and M3, let L denote the line passes v1 and m, let L2 denote the line determined by p and
v2, and let L3 denote the line determined by q and v3. Then L2 intersects L at a point u2
and L3 intersects L at a point u3. Let u denote the ui which is closer to v1. By elementary
geometry it is easy to see that the whole segment [u, v1] belongs to B(P,p,q). In addition,
for some γ > 0, the boundaries of γ P + p and γ P + q meet at u and u is a vertex of either
γ P + p or γ P + q. By repeating this process and dealing with two cases with respect to if
∂(C) contains a segment which is parallel to pq or not, it can be shown that

ϕ(P,p,q) ≤ m − 1.

The theorem is proved. �
Remark 2 It is easy to see that

B(λC,p,q) = B(C,p,q)

holds for all positive number λ. Thus, for a fixed polytope P , the number ϕ(P,p,q) is
determined by the direction of pq. In fact, it follows by the proof of Theorem 1 that,

ϕ(P,p,q) = m − 1

holds for all p and q, except for a finite number of directions pq.

In higher dimensions the situation is much more complicated. We have the following
upper bound for ϕ(P,p,q).

Theorem 2 Let n ≥ 3 be an integer and let P be an n-dimensional centrally symmetric
polytope with m facets. Then

ϕ(P,p,q) ≤ 1
4m

2 + 1

27
m3

holds for any pair of distinct points p and q.
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Proof Let F denote a facet of P , let n(F) denote its outer unit normal, and let F denote the
set of the m facets of P . Then we define

F− = {F ∈ F : 〈n(F),q − p〉 < 0},
F0 = {F ∈ F : 〈n(F),q − p〉 = 0}

and

F+ = {F ∈ F : 〈n(F),q − p〉 > 0}.
It is easy to see, let |X | denote the number of the elements of X , that these three sets are
pairwise disjoint and satisfying

|F−| = |F+| ≤ 1

2
m (2)

and

|F−| + |F0| + |F+| = m. (3)

Assume that B(P,p,q) can be divided into ϕ(P,p,q) polytopes G1, G2, . . ., Gϕ(P,p,q)

of (n − 1)-dimensional and write

G = {Gi : i = 1, 2, . . . , ϕ(P,p,q)}.
For each i let wi be a relative interior point of Gi such that there are a relative interior point
ui of a facet which belongs to either F− or F0, a relative interior point vi of a facet which
belongs to either F0 or F+, and a positive number λi satisfying

wi = λiui + q = λivi + p. (4)

If ui ∈ F ∈ F0, by looking at Fig. 6, it can be deduced that vi ∈ F .
Then G can be divided into two disjoint subsets

G1 =
⎧
⎨

⎩
Gi : ui ∈

⋃

F∈F−
F

⎫
⎬

⎭

and

G2 =
⎧
⎨

⎩
Gi : ui ∈

⋃

F∈F0

F

⎫
⎬

⎭
.

Clearly we have

ϕ(P,p,q) = |G1| + |G2|. (5)

Now we proceed to estimate |G1| and |G2|, respectively.
If ui and u j belong to one facet F∗ inF− and vi and v j belong to one facet F ′ inF+, then

one can deduce that wi and w j should belong to the same (n − 1)-dimensional polytope. In
other words, the whole segment [wi ,w j ] belongs to B(P,p,q). To see this, when 0 ≤ θ ≤ 1,
writing λ = θλi + (1 − θ)λ j and θ ′ = θλi/λ, we have

θwi + (1 − θ)w j = θ(λiui + q) + (1 − θ)(λ ju j + q)

= θλiui + (1 − θ)λ ju j + q

= λ(θ ′ui + (1 − θ ′)u j ) + q

123



Geom Dedicata (2017) 188:123–139 133

and

θwi + (1 − θ)w j = θ(λivi + p) + (1 − θ)(λ jv j + p)

= θλivi + (1 − θ)λ jv j + p

= λ(θ ′vi + (1 − θ ′)v j ) + p,

where

θ ′ui + (1 − θ ′)u j ∈ F∗ and θ ′vi + (1 − θ ′)v j ∈ F ′.

Therefore |G1| is bounded from above by the number of distinct pairs of facets {F∗, F ′} such
that F∗ ∈ F− and F ′ ∈ F+. Then by (2) we get

|G1| ≤ |F−| · |F+| ≤ 1

4
m2. (6)

For F ∈ F0 we write

G(F) = {Gi : ui ∈ F}.
Let F ′+ denote the set of the facets F ′ of P such that 〈n(F ′),q − p〉 > 0 and F ∩ F ′ is
a (n − 2)-dimensional polytope and let F ′− denote the set of the facets F∗ of P such that
〈n(F∗),q−p〉 < 0 and F ∩ F∗ is a (n−2)-dimensional polytope. For ui , vi andwi defined
by (4) , let u+

i denote the point ui + λ(q − p) ∈ P with the maximal λ, and let u−
i denote

the point ui + λ(q − p) ∈ P with the minimal λ. Then, we have u+
i = v+

i and u−
i = v−

i .
If both u+

i and u+
j belong to int(F ∩ F ′) for a facet F ′ ∈ F ′+ and both v−

i and v−
j belong

to int(F ∩ F∗) for a facet F∗ ∈ F ′−, by an argument similar to the previous case it can be
deduced that both wi and w j belong to one (n − 1)-dimensional polytope in B(P,p,q).
Therefore |G(F)| is bounded from above by the number of distinct pairs of facets {F ′, F∗}
such that F ′ ∈ F ′+ and F∗ ∈ F ′−. Consequently, we get

|G(F)| ≤ |F ′−| · |F ′+| ≤ |F−| · |F+|
and, by (3 ),

|G2| ≤ |F0| · |F−| · |F+| ≤ 1

27
m3. (7)

As a conclusion of (5), (6) and (7) we get

ϕ(P,p,q) ≤ 1

4
m2 + 1

27
m3.

The theorem is proved. �

Remark 3 Although we can not give a proof, the upper bound in Theorem 2 seems much too
large. It is easy to see that the direction pq such that F0 �= ∅ is a zero measure set on ∂(Bn).
Therefore we have

ϕ(P,p,q) ≤ 1

4
m2,

unless the direction pq belongs to a zero measure set of ∂(Bn).
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Fig. 8 A section of D(C, p, q) is
star shape
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q
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y

y
u

w

w + q− p

w

4 Minkowski cells and Lattice coverings

Let C be an n-dimensional centrally symmetric convex body, and let p and q be two distinct
points in E

n . We recall that H(p,q) is the hyperplane {x : 〈x,q−p〉 = 0} and x is the point
x + λ(q − p) in B(C,p,q). For convenience, we define

D(C,p,q) = {x + λ(q − p) : x ∈ H(p,q), λ ≤ 0}.
In principle, the structure of D(C,p,q) can be very complicated. Nevertheless, we have the
following general result.

Lemma 4 The set D(C,p,q) is a star set with p as its origin.

Proof For convenience, we take p = o. Then we proceed to show that, if u ∈ D(C,p,q),
then αu ∈ D(C,p,q) holds for all α with 0 ≤ α ≤ 1.

Let Q(p,q,u) denote the two-dimensional plane determined by p, q and u. We consider
the intersection of D(C,p,q) with Q(p,q,u). Clearly, u ∈ D(C,p,q) implies

‖p,u‖C ≤ ‖q,u‖C . (8)

On the contrary, if

v = αu /∈ D(C,p,q)

holds for some α < 1, we proceed to deduce a contradiction. Assume that

v = y + λ(q − p)

with suitable y ∈ H(p,q) and λ ∈ R. Then the point y corresponding to y on the Minkowski
bisector is below v, as shown in Fig. 8. By Lemma 2, there is a suitable w between p and v
such that w ∈ B(C,p,q). Therefore,

w ∈ ∂(λC + p) ∩ ∂(λC + q)

holds for some suitable λ. Then we have

w + q − p ∈ ∂(λC + q).

If the whole segment [w,w+ q− p] belongs to ∂(λC + q), then one can deduce that the
whole segment [w,u] belongs to D(C,p,q) and thus v ∈ D(C,p,q), which contradicts the
assumption. If
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[w,w + q − p] �⊂ ∂(λC + q),

then by convexity it can be deduced that

‖q,u‖C <
‖q,u‖
‖q,w′‖ · λ = ‖p,u‖

‖p,w‖ · λ = ‖p,u‖C ,

which contradicts (8).
As a conclusion, αu ∈ D(C,p,q) holds for all 0 ≤ α ≤ 1. Lemma 4 is proved. �

Remark 4 For the C , p and q defined in Example 1, the region D(C,p,q) is not closed.
However, when B(C,p,q) is continuous, the region D(C,p,q) is closed.

Definition 2 Let C be a centrally symmetric convex body, let � be a lattice and define

M(C,�) =
⋂

v∈�\{o}
D(C, o, v).

We call M(C,�) a Minkowski cell of � with respect to the metric ‖ · ‖C .
Remark 5 For fixed C , p and q, it can be verified that both

B(λC,p,q) = B(C,p,q)

and

D(λC,p,q) = D(C,p,q)

hold for all positive numbers λ. If � is a lattice and τ is a non-singular linear transformation
from E

n to E
n . Then we have

B(τ (C), τ (p), τ (q)) = τ(B(C,p,q)),

D(τ (C), τ (p), τ (q)) = τ(D(C,p,q))

and

M(τ (C), τ (�)) = τ(M(C,�)).

Remark 6 By Lemma 4 it follows that the Minkowski cells are centrally symmetric star sets
centered at the origin. For example, if C = {(x, y) : |x | ≤ 1/2, |y| ≤ 1/2} and � is a
lattice with a basis a = (5/6, 1/6) and b = (−1/6, 5/6). Then M(C,�) is the star domain
illustrated in Fig. 9. In the Euclidean case,C = Bn , all Minkowski bisectors are hyperplanes,
and all Minkowski cells are parallelohedra.

Lemma 5 Let C be an n-dimensional centrally symmetric convex body, let � be an n-
dimensional lattice, and let γ denote the smallest positive number such that γC + � is a
covering of En. Then

M(C,�) ⊆ γC.

Proof If, on the contrary, there is a point x ∈ M(C,�) such that ‖o, x‖C > γ. Since
γC + � = E

n , there is a lattice point v ∈ � such that ‖v, x‖C ≤ γ. Thus, we have

x /∈ D(C, o, v)

and hence

x /∈ M(C,�).

The lemma is proved. �
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Fig. 9 A particular Minkowski
cell

a

b

o

C

M(C, Λ)

Theorem 3 Let C be a two-dimensional centrally symmetric convex domain and let � be a
two-dimensional lattice. Then the region M(C,�) is a centrally symmetric star domain and
M(C,�) + � is a tiling.

Proof First, by Definition 2, Lemma 4 and Remark 4, it follows that M(C,�) is a centrally
symmetric star domain. In other words, it is a centrally symmetric compact star set.

Now, we claim that

(int(M(C,�)) + vi ) ∩ (int(M(C,�)) + v j ) = ∅
holds for all distinct lattice points vi and v j .

If, on the contrary, without loss of generality there are a point x, a positive number ε and
a lattice point v such that

εC + x ⊆ int (M(C,�)) ∩ (int (M(C,�)) + v) . (9)

Then, we observe the Minkowski bisector B(C, o, v). If x ∈ B(C, o, v), then we have

x + εv /∈ D(C, o, v)

and

x + εv /∈ M(C,�),

which contradicts to (9), where v is the boundary point of C in the direction of v as defined
in Sect. 2. If x /∈ B(C, o, v), since B(C, o, v) divides E

2 into two separated parts which
contains int(M(C,�)) and int(M(C,�)) + v, respectively. Therefore, εC + x can’t belong
to both int(M(C,�)) and int(M(C,�)) + v simultaneously when ε is sufficiently small,
which contradicts to (9) as well.

Next, we claim that for every point x ∈ E
2 there is a lattice point v such that

x ∈ M(C,�) + v. (10)

Without loss of generality, since � is periodic, we assume that x ∈ γC . Clearly, we have

γC ⊆ D(C, o,q)

whenever ‖o,q‖C > 2γ. Therefore, there are at most |2γC ∩�|Minkowski bisectors which
can effect M(C,�). Consequently, we assume further that

x ∈ int(γC) \
⋃

vi ,v j∈2γC∩�

B(C, vi , v j ).
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Fig. 10 The structure of the
equidistance set

wi

wj

x

λC + x

λC + wi

λC + wj

If, for any positive ε there is a point x′ such that x′ ∈ εC + x and

‖o, x′‖C < ‖v, x′‖C
holds for all v ∈ 2γC ∩ (� \ {o}). Then, since M(C,�) is compact, we have x ∈ M(C,�).
If, there are a positive number ε′ and a subset W of 2γC ∩ � with |W | ≥ 2 such that

‖x′,wi‖C = min{‖x′, v‖C : v ∈ 2γC ∩ �}
holds for all x′ ∈ ε′C + x and wi ∈ W . Then, W ⊂ ∂(λC) + x holds for some suitable
positive number λ. By Fig. 10 it can be shown that, if wi and w j are two distinct points in
W , then the whole segment [wi ,w j ] belongs to ∂(λC) + x and thus all the points of W are
colinear.

Assume that w1, w2, . . ., wk are the points of W that successively on a line H , as shown
in Fig. 10. Since W ⊂ �, we have

wi+1 − wi = w2 − w1.

Let �′ denote the affine lattice generated by W in H . In other words,

�′ = {w1 + z(w2 − w1) : z ∈ Z} .

Then, M(C,�′)+�′ is a tiling of E2. Therefore, as illustrated by Fig. 11, there is a wi ∈ W
such that

x ∈ M(C,�′) + wi

and consequently

x ∈ M(C,�) + wi .

As a conclusion, M(C,�) + � is a tiling of E2. Theorem 3 is proved. �

Theorem 4 Let C be an n-dimensional centrally symmetric convex body, let � be an n-
dimensional lattice, and let γ denote the smallest positive number such that γC + � is a
covering of En. If ∂(C) has no segment in the directions of {v : v ∈ 2γC ∩ (� \ {o})}, then
the region M(C,�) is a centrally symmetric star body and M(C,�) + � is a tiling.
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w1 w2 w3 w4 w5

C + x
B(C,w1,w2)

B(C,w4,w5)

Fig. 11 Every point belongs to a Minkowski cell

This result can be proved just like the Euclidean case. Let δ∗(C) denote the density of the
densest lattice packing of C and let θ∗(C) denote the density of the thinnest lattice covering
of En by C . For more about packing and covering we refer to [1–3,14,15,23] and [28]. Since
a polytope has finite number of facets, it is easy to construct lattices avoiding directions
parallel to its facets. Thus, Theorem 4 has the following corollary.

Corollary 1 Let P be an n-dimensional centrally symmetric polytope and letM denote the
set of all Minkowski cells M(P,�) contained in P. Then, we have

θ∗(P) = inf
M∈M

vol(P)

vol(M)
.

Remark 7 When C = B3, there are only five types of Minkowski cells (see [10]). Therefore,
one can determine the values of δ∗(B3) and θ∗(B3) by studying a unit ball inscribed in par-
allelohedra or parallelohedra inscribed in a unit ball. For other particular nontrivial centrally
symmetric convex bodies, for example the octahedron, to enumerate their Minkowski cells
seems challenging and interesting. For an algorithms approach we refer to [7].

It was proved by Ewald et al. [11] that the line segment directions on the surface of
an n-dimensional convex body is a very small subset of ∂(Bn). Therefore, Theorem 4 and
Corollary 1 could be improved further.We end this article by two open problems as following.

Problem 1 Let P be a particular centrally symmetric convex polytope such as a regu-
lar 2m-gon, a regular octahedron or a cube. Enumerate the different types (geometric or
combinatorial) of the Minkowski cells M(P,�) for all lattices �.

Problem 2 Let C be an n-dimensional centrally symmetric convex body such that all its
Minkowski bisectors are continuous. Is M(C,�) + � always a tiling of En for all lattice �?
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