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Abstract In this paper, we first introduce the concept of &-submanifold which is a natural
generalization of self-shrinkers for the mean curvature flow and also an extension of A-
hypersurfaces to the higher codimension. Then, as the main result, we prove arigidity theorem
for Lagrangian £-submanifold in the complex 2-plane C2.
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1 Introduction

Letx : M"* — R"*P be an n-dimensional submanifold in the (n + p)-dimensional Euclidean
space R"*P. Then x is called a self-shrinker (to the mean curvature flow) in R” 7 if its mean
curvature vector field H satisfies

H+xt=0, (1.1

where x1 is the orthogonal projection of the position vector x to the normal space 7-M"
of x.

It is well known that the self-shrinker plays an important role in the study of the mean
curvature flow. Not only self-shrinkers correspond to self-shrinking solutions to the mean
curvature flow, but also they describe all possible Type I blow ups at a given singularity of the
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flow. Up to now, there have been a plenty of research papers on self-shrinkers among which are
many that provide various results of classification or rigidity theorems. In particular, there are
also interesting results about the Lagrangian self-shrinkers in the complex Euclidean n-space
C". For example, in [1], Anciaux gives new examples of self-shrinking and self-expanding
Lagrangian solutions to the mean curvature flow. In [3], the authors classify all Hamiltonian
stationary Lagrangian surfaces in the complex plane C2, which are self-similar solutions of
the mean curvature flow and, in [4], several rigidity results for Lagrangian mean curvature
flow are obtained. As we know, a canonical example of the compact Lagrangian self-shrinker
in C? is the Clifford torus S' (1) x S!(1).

Recently in [13], Li and Wang prove arigidity theorem which improves a previous theorem
by Castro and Lerma [4].

Theorem 1.1 (cf.[4,13]). Letx : M?> — C? be a compact oriented Lagrangian self-shrinker
with h its second fundamental form. If |h|> < 2, then |h|*> = 2 and x(M?) is the Clifford
torus S'(1) x S'(1), up to a holomorphic isometry on C2.

Remark 1.1 Castro and Lerma also proved Theorem 1.1 in [4] under the additional condition
that the Gauss curvature K of M? is either non-negative or non-positive.

To make an extension of hypersurface self-shrinkers, Cheng and Wei recently introduce
in [7] the definition of A-hypersurface of weighted volume-preserving mean curvature flow
in Euclidean space, and classify complete A-hypersurfaces with polynomial area growth and
H — ) > 0, which are generalizations of the results due to Huisken [12] and Colding-
Minicozzi [9]. According to [7], a hypersurface x : M" — R™"+! is called a A-hypersurface
if its mean curvature Hy satisfies

Hy + (x, N) = A (1.2)

for some constant A, where N is the unit normal vector of x. Some rigidity or classification
results for A-hypersurfaces are obtained, for example, in [6,8,11]; for the rigidity theorems
for space-like A-hypersurfaces see [15].

As a natural generalization of both self-shrinkers and A-hypersurfaces, we introduce the
concept of &-submanifolds. Precisely, an immersed submanifold x : M" — R"*? is called a
&-submanifold if there is a parallel normal vector field £ such that the mean curvature vector
field H satisfies

H+xt=¢. (1.3)

Obviously, the Clifford tori S'(a) x S!'(b) with positive numbers a and b are examples
of Lagrangian &-submanifold in C2. Similar examples in higher dimensions can be listed as
those in [5] for self-shrinkers. In this paper, we focus on the rigidity of compact Lagrangian
&-submanifolds in C2, and our main theorem is as follows:

Theorem 1.2 Let x : M?> — C2 be a compact oriented Lagrangian &-submanifold with the
second fundamental form h and mean curvature vector H. Assume that

Ih)* +|H — &> < > + 4.

Then |h|> + |H — £|*> = |£)? 4+ 4 and x(M?*) = T? is a topological torus.
Furthermore, if (H, &) is constant and one of the following four conditions holds:

W aF =2, QHP?=>2, O |h*=(H H—£), @& (HE >0, (14
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then, up to a holomorphic isometry on C2, x(M?) = S'(a) x S'(b) is a standard torus, where
a and b are positive numbers satisfying a*> + b* > 2a%b>.

Corollary 1.3 Let x : M? — C? be a compact oriented Lagrangian self-shrinker. If
Ihl* +|H? < 4,
then |h|? + |H|?* = 4 and x(M?*) = S' (1) x S'(1) up to a holomorphic isometry on C>.
Clearly, Corollary 1.3 can be viewed as a different new version of Theorem 1.1.

Remark 1.2 We believe that the last condition (1.4) in Theorem 1.2 can be removed. On the
other hand, the condition that (H, &) is constant may also be removed. In fact, as suggested
by the referee, we can use (3.11) and the compactness of M 2 to show that |x|? is constant
when either (H, H — &) < 2 or (H, H — &) > 2. Then by the argument at the end of the
paper, we can simplify Theorem 1.2 as follows:

Theorem 1.4 Let x : M?> — C2 be a compact oriented Lagrangian & -submanifold with the
second fundamental form h and mean curvature vector H. Assume that

Ih)? +|H — &> < > + 4.

Then |h|2 + |H — £|? = |2 4 4 and x(M?%) = T2 is a topological torus.
Furthermore, if either (H, H — &) <2 or (H, H — &) > 2, then, up to a holomorphic
isometry on C2, x(M?) = SY(a) x SL(b) is a standard torus for some a, b > 0.

Remark 1.3 Cheng and Wei have introduced in [7] a weighted area functional .A and derived
a related variation formula. Besides the relation between A-hypersurfaces and the weighted
volume preserving mean curvature flow, they also prove that A-hypersurfaces are the critical
points of the weighted area functional. Based on this, we believe that similar conclusions
will be valid for the £-submanifolds defined above. Furthermore, We reasonably believe
that, if self-shrinkers and A-hypersurfaces take the places of minimal submanifolds and
constant mean curvature hypersurfaces, respectively, then £ -submanifolds must take the place
of submanifolds of parallel mean curvature vector.

2 Lagrangian submanifolds in C" and their Maslov class

Let C" be the complex Euclidean n-space with the canonical complex structure J. Through
out this paper, x : M" — C" always denotes an n-dimensional Lagrangian submanifold,
and V, D, V< denote, respectively, the Levi-Civita connections on M", C", and the normal
connection on the normal boundle 7--M" . The formulas of Gauss and Weingarten are given
by

DxY = VxY + h(X,Y), Dxn=—A,X+ Vi,

where X, Y are tangent vector fields on M" and 1 is a normal vector field of x. The Lagrangian
condition implies that

ViJY = JVxY, A;xY =—Jh(X,Y)=A;vX,

where /7 and A are the second fundamental form and the shape operator of x, respectively.
In particular, (h(X, Y), JZ) is totally symmetric as a 3-form, namely

(W(X,Y),JZ)=(h(X,Z),JY)=(h(Y, Z), JX). (2.1)
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From now on, we agree with the following convention on the ranges of indices:
l<ij,---<n, n+l<ap,---<2n, 1<AB,---<2n, i"*=n+i.

For a Lagrangian submanifold x : M" — C", there are orthonormal frame fields of the form
{ei, ejx} for C" along x, where ¢; € TM" and ¢;+ = Je;. Such a frame is called an adapted
Lagrangian frame field in the literature. The dual frame field is always denoted by {6;, 6;+},
where 6;+ = —J6;. Write

h="> h0:0jer-, wherehf; = (h(ei.e)). ex).
or equivalently,
h(eivej) = > hiew, foralle;, e;.
k
Then (2.1) is equivalent to
WS =his=hl, 1<ijk<n. 2.2)

If 9, j and 6;x j+ denote the connection forms of V and V1, respectively, then the components

k*
h~ i

Zh,] 0 = dhl; + Zh O + Zhl, 0 + Zh,j Omri: (2.3)
Zhll pOp = dhl; + Zh Opi + Zh 10+ Zhu DOt + DR Oprie. (2.4)
p
Moreover, the equations of motion are as follows:
dx = 29'6,’, de; = z&ijej + Z/’lﬁ@jek*, 2.5)
i k.j

deps = — th 0jei + Zek*,*el*. (2.6)
1

i of the covariant derivatives of & are given respectively by

Let R;ji and R;+ j+i; denote the components of curvature operators of V and v, respec-
tively. Then the equations of Gauss, Codazzi and Ricci are as follows:

Ruijk = Z(hmkhl* b, 1 <m.i jk<n, (2.7)

W =hl . 1<ijkl<n, (2.8)

Riejow = D (il —hb o). 1<, jokl <n. 2.9)
m

The scalar curvature of V is

2
R=|HP ~|n]® with|H|2=Z(Zhﬁ*), n? =D (210

k i ijk

where the mean curvature vector field H is defined by

H = ZHk ek*—Zh epx.
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Combining (2.2) and (2.8), we know that hl i is totally symmetric, namely

W = b =hl = h o 1<ijkl<n, @.11)

and the Ricci identities are as follows:
ijlp — lj pl - th/ R”"lp thmRJmlP Zhu Ricem *Ip- (2'12)

Note that, with respect to the adapted Lagrangian frame {e;, ¢;+}, the connection forms
O+ j« = 6;;. It follows that

h~

Ryrixjk = Rpijk, VYm, 1, j, k. (2.13)

Furthermore, the first and second derivatives H /j*, H /jj of the mean curvature vector field
H are given as

k* k*
HY = Zh”l, HY; Zhll” (2.14)

For any smooth function f on M", the covariant derivatives f;, f,;; of f, the Laplacian
of f are respectively defined as follows:

deZf,iQi, Zﬁ,’j@j:dﬁi—ZﬁjQU, Af:Zf,'i. (2.15)
i j j i

Finally, we also need to introduce the Lagrangian angles, Maslov form and Maslov class
of a Lagrangian submanifold in C"* which we shall make use of later.

Let (zl, ..., Z"") be the standard complex coordinates on C”. Then Q = dzV Ao A dD
is a globally defined holomorphic volume form which is clearly parallel. For a Lagrangian
submanifold x : M" — C", the Lagrangian angle of x is by definition a multi-valued
function g : M" — R/2nZ given by

Qy = x*Q = eV 1Bavy,.

As one knows, although the Lagrangian angle 8 can not be determined globally in general,
its gradient V g is clearly a well-defined vector field on M", or the same, o := dp is a globally
defined 1-form which is called the Maslov form of x. Clearly, « is closed and thus represents
a cohomology class [«] € HY(M") called the Maslov class.

In [16], the author proved an important formula by which the mean curvature and the
Lagrangian angle of a Lagrangian submanifold are linked to each other; A. Arsie has extended
this result in [2] to Lagrangian submanifolds in a general Calabi-Yau manifold.

Theorem 2.1 ([16]) Let x : M" — C" be a Lagrangian submanifold and J be the canonical
complex structure of C". Then the mean curvature vector H and the Lagrangian angle
meet the following formula:

x:(VB) = —JH. (2.16)
Corollary 2.2 ([4,17]) Let x : M" — C" be a compact and oriented Lagrangian self-

shrinkers. Then the Maslov class [«] can not be trivial. In particular, there does not exist any
Lagrangian self-shrinker in C"* with the topology of a sphere.
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Remark 2.1 For our use in this paper, it is necessary to show that Corollary 2.2 is still true
if we replace the self-shrinker by a &-submanifold. Precisely, we need

Proposition 2.3 Let x : M" — C" be a Lagrangian &-submanifold. If M is compact and
orientable, then [a] # 0; Consequently, there does not exist any Lagrangian & -submanifold
in C" with the topology of a sphere.

Proof By the definition of a &-submanifold, we have x = x| + & — H. By Gauss and
Weingarten formulas it follows that, for any v € T M",
Apyv=—D,H+VH = —D,(§ —x") + VIH

= Dyxt — Dy + ViiH = Dyx — Dyx' — Dy + VI H

=v— Vx| +A:(v) —h(v,x") + Vi iH,
where Ay and Ag are Weingarten transformations with respect to H and &, respectively.
Thus

Agv=v—Vyx' +As(v), ViH=h@x").
So that

v = e ,€i) = e ,J€j) = — Ve 11, J¢€;
divJH (Ve, JH, €;) (JVe, JH, Je;) ( Vé‘H Je;)

=D (—hlei,x"), Jei) = D —(h(ei, en), JxT)

= Z(Jh(e,-, ei),x')=(JH,x"), (2.17)

where div is the divergence operator. By (2.16) and (2.17) we obtain

AB = (VB,x") = (VB VIx|?). (2.18)

1
2

If [@] = O, then there exists a globally defined Lagrangian angle 8 such that « = —d,
implying (2.18) holds globally on M™. Then the compactness assumption and the maximum
principle for a second linear elliptic partial equation (see [10], for example) assure that
must be constant. Hence H = x,(JVB) = 0, contradicting to the fact that there are no
compact minimal submanifolds in Euclidean space. This contradiction proves that [«] # 0.

Since the first homology of a sphere S” vanishes forn > 1, there can not be any Lagrangian
&-submanifolds with the topology of a sphere. O

3 Proof of the main theorem

Let x : M" — C" be a Lagrangian &-submanifold without boundary. Then, with respect to
an orthonormal frame field {e; }, the defining equation (1.3) is equivalent to
HY = —(x,ers) + €, 1<k <n. 3.1)

where§ = > £K" ¢4+ is a given parallel normal vector field. From now on, we always assume
that n = 2 if no other specification is given.
We start with a well-known operator £ acting on smooth functions defined by

/\'2 X2
L=A—(x,V)=eTdive TV, (3.2)
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which was first introduced by Colding and Minicozzi [9] to the study of self-shrinkers. Since
then, the operator £ has been one of the most effect tools adapted by many authors. In

particular, the following is a fundamental lemma related to £:

Lemma 3.1 ([14]) Let x : M" — R"*P be a complete immersed submanifold. If u and v

are C%-smooth functions with
|2
/ (JuVv| 4 |Vul|Vu| 4 luLv))e™ 2 dVy < oo,
M
then it holds that

X2 )[2
/ ulve= T dvy, :—/ Vi, VoYe™ T dVy.
M M

Now, to make the whole argument more readable, we divide our proof into the following

lemmas and propositions:
Lemma 3.2 (cf. [13]) Let x : M?> — C? be a Lagrangian & -submanifold. Then

HY = Zh (x,ej), 1<ik=<2,

HY = Zh,ml X, em) +hi; — Z(H SRR 1< j k<2

Lemma 3.3 It holds that
1
5£(|h|2 +|H — &%) = VR + |[VEHP?> + |h)?
1
- f<|h|2 — [H*)@BIh|* = 2|H|* + (H, H — &))

F(HH =8 = > WSl H - o) -5

i,jk,l

- > hhHY (H =8

i)kl
Proof By a direct computation using Lemma 3.2 we find (cf. [13])
1 3 5
S LI = VR + 1h1P = Zihl* + S IH PR = | HT

1 2 2 k* o k* g 1*
+5(H, H = &) (HP — |h| )‘.Z“H ni; hl (H = &)
Lk

1 2y _ 1 2y 1 2
SLUH —§17) = SA(H = &%) = S {x, VIH — £[7)

Z(H &t H"*+|VLH| — > (H - HY (x, e)

ik

= (H—& H)+ |V HP = > (H - &)  ni i — 6",

i)kl

By taking the sum we obtain (3.5).

(3.3)

(3.4)

(3.5)

(3.6)

3.7

m}
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Lemma 3.4 It holds that
AT = D b x e tx e — DF = D7 R R (x e (x. ef)
i)k i,j.k,1

T2-2HH = &)+ D hh(H-5"H-5". (33
i,j.k,l

2

Proof We find

%A(|xT|2) = %ZX ej) Z(x ej)(x,ej)i)i

—z (x,ej) x,,e] +Z(x ej)( xh ek*))

i,j.k
—2+22h” X, ex) +ZH’I;*(x,ej)(x,ek*)
Jjk
+> h" hi(xoe) . e) — > R hE (x.ej) (x, e)
i,j.k,1l i,jk,l
=2-2H H—&+ > hf(x.e)(x ;)& — H)
ij.k
+ D RS H -6 (H - 68 = D7l (e (x.e)),
i,j.k,l i,j.k,1
and the lemma is proved. O

Lemma 3.5 It holds that

AGH. £) = D h (. ei)(x e)E" + (H.&) = D nned (H -6, (3.9)

i,j.k i,j.k,l

LUH, &) = (H.&)— > Wi hl e (H —6)". (3.10)

i,j.k,l
Proof By (3.3) and (3.4),
A((H, §)) = Z(Hk*f ").ii ZHk*é"*

Z (s enm) + 1 — (H = )l )EY
i,k,l,m

= > HY(x. &) +(H.&) = D W nEN (H—8)"
ik

i,j.k,l

= > hl e e)E + (H &) — D R nbE (-8

i,j.k i,j.k,l
(x, V(H, £)) = D (H,£)i(x,ei) = > b (x, ei)(x, e))E"
i ij.k
Thus, by adding them up, we get (3.10). O

@ Springer



Geom Dedicata (2016) 185:155-169 163

Lemma 3.6 (cf. [5,9]; also [13]) It holds that

1

5A(|x|2> =2—(H H—§), (3.11)
l£<|x|2> = EF +2— (Ix|* + (H, &) (3.12)
2 - e :

Proof From (3.1), we find

1 *
5A(|x|2> =24 (x,Ax) =2+ ;Hk (x,ep) =2~ (H, H — &),

1 1 1
Ec(|x|2> = 5A(|x|2> -5 Vix[*) =2 — [H* + (H,&) — x|

=2+ [E* — (Ix|* + (H, &)).

O
Proposition 3.7 Let M? be oriented and compact. If
|h|* + |H — &> < |&]* +4,
then
>+ |H —&* = > +4 (3.13)
and x(M?) is a topological torus.
Proof By Lemma 3.6,
/ H — £PdVy =/ (&P +2(HP — (H.£) — |HP)dVy
M M
=/M(|5|2+4—|H|2>de. (3.14)

Let K be the Gauss curvature of M?2. Then the Gauss equation gives that
2K = |H|> — |h|*.

Denote by gen(M 2) the genus of M 2. Then from the Gauss-Bonnet theorem and (3.14) it
follows that

87 (1 — gen(M?)) = 2/ KdVy :/ (H? = |h»)dVy
M M
= / (&7 +4 — (1> + |H — £1*)dVy > 0, (3.15)
M

implying that gen(M?) < 1. So M? is topologically either a 2-sphere or a torus. But Propo-
sition 2.3 excludes the first possibility. So gen(M?) = 1 and (3.13) is proved. O

Lemma 3.8 Let pg € M? be a point where |x|? attains its minimum on M>*. If M? is
orientable, compact and

|h|2 + |H — Elz = const,
then

VEH(po) =0, (Vh)(po) = 0. (3.16)
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Proof Since (|x|2),j =0,1<j <2at pog, it holds that (x, e;)(po) =0,1 < j < 2.Soby
(3.3) we have

HY =0, 1<ik<2 |H-¢g}=2) H-&"H{ =0, 1<i<2 at po
k
(3.17)

where the first set of equalities are exactly V- H (pg) = 0, which give

1* 1* _ 1* 1* _ 2* 2* _ 2* 2* _
hivi+hn =0, hyo+hy,=0, hij+hy; =0, hij,+hy,=0.

(3.18)
On the other hand, from
|h|> + |H — &|> = const, (3.19)
we obtain
% +1H-6%=0, 1<k<2, (3.20)

which with (3.17) implies that
(1B k=0, 1<k<2 atpo.
Since
(W = (h{D)? +2(h1)° + (130)” + (WT)* +2(h1)° + (3)°,

we find that

hiyhizy +2highiy g +hihyy g + ki) +2h5hT, + ks, ) =0, (3.21)

hivhiy g +2highiy 5 +highyy o + Wikt o +2hhT + Wk, , =0 (3.22)
hold at pg. From (2.11) and (3.18) we get

hgl = _hﬁ,l’ hé;,z = _hﬁ,zv h§;2 = hﬁ,l at po. (3.23)

Since, by (2.2) and (2.11), both hkj and K~

ij,1 are totally symmetric, we obtain by (3.23),
(3.21) and (3.22) that

(h{} = 3h3)hi} | — (W35 — 3h3)h} , =0, (3.24)
(3, —3h3DALL | + (k1) —3hb)hl =0 at po. (3.25)

‘We claim that
(Vh)(po) = 0. (3.26)

Otherwise, we should have (hﬂl)2 + (hﬁz)2 = 0 at po. Then from (3.24) and (3.25) it
follows that

(h1y = 3002 + (W3 — 3h3)% =0 at po.

Thus

4 * * 16 * *
|h|2<po>=5((h}1>2+<h%2>2>, |H|2<po)=3<<h}1>2+<h22>2>. (3.27)
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Now by the definition of pg and Lemma 3.6,

1
0< 5A|x|2(po> =2—(H,H—£)(po).
1t follows that
\h|? + |H — &> = (11> + |H — £1*)(po)

3
= ZIle(po) +2(H, H — £)(po) — |H|*(po) + €I

1
= | +2(H, H — £)(po) — ZIHIZ(PO) (3.28)
< [ + 4. (3.29)

Therefore, by Proposition 3.7, |h|2 + |H — £]> = |€|> + 4. But it is easy to see that the
equality in (3.29) holds if and only if |H|2(p0) =0and (H, H — &)(po) = 2, which is of
course not possible! This contradiction proves the above claim and completes the proof of
Lemma 3.8. O

Remark 3.1 Our main observation here is that, if pg € M 2 is a minimum point of |x |2 then

xT(po) = D (x, eidei(po) =0,
i
implying
VH(po) = V*(H — £)(po) =0.
In particular, pg is also a minimum point of lx T2,

Proposition 3.9 Let x : M?> — C? be a compact and oriented Lagrangian &-submanifold.
Suppose that

|hI? + |H — §° = |§]” + 4
and (H, &) is constant. If one of the followings holds,
W [hP? =2, @IH? =2, 3)|h* = (H.H—£), (4 (H.& >0, (3.30)
then |x|? is a constant.

Proof As above, let pg be a minimum point of |x|2. Then, by Lemma 3.3 and Lemma 3.8,
it holds at pg that

1
0= 5z:(|h|2 +|H - &)
1
= |h)* - 5(|h|2 — [H»@Ih?? = 2|H* + (H, H — &) + (H, H — &)

— > RShLH - (H -8 = > WL H (H -6 (3.31)
ij.k.l ij.k.l
Furthermore, form Lemma 3.4 and Lemma 3.5 it follows that, at pg

0< %A(MP) =2-2H.H-&+ Yy hijh;(H-8"H-8", (332
ijk.l

1 1 * * * *
0= LAH.£) =S (H.&) — > hjhie" (H —£)), (3.33)

i)kl
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implying

= D R (H -8 (H—&)" <2-2(H H-¢), (3.34)
i, j,k,l

and

- > hh(H =) HY
i,j.k,1l

== > Sl - - - > WS HE (H - o)
bkl ikl
<2—-2(H,H—§¢)— (H, &) =2—(H, H—¢)—|H

Consequently, we have at po

0= %mhr“ +H— &)
< —%(W — |H)@Ih* = 2|H|* + (H, H — §))
+|h)> = |H)?> +2Q2 - (H, H — £)).
On the other hand, from
|h|* + |H — &> = |E]> + 4,
we know that
|h|* — |H> =22 — (H.H—£)) >0 at po. (3.39)

Thus, if one of (3.30) holds, then at pg

1
0= 5L(|h|2 +|H — &%)

1
—5<|h|2 —|H»)Qh)> = [H> +4 — (H, H — £)) +2(|h|* — |H|?)

<
= —%(|h|2 — [HP)QIh)* — |H> — (H, H — §))
- ‘%(lm2 —|HP)(h* = |H? + |h]* — (H. H  §))
= —%(|h|2 — [HP)(hP® = [HP? + |h[ =242 (H, H = £))
_ _%(|h|2 — [HPYQ(I? — |H) + (H. €))
- _%(|h|2 —HPHQ(h? = |H) + |H* —2+2— (H, H - £)) < 0.
Consequently

|h?—|H?=2—(H,H—§)=0 at p. (3.36)
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It follows that

x> + (H, &) > [x*(po) + (H. &)(po)
= |H — &[*(po) + (H. &)(po)
= (H,H —&)(po) + [£]?
= &> +2.

This together with Lemma 3.1 (foru = 1, v = |x|2) and 3.6 gives that
1 1x2 2
0 :/ §£(|x|2)€7TdVM :/ (|§|2 +2 _ (|x|2 + (H, E)))e‘deVM < 0
M M

implying that Ix|2+ (H, &)= |£]>+2.In particular, |x|2 = const. m]

Proposition 3.10 Ler x : M" — N" be a Lagrangian submanifold in a Kdhler mani-
fold N". If both M" and N" are flat, then around each point p € M", there exists some
orthonormal frame field {e;, ej+} with ejx = Je; (1 <i < n), such that

hf; = (h(ei ej), exs) = A &, 1<i, j.k<n.

Proof For p € M", we pick an orthonormal tangent frame {e;} and an orthonormal normal
frame {eq }n+1<a<2n. Define

h = (h(@i, €)), &).

Since M™" is flat, x is Lagrangian and N is Kihler, T M" is also flat with respect to the
normal connection. By the Ricci equation and the flatness of N,

1
0= (R (eir ej)eas ep) = > (hih — nih) .
k
Hence we can choose another orthonormal tangent frame {e;} such that
hi; i= (h(ei, e)), ea) = pidij.
Write ex« = >, af.eq. Then

= (heire)), ers) = (hlei ej), D afvea) = D afi(hlei, €)), eq)
o

o

= > afh® = atuds; =28y with Al = agud (3.37)
o o

o

Thus Proposition 3.10 is proved. O

Proof of Theorem Since |x|?> = const, |H|> — |h|?> < 0 on M? by (3.35). Then it follows
from (3.15) that |[H|?> — |h|> = 0 which with the Gauss equation shows that M? is flat.
Therefore, due to Proposition 3.10, we can choose {eq, €3} such that

hly =h}, =0. (3.38)
It follows that
hyy = h3 = 0. (3.39)

On the other hand, since Vi = 0, we have

0= 50 =dns — > hE 0 =S h 05+ S b O
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It follows that

(1) i=j=14k=2,wegeth] O =0,

() i=j=2k=1,wegeth30+ =0,
(3)i=j=k=1,0=dhl| +hl 611+ = dhl|, we get hl| = const,
@) i =j=k=2,0=dh} +h}002 = dh},, we get h%, = const.

Since x can not be totally geodesic, (i}})? + (h%,)> = |h> # 0 by (3.38) and (3.39).
Without loss of generality we can assume that hﬁ # 0. Thus, by (1), we have O1x+ = 0
which with VJ = 0 shows that 81, = 0. Now let

e] = ejcosh —epsinf, e =ejsinb + ey cosh
be another frame field such that
hY = (1@, 8)). k) = 0F 5.
Then a direct computation shows that
sin 6 cos G(hﬁ cosé + h%; sin ) = sin 6 cos G(hﬁ sinf — h%; cos6) =0.

Since (hﬁ)2 + (h%;)z # 0, we have sin20 = 0, that is & = 0, or 7 or . Clearly, by
choosing 6§ = 7, =
the sign of both hﬁ and h%; Thus we can always assume that hﬁ > 0 and h%; > (. It then
follows that {er, e2} can be uniquely determined and, in particular, is globally defined.

Now we claim that h3, > 0. In fact, if /3, = 0, then @y« = 0. This with 61 = 651+ = 0
shows that e, is constant in C2 along M which means that M contains a family of parallel

straight lines, contradicting the assumption that M is compact.
Define

we can change the sign of / }Th%;, while by choosing 8 = , we can change

Vi = Spanp{er, e;»} = Span{e1}, V> = Spany{es, exx} = Span{ez}. (3.40)
Since
dey = Ve + Zhlfj'ejek* = hﬁelel* eV,
deyx = Jdey = h} 61 Je = —hl,61e1 € V),

we know that V; is a 1-dimensional constant complex subspace of CZ.

Similarly, V5 is also a 1-dimensional constant complex subspace of C2. Furthermore, V;
and V; are clearly orthogonal. So, up to a holomorphic isometry on C2, we can assume that
Vi=ch v, = C! so that C% = Vi x V,. Write

X = (xl,xz) ceVix W= C2.
Then
0=ci(x’) = ei(x' ) + e (1¥*P), i =12,
which with the definitions (3.40) of V| and V, shows that
el = ea(x'?) =0, er(1x*?) = ex(x?) = 0,
that is,

|)cl|2 = const, |)c2|2 = const.
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It is easily seen that both |x!|? and |x

2|2 are positive since x is non-degenerate. Thus we can

write [x12 = a2 > 0, [x2|> = b% > 0. It then follows that M2 = S!(a) x S}(b).

Finally, by the assumption (1.4), |h|? > 2, it should holds that a® + b2 > 2a2b>. o
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