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Abstract We prove Barth-type connectedness results for low-codimension smooth sub-
varieties with good numerical properties inside certain “easy” ambient spaces (such as
homogeneous varieties, or spherical varieties). The argument employs some basics from
the theory of cones of cycle classes, in particular the notion of bigness of a cycle class.
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1 Introduction

The Mother Of All Connectedness Theorems is Barth’s theorem. In its original version,
Barth’s theorem is about the cohomology of low-codimensional smooth subvarieties of pro-
jective space:

Theorem 1 (Barth [2]) Let X ⊂ P
n+r (C) be a smooth subvariety of dimension n. Then

restriction induces isomorphisms

H j (Pn+r (C), Q)
∼=−→ H j (X, Q) for all j ≤ n − r.

Hartshorne [16] found a nice proof of Theorem 1 based on the hard Lefschetz theorem.
Subsequent extensions of Barth’s theorem also establish connectedness results for homotopy
groups, as well as for low-codimensional subvarieties of other ambient spaces, such as Grass-
mannians, rational homogeneous varieties or abelian varieties (cf. [13,14], [19, Chapter 3] for
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comprehensive overviews). As is made clear by results of Debarre, in certain ambient spaces
P a connectedness result holds for any subvariety X with an appropriate intersection-theoretic
behaviour in P:

Theorem 2 (Debarre [8]) Let P be a product of projective spaces or a Grassmannian, with
dim P = n + r . Let X ⊂ P be a smooth subvariety of dimension n ≥ r + 1 which is bulky
(i.e., X meets all r-dimensional subvarieties of P). Then X is simply connected.

Results similar in spirit have been obtained by Arrondo–Caravantes [1], and by Perrin
[23,24]:

Theorem 3 (Arrondo–Caravantes [1]) Let P be the Grassmannian of lines in a projective
space, with dim P = n+r . Let X ⊂ P be a smooth bulky subvariety of dimension n ≥ r +2.
Then

Pic(X) = Z.

Theorem 4 (Perrin [24]) Let P be a rational homogeneous variety with Picard number 1.
Let X ⊂ P be a smooth bulky subvariety of codimension r, and assume 2r ≤ coeff(P) − 2
(here, coeff(P) is a number in between 0 and dim P, defined in [24, Definition 0.9]). Then
the Néron–Severi group N S(X) of X has rank 1:

NS(X) = Z.

In this note, we aim for similar connectedness results for subvarieties that have certain
intersection-theoretic properties (such as bulkiness). Our main result is a cohomological
version of Theorem 2. This result applies to any ambient space P for which the cone Effn(P)

of effective codimension n algebraic cycles modulo numerical equivalence is a closed cone
(in particular, this applies when P is a spherical variety, cf. Corollary 20).

Theorem (=Theorem 17) Let n, r be positive integers with n ≥ r + 1. Let P be a smooth
projective variety of dimension n + r , and assume there is equality

Effn(P) = Psefn(P)

(i.e., the cone Effn(P) is a closed cone).
Let X ⊂ P be a smooth closed subvariety of dimension n, and assume X is strictly nef.

Then the push-forward map

H1(X, Q) → H2r+1(P, Q)

is injective.

For the definition of “strictly nef”, cf. Definition 10; on a homogeneous variety P , strict
nefness is equivalent to bulkiness (Remark 13), which connects Theorem 17 to Theorem 2.
The proof of Theorem 17 is a very straightforward adaptation of Hartshorne’s proof [16]
of Barth’s theorem using the hard Lefschetz theorem. The ampleness in Hartshorne’s proof
is replaced by “bigness” (in the sense of: being in the interior of the pseudo-effective cone
of codimension r cycles). Indeed, thanks to work of Fu [10], bigness of the class [X ] in
the space Nr (P) (of codimension r cycles modulo numerical equivalence) is (under certain
conditions) sufficient to obtain a connectedness result.

We establish some variants of Theorem 17 that similarly exploit this notion of bigness: in
one variant (Theorem 22), there is no assumption on the ambient space P but the assumptions
on X are stronger. As an application of Theorem 22, we obtain in particular the following
improvement on the above-cited result of Perrin:
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Corollary (=Corollary 23) Let X and P be as in Theorem 4. Then

Pic(X) = Z.

In another variant result (Proposition 26), we show that when P is a spherical variety,
there is still a certain connectedness even for subvarieties X that may fail to be bulky.

Finally, we include a conditional result (Theorem 30) that proves connectedness for coho-
mology of degree>1. This result is conditional, because (apart from the codimension 2 case)
we need to assume the standard Lefschetz conjecture B(X) for the subvariety X . Theorem
30 implies in particular a conditional improvement on the above-cited result of Arrondo–
Caravantes:

Corollary (=Corollary 33) Let X and P be as in Theorem 3, and suppose either r = 2 or
B(X) holds. Then

H2(X, Z) = Z.

We present two more applications of a similar ilk (Corollaries 34 and 36). Just like Corol-
lary 33, these applications prove a certain connectedness result for bulky subvarieties of
codimension 2 and for bulky subvarieties verifying the standard Lefschetz conjecture.

Conventions All varieties will be irreducible projective varieties over C. A subvariety will
always be a closed subvariety.

2 Cones of cycle classes

Definition 5 Let M be a smooth projective variety of dimension m. Let N j (M) denote
the R-vector space of codimension j algebraic cycles on M (with R-coefficients) modulo
numerical equivalence. Let

Eff j (M) ⊂ N j (M)

be the cone generated by effective algebraic cycles. Let

Psef j (M) := Eff j (M) ⊂ N j (M)

be the closure of the cone generated by effective algebraic cycles. A class γ ∈ N j (M) is
called big if γ is in the relative interior of Psef j (M).

The intersection product defines a perfect pairing

N j (M) × Nm− j (M) → Nm(M) ∼= R.

Let

Nef j (M) ⊂ N j (M)

be the cone dual to Psefm− j (M) under this pairing.

The pseudo-effective cone Psef j (M) is studied for instance in [9,11,12,20,21]. There is
another notion of bigness, which is a priori more stringent:
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Definition 6 Let M be a smooth projective variety. Let N∗ denote the coniveau filtration on
cohomology [3]. Let

Hpsef j (M) ⊂ N j H2 j (M, R)

be the closure of the cone generated by effective algebraic cycles. A class γ ∈ N j H2 j (M, R)

is called homologically big if γ is in the relative interior of Hpsef j (M).

Remark 7 The “homologically pseudo-effective cone”Hpsef j (M) is considered for instance
in [10,27]. If Grothendieck’s standard conjecture D(M) is true (i.e., homological and numer-
ical equivalence coincide on M), then there is a natural isomorphism

N j H2 j (M, R) ∼= N j (M) ,

and so the two notions of bigness coincide. In particular, since we know the standard con-
jecture D is true in codimension 1 and 2 [22, Corollary 1] and for curves ([22, Corollary
1], or alternatively [7, Proposition 1.1]), the two notions of bigness coincide for j = 1,
for j = 2 and for j = n − 1. In general, in the absence of D(M), we only know that a
homologically big class in N j H2 j (M, R) projects to a big class in N j (M). For more on the
standard conjectures, cf. [17,18].

Thanks to work of Lehmann, there exists a nice volume-type function for cycle classes.
This volume-type function acts as a bigness detector:

Theorem 8 (Lehmann [20]) Let X be a smooth projective variety of dimension n. Consider
the homogeneous function defined as

̂vol : N j (X) → R≥0 ,

̂vol(α) := sup
φ,A

{An} ,

where φ : Y → X varies over all birational models of X, and A varies over all big and nef
R-Cartier divisors on Y such that φ∗(A j ) − α ∈ Psef j (X). This function has the property
that ̂vol(α) > 0 if and only if α is big.

Proof This is [20, Section 7]. 	


3 Strictly nef subvarieties

In this section, we prove the main result of this note (Theorem 17), which is about degree 1
cohomology of smooth strictly nef subvarieties.

Definition 9 Let P be a smooth projective variety, and let X ⊂ P be a closed irreducible
subvariety of codimension r . We say that X is bulky if X meets every dimension r subvariety
of P , i.e. for every closed r -dimensional subvariety a ⊂ P , we have

X ∩ a �= ∅
(here ∩ indicates set-theoretic intersection).

Definition 10 Let P be a smooth projective variety, and let X ⊂ P be a closed irreducible
subvariety of codimension r . We say that X is strictly nef if for every non-zero a ∈ Effr (P)

we have

[X ] · a > 0 in H0(P, R) ∼= R.
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Remark 11 The definition of bulkiness seems to originate with [8] (where it is called “une
sous-variété encombrante”). In [24], the adjective “cumbersome” is used instead of bulky.

Remark 12 Strictly nef divisors are studied in [6].

Remark 13 Any strictly nef subvariety is bulky. On a homogeneous variety P , the converse
is true (indeed, any non-zero effective class on P is represented by an effective cycle in
general position with respect to X ). On arbitrary varieties P , the converse is not true. (Here
is an example that was kindly pointed out by the referee: Let P1, . . . , P10 be 10 very general
points on an elliptic curve E ⊂ P

2. Let S → P
2 denote the blow-up with center the 10 points

Pi , and let Ē ⊂ S be the strict transform of E . One can check that Ē ⊂ S is bulky. On the
other hand, the self-intersection Ē2 is negative, so Ē is not nef.)

To recap, one could say that the notion of strict nefness (which is equivalent to bulkiness
on homogeneous varieties) is the more natural notion for arbitrary varieties.

Example 14 Let P be a homogeneous variety, and X ⊂ P a smooth subvariety with ample
normal bundle. Then X is bulky [19, Example 8.4.6]. In particular, if P is a simple abelian
variety, every smooth subvariety X ⊂ P is bulky [19, Corollary 6.3.11].

Definition 15 Let P be a smooth projective variety, and let X ⊂ P be a closed irreducible
subvariety of codimension r . We will write

H j (X)van := ker
(

H j (X, C) → H j+2r (P, C)
)

.

Remark 16 It follows from mixed Hodge theory that the kernel

ker
(

H j (X, Q) → H j+2r (P, Q)
)

is aHodge sub-structure [26]. Thus, it makes sense towriteGriF H j (X)van (where F∗ denotes
the Hodge filtration).

Theorem 17 Let n and r be positive integers with n ≥ r + 1. Let P be a smooth projective
variety of dimension n + r , and assume there is equality

Effn(P) = Psefn(P) ⊂ Nn(P)

(i.e., the cone Effn(P) is a closed cone).
Let X ⊂ P be a smooth subvariety of dimension n which is strictly nef. Then

H1(X)van = 0.

Proof Suppose n > r + 1. There is a fibre diagram

X ′ τ ′−→ P ′
↓ ↓ f

X
τ−→ P ,

where P ′ ⊂ P is a smooth complete intersection of dimension n′ + r , and X ′ ⊂ X is smooth
of dimension n′, and we have equality n′ = r + 1.

Lemma 18 The class

(τ ′)∗[X ′] ∈ Nr (X ′)

is homologically big.
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Proof First, since r = n′ − 1 (i.e., (τ ′)∗[X ′] is a curve class), the notions of bigness and
homological bigness are the same (Remark 7). We are thus reduced to proving bigness, i.e.
we need to prove (τ ′)∗[X ′] is in the relative interior of Effr (X ′). Let A ⊂ P be a codimension
r intersection of ample divisors. Then

A′ := (τ ′) f ∗(A) ∈ Nr (X ′)

is the class of a codimension r intersection of ample divisors; as such, A′ is in the relative
interior of Effr (X ′) ([14, Lemma 2.11], or alternatively Theorem 8). Hence, to prove bigness
of (τ ′)∗[X ′], it suffices to prove that

(τ ′)∗[X ′] − εA′ ∈ Psefr (X ′) , (1)

for some ε > 0 sufficiently small.
Now let D ∈ Nef1(X ′). Then we have

(

(τ ′)∗[X ′] − εA′) · D =
(

(τ ′)∗ f ∗([X ] − εA)
)

· D
= ([X ] − εA

) · f∗(τ ′)∗(D)

≥ 0 ,

for some ε > 0 sufficiently small. Here, the first equality is just the fact that f ∗[X ] = [X ′],
and the second equality is the projection formula. As for the last line, note that X ⊂ P
is strictly nef, which combined with the assumption that Effn(P) is a closed cone implies
that [X ] is strictly positive on Psefn(P)\{0}, i.e. [X ] is in the relative interior of Nefr (P).
On the other hand, Nef1(X ′) ⊂ Psef1(X ′), and so the push-forward f∗(τ ′)∗(D) is pseudo-
effective, hence (by assumption) effective. This means that there exists ε > 0 such that
([X ] − εA

) · f∗(τ ′)∗(D) ≥ 0. This proves the inclusion (1), and hence the lemma.

Homological bigness is relevant to us, because of the following hard Lefschetz type result:

Lemma 19 (Fu [10]) Let M be a smooth projective variety of dimension n, and let γ ∈
Nr H2r (M, Q) be homologically big. Then the homomorphism “cup product with γ” induces
an injection

∪γ : Gr0F Hn−r (M, C) → GrrF Hn+r (M, C)

(here F∗ denotes the Hodge filtration).

Proof This is [10, Lemma 3.3]. The proof exploits the second Hodge–Riemann bilinear
relation, and is inspired by ideas of Voisin [27]. 	


Applying Lemma 19 to the homologically big class (τ ′)∗[X ′] ∈ Nr H2r (X ′, Q), we find
that

∪(τ ′)∗[X ′] : Gr0F H1(X ′, C) → Grn
′−1
F H2n′−1(X ′, C)

is injective (and hence, for dimension reasons, an isomorphism). Using the fact that Gr1F H1

is the complex conjugate of Gr0F H1, we find that

∪(τ ′)∗[X ′] : H1(X ′, C) → H2n′−1(X ′, C)

is also injective. On the other hand, it follows from the normal bundle formula that there is
a factorization

∪(τ ′)∗[X ′] : H1(X ′, C)
(τ ′)∗−−→ H2r+1(P ′, C)

(τ ′)∗−−→ H2n′−1(X ′, C).
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We can thus conclude that

(τ ′)∗ : H1(X ′, C) → H2r+1(P ′, C)

is injective. We have a commutative diagram

H1(X, C)
τ∗−→ H2r+1(P, C)

↓ ↓
H1(X ′, C)

(τ ′)∗−−→ H2r+1(P ′, C)

where vertical arrows are injective (weak Lefschetz, note that dim P ′ = 2r + 1). It follows
that

τ∗ : H1(X, C) → H2r+1(P, C)

is injective. 	

As a corollary, we obtain the following:

Corollary 20 Let P be a smooth projective variety of dimension n + r , and suppose a
connected solvable linear algebraic group acts on P with finitely many orbits. Let X ⊂ P
be a smooth subvariety of dimension n ≥ r + 1 which is strictly nef. Then

H1(X, Q) = 0.

Proof For P as in Corollary 20, it is known that all cones Effr (P) are closed rational
polyhedral cones, generated by the orbit closures [15, Corollary to Theorem 1]. Theorem 17
thus applies; this gives

H1(X)van = 0.

But P has no odd cohomology since the cycle class map is an isomorphism [15, Corollary
to Theorem 2], and so H1(X, Q) = 0. 	

Remark 21 Suppose P is a Grassmannian or a product of projective spaces (of dimension
n + r ), and X ⊂ P smooth and bulky (of dimension n ≥ r + 1) as in Corollary 20. Then, as
noted in the introduction, Debarre has proven that X is simply connected [8]. Can one also
prove simple-connectedness in the more general set-up of Corollary 20?

Here is a variant of Theorem 17 where we make no assumption on the ambient space P .

Theorem 22 Let n, r be positive integers with n ≥ r + 1. Let P be a smooth projective
variety of dimension n + r . Let X ⊂ P be a smooth subvariety of dimension n that is strictly
nef. Assume that dim N 1(X) = 1. Then

H1(X)van = 0.

Proof This is similar to Theorem 17. Again, in case n > r + 1, we consider a fibre diagram

X ′ τ ′−→ P ′
↓ ↓ f

X
τ−→ P ,

where P ′ ⊂ P is a generic smooth complete intersection of dimension n′ + r , and X ′ ⊂ X
is smooth of dimension n′, and we have equality n′ = r + 1. Taking P ′ sufficiently generic,
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we will have dim N 1(X ′) = 1 (this follows from weak Lefschetz in case n′ ≥ 3, and from
Noether–Lefschetz in case n′ = 2). Hence, to test the bigness of the curve class (τ ′)∗[X ′], it
suffices to intersect with one ample divisor D ∈ Nef1(X ′). But any ample divisor is effective,
and so the push-forward f∗(τ ′)∗(D) is effective. It follows that the intersection is positive,
by strict nefness of X :

(τ ′)∗[X ′] · D = (τ ′)∗ f ∗[X ] · D
= [X ] · f∗(τ ′)∗(D)

> 0.

We conclude that (τ ′)∗[X ′] is big. The rest of the argument is the same as Theorem 17. 	

Thanks to Theorem 22, we can “complete” certain results of Perrin:

Corollary 23 Let P be a rational homogeneous variety with Picard number 1, and dim P =
n+r . Let X ⊂ P be a smooth bulky subvariety of dimension n, and assume 2r ≤ coeff(P)−2
(here, coeff(P) is a number in between 0 and dim P, defined in [24, Definition 0.9]). Then

Pic(X) = Z.

Proof Note that bulkiness and strict nefness coincide on P (Remark 13). Perrin has proven
[24, Theorem 0.10] that the Néron–Severi group NS(X) is Z, so that N 1(X) = R. The result
now follows from Theorem 22, in view of the exact sequence (coming from the exponential
sequence)

H1(X, Z) → H1(X,O) → Pic(X) → NS(X) → 0.

	


4 Not so bulky subvarieties

In this section, we consider a refinement of Theorem 17 for certain special ambient spaces P .
The connectedness result of this section (Proposition 26) improves on Theorem 17 because
it applies to subvarieties X that may fail to be bulky (cf. Remark 29).

Definition 24 Let G be a connected reductive algebraic group. A spherical variety is a
normal G-variety for which there is a Borel subgroup B ⊂ G with a dense orbit.

Remark 25 More on spherical varieties can be found in [4,5,25] and the references given
there.

Proposition 26 Let P be a smooth projective spherical variety of dimension n + r . Let
X ⊂ P be a smooth subvariety of dimension n ≥ r + 1, verifying the following:

(i) X is in general position with respect to the n-dimensional orbit closures on P;
(ii) X ⊂ P is big.

Then
H1(X, Q) = 0.
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Proof As before, in case n > r + 1, we consider a fibre diagram

X ′ τ ′−→ P ′
↓ g ↓
X

τ−→ P ,

where P ′ ⊂ P is a smooth complete intersection of dimension n′ + r , and X ′ ⊂ X is smooth
of dimension n′, and we have equality n′ = r + 1.

Lemma 27 The class τ ∗[X ] ∈ Nr (X) is big.

Proof As the cone Effr (P) is generated by the n-dimensional orbit closures [15], assumption
(i) implies that

τ ∗(Effr (P)
) ⊂ Effr (X).

Dually, this amounts to an inclusion

τ∗
(

Nefn−r (X)
) ⊂ Nefn(P).

Let A ∈ N 1(P) denote the class of an ample divisor. The class τ ∗(Ar ) lies in the relative
interior of Effr (X). Hence, proving Lemma 27 is equivalent to showing

τ ∗[X ] − ετ ∗(Ar ) ∈ Effr (X) (2)

for some ε > 0 sufficiently small.
Let D ∈ Nefn−r (X). As we have seen, τ∗(D) ∈ Nefn(P). It follows that

(

τ ∗[X ] − ετ ∗(Ar )
) · D = ([X ] − εAr ) · τ∗(D) ≥ 0 ,

for some ε > 0 sufficiently small. This proves inclusion (2), and hence Lemma 27. 	

Lemma 28 The class (τ ′)∗[X ′] ∈ Nr (X ′) is homologically big.

Proof Since τ ∗[X ] is big (Lemma 27), we can write

τ ∗[X ] = Ar + e in Nr (X) ,

where A is an ample divisor on X , and e is an effective class (here, we have again used the
fact that complete intersection classes Ar are big; this is [11, Lemma 2.11], or, alternatively,
can be seen using the volume-type function of Theorem 8). For a generic choice of X ′, the
restriction e′ = g∗(e) is still effective, and (obviously) A′ = g∗(A) is still ample. It follows
that

(τ ′)∗[X ′] = (A′)r + e′ in Nr (X ′)

is big.
Because r = n′ − 1 (i.e., we look at a curve class on X ′) the class (τ ′)∗[X ′] is also

homologically big (Remark 7). 	

The rest of the argument is identical to that of Theorem 17: Applying Lemma 19 to the

homologically big class (τ ′)∗[X ′], we find that

(τ ′)∗ : H1(X ′, Q) → H2r+1(P ′, Q)

123



132 Geom Dedicata (2017) 187:123–135

is injective. The commutative diagram

H1(X, C)
τ∗−→ H2r+1(P, C)

↓ ↓
H1(X ′, C)

(τ ′)∗−−→ H2r+1(P ′, C)

(where vertical arrows are injective by weak Lefschetz) then proves the proposition. 	

Remark 29 Let X be a smooth projective spherical variety. It is known [21, Theorem 1.1]
that there are inclusions of cones

Nef j (P) ⊂ Eff j (P) for all j.

That is, any bulky subvariety X ⊂ P verifies hypothesis (ii) of Proposition 26.
We can say more: as shown in [21], there are “many” spherical varieties P for which there

are strict inclusions

Nef j (P) � Eff j (P) for all j.

(More precisely: let P be either a toric variety different from a product of projective spaces,
or a toroidal spherical variety different from a rational homogeneous space. Then these inclu-
sions are strict for all j [21, Theorem 1.2].) The conclusion is that in these cases Proposition
26 gives a connectedness result even for subvarieties X that fail to be bulky; it suffices that
X be only “slightly bulky”, in the sense of hypothesis (ii).

5 A conditional result

In this final section, we prove a conditional connectedness result for cohomology groups in
degree > 1. This result is conditional to one of the standard conjectures. The reason we need
to assume a standard conjecture is that there might a priori be a difference between the two
notions of bigness defined in Sect. 2 (cf. Remark 7).

Theorem 30 Let P be a smooth projective variety of dimension n + r , and τ : X ⊂ P a
smooth subvariety of dimension n. Assume the following:

(i) There is an inclusion of cones

Nefn(P) ⊂ Effn(P) ;
(ii) X ⊂ P is strictly nef;
(iii) There is an inclusion

τ ∗(Psefr (P)
) ⊂ Psefr (X) ;

(iv) Either r = 2, or the standard Lefschetz conjecture B(X) holds.
Then

Gr0F H j (X)van = 0 for all j ≤ n − r.

Proof First, in case j < n − r we take generic hyperplane sections. That is, we consider (as
before) a fibre diagram

X ′ τ ′−→ P ′
↓ g ↓
X

τ−→ P ,
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where P ′ ⊂ P is a smooth complete intersection of dimension n′ + r , and X ′ ⊂ X is smooth
of dimension n′, and we have equality j = n′ − r .

Lemma 31 The class τ ∗[X ] ∈ Nr (X) is (homologically) big.

Proof Let A ∈ N 1(P) be an ample divisor class. To prove bigness of τ ∗[X ], it suffices to
prove

τ ∗[X ] − ετ ∗(Ar ) ∈ Psefr (X) (3)

for some ε > 0.
Let a ∈ Nefn−r (X). It follows from assumption (iii) (by duality) that

τ∗(a) ∈ Nefn(P).

It follows from assumption (i) that τ∗(a) is effective. Also, assumptions (i) and (ii) combined
imply that [X ] ∈ Nr (P) is big. Now, using the projection formula we find that

(

τ ∗[X ] − ετ ∗(Ar )
) · a = ([X ] − εAr ) · τ∗(a) ≥ 0 ,

for some sufficiently small ε > 0. This proves inclusion (3) and hence the bigness of τ ∗[X ].
Since we have assumed that either r = 2 or B(X) holds, the two notions of bigness coincide
(Remark 7), and so τ ∗[X ] is homologically big. 	

Lemma 32 The class (τ ′)∗[X ′] ∈ Nr (X ′) = Nr H2r (X ′, R) is homologically big.

Proof The fact that (τ ′)∗[X ′] is big can be deduced from Lemma 31 along the lines of the
proof of Lemma 28.

In case r = 2, the two notions of bigness coincide (Remark 7). Otherwise, since property
B(X) implies B(X ′) [18], the two notions of bigness also coincide on X ′; this proves the
lemma. 	


ApplyingLemma19 to thehomologically big class (τ ′)∗[X ′] ∈ Nr (X ′) = Nr H2r (X ′, R),
we find that

∪(τ ′)∗[X ′] : Gr0F Hn′−r (X ′, C) → GrrF Hn′+r (X ′, C)

is injective (and hence, for dimension reasons, an isomorphism). On the other hand, it follows
from the normal bundle formula that there is a factorization

∪(τ ′)∗[X ′] : Gr0F Hn′−r (X ′, C)
(τ ′)∗−−→ GrrF Hn′+r (P ′, C)

(τ ′)∗−−→ GrrF Hn′+r (X ′, C).

We can thus conclude that

(τ ′)∗ : Gr0F H j (X ′, C) → GrrF H j+2r (P ′, C)

is injective.
To return to X , we consider a commutative diagram

Gr0F H j (X, C)
τ∗−→ GrrF H j+2r (P, C)

↓ ↓
Gr0F H j (X ′, C)

(τ ′)∗−−→ GrrF H j+2r (P ′, C)

where vertical arrows are injective (this is an application of weak Lefschetz; note that
dim X ′ = n′ > j and dim P ′ = j + 2r ). It follows from this commutative diagram that

τ∗ : Gr0F H j (X, C) → GrrF H j+2r (P, C)

is injective. 	
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Corollary 33 Let n, r be positive integers with n ≥ r + 2. Let P be a Grassmannian of
lines in a projective space, and dim P = n + r . Let X ⊂ P be a smooth bulky subvariety of
dimension n. Assume either r = 2 or B(X) holds. Then

H2(X, Z) = Z.

Proof As mentioned in the introduction, Arrondo and Caravantes have proven [1] that
Pic(X) = Z.

We now check that all assumptions of Theorem 30 are satisfied. Any Grassmannian P has
Nef j (P) = Eff j (P) for all j so assumption (i) is OK. Assumption (ii) is OK by Remark 13.
Assumption (iii) of Theorem 30 is satisfied, because (by homogeneity) any subvariety a ⊂ P
is homologically equivalent to a subvariety in general position with respect to X . Applying
Theorem 30, we find that H2(X,OX ) = 0. The result now follows from the exponential
sequence.

Corollary 34 Let P be a product P
m × P

m, and let X ⊂ P be a smooth subvariety of
codimension r and dimension n ≥ r + 2. Assume the two projection maps X → P

m are
surjective. Assume also that either r = 2 or B(X) holds. Then

H2(X, Z) = Z
2.

Proof Arrondo andCaravantes have proven that Pic(X) = Z
2 [1, Theorem 3.1]. The assump-

tion about the projection maps ensures that X is bulky [8, Proposition 2.6], hence (by
homogeneity of P) strictly nef. Applying Theorem 30, we find that H2(X,OX ) = 0.

Definition 35 (Perrin [24]) LetGQ(p,m) andGω(p, 2m) be theGrassmannians of isotropic
subspaces of dimension p in a vector space of dimension m (resp. 2m) endowed with a non-
degenerate quadratic form Q (resp. symplectic form ω).

Corollary 36 Let n, r be positive integerswith n ≥ r+3. Let P beGQ(2, 2m+1),Gω(2, 2m)

or GQ(2, 4m). Let X ⊂ P be a smooth bulky subvariety of dimension n and codimension r.
Assume either r = 2, or B(X) holds. Then

H2(X, Z) = Z.

Proof Perrin has proven that Pic(X) = Z [24, Corollary 0.11]. Since P is homogeneous, the
conditions of Theorem 30 are again fulfilled, so we also have H2(X,OX ) = 0.

Remark 37 It would be interesting if one could prove Theorem 30 (or even the Corollaries
33 and 34 and 36) for r > 2 without assuming some standard conjecture for the subvariety
X . I have not been able to do so.

Acknowledgements This note is a belated fruit of the 2014 Marrakech workshop on cones of positive cycle
classes, which was a great occasion to learn about the body of work [11,12,20]. Thanks to all the participants
of this workshop. Many thanks to Yasuyo, Kai and Len for coming to Marrakech with me. Thanks to the
referee for several very helpful remarks.

References

1. Arrondo, E., Caravantes, J.: On the Picard group of low-codimension subvarieties. Indiana Univ. Math.
J. 58(3), 1023–1050 (2009)

2. Barth, W.: Transplanting cohomology classes in complex-projective space. Am. J. Math. 92, 951–967
(1970)

123



Geom Dedicata (2017) 187:123–135 135

3. Bloch, S., Ogus, A.: Gersten’s conjecture and the homology of schemes. Ann. Sci. Ec. Norm. Sup. 4,
181–202 (1974)

4. Brion, M.: Variétés sphériques. http://www-fourier.ujf-grenoble.fr/~mbrion/spheriques
5. Brion, M.: Spherical varieties. http://www-fourier.ujf-grenoble.fr/~mbrion/notes_bremen
6. Campana, F., Chen, J., Peternell, T.: Strictly nef divisors. Math. Ann. 342, 565–585 (2008)
7. Colliot-Thélène, J.-L., Skorobogatov, A.: Descente galoisienne sur le groupe de Brauer. J. Reine Angew.

Math. 682, 141–165 (2013)
8. Debarre, O.: Théorèmes de connexité pour les produits d’espaces projectifs et les Grassmanniennes. Am.

J. Math. 118(6), 1347–1367 (1996)
9. Debarre, O., Ein, L., Lazarsfeld, R., Voisin, C.: Pseudoeffective and nef classes on abelian varieties.

Compos. Math. 147(6), 1793–1818 (2011)
10. Fu, L.: On the coniveau of certain sub-Hodge structures. Math. Res. Lett. 19, 1097–1116 (2012)
11. Fulger, M., Lehmann, B.: Positive cones of dual cycle classes. Algebr. Geom. arXiv:1408.5154v2
12. Fulger, M., Lehmann, B.: Zariski decompositions of numerical cycle classes. J. Algebr. Geom.

arXiv:1310.0538v3
13. Fulton, W.: On the topology of algebraic varieties. In: Algebraic Geometry, Bowdoin 1985, Proceedings

of Symposia in Pure Mathematics, vol. 46. American Mathematical Society, Providence (1987)
14. Fulton,W.,Lazarsfeld,R.,Connectivity and its applications in algebraic geometry. In:AlgebraicGeometry

(Chicago, 1980), Lecture Notes in Mathematics 862. Springer, Berlin (1981)
15. Fulton,W., MacPherson, R., Sottile, F., Sturmfels, B.: Intersection theory on spherical varieties. J. Algebr.

Geom. 4, 181–193 (1995)
16. Hartshorne, R.: Varieties of small codimension in projective space. Bull. Am. Math. Soc. 80(6), 1017–

1032 (1974)
17. Kleiman, S.: Algebraic cycles and theWeil conjectures. In: Dix exposés sur la cohomologie des schémas.

North-Holland, Amsterdam, pp. 359–386 (1968)
18. Kleiman, S.: The standard conjectures. In: Jannsen, U., et al. (eds.) Motives, Proceedings of Symposia in

Pure Mathematics, vol. 55, Part 1 (1994)
19. Lazarsfeld, R.: Positivity in Algebraic Geometry I. Positivity in Algebraic Geometry II. Springer, Berlin

(2004)
20. Lehmann, B.: Volume-type functions for numerical cycle classes. Duke Math. J. arXiv:1601.03276v1
21. Li, Q.: Pseudo-effective and nef cones on spherical varieties. Math. Z. 280, 945–979 (2015)
22. Lieberman, D.: Numerical and homological equivalence of algebraic cycles on Hodge manifolds. Am. J.

Math. 90, 380–405 (1968)
23. Perrin, N.: Small codimension smooth subvarieties in even-dimensional homogeneous spaces with Picard

group Z. C. R. Acad. Sci. 345(3), 155–160 (2007)
24. Perrin, N.: Small codimension subvarieties in homogeneous spaces. Indag. Math. (N.S.) 20(4), 557–581

(2009)
25. Perrin, N.: On the geometry of spherical varieties. Transform. Groups 19(1), 171–223 (2014)
26. Peters, C., Steenbrink, J.: Mixed Hodge Structures. Springer, Berlin (2008)
27. Voisin, C.: Coniveau 2 complete intersections and effective cones. Geom. Funct. Anal. 19(5), 1494–1513

(2010)

123

http://www-fourier.ujf-grenoble.fr/~mbrion/spheriques
http://www-fourier.ujf-grenoble.fr/~mbrion/notes_bremen
http://arxiv.org/abs/1408.5154v2
http://arxiv.org/abs/1310.0538v3
http://arxiv.org/abs/1601.03276v1

	A note about connectedness theorems à la Barth
	Abstract
	1 Introduction
	2 Cones of cycle classes
	3 Strictly nef subvarieties
	4 Not so bulky subvarieties
	5 A conditional result
	Acknowledgements
	References




