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Abstract We prove a theorem of Hadamard–Stoker type: a connected locally convex com-
plete hypersurface immersed in H

n × R (n ≥ 2), where H
n is n-dimensional hyperbolic

space, is embedded and homeomorphic either to the n-sphere or to R
n . In the latter case it is

either a vertical graph over a convex domain in H
n or has what we call a simple end.

Keywords Hypersurfaces · Convexity · Space product · Simple end ·
Geometry and topology

Mathematics Subject Classification 53-02 · 57R42

1 Introduction

Let � be a complete hypersurface immersed inHn ×R, the product of n-dimensional hyper-
bolic space Hn with the line, and let π : Hn × R → H

n be the projection on the first factor.
A point θ in the sphere at infinity S

n−1∞ of Hn is a simple end of � if θ is the unique point
of accumulation of π(�) in S

n−1∞ and every complete totally geodesic hyperplane Q ⊂ H
n

either has θ as an accumulation point or else meets π(�) in a compact set. We prove the
following.

Main Theorem 1 Let � be a complete, connected hypersurface immersed in H
n × R with

positive definite second fundamental form, n ≥ 2. Then � is embedded and homeomorphic
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either to the n-sphere or to Euclidean space R
n. In the latter case, it is either a vertical

graph over an open convex set or has a simple end. When n = 1 the theorem holds under the
additional hypothesis that � is embedded.

The case n = 2 was proven by Espinar et al. [8], so our paper is an extension of their work
to higher dimensions. We prove the theorem by induction on n, beginning with the easy case
n = 1, when � is assumed to be embedded. Our paper reproves the case n = 2. We use
many ideas of [8]; most of our proof does not depend on their result, but in one part of the
proof for n = 2 (Case 3 of Sect. 4) we reproduce part of their proof.

Historical background In 1897, Hadamard [11] proved a theorem about compact, locally
strictly convex surfaces in the Euclidean space R

3, showing that such surfaces are embed-
ded and homeomorphic to the sphere. Since then many generalizations have adapted the
assumptions about the curvature and considered new spaces in which these surfaces could
be immersed in order to obtain analogous results.

Important contributions were made by Stoker [15], Chern and Lashof [2], Sacksteder [14],
do Carmo and Lima [6], do Carmo and Warner [7], Currier [3], Alexander [1], and Tribuzy
[16].

In 2009, Espinar et al. [8] extended the Hadamard–Stoker theorem for surfaces immersed
inH2×R assuming that such a surface is connected and completewith all principal curvatures
positive. They proved that such a surface is properly embedded and homeomorphic to the
sphere if it is closed or to the plane R2 if not. In the second case, � is a graph over a convex
domain in H

2 × {0} or � has a simple end.
Espinar and Rosenberg [9] proved in 2010 that if � is a locally strictly convex, connected

hypersurface properly immersed in Mn × R, where Mn is a 1/4-pinched manifold, then �

is properly embedded and homeomorphic to S
n or Rn . In the second case, � has a top or

bottom end, where � has a top (respectively, bottom) end E if for any divergent sequence
{pn} ⊂ E the height function h : � → E goes to +∞ (respectively −∞).

Also in 2010, Espinar and the first author [10] showed a Hadamard–Stoker–Currier type
theorem for surfaces immersed in a 3-dimensional Riemannian manifoldM(κ, τ ) that fibers
over a 2-dimensional Riemannian manifoldM

2 so that the fibers are the trajectories of a unit
Killing vector field. More precisely,M2 is required to be a strict Hadamard surface, i.e.,M2

has Gaussian curvature κ less than a negative constant, and τ is the curvature of the bundle.

Open questions There are other spaces to be studied, for example: Sn ×R,M×R, whereM
is a Hadamard manifold of dimension n, Heisenberg spaces of dimension n, among others.
It possible that results of Hadamard–Stoker type are valid in these spaces.

Preliminary results and the case n = 1 are treated in Sect. 2. The proof of the Main
Theorem in the case of a vertical graph is given in Sect. 3 and the remaining cases of the
theorem are proven in Sect. 4. For Case 3 in Sect. 4 we reproduce the argument of [8].
Examples of hypersurfaces with simple ends are given in Sect. 5.

This paper is based on the doctoral thesis [4] of the first author at the Pontifical Catholic
University of Rio de Janeiro under the direction of the second author.

2 Preliminary results and the case n = 1

LetHk be the k-dimensional hyperbolic space,with aRiemannianmetric of constant curvature
−1 (see [5,13] for details of Riemannian geometry). In the Poincaré disk model on the open
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unit ball Bk = {(x1, . . . , xk) ∈ R
k | |x | < 1}, where |x | is the Euclidean norm given by

|x |2 = ∑k
i=1 x

2
i , the Riemannian metric is defined to be

ds2 = 4
∑k

i=1 dx
2
i

(1 − |x |2)2 .

In thismodel the sphere at infinity,Sk−1∞ , is the unit sphere inRk , so thatHk∪S
k−1∞ is a compact

k-dimensional ball. If Q is a totally geodesic hyperplane in H
k , we say that P = Q × R,

which is also totally geodesic, is a vertical hyperplane inHk ×R. If γ is a complete geodesic
in H

k × {0} parametrized by t ∈ R, we let Pk
γ (t) be the vertical hyperplane orthogonal to γ

at the point γ (t), and then these vertical hyperplanes Pk
γ (t) form a foliation of Hk × R. Let

π : Hk × R → H
k denote the projection on the first factor.

The following proposition will be used in the inductive step of the proof of the Main
Theorem when M = H

k × R, but we state it in a more general context.

Proposition 2.1 Let M be a (k + 1)-dimensional Riemannian manifold and �k a hypersur-
face immersed in M with strictly positive second fundamental form, k ≥ 2, and let P be
a totally geodesic hypersurface in M. If �k and P intersect transversally, then every con-
nected component �k−1 of �k ∩ P is a (k − 1)-dimensional hypersurface in P with second
fundamental form I I (�k−1) > 0.

Proof Let γ (t) be a curve in �k−1, where t is parametrized by arc length. As P is totally
geodesic, we have ∇γ ′(γ ′) = ∇P

γ ′(γ ′), where ∇P and ∇ are the connections in P and M

respectively. Let N�k−1,P and N�k be the unit normal vectors to �k−1 in P and to �k in
M , respectively. We want 〈∇γ ′(γ ′), N�k−1,P 〉 to be positive. Note that 〈∇γ ′(γ ′), N�k 〉 is
positive, because by hypothesis the second fundamental form of �n is strictly positive.

Writing N�k (γ (t)) = N + N⊥, where N is tangent to P and N⊥ is orthogonal to P , and
taking the inner product with ∇γ ′(γ ′), we obtain

0 < 〈∇γ ′(γ ′), N�k 〉 = 〈∇γ ′(γ ′), N + N⊥〉
= 〈∇γ ′(γ ′), N 〉.

Note that N is orthogonal to �k−1 and tangent to P . Hence N is a multiple of N�k−1,P , so
we can write

〈∇P
γ ′(γ ′), N 〉 = 〈∇P

γ ′(γ ′), |N |N�k−1,P 〉
= |N |〈∇P

γ ′(γ ′), N�k−1,P 〉,
and therefore 〈∇P

γ ′(γ ′), N�k−1,P 〉 > 0, as claimed. ��
Next we begin the proof of theMain Theorem. The proof is by induction on the dimension

n of �n . The proof for the case n = 1 is given in this section, and the proof for n = k > 1,
when the theorem is supposed true for n = k − 1, is given in the next two sections.

The Proof for n = 1. When n = 1, we assume the additional hypothesis that the curve �1

is embedded in H
1 × R, which is isometric to R

2. Then it is well-known that it is a circle
or else a graph with respect to some vertical direction. If the embedded curve �1 is not a
vertical graph over an open interval in H

1, which is one of the possible conclusions of the
theorem, then there must be a point p0 ∈ �1 where the tangent line is vertical. If there is a
second such point, then �1 closes up to a circle, and if p0 is the only such point, then both
ends of π(�1) must converge to one of the two points at infinity ofH1, which gives a simple
end. This completes the proof of the theorem for n = 1. ��
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3 The case of a vertical graph

In the previous section the Main Theorem was proven for the case n = 1. We complete the
proof in this section and the next one. In both sections we suppose that the theorem holds for
n = k−1 ≥ 1 andwe assume the hypotheses of theMain Theorem for the case n = k in order
to prove the inductive step. Thus we assume that �k is a complete connected k-dimensional
manifold immersed in H

k × R, which has the product Riemannian metric, and we suppose
that the second fundamental form of �k is positive definite.

For the rest of this section we also assume the following.

Hypothesis 3.1 No vertical hyperplane is tangent to �k .

We shall prove theMain Theorem under this additional Hypothesis by showing that in this
case �k is the graph of a smooth function f : � → R where � is an open convex domain in
H
k . Note that the Hypothesis implies that every vertical hyperplane P is transverse to �k .

Lemma 3.1 Hypothesis 3.1 implies that if P is a vertical hyperplane in H
k × R, then each

connected component �k−1 of the intersection �k ∩ P is a graph over a convex domain in
π(P).

Proof By Proposition 2.1,�k−1 is a (k−1)-dimensional surface with strictly positive second
fundamental form in P . If k = 2,�1 is a curve inH1×Rwith no vertical tangent, so beginning
at any point (x0, y0) in �1, by continuation in both directions we find that �1 is a graph
over an open interval in H

1. Therefore �1 is embedded. Hence we can apply the induction
hypothesis for k = 1 as well as for k > 2. Thus �k−1 must be homeomorphic to S

k−1 or
R
k−1, and in the latter case it must have a simple end or be a vertical graph over a convex

domain.
Now if �k−1 is homeomorphic to S

k−1, then there exists a point in S
k−1 with a (k − 1)-

dimensional vertical tangent plane, which means that �k has a vertical tangent k-plane at
this point, contradicting Hypothesis 3.1, so this case is excluded. If �k−1 is homeomorphic
to Rk−1 and has a simple end θ in Sk−1∞ , the sphere at infinity of π(P), let β(t) be a complete
horizontal geodesic in π(P) × {0} ⊂ P which converges to the point (θ, 0) as t → ∞.
Consider the foliation of P by vertical (k − 1)-hyperplanes Pk−1

β (t) orthogonal to β, where

Pk−1
β (t)meets β at β(t). If t̄ is the smallest value of t such that�k−1∩Pk−1

β (t) is non-empty,

then the vertical hyperplane Pk−1
β (t̄) will be tangent to �k−1, so �k will also have a tangent

vertical hyperplane, contradicting Hypothesis 3.1. Thus �k−1 must be a vertical graph over
a convex domain in π(P). ��
Lemma 3.2 Let {Pk

γ (t)} be the foliation of Hk × R by vertical hyperplanes orthogonal to

a complete geodesic γ in H
k × {0} and let �k−1(0) be a component of �k ∩ Pγ (0). Let

�k−1(t) ⊂ �k ∩ Pγ (t) be the continuous variation of �k−1(0) as t varies. Then �k−1(t)
cannot become disconnected for any t.

Proof Note that �k−1(t) is well defined by transversality. By Lemma 3.1, every component
of �k−1(t) is the graph of a function defined on a convex open domain in π(Pγ (0)), which
is isometric toHk−1. By transversality the set of t with �k−1(t) connected is open. Suppose,
to find a contradiction, that �k−1(t) is not connected for some t > 0. Then there will be a
smallest positive t̄ such that �k−1(t̄) is not connected. Take xt̄ and yt̄ to be points in distinct
components of �k−1(t̄). By transversality there exist δ > 0 and continuous curves t �→ xt
and t �→ yt defined for t ∈ [t̄ − δ, t̄] with xt , yt ∈ �k−1(t). For t ∈ [t̄ − δ, t̄), �k−1(t) is
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connected and thus a graph over a convex open domain in π(Pγ (t)). Let αt be the geodesic in
π(Pγ (t)) joiningπ(xt ) andπ(yt ) and take At = π−1(αt )∩�k−1(t), which is a graph over αt

and a curve joining xt to yt in�k−1(t). The limit of At as t tends to t̄ is a curve At̄ in�k−1(t̄),
which is complete, since �k is complete, but At̄ cannot be connected since it contains xt̄ and
yt̄ which are in different components. It follows that At̄ must diverge vertically to −∞ or
+∞, but since At̄ has strictly positive curvature that is impossible. ��

In view of the previous lemma, the union ∪�k−1(t) is an open and closed set in �k , so it
must be the whole connected set �k . Consequently �k is a vertical graph over a set � inH

k .
Since� is diffeomorphic to the k-dimensional manifold�k under the projection π , it is open
in H

k . Now given any two points x, y ∈ �, let P be a vertical hyperplane containing both
(x, 0) and (y, 0), and apply the argument of Lemma 3.2 to see that�k∩P must be connected.
Then �k ∩ P is a vertical graph over a convex domain �P in π(P). The geodesic from x
to y lies in �P ⊂ �, so � is convex. Now the convex open set � in H

k is homeomorphic
to R

k , so �k is also homeomorphic to R
k . This completes the proof of the Main Theorem

under Hypothesis 3.1.

4 The proof for the remaining cases

In this section we complete the proof of the Main Theorem by proving it in the case that the
previous Hypothesis 3.1 does not hold, i.e., under the following assumption.

Hypothesis 4.1 There is a vertical hyperplane P0 that is tangent to �k at a point p0 ∈ �k .

Without loss of generality, we suppose that p0 ∈ H
k × {0}. In view of the hypothesis that

the hypersurface�k has strictly positive curvature, there is a neighborhoodU0 of p0 in�k that
lies entirely on one side of P0, except at the point p0; we shall call this the external side (see
Fig. 1). Let γ be the geodesic in H

k × {0} orthogonal to P0 (and therefore also to �k) at p0,
parametrized by arclength, with γ (0) = p0, oriented so that γ (0,∞) is on the external side
of P0. Let Pγ (t) be the vertical k-plane orthogonal to γ at γ (t), and note that these vertical
planes for all t ∈ R form a smooth foliation of Hk × R. Denote by �k−1(t) the connected
component of �k ∩ Pγ (t) that is the continuation of �k−1(0) = {p0} ⊂ �k ∩ Pγ (0). We do
not exclude the possibility that there may be other components of �k ∩ Pγ (t), but we only

Fig. 1 Near p0, �k lies on the external side of Pγ (t)
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22 Geom Dedicata (2017) 188:17–32

Fig. 2 �k homeomorphic to the k-sphere Sk

Fig. 3 Projection of �k on Hk in Case 2

consider �k−1(t). Note that for t > 0 close to 0, �k−1(t) is homeomorphic to the (k − 1)-
sphere Sk−1. Furthermore, if�k−1(t) is compact and�k is transverse to Pγ (t) along�k−1(t)
for all t in an interval (0, t0), the sets �k−1(t) vary continuously and are all diffeomorphic
to S

k−1 (see [12], Theorem 3.1).
Now there are four cases to be considered.

Case 1.The set�k−1(t) is compact and�k is transverse to Pγ (t) along�k−1(t) for 0 < t < t ,
but �k is not transverse to Pγ (t) at some point p1 ∈ �k−1(t).

As in the case of p0, the point p1 has a neighborhood U1 in �k such that U1 \ {p1} lies
entirely on one side of Pγ (t). Since �k−1(t) is the continuation of �k−1(t) with t < t ,
U1 \ {p1} must lie on the side of Pγ (t) with t < t . The sets �k−1(t) for 0 < t < t are all
diffeomorphic to Sk−1 and their union with the two points p0 and p1 is homeomorphic to the
sphere S

k . This union is open and closed in �k , so by connectedness it must coincide with
�k , which is therefore a topological k-sphere (see Fig. 2). This completes the proof in Case
1.

In the remaining cases we exclude Case 1, so if �k−1(t) is compact for all t in some
interval (0, t0), then �k is transverse to the planes Pγ (t) at all points in these sets �k−1(t).

Case 2. The intersection �k−1(t) is compact and non-empty for all t > 0 (Fig. 3).

If �k−1(t) ⊂ �k ∩ Pγ (t) remains compact and non-empty for all t > 0, then the sets
�k−1(t) for t > 0 are (k−1)-spheres that are embedded in Pγ (t) by the inductive hypothesis.
Hence the union of these sets with the point p0 must be all of the connected hypersurface�k ,
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which will also be embedded and homeomorphic to R
k . If we take θ in the sphere at infinity

S
k−1∞ = ∂Hk such that (θ, 0) is the limit point of γ (t) as t → ∞, then ∂∞π(�k) = {θ},

since θ is the only point of Sk−1∞ that is on the external side of all the planes π(Pγ (t)).
Furthermore, if Q is any complete totally geodesic hypersurface in H

k which does not
have θ as a point of accumulation, then π(�k) ∩ Q cannot have any point of accumulation
at infinity. Hence it must be a closed and bounded set in Q, so it is compact. Therefore in
this case θ is a simple end of �k .

Case 3.The intersection�k−1(t) remains compact and non-empty for 0 ≤ t < t̄ but becomes
empty for every t > t̄ , for some t̄ > 0.

Note first of all that �k cannot intersect Pγ (t) transversely at any point of �k−1(t̄), for
otherwise �k−1(t) would be non-empty for values of t slightly greater than t̄ , contrary to
the hypothesis of Case 3. Hence any point in �k−1(t̄) would have a vertical tangent plane, a
situation which has already been treated in Case 1, so we may suppose that�k−1(t̄) is empty.
Consequently ∪t<t̄�

k−1(t) is both open and closed in�k , so it must be all of�k . As in Case
2, we see that �k , which is the union of the point p0 and the topological (k − 1)-spheres
�k−1(t) for 0 < t < t̄ , is homeomorphic to R

k .

Now take a sequence of points pn ∈ �k−1(tn) such that tn → t̄ . Since H
k = H

k ∪ ∂Hk

is compact, there must be a subsequence of {π(pn)} that converges to a point θ in H
k
. Since

we are supposing that �k−1(t̄) is empty, θ must be in S
k−2∞ (t̄) = ∂π(Pγ (t̄)) and must be an

accumulation point of π(�k) at infinity. To complete the proof in this case, we must show
that θ is the only accumulation point and that it is a simple end.

The proof will be divided into two cases depending of the dimension k.

The Proof for k = 2. In this case we will use the arguments that can be found in [8].
We can assume that Pγ (t̄) = α ×R, where α is the geodesic joining the points α− and α+

and we consider the 2-plane vertical Q = γ × R. We will take C̃ the component of Q ∩ �2

cointaining p0. This component is compact, otherwise it would intersect the line Q ∪ Pγ (t̄)
in two points, which may not occur. Based on this we consider the disk D̃ bounded by C̃ on
�2 and we denote Qα(t) the foliation by vertical planes along α, with Qα(0) = Q. Without
loss of generality we can assume that there is t0 < 0 satisfying Qα(t0) touches D̃ one side
of D̃ by compacteness. Let q ∈ D̃ ∩ Qα(t0) be the point where they touch. We now analyse
the variation of C̃(t) of q on �2 ∩ Qα(t) from t = t0 to infinity. C̃(t) is a convex embedded
curve for t in a maximal interval (t0, t̄0) with 0 < t̄0 ≤ ∞. Hence, �2 is foliated by the C̃(t),
C̃ = C̃(0) = Q ∩ �2 and α− /∈ ∂π(�2) because �2 is on side of Qα(t0). We now show
that ∂π(�2) = {α+}. For this we denote γ (θ) the complete horizontal geodesic starting in
p0 and making an angle θ with γ at p0. Assume γ (θ) enters the side of Q cointaining α+,
for 0 < θ < π/2. Let θ̃ be the value of θ such that γ (θ̃) is asymptotic to α+. Consider
Q(θ) = γ (θ) ×R and for each 0 ≤ θ < θ̃ , we have �2 ∩ Q(θ) is one connected embedded
compact curve C ′(θ). the proof of this is the same as the previous one for C̃ . Note that each
C ′(θ) is non empty since p0 ∈ C ′(θ) e C ′(θ) can not be compact, otherwise �2 could not
be asymptotic to the plane Pγ (t̄), a contradiction. Furthermore note that C ′(θ) is compact,
θ̃ < θ < π/2 because�2 = ∪0≤t<tC(t) andC ′(θ) ⊂ D̃,−π/2 < θ < 0, and D̃ is compact.
So we can conclude that � has a simple end.

The Proof for k > 2. Suppose therewere another accumulation point ofπ(�k), say θ̃ ∈ S
k−1∞ .

Then θ̃ , like θ and any other accumulation points of π(�k), must be in S
k−2∞ (t̄), since there

are no accumulation points for t < t̄ and �k ∩ Pγ (t) is empty for t > t̄ . Choose the
parametrization of Sk−2∞ (t̄) in the disk model of Hk so that θ̃ is the antipode of θ . Let μ be
the totally geodesic 2-plane in H

k × {0} that contains both p0 and the geodesic from (θ, 0)
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24 Geom Dedicata (2017) 188:17–32

Fig. 4 The curve of accumulation points in ∂Pγ (t), from θ to θ̃

to (θ̃ , 0). Take ξ ⊂ H
k × R to be the totally geodesic vertical (k − 1)-plane orthogonal to

μ that meets μ at the single point p0. Consider the 1-parameter family of vertical k-planes
{P(ϕ) = Q(ϕ) × R} containing ξ for ϕ ∈ [−π/2, 3π/2], parametrized injectively so that θ
is a point at infinity of Q(0), θ̃ is a point at infinity of Q(π), and the tangent plane at p0 is
not among the planes P(ϕ). Now the intersection

�k−1(ϕ) = �k ∩ P(ϕ)

is a (k − 1)-surface in P(ϕ) which satisfies the hypotheses of the Main Theorem, so by
the inductive hypothesis it must be homeomorphic to S

k−1 or Rk−1 and in the latter case
�k−1(ϕ) it is either a vertical graph over a convex domain in H

k−1 or it has a simple end.
However, �k−1(ϕ) can not be a vertical graph, because this (k − 1)-surface contains the
point p0 where there is a vertical tangent hyperplane. Moreover, for each parameter ϕ with
ϕ < 0 or ϕ > π the intersection �k−1(ϕ) is a bounded complete (k − 1)-surface contained
in ∪0≤t≤t0�

k−1(t) for some t0 < t and is therefore compact, with no accumulation points at
infinity.

If for some ϕ with 0 < ϕ < π,�k−1(ϕ) is compact, then by the inductive hypothesis it
will be homeomorphic to the sphere Sk−1 and must bound a closed k-dimensional ball D in
�k , which is homeomorphic to R

k . The ball D must coincide either with �k ∩ ∪ϕ≤ϕQ(ϕ)

or else with �k ∩ ∪ϕ≥ϕQ(ϕ); in the first case, θ cannot be a limit point of �k , and in the
second case, θ̃ cannot be a limit point of �k , contradicting the choice of θ and θ̃ . Hence for
0 < ϕ < π,�k−1(ϕ) must be noncompact and it must have a simple end, which we denote
θ(ϕ).

The sets Q(ϕ) ∩ S
k−2∞ (t̄) form a singular foliation of Sk−2∞ (t̄) by (k − 3)-spheres for

0 < ϕ < π with two singular points θ = θ(0) and θ̃ = θ(π). Thus, each leaf Q(ϕ)∩S
k−2∞ (t̄)

contains a single accumulation point θ(ϕ), the simple end if 0 < ϕ < π , and the points θ

and θ̃ for ϕ = 0 or π , when the set Q(ϕ) ∩ S
k−2∞ (t̄) consists of a single point.

The set formed by these points is the graph of a function θ : [0, π] → S
k−2∞ (t̄), and it is a

closed set in the sphere Sk−2∞ (t̄) = ∂∞π(Pγ (t)). By an elementary fact of general topology,
it follows that the function θ is continuous. Therefore the set of all the accumulation points
at infinity of π(�k) form a continuous curve in Sk−2∞ (t̄) with extremities θ and θ̃ (see Fig. 4).

Now taking another point of accumulation at infinity between θ and θ̃ , say θ ′, we can
consider the 2-plane μ′ generated by p0, θ and θ ′ and let ξ ′ be the (k − 1)-plane orthogonal
to μ′ passing through p0. Repeating the previous argument for the new foliation by vertical
hyperplanes containing the plane ξ ′ shows that θ and this other point θ ′ should be extremities
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of another curve which also consists of all the points of accumulation at infinity of π(�k).
This is absurd since θ̃ and nearby limit points are excluded from this curve. The contradiction
shows that θ is the only accumulation point at infinity. As in Case 2, every vertical hyperplane
whose projection in H

k does not have θ as a limit point must meet π(�k) in a compact set,
so �k has a simple end at θ .

Case 4. The intersection �k−1(t) becomes non-compact for some t̄ > 0.

First, note that this is the only remaining case to complete the proof of the Main Theorem.
By transversality the set of positive t’s for which the intersection of�k with Pγ (t) is com-

pact along �k−1(t) is open in the line. (Recall that we are considering only the continuation
of�k starting from p0, without considering other possible components.) It follows that there
is a first value of t , say t > 0, such that �k−1(t) is not compact. Note that the union of the
sets �k−1(t) for t ≤ t is embedded. Then �k−1(t) is the limit of �k−1(t) as t approaches t
from below.

Lemma 4.1 Let {Qt } be a foliation of Hk × R by vertical totally geodesic hyperplanes,
−∞ < t < ∞. Suppose that�k ∩Qt is empty for t < 0 and a single point q0 for t = 0. Also
suppose that�k is transverse to Qt for 0 < t < t ′. Let�k−1(t)′ be the component of�k ∩Qt

obtained by continuation from q0 and suppose that �k−1(t)′ is compact for 0 ≤ t < t ′ and
non-compact for t = t ′. Then �k−1(t)′ is connected for 0 ≤ t ≤ t ′ and �k−1(t ′)′ is not a
vertical graph over a convex domain in H

k .

Proof By continuation using transversality and compactness from t = 0 where �k−1(0)′ is
the single point q0, it follows that �k−1(t)′ is connected for 0 ≤ t < t ′. If �k has Pγ (t) as a
tangent plane, then either�k closes up to a compact hypersurfacewith a single point in Pγ (t),
a case which has already been treated, or else there is a new component of �k beginning
at t = t , and we are not considering such a new component. Hence we can suppose that
�k is transverse to Pγ (t). Then the argument of Lemma 3.2 shows that �k−1(t ′)′ is also
connected. Since�k−1(t ′)′ is not compact, the inductive hypothesis implies that�k−1(t ′)′ is
a (k − 1)-surface homeomorphic to Rk−1 and that it is a vertical graph over a convex domain
in H

k−1 or has a simple end.
Now suppose that �k−1(t ′)′ is a vertical graph of a function f over a convex domain in

π(Qt ′), which is isometric to H
k−1, with k − 1 ≥ 1, in order to obtain a contradiction. Let β

be a geodesic segment contained in the domain of f . For each point q of β, the vertical line
r(q) passing through the point (q, 0) meets �k−1(t ′)′ in a unique point (q, f (q)), and these
points form a curve β̃ lying over β, so that π(β̃) = β. If μq is the complete geodesic in H

k

containing the points π(q0) and q ∈ β, then the intersection of�k with the 2-planeμq ×R is
a complete curve immersed in μq × R with strictly positive curvature and a vertical tangent
at q0, and μq ×R is isometric to R

2. Since r(q) meets �k−1(t ′)′ in a single point (q, f (q)),
at that point two branches of the curve must cross each other. This holds for every point q in
β, so the curve β̃ over β must have strictly positive curvature both above and below in the
Euclidean 2-plane strip β × R, but that is absurd. ��

Applying the lemma to the foliation by the vertical planes Pγ (t) with t ′ = t shows
that �k−1(t) is conected and cannot be a vertical graph. Then, by the inductive hypothesis,
�k−1(t)must have a simple end,whichwe denote θ andwhich belongs to Sk−2∞ = ∂π(Pγ (t)).
We shall show that θ is also a simple end of �k . We need the following fact.

Proposition 4.2 Under Hypothesis 4.1, the set �k is embedded in H
k × R.
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Proof In Case 4, we are supposing that �k is transverse to Pγ (t) with compact intersection
�k−1(t) for 0 < t < t̄ . By continuation from p0 we see that �k−1(t) is a (k − 1)-sphere for
these values of t , so �k−1(t) separates Pγ (t) into two components, a compact component
on the concave side, and a non-compact one on the convex side. Let us consider the set S of
values of t > 0 such that

1. �k is transverse to Pγ (t);
2. �k−1(t) is connected and embedded in Pγ (t);
3. �k−1(t) separates Pγ (t) into two components, the ’outside’ whose boundary is concave

and the ’inside’ whose boundary is convex.

Suppose that for some t ′ ≥ t̄ , (0, t ′) ⊂ S. It �k is not transverse to Pγ (t ′) then at some
point q0 Pγ (t) is tangent to �k . Near to q0 �k must lie on one side of Pγ (t ′). If it lies on the
side t > t ′, then it is a new component which is not contained in the continuation from p0,
and q0 /∈ �k−1(t ′) If it lies on the side t < t ′, then the point q0 closes �k up as an embedded
hypersurface, for �k−1(t) must be a (k − 1)-sphere for t < t ′ near to t ′. Hence we need only
consider the case that �k is transverse to Pγ (t) at t = t ′.

We claim that �k−1(t ′) is embedded. If not, since �k−1(t) is embedded for t < t ′, there
must be a double point x in Pγ (t ′) where two branches of �k are tangent to each other.
Then there is loop in ∪0≤t≤t ′�k−1(t) based at x that connects the two branches, and we
may shrink it to a geodesic in this set. Note that this geodesic lies on the boundary of the
outside of ∪0≤t≤t ′�k−1(t) in ∪0≤t≤t ′ Pγ (t). If the geodesic is contained in Pγ (t ′) then every
point in it is a saddle point, since it will curve away from the inside along the geodesic and
towards the inside in orthogonal directions, but this contradicts the curvature hypothesis.
On the other hand, if the geodesic passes into Pγ (t) for some t < t ′, then any point of the
geodesic where t reaches its the minimum value will be also a saddle point, with the geodesic
curving away from the inside in the direction of the geodesic and towards the inside in the
remaining directions, again giving a contradiction. Hence �k−1(t ′) is embedded.

Let us suppose that �k−1(t ′) is not connected, to obtain a contradiction. Then the con-
tinuation of the inside in Pγ (t ′) will not be connected, but the inside of ∪0≤t≤t ′�k−1(t) will
be connected since �k−1(t) is connected for t < t ′. Take a path in ∪0≤t≤t ′�k−1(t) between
two points x to y in different connected components of �k−1(t ′) and shrink it to a geodesic
α joining the two points in that set. Consider the point z in α with the smallest value t0 of t .
The curve α at z must curve in the positive direction of t , but�k−1(t)must curve downwards
in the other directions at z, so z is a saddle point, again a contradiction. Thus we have shown
that (0, t ′] ⊂ S.

Next, suppose that we have (0, t ′] ⊂ S. We want to show that for some δ > 0 we have
[t ′, t ′ + δ) ⊂ S. Transversality of Pγ (t) to �k−1(t) will hold in any compact domain in
H × [t ′, t ′ + δ) for some δ > 0, but as we move off toward infinity δ may have to tend to
zero.

If �k−1(t) is not connected for some t1 > t ′, then as above we can take a path between
two components and shrink it to a geodesic, to obtain a contradiction, as before. Similarly, if
�k−1(t) is not embedded for some t1 > t ′, the above argument will produce a contradiction.
Hence there is a number delta > 0 such that �k−1(t) is connected and embedded for
t ′ ≤ t ≤ t ′ + δ. As before, we can exclude any case in which transversalilty fails in this
interval. Hence (0, t ′ + δ) ⊂ S. Then by continuation, it follows that �k−1(t) is connected
and embedded for all t > 0, as claimed. ��

Now let�(γ, θ) be the hyperbolic 2-plane inHk ×{0} that contains the complete geodesic
γ orthogonal to�k at p0 and also has (θ, 0) as an accumulation point at infinity. Parametrize
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Fig. 5 Situation 1 of Case 4

the circle S1∞ = ∂∞(�(γ, θ)) by the numbers 0 to 2π such that 0 is the parameter for (θ, 0)
and π is the other point in S

1∞ ∩ ∂Pγ (t), with the orientation such that the points 0 < s < π

are on the same side of ∂Pγ (t) as the point p0.
Now for δ > 0 near to 0 consider the complete geodesic {δ, s} from δ to s in �(γ, θ),

where δ < s < 2π , and let W (δ, s) be the vertical k-plane in H
k × R that contains the

geodesic {δ, s} and is orthogonal to the plane �(γ, θ). Note that ∪t≤t0�
k−1(t) is compact

for any t0 < t . It follows that for a fixed δ there is a number sδ ∈ (δ, π) such that W (δ, s) is
tangent to �k at a point qδ , while ∪t≤t0�

k−1(t) ∩ W (δ, s) is empty for δ < s < sδ .
Let us analyze the intersection �k−1(δ, s) of �k and W (δ, s) for π < s < 2π , where as

before we only consider the continuation of �k from qδ passing through the leaves of the
foliation W (δ, s) as s increases (even if, a priori, there may be other parts of �k .) Repeating
the analyses of Cases 1, 2, and 3, we see that the only remaining situation to be treated occurs
when �k is transverse to W (δ, s) with compact intersection �k−1(δ, s) for δ < s < s̄δ ,
where we take s̄δ ≤ 2π to be the largest possible s for which this holds.

There are two possible situations:

1. The hypersurfaces �k−1(δ, s) are always compact for all π ≤ s < 2π and all δ > 0
sufficiently near to zero. (Thus s̄δ = 2π for all small δ > 0.) In this case, as δ → 0 we
have a situation similar to Case 2, so the argument there shows that θ is a simple end of
�k (see Fig. 5).

2. There are numbers δ > 0 arbitrarily near to zero such that �k−1(δ, s) becomes non-
compact for some s, π < s < 2π , i.e., s̄δ < 2π (Fig. 6).

In this second situation, �k−1(δ, sδ) is not compact. It is easy to see that as δ decreases sδ

cannot increase. Since the vertical hyperplane W (δ, sδ) is tangent to �k at qδ , we can apply
Lemma 4.1 using the foliation with leaves W (δ, s) and conclude that �k−1(δ, sδ) cannot be
a vertical graph. Therefore it must be a (k − 1)-surface with a simple end, which we denote
by φ̃δ . Note that φ̃δ is not necessarily in the circle ∂∞(�(γ, 0)), but it is in Sk−1∞ . Let s be the
limit of sδ as δ decreases to 0. Then there is a decreasing sequence δn such that φ̃δn converges
to a point φ ∈ Sk−1∞ . Note that s ≥ π and suppose s < 2π to arrive at a contradiction. Let Tn
be the vertical hyperbolic (k−1)-plane that contains the geodesic {δn, sδn } and is orthogonal
to the 2-plane �(γ, θ). Then the limit T of the (k − 1)-planes Tn is the hyperbolic (k − 1)-
plane that contains the geodesic {0, s} and is orthogonal to �(γ, θ). Note that φ̃δn ∈ ∂∞Tn
and φ ∈ ∂∞T . To see that φ is an accumulation point of �k ∩ (T ×R), we use the following
proposition.
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Fig. 6 Situation 2 of Case 4

Proposition 4.3 Under the hypotheses of theMain Theorem andHypothesis 4.1, let θ ∈ ∂Hk

be an accumulation point both of π(�k) and of a totally geodesic hyperplane Q in H
k . If

there exists a neighborhood V of θ in H̄
k = H

k ∪ ∂Hk such that V ∩ π(�k) ∩ Q is empty,
then θ is the only accumulation point of π(�k) in the sphere at infinity ∂Hk .

Supposing this Proposition for themoment, note that both θ and φ are accumulation points
at infinity of T and also of π(�k). If θ and φ are distinct, then the Proposition shows that both
of themmust be accumulation points of π(�k)∩T . This is impossible since by the inductive
hypothesis π(�k) ∩ T must have a simple end and thus it has only one accumulation point
at infinity. Consequently θ and φ must coincide, so π(�k) has only one accumulation point
θ at infinity. As in Case 2, θ must be a simple end of π(�k). This will complete the proof of
the Main Theorem, once we have proven the Proposition. ��

We shall use the following lemma in the proof of Proposition 4.3.

Lemma 4.2 In the conditions of Proposition 4.3, the image π(�k) is a closed connected set
embedded inHk and its frontier ∂π(�k) is a complete smooth hypersurface embedded inHk

with strictly positive curvature at every point.

Proof Here we use the fact that �k is embedded in H
k × R (see Proposition 4.2). First, we

show that π(�k) is closed in H
k . Let q0 = π(p0) ∈ H

k be the projection of the point p0
where we are assuming there is a vertical tangent plane and consider a geodesic β in H

k

beginning at q0 = β(0), with s ≥ 0. If there exists some s > 0 such that β(s) /∈ π(�k), let
s̄ > 0 be the largest number such that z = β(s) ∈ π(�k) for all s ∈ [0, s̄). Consider the
intersection of the plane β × R with �k . This is a complete convex embedded curve with
a vertical point at p0, and since it does not diverge to infinity, it must contain exactly one
other point with a vertical tangent plane, say pβ , such that the geodesic β from q0 = β(0) to
qβ = β(s̄) = π(pβ) is the intersection of β with π(�k). Let B̃ be the set of all these points
pβ for all such geodesics β plus the point p0. Then B̃ is the set of points in �k with vertical
tangent planes and we see that the frontier of π(�k) is contained in B = π(B̃) ⊂ π(�k), so
π(�k) is a closed set in H

k with boundary B.
Next we claim that B̃ is a smooth hypersurface in �k . In a neighborhood V ⊂ �k of the

point pβ let N be the normal vector field to V . Let π ′ : Hk × R → R be the projection on
the second factor, and let dπ ′

p : T�k
p → TR f (p) ≡ R be its differential at p ∈ V . In view of

the strictly positive curvature of �k , dπ ′
p is surjective for every p ∈ B̃ ∩ V , so the implicit

function theorem shows that near p, B̃ ∩ V is a smooth hypersurface in V . Furthermore,
π |B̃ : B̃ → B is a diffeomorphism and B is a smooth hypersurface in H

k , as claimed.
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It remains to show that B has strictly positive curvature in H
k . Let N be the external unit

normal field to B. Since �k has a vertical tangent plane at every point of B̃, the external
unit normal field Ñ to �k is horizontal along B̃ and coincides with N , i.e., at p ∈ B̃,
dπp Ñ (p) = N (π(p)). For a tangent vector X̃ ∈ Tp B̃ with dπp X̃ = X we have

A(X) = −∇X = −∇̃X̃ = Ã(X̃)

where ∇ and ∇̃ are the Riemannian connections on H
k and H

k × R and A and Ã are
the shape operators associated to the second fundamental forms of B and �k . Thus the
principal curvatures of B at the point π(p), which are the eigenvalues of A, coincide with
the eigenvalues of the restriction of Ã to B̃, the principal curvatures of �k along B̃ at p, and
these are all positive since �k has strictly positive curvature. Thus B has strictly positive
curvature. ��
Proof of Proposition 4.3 By the lemma, the frontier B of π(�k) is a smooth hypersurface
in H

k contained in π(�k) and it has strictly positive curvature. By hypothesis, near θ the
image π(�k) and its frontier B must be disjoint from the totally geodesic hyperplane Q. For
any totally geodesic 2-plane η in H

k that is orthogonal to Q and has θ as a limit point, the
intersection η ∩ Q is a geodesic in H

k , while η ∩ B is a strictly convex curve (unless it is
empty), so the distance of points on this curve from η ∩ Q increases with the distance from
θ . Outside a tiny neighborhood of the sphere at infinity, the curvature of the boundary B of
π(�k) is greater than some positive number ε. This forces points on π(�k) to become more
distant from Q uniformly as their distance from θ increases. Hence there cannot be any other
accumulation point of π(�k) in addition to θ . Since π(�k) is connected, it must lie entirely
on one side of Q. ��

5 Examples of simple ends

We use the upper half-space model of hyperbolic n-space Hn ,

R
n+ = {x = (x1, . . . , xn) ∈ R

n | xn > 0}
with the Riemannian metric given explicitly as ds2 = x−2

n
∑n

i=1 dx
2
i . Then H

n = R
n+ with

this metric has constant curvature −1. We shall give examples of complete embedded hyper-
surfaces with strictly positive curvature and with a simple end by explicit computations. The
hypersurfaces which we consider are invariant under the group of parabolic isometries that
leave invariant each horizontal horosphere in R

n+ and fix ∞, the point at infinity. Explicitly,
for a = (a1, . . . , an−1) ∈ R

n−1, consider the parabolic isometry fa : Rn+ → R
n+, defined

by setting fa(x) = x + (a, 0), where (a, 0) = (a1, . . . , an−1, 0). Then fa preserves the
horizontal horospheres {xn = b}, and

Fa : Hn × R → H
n × R, Fa(x, t) = ( fa(x), t)

is an isometry for every a ∈ R
n−1.

Consider an interval I = (t1, t2), −∞ < t1 < t2 < +∞, and a positive smooth function
u : I → R,

u(t) = c1 ln(t − t1) + c2 ln(t2 − t) (1)

where c1 and c2 are negative constants and

t2 − t1 ≤ e−1. (2)
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It is clear that u(t) is positive and limt→t1 u(t) = limt→t2 u(t) = +∞. Let

α = {(0, 0, . . . , 0, u(t), t) | t ∈ R} ⊂ H
n × R

be the graph of u as a curve in the xnt-plane and consider the set

�n = ∪a∈Rn−1Fa(α) ⊂ H
n × R,

parametrized by

ϕ(x1, x2, . . . , xn−1, t) = (x1, x2, . . . , xn−1, u(t), t). (3)

Clearly �n is a complete smooth embedded hypersurface. We shall show that (2) implies
that it has strictly positive curvature and has a simple end.

The hypersurface �n is preserved by A × idR : Hn × R → H
n × R for every Euclidean

isometry A : Rn+ → R
n+ that preserves xn ; this includes not only horizontal translations, but

also rotations of Rn+ and compositions, and these all produce isometries of Hn × R.
Let {∂1 = ∂/∂x1, . . . , ∂n = ∂/∂xn, ∂t = ∂/∂t} be the usual frame in H

n × R and let
λ = x−1

n be the conformal factor of the metric. Then the Riemannian connection ∇ in
H
n × R is given by

∇∂i ∂ j = δi jλ∂n for i, j < n

∇∂i ∂n = ∇∂n∂i = −λ∂i for i < n

∇∂n∂n = −λ∂n

∇∂t ∂i = ∇∂i ∂t = ∇∂t ∂t = 0 for i ≤ n,

where δi j is the Kronecker delta.
Using the parametrization (3) and setting ut = ∂u/∂t as usual, we see that the vector

fields

ϕi = ϕxi = ∂i , for i = 1, . . . , n − 1, and

ϕn = ϕt = ut∂n + ∂t

form a basis of the tangent space to �n . We can calculate the coefficients of the first funda-
mental form gi j = 〈ϕi , ϕ j 〉 of �n to be

gi j =
⎧
⎨

⎩

λ2 if i = j with i = 1, . . . , n − 1
λ2u2t + 1 for i = j = n
0 for i �= j with i, j = 1, . . . , n.

The unit normal vector field to �n is

N = (λ−1∂n − λut∂t )/m

where m =
√
1 + λ2u2t . Then we compute the coefficients bi j = 〈∇ϕ j ϕi , N 〉 of the second

fundamental form to be

bi j =
⎧
⎨

⎩

λ2/m if i = j with i = 1, . . . , n − 1
λ(−λu2t + utt )/m for i = j = n
0 for i �= j with i, j = 1, . . . , n.
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Therefore the matrix (bi j )n×n of coefficients of the second fundamental form is a diagonal
matrix with the eigenvalues

μi = λ2/m for i = 1, . . . , n − 1 and

μn = λ(−λu2t + utt )/m

along the diagonal. Since m =
√
1 + λ2u2t > 0, it is clear that μi > 0 for i = 1, . . . , n − 1.

Lemma 5.1 Condition (2) implies that −u2t + uutt > 0.

Since λ = 1/u > 0 this lemma implies that μn is also positive. Thus �n , as defined by the
explicit formulas given above, is a complete embedded hypersurface inHn ×Rwith a simple
end and strictly positive curvature.

Proof of Lemma 5.1 Calculate the derivatives ut and utt from (1), the definition of u(t). Then
a short calculation gives

−λu2t + utt = − c22
(t − t1)2

[1 + ln(t − t1)] − c21
(t2 − t)2

[1 + ln(t2 − t)]

+ c1c2
(t − t1)(t2 − t)

[

2 − (t − t1)

(t2 − t)
ln(t − t1) − (t2 − t)

(t − t1)
ln(t2 − t)

]

.

Since t2 − t1 ≤ e−1, t1 < t < t2, and the parameters c1 and c2 are negative, it is easy to
check that each of the terms on the right hand side is positive. ��
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