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Abstract We introduce a class of automorphisms of rooted d-regular trees arising from
affine actions on their boundaries viewed as infinite dimensional modules Z

∞
d . This class

includes, in particular, many examples of self-similar realizations of lamplighter groups. We
show that for a regular binary tree this class coincides with the normalizer of the group of all
spherically homogeneous automorphisms of this tree: automorphisms whose states coincide
at all vertices of each level.We study in detail a nontrivial example of an automaton group that
contains an index two subgroup with elements from this class and show that it is isomorphic
to the index 2 extension of the rank 2 lamplighter group Z

2
2 � Z.

Keywords Automorphisms of rooted trees · Self-similar groups · Affine actions ·
Lamplighter group · Automata groups
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1 Introduction

The rooted d-regular tree Td can be naturally identified with the set X∗ of all finite words over
a finite alphabet X = {0, . . . , d−1}. Its boundary, consisting of infinite paths starting from the
root without backtracking, can be identified with the set X∞ of infinite words a0a1 . . . ai . . .
over X . Each such infinite word can be represented as an element a0 + a1t + · · ·+ ai t i + · · ·
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of the ring Zd�t� of formal power series with coefficients in Zd . Therefore automorphisms
from the group Aut(X∗) of all automorphisms of Td translate as transformations of Zd�t�.

For example, the automorphismwhich permutes only the first letter of the inputword by the
long cycle σ = (0, 1, . . . , d − 1) ∈ Sym(X), translates as a transformation of Zd�t� defined
by p(t) �→ 1+ p(t). Similarly, the operation of addition by a power series (respectively, by
a polynomial) f (t) = a0 + a1t + · · · + ai t i + · · · in Zd�t� corresponds to (respectively, the
finitary) automorphism of Td permuting the i-th letter of the input word by σ ai−1 .

Another useful notation that we will use throughout the paper is the following. For an
automorphism g ∈ Aut(X∗) we denote by g(n) an automorphism of X∗ acting trivially on
the n-th level (and thus on all levels above level n as well), and whose states at all vertices
of Xn are equal to g (i.e., g(0) = g and g(n+1) = (g(n), g(n))). Particularly, we denote by
σ (n), n ≥ 0 the automorphism of X∗ that acts on the (n + 1)-st coordinate in the input word
by permutation σ . With this notation the addition of tn in Zd�t� exactly corresponds to σ (n),
and thus the group of automorphisms induced by addition of all possible polynomials in
Zd�t� is the state-closed abelian group � = 〈σ (0), σ (1), . . . , σ (n), . . .〉 consisting of finitary
automorphisms of X∗.

It was realized in [9], that the transformations f (t) �→ f (t) + 1 and f (t) �→ (1+ t) f (t)
of Zp�t� correspond respectively to the automorphisms of the binary tree a = σ (0) and
b = (b, ba) = b(1)(1, σ (0)) which are the canonical generators of the, so-called, lamplighter
group Z2 � Z studied by Grigorchuk and Zuk [11]. Variants of the lamplighter group had
also appeared as normalizers of the group of finitary automorphisms and of its subgroup �

(see [2]).
Silva and Steinberg had shown in [16] that if G is a finite abelian group then the restricted

wreath product G � Z has a faithful representation as an automaton group. Furthermore,
Bartholdi and Šunić in [3] produced for G = Z

k
d a different representation of G �Z modeling

the multiplication in Zd�t� by an arbitrary monic polynomial of degree k. Representations
of the lamplighter type groups Z

k
d � Z on the rooted trees arose also in the context of groups

acting essentially freely in [10], and in a connection to bireversible automata in [1].
All the known representations of lamplighter groups Z

k
d � Z = ⊕ZZ

k
d � Z as automa-

ton groups share a common property: the base group ⊕ZZ
k
d always consists of commuting

automorphisms that act identically at all vertices of each level. More formally, we call an
automorphism of the tree Td spherically homogeneous (see [10]) provided that for each
level its states at the vertices of this level all coincide. Thus, each automorphism has a form
a = (b, b, . . . , b)σ1, b = (c, c, . . . , c)σ2, . . ., where σi ’s are permutations of X . Clearly, all
such automorphisms form an uncountable subgroup SHAut(X∗) of Aut(X∗) isomorphic to
the direct product of countably many copies of Sym(X). In the case of the binary tree this
group is abelian, and when d ≥ 3, it contains an abelian subgroup, which we will denote by
Aff I (X∗), consisting of all spherically homogeneous automorphisms whose permutations at
all vertices are powers of the long cycle σ (i.e., Aff I (X∗) = SHAut(X∗) ∩ (�∞i=1Zd

)
). This

group also can be described as the topological closure of the state-closed abelian group �,
which simply corresponds to the group induced by addition of all possible power series in
Zd�t�.

In all mentioned representations of the lamplighter groups on the rooted tree the generator
of Z normalizes not only the base group, but the whole group Aff I (X∗). In order to see
what other lamplighter type groups of this kind can be realized by automata, it is natural
to ask what is the structure of the normalizer of Aff I (X∗) in Aut(X∗). The class of affine
automorphisms naturally arises from this question.
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The affine automorphisms are the automorphisms of X∗ induced by affine transformations
of the boundary of X∗ viewed as an infinite dimensional (uncountable) module Z

∞
d . More

precisely, for each upper triangular matrix A over Zd with units along the main diagonal and
each vector b ∈ Z

∞
d , we define an affine automorphism πA,b induced by a transformation

πA,b(x) = b + x · A
for each x ∈ Z

∞
d . All automorphisms from this class acting on X∗ form a group that we will

denote by Aff(X∗). One of the main theorems of the paper is:

Theorem 3.11 The normalizer of the group Aff I (X∗) in Aut(X∗) coincides with the group
Aff(X∗) of all affine automorphisms. In particular, in the case of the binary tree, the normal-
izer of the group SHAut({0, 1}∗) of spherically homogeneous automorphisms inAut({0, 1}∗)
is Aff({0, 1}∗).

As our main motivating example, we completely describe the structure of a group G
generated by a 4-state automaton shown inFig. 1. This grouphas been considered byKlimann,
Picantin, and the first author [12]where it was shown that it contains elements of infinite order.
Initially this group was one of the 6 groups among those generated by 7471 non-minimally
symmetric 4-state 2-letter automata, for which “standard” methods of finding elements of
infinite order failed [6]. We prove

Theorem 4.10 The group G = 〈a = (d, d)σ, b = (c, c), c = (a, b), d = (b, a)〉 is isomor-
phic to the index 2 extension of the rank 2 lamplighter group:

G ∼= (
Z
2
2 � Z

)
� Z2 = (〈x, y〉 � 〈t〉) � 〈a〉,

where the action of a on x = ab, y = cd, t = ac is defined as follows: xa = x, ya = yt
−1
,

ta = t−1. Moreover, G contains an index 2 subgroup consisting of affine automorphisms.

We finally show that in the case of the lamplighter group Z2 � Z acting faithfully on the
binary tree and whose action arises from a similarity pair (the details are explained in Sect. 5),
it is not a coincidence that we always see spherically homogeneous automorphisms. Namely,
we prove the following theorem.

Theorem 5.1 Each state-closed faithful representations of the lamplighter group Z2 � Z on
the binary tree arising from a similarity pair is conjugate to the one with the base group
consisting of spherically homogeneous automorphisms.

Fig. 1 Automaton A generating
the group G

a

bc

d

0 / 0 0 / 0

1 / 1

1 / 1

0 / 1 , 1 / 0

0 / 0 , 1 / 1
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Note that in the case of spherically homogeneous trees degrees of whose vertices are
not bounded, Woryna in [17] has constructed a state-closed (with respect to an appropriate
definition) realization of lamplighter type groups K �Z for arbitrary nontrivial finitely gener-
ated abelian group K . Interestingly enough, the base group ⊕ZK in Woryna’s construction
consists of “almost spherically homogeneous automorphisms”, i.e. automorphisms such that
at each level l of the tree the permutations induced by their states at vertices of this level are
either trivial or are equal to a fixed permutation depending only on level l.

The structure of the paper is as follows. In Sect. 2 we recall basic notions from the
theory of automaton groups and set up terminology and notation. Section 3 introduces affine
automorphisms and studies general properties of groups generated by them. In Sect. 4 we
describe in detail a nontrivial example of a group containing affine automorphisms and
generating an index 2 extension of the rank 2 lamplighter group. Section 5 studies the faithful
state closed representations of the lamplighter group on the binary tree. Finally, we conclude
the paper with several open questions listed in Sect. 6.

2 Preliminaries

We start from introducing the notions of tree automorphisms and Mealy automata. For more
details we refer the reader to [9].

Let X be a finite set of cardinality d ≥ 2 and let X∗ denote the set of all finite words over
X . This set can be naturally endowed with a structure of a rooted d-ary tree by declaring that
v is adjacent to vx for any v ∈ X∗ and x ∈ X . The empty word corresponds to the root of the
tree and Xn corresponds to the n-th level of the tree. We will be interested in subgroups of
the groups Aut(X∗) of all automorphisms of X∗ (as a graph). Any such automorphism can
be defined via the notion of an initial Mealy automaton (possibly infinite).

Definition 1 AMealy automaton (or simply automaton) is a tuple (Q, X, π, λ), where Q is
a set (the set of states), X is a finite alphabet, π : Q × X → Q is the transition function and
λ : Q × X → X is the output function. If the set of states Q is finite the automaton is called
finite. If for every state q ∈ Q the output function λ(q, x) induces a permutation of X , the
automaton A is called invertible. Selecting a state q ∈ Q produces an initial automaton Aq .

Automata are often represented by their Moore diagrams. The Moore diagram of an
automaton A = (Q, X, π, λ) is a directed graph in which the vertices are the states from Q

and the edges have form q
x |λ(q,x)−→ π(q, x) for q ∈ Q and x ∈ X . An example of a Moore

diagram is shown in Fig. 1.
Any invertible initial automaton Aq induces an automorphism of X∗ defined as follows.

Given a word v = x1x2x3 . . . xn ∈ X∗ it scans its first letter x1 and outputs λ(q, x1). The
rest of the word is handled in a similar fashion by the initial automaton Aπ(q,x1). Formally
speaking, the functions π and λ can be extended to π : Q× X∗ → Q and λ : Q× X∗ → X∗
via

π(q, x1x2 . . . xn) = π(π(q, x1), x2x3 . . . xn),

λ(q, x1x2 . . . xn) = λ(q, x1)λ(π(q, x1), x2x3 . . . xn).

Note that any automorphism of X∗ induces the action on the set X∞ of all infinite words
over X that is identified with the boundary of the tree X∗ consisting of all infinite paths in the
tree without backtracking initiating at the root. The boundary of the tree is homeomorphic
to the Cantor set and Aut(X∗) embeds into the group of homeomorphisms of this set.
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Definition 2 The group generated by all states of an automatonA viewed as automorphisms
of the rooted tree X∗ under the operation of composition is called an automaton group.

Note, that we do not require in the definition an automaton A to be finite. With this
convention, the above notion is equivalent to the notions of self-similar group [14] and state-
closed group [15]. However,most of the interesting examples of automaton groups are finitely
generated groups defined by finite automata.

Conversely, any automorphism of X∗ can be encoded by the action of an invertible initial
automaton. In order to show this we will need a notion of a state (often also called section)
of an automorphism at a vertex of the tree. Let g be an automorphism of the tree X∗ and
x ∈ X . Then for any v ∈ X∗ we have

g(xv) = g(x)v′

for some v′ ∈ X∗. Then the map g|x : X∗ → X∗ given by

g|x (v) = v′

defines an automorphism of X∗ called the state of g at vertex x . Furthermore, for any finite
word x1x2 . . . xn ∈ X∗ we define

g|x1x2...xn = g|x1 |x2 . . . |xn .
Given an automorphism g of X∗ we construct an invertible initial automatonA(g) whose

action on X∗ coincides with that of g as follows. The set of states ofA(g) is the set {g|v : v ∈
X∗} of different states of g at the vertices of the tree. The transition and output functions are
defined by

π(g|v, x) = g|vx ,
λ(g|v, x) = g|v(x).

Throughout the paper we will use the following convention. If g and h are the elements
of some (semi)group acting on set Y and y ∈ Y , then

gh(y) = h(g(y)). (1)

Taking into account convention (1) one can compute the states of any element of an
automaton semigroup as follows. If g = g1g2 . . . gn and v ∈ X∗, then

g|v = g1|v · g2|g1(v) . . . gn |g1g2...gn−1(v). (2)

For any automaton group G there is a natural embedding

G ↪→ G � Sym(X)

defined by

G � g �→ (g1, g2, . . . , gd)σ (g) ∈ G � Sym(X),

where g1, g2, . . . , gd are the states of g at the vertices of the first level, and σ(g) is a
permutation of X induced by the action of g on the first level of the tree.

The above embedding is convenient in computations involving the states of automor-
phisms, as well as for defining automaton groups. Sometimes it is called thewreath recursion
defining the group.

We conclude this section by a short discussion regarding spherically homogeneous auto-
morphisms of X∗.
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Definition 3 An automorphism g of the tree X∗ is called spherically homogeneous if for
each level l the states of g at all vertices of Xl act identically on the first level.

It is a trivial observation that an automorphism g is spherically homogeneous if and only
if for all words u, v ∈ X∗ of the same length, g|u = g|v . For example, automorphisms
a = (a, a)σ, b = (a, a) are spherically homogeneous automorphisms of the binary tree.
Every spherically homogeneous automorphism can be defined by a sequence {σn}n≥1 of
permutations of X where σn describes the action of g on the n-th letter of the input word over
X . Given a sequence {σn}n≥1 we will denote the corresponding spherically homogeneous
automorphism by [σn]n≥1 or simply as [σ1, σ2, σ3, . . .].

Obviously, all spherically homogeneous automorphisms of X∗ form a group, which we
denote by SHAut(X∗), isomorphic to a product of uncountably many copies of Sym(|X |).
In the case of the binary tree, this group is abelian and isomorphic to the abelianization of
Aut(T2).

Note, that for a finite state automorphism g of X∗ it is algorithmically decidable whether
g is spherically homogeneous. First one checks if all states of g at the vertices of the first
level coincide (not just their actions on the first level, but coincide as elements of the group).
If this is not the case, then g is not in SHAut(X∗). Otherwise, we repeat the procedure for
the state g|x , x ∈ X (that does not depend on x). Since g is finite state, this procedure will
eventually terminate.

3 Affine automorphisms of the tree

A finite alphabet X of cardinality d can be endowed with the structure of the cyclic group Zd

of size d , and the boundary of the tree can be naturally identified with an infinite dimensional
moduleZ

∞
d . After fixing a natural basis consisting of vectors ei = [0, 0, . . . , 0, 1, 0, . . .], i ≥

1 with the 1 at position i , elements of Z
∞
d can be represented by infinite row vectors. We will

consider automorphisms of X∗ that are induced by affine transformations of the boundary
under the above identification.

Let A be an infinite upper triangularmatrixwith entries fromZd whose diagonal entries are
units inZd . Wewill denote the set of all suchmatrices byU∞Zd (note, that finite dimensional
upper triangular matrices describing certain automorphisms of rooted trees were used in a
different context in [3]). Clearly U∞Zd is a ring with respect to multiplication and Z

∞
d

naturally becomes a right (U∞Zd)-module, but for convenience we will refer to elements
of Z

∞
d as to (row) vectors. Let also b ∈ Z

∞
d be such a vector. Define the transformation

πA,b : Z
∞
d → Z

∞
d by

πA,b(x) = b + x · A.

Note that since A is upper triangular, πA,b(x) is always well-defined.

Proposition 3.1 For each matrix A ∈ U∞Zd and vector b ∈ Z
∞
d , the transformation πA,b

induces an automorphism of the tree X∗.

Proof Since by construction the matrix A is invertible over Zd , the transformation πA,b is a
bijection. Moreover, the triangular form of the matrix guarantees that the incidence relation
in X∗ is preserved. ��

With a slight abuse of notation we will denote the induced by πA,b automorphism of X∗
also by πA,b. Recall that according to our convention of the right action, in the composition
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gh of automorphisms of X∗ the automorphism g acts first. With this convention in mind, we
first list trivial properties of affine automorphisms that follow from corresponding properties
of affine transformations of Z

∞
d :

Proposition 3.2 Let A, A′ be matrices over Zd , and b,b′ be vectors in Z
∞
d .

(a) Automorphisms πA,b and πA′,b′ of X∗ coincide if and only if A = A′ and b = b′.
(b) πA,b · πA′,b′ = πAA′,bA′+b′
(c) π−1

A,b = πA−1,−bA−1

The last proposition guarantees that the set

Aff(X∗) = {πA,b ∈ Aut(X∗) | A ∈ U∞Zd , b ∈ Z
∞
d }

forms a group, that we will call the group of affine automorphisms of X∗.
The class of affine automorphisms is a natural generalization of the class of automor-

phisms induced by affine actions on the ring Zd�t� of formal power series with coefficients
in Zd . Namely, for each pair of power series f (t), b(t) ∈ Zd�t� with f (t) invertible (i.e. the
coefficient at t0 is a unit in Zd ) one can define an affine transformation τ f,b of Zd�t� by

(
τ f,b(g)

)
(t) = b(t) + g(t) · f (t).

Under the natural identification of Zd�t� with the boundary of X∗, the transformation τ f,b

induces an automorphism of X∗, that we will also denote by τ f,b where the context is clear.
Such automorphisms have been studied in the contexts of lamplighter groups [9] and Cayley
machines [16]. For example, the standard automaton representation of the lamplighter group
Z2 � Z on the binary tree is obtained from the automaton defining τ1+t,0.

The proof of the following proposition is straightforward.

Proposition 3.3 Let f (t) = a0 + a1t + a2t2 + · · · and b(t) = b0 + b1t + b2t2 + · · · be
power series in Zd�t� with a0 being a unit. The automorphism τ f,b coincides with the affine
automorphism πA,b for b = [b0, b1, b2, . . .] and

A =

⎡

⎢⎢⎢⎢⎢
⎣

a0 a1 a2 a3 . . .

0 a0 a1 a2 . . .

0 0 a0 a1 . . .

0 0 0 a0 . . .
...

...
...

...
. . .

⎤

⎥⎥⎥⎥⎥
⎦

whose i-th row starts with i − 1 zeros followed by a0, a1, a2, . . ..

Similarly to affine automorphisms of X∗, the set

Aff�t�(X
∗) = {τ f,b ∈ Aut(X∗) | f, b ∈ Zd�t�}

also forms a group (a proper subgroup of Aff(X∗)) that we will call the group of Zd�t�-affine
automorphisms of X∗.

To address the question on when an affine automorphism is finite state, we set up the
notation for the shift map defined for matrices and vectors.

Definition 4 • The shift of a vector b = [bi ]i≥1 is the vector σ(b) = [bi ]i≥2 obtained
from b by removing the first entry.

• The shift of a matrix A = [ai j ]i, j≥1 is the matrix σ(A) = [ai j ]i, j≥2 obtained from A by
removing the first row and the first column.
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We will say that a vector b (resp., a matrix A) is eventually periodic if {σ n(b), n ≥ 0}
(resp., {σ n(A), n ≥ 0}) is finite.
Proposition 3.4 Let πA,b be an affine automorphism, and let x ∈ X = Zd be a letter. Then
the state of πA,b at vertex x of X∗ is

πA,b|x = πσ(A),x ·σ([1,0,0,...]A)+σ(b). (3)

Proof Let

A =

⎡

⎢⎢
⎢
⎣

a11 a12 a13 . . .

0 a22 a23 . . .

0 0 a33 . . .
...

...
...

. . .

⎤

⎥⎥
⎥
⎦

, b = [b1, b2, b3, . . .]

be the matrix and the vector defining πA,b. Let also x = [x1, x2, x3, . . .] be an arbitrary point
in the boundary of X∗. Then

πA,b(x) = b+x · A = [b1+a11x1, b2+a12x1 + a22x2, b3 + a13x1 + a23x2+a33x3, . . .]
= [b1 + a11x1, [b2, b3, . . .] + x1 · [a12, a13, . . .] + [x2, x3, . . .] · σ(A)].

Since the image of [x2, x3, . . .] under πA,b|x1 is obtained by erasing the first entry in the
above vector, we immediately obtain (3). ��
Theorem 3.5 The automorphism πA,b is finite state if and only if matrix A, its rows, and
vector b are eventually periodic.

Proof The “if” direction follows immediately from Proposition 3.4. Thus we concentrate on
the “only if” direction. Suppose an automorphism πA,b is finite state. Then, in particular, the
set {πA,b|0n , n ≥ 0} is finite. By Proposition 3.4 we have

{πA,b|0n , n ≥ 0} = {πσ n(A),σ n(b), n ≥ 0}.
Therefore by Lemma 3.2(a) we must have

{σ n(A), n ≥ 0}, {σ n(b), n ≥ 0} are finite (4)

and both A and b are eventually periodic.
To prove that the j-th row a j of A is also eventually periodic we note that for each j ≥ 1

the set

{πA,b|0 j−110n , n ≥ 0} = {πσ j−1(A),σ j−1(b)|10n , n ≥ 0} = {πσ j+n(A),σ j+n(a j )+σ j+n(b), n ≥ 0}
must be finite (where in the last equality we used Proposition 3.4). Since we have proved
in (4) that A and b are eventually periodic, we must have that {σ j+n(a j ), n ≥ 1} is also
finite and thus a j is eventually periodic. ��

As a partial case we obtain a known results regarding the automorphisms induced by
the affine transformations of Zd�t�. We will use below the following natural notation: for
c(t) = c0 + c1t + c2t2 + · · · ∈ Zd�t� we define the shift of c(t) by

σ(c(t)) = c1 + c2t + c3t
2 + · · · = c(t) − c0

t
.

Corollary 3.6 Let f (t), b(t) ∈ Zd�t� be arbitrary power series with f (t) invertible. Then
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(a) the automorphism τ f,b is finite state if and only if both f (t) and b(t) are rational power
series.

(b) for each x ∈ X the state of τ f,b at x is computed as

τ f,b|x = τ f,xσ( f )+σ(b).

Corollary 3.7 Let πA,b be an affine automorphism. The period of the matrix A is a factor
of the length of the shortest cycle in the automaton defining πA,b. In particular, an affine
automorphism πA,b is induced by an affine transformation of Zd�t� if and only if there is a
loop of length one in the automaton defining πA,b.

Proof Follows immediately from Proposition 3.4. If g = πA,b and g|u = g|uv are the two
states in the automaton defining g that correspond to the shortest cycle of length |v|, then
πσ |u|(A),∗ = g|u = g|uv = πσ |uv|(A),∗. Therefore σ |uv|(A) = σ |u|(A) by Proposition 3.2(a).

��
Let I denote the infinite identitymatrix overZd . Then the group SHAut(X∗) of spherically

homogeneous automorphisms of X∗ naturally contains (and in the case d = 2 is equal
to) the group Aff I (X∗) = {πI,b,b ∈ Z

∞
d } of affine shifts. Elements of Aff I (X∗) can be

parameterized by infinite-dimensional vectors from Z
∞
d , where the i-th component defines

the action of an automorphism on the i-th letter of an input word.

Proposition 3.8 The group Aff I (X∗) is a normal subgroup of Aff(X∗). In particular, for
each abelian subgroup U of Aff(X∗), the group 〈U,Aff I (X∗)〉 is metabelian.
Proof LetπI,b ∈ Aff I (X∗) andπA,c ∈ Aff(X∗) be arbitrary elements.UsingProposition 3.2
we calculate:

π
πA,c
I,b = (π−1

A,c · πI,b) · πA,c = (πA−1,−cA−1 · πI,b) · πA,c

= πA−1,−cA−1 I+b · πA,c = πI,(−cA−1+b)A+c = πI,bA ∈ Aff I (X
∗).

��
Corollary 3.9 The group Aff�t�(X∗) is metabelian.

Proof It is enough to apply Proposition 3.8 in the case when U = {τ f,0 | f ∈ Zd�t�}. Since
τ f,g = τ f,0 ·τ0,g , we get that Aff�t�(X∗) is a subgroup of a metabelian group 〈U,Aff I (X∗)〉,
and thus is metabelian. ��
Lemma 3.10 The centralizer C of the groupAff I (X∗) inAut(X∗) coincides withAff I (X∗).

Proof Since Aff I (X∗) is abelian, it is a subgroup of C . Suppose there is an element h ∈
C − Aff I (X∗). Let n ≥ 0 be the smallest integer such the action of h on the (n + 1)-st
level does not coincide with corresponding action of any element of Aff I (X∗). There are two
possible cases.

Case IThere are twodistinct vertices v and v′ of then-th level of X∗ such that the permutations
λ and λ′ of X induced by the actions of h|v and h|v′ , respectively, on the first level of X∗ are
different. By the minimality of n, there is an element s ∈ Aff I (X∗) such that h1 = s−1h ∈
C − Aff I (X∗) fixes the n-th level of X∗.

Let g ∈ Aff I (X∗) be an automorphism mapping v to v′ and not changing the (n + 1)-st
letter of an input word. Let also x ∈ X be such that λ(x) �= λ′(x). Then we have
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h1(g(vx)) = h1(v
′x) = v′λ′(x) �= v′λ(x) = g(vλ(x)) = g(h1(vx)),

contradicting to the fact that h1 ∈ C .

Case II For all vertices v of level n elements h|v induce the same permutation λ of X , but λ is
not in Zd = 〈(0, 1, 2, . . . , d−1)〉. In this case, since 〈(0, 1, 2, . . . , d−1)〉 is self-centralized
in Sym(X), there is an element λ1 ∈ 〈(0, 1, 2, . . . , d − 1)〉 not commuting with λ. Any
element of Aff I (X∗) acting on the (n + 1)-st letter of an input word as λ1 will not commute
with h, again contradicting to the fact that h ∈ C . ��
Theorem 3.11 The normalizer N of the group Aff I (X∗) in Aut(X∗) coincides with the
group Aff(X∗) of all affine automorphisms. In particular, in the case of the binary tree, the
normalizer of SHAut({0, 1}∗) in Aut({0, 1}∗) is Aff({0, 1}∗).
Proof By Lemma 3.10 and the N/C theorem there is a homomorphism φ from N onto a
subgroup of Aut(C) whose kernel is C , defined by

(
φ(g)

)
(h) = g−1hg. We will denote

φ(g) by φg for simplicity.
Since C = Aff I (X∗) is isomorphic to Z

∞
d , each automorphism α of C is defined by a

matrix Aα invertible over Zd , which sends a vector b ∈ Z
∞
d to b · A. The i-th row of the

matrix A corresponds to α(σ (i−1)).
Suppose now that g ∈ N is an arbitrary element of N . Then since σ (n) fixes the n-th

level of X∗, φg(σ
(n)) = g−1σ (n)g also must fix the n-th level. Therefore, the (n + 1)-st

row of matrix Aφg starts with n zeroes, i.e. Aφg is upper triangular. At the same time the
invertibility of Aφg guarantees that Aφg ∈ U∞Zd . Moreover, for each A ∈ U∞Zd by the
proof of Proposition 3.8, there is g = πA,0 ∈ N such that A = Aφg .

Finally, since conjugation by elements of the form πA,0 gives all possible conjugations
by elements of N , and this set forms a group by Proposition 3.2, we deduce that

N = Aff I (X
∗) � {πA,0 | A ∈ U∞Zd},

but the last set coincides with Aff(X∗). ��

4 The principal example

In this section we give a complete description of the structure of a group G first mentioned
in [6] and studied in [12]. This groupwas initially one of the six groups among those generated
by 7421 non-minimally symmetric 4-state invertible automata over 2-letter alphabet studied
in [6], for which the existence of elements of infinite order could not be established by
standard known methods implemented in [13]. In [12] many such elements were found using
a new technique of orbit automata. However, the complete structure of this group was yet to
be understood. Below, we develop a new technique to work with this and similar groups that
allows us to answer this question completely. In particular, we show that this group contains
an index 2 subgroup consisting of affine automorphisms.

The group G is generated by the 4-state automaton depicted in Fig. 1 with the following
wreath recursion:

a = (d, d)σ,

b = (c, c),

c = (a, b),

d = (b, a). (5)
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All generators of G have order 2 and the subgroups 〈a, b〉 and 〈c, d〉 are both isomorphic
to the 4-element Klein group Z

2
2. We can also rewrite the definition of the group G in the

following form (using the notation introduced before Theorem 3.11):

a = d(1)σ, b = c(1), c = (a, b), d = (b, a).

Consider the following elements of G:
x := ab, y := cd, t := ac.

Since x = y(1)σ and y = x (1), we immediately get that both x and y are spherically
homogeneous. Moreover, it is straightforward to check that 〈x, y〉 is also isomorphic to Z

2
2.

Moreover, the elements t and t−1 have the following decompositions:

t = (
xt y, y

) (
t−1)(1)

σ (6)

t−1 =
(
yt

−1
, xyt

−1
)
t (1)σ (7)

Lemma 4.1 The elements xt , x t
−1
, yt , yt

−1
are spherically homogeneous.

Proof According to Eqs. (6) and (7) we have:

xt =
(
yt

−1
, xyt

−1
)
t (1)σ · (y, y)σ · (

xt y, y
) (
t−1)(1)

σ

=
(
yt

−1
t yxt yt−1, xyt

−1
t yyt−1

)
σ =

(
xyt

−1
, xyt

−1
)

σ.

Since x is spherically homogeneous we need only to show that yt
−1

is also spherically
homogeneous. Indeed,

yt
−1 = (

xt y, y
) (
t−1)(1)

σ · (x, x) ·
(
yt

−1
, xyt

−1
)
t (1)σ

=
(
xt yt−1xxyt

−1
t, yt−1xyt

−1
t
)

σ = (
xt , xt

)

so we again obtain xt , which implies that both xt and yt
−1

are spherically homogeneous.
Similar argument proves that xt

−1
and yt are also spherically homogeneous. ��

Lemma 4.2 The automorphism t lies in the normalizer of the group SHAut(X∗).

Proof It is enough to prove that (σ (n))t , (σ (n))t
−1 ∈ SHAut(X∗). We prove this by induction

on n.
First we verify the induction base for n = 0 and σ (0) = (1, 1)σ . Using expressions (6)

and (7) we calculate:
(
σ (0)

)t =
(
yt

−1
, xyt

−1
)
t (1)σ · (1, 1)σ · (xt y, y)(t−1)(1)σ

=
(
yt

−1
t x t yt−1, xyt

−1
t yt−1

)
σ =

(
yt

−1
xyt

−1
, x

(
yt

−1)2)
σ = (x, x)σ

and
(
σ (0)

)t−1

= (
xt y, y

) (
t−1)(1)

σ · (1, 1)σ ·
(
yt

−1
, xyt

−1
)
t (1)σ

=
(
xt yt−1yt

−1
t, yt−1xyt

−1
t
)

σ = (
xt y2, y2xt

)
σ = (xt , xt )σ,

which shows that (σ (0))t and (σ (0))t
−1

is spherically homogeneous by Lemma 4.1.
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Fig. 2 32 × 32-minor of matrix
A involved in the definition of
t = ac, where the black squares
indicate 1’s

To prove the induction step, we assume that (σ (n))t , (σ (n))t
−1 ∈ SHAut(X∗) for some

n ≥ 1. Then

(
σ (n+1)

)t =
(
yt

−1
, xyt

−1
)
t (1)σ ·

(
σ (n), σ (n)

)
·
(
xt y, y

)(
t−1

)(1)
σ

=
(
yt

−1
tσ (n)yt−1, xyt

−1
tσ (n)xt yt−1

)

=
(
yt

−1
(
σ (n)

)t−1

yt
−1

, xyt
−1

(
σ (n)

)t−1

xyt
−1

)

=
((

σ (n)
)t−1

,
(
σ (n)

)t−1)

is again spherically homogeneous by the inductive assumption and Lemma 4.1. Similarly
one can show that (σ (n+1))t

−1
is also in SHAut(X∗). ��

As a direct corollary of the previous lemma and Theorem 3.11 we obtain that t is an affine
automorphism and, hence, t = πA,b for some A and b. More precisely, we get:

Corollary 4.3 The automorphism t is equal to πA,b for the matrix A with the row 2i − 1
(resp., row 2i ) of the form [02i−2, 1, (1, 0)∞] (resp., [02i−1, 1, (1, 1, 1, 0)∞]) for i ≥ 1 (see
Fig. 2), and for b = [(1, 0, 0, 1, 1, 1, 0, 0)∞].

Proof We find b simply by computing b = b + [0, 0, 0, . . .] · A = πA,b(0∞) = t (0∞) =
[(1, 0, 0, 1, 1, 1, 0, 0)∞]. With the knowledge of b we can compute the i-th row ai of matrix
A. Let ei = [0, 0, . . . , 0, 1, 0, . . .] be the i-th standard basis vector in Z

∞
2 . Then t (ei ) =

b + ei · A = b + ai and, thus,

ai = t (ei ) − b. (8)

Moreover, since t |01 = t , by Proposition 3.4 we obtain

πA,b = πA,b|01 = πσ 2(A),b′
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for some vector b′. Therefore, by Proposition 3.2(a),σ 2(A) = A andwe only need to compute
the first two rows of A. A direct computation using (8) twice yields:

a1 = [1, (1, 0)∞]
a2 = [0, 1, (1, 1, 1, 0)∞].

��
By Lemma 4.2, conjugates of any spherically homogeneous element z ∈ SHAut(X∗)

by powers (possibly negative) of t are also spherically homogeneous, and hence commute.
Therefore the following convenient notation is well-defined for i j ∈ Z.

zt
i1+t i2+···+t in := zt

i1 zt
i2

. . . zt
in

. (9)

In particular, for each Laurent polynomial p(t) ∈ Z2[t, t−1] the elements x p(t) and y p(t) are
defined. In order to show that 〈x, y, t〉 is isomorphic to Z

2
2 � Z, it is enough to show that for

each pair of Laurent polynomials p(t), q(t) the element x p(t)yq(t) is not trivial. Note, that the
idea of translating the base group in the lamplighter groups as powers of the ring of Laurent
polynomials have been used in [7,8].

Lemma 4.4 Let p(t) and q(t) be two Laurent polynomials. Then
((

x p(t)yq(t)
)(1)

σ

)t

=
(
x p(t)t−1+1yq(t)t−1

)(1)
σ (10)

((
x p(t)yq(t)

)(1)
σ

)t−1

=
(
x p(t)t+t yq(t)t

)(1)
σ (11)

((
x p(t)yq(t)

)(1)
)t

=
(
x p(t)t−1

yq(t)t−1
)(1)

(12)

((
x p(t)yq(t)

)(1)
)t−1

=
(
x p(t)t yq(t)t

)(1)
(13)

Proof We prove only equality (10). The proof of other equalities in the statement is almost
identical. Using equality (6), the fact that conjugates of x and y by powers of t commute,
and that x2 = y2 = 1, we compute:

((
x p(t)yq(t)

)(1)
σ

)t

=
((

x p(t)yq(t)
)(1)

σ

)(xt y,y)
(
t−1)(1)σ

=
((

x p(t)yq(t)
)(1)

xt y2σ

)(t−1)(1)σ

=
((

x p(t)+t yq(t)
)(1)

σ

)(
t−1

)(1)
σ

=
(
x p(t)t−1+1yq(t)t−1

)(1)
σ.

��
Lemma 4.5 For each n ≥ 1 we have the following equalities:

xt
n =

(
x1+t−1+t−2+···+t−n+1 · yt−n

)(1)
σ, (14)

yt
n =

(
xt

−n
)(1)

, (15)

xt
−n =

(
xt+t2+···+tn · ytn

)(1)
σ, (16)

yt
−n =

(
xt

n
)(1)

. (17)
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Proof Since xt
0 = x = (x0y1)(1)σ and yt

0 = y = (x1y0)(1), we immediately obtain the
statement of the lemma by induction on n from Lemma 4.4. ��

For each n ≥ 1 define

φn(t) := 1 + t + t2 + · · · + tn−1.

For each polynomial p(t) = ∑k
i=0 ai t

i ∈ Z2[t] define also

ψp(t) =
k∑

i=1

aiφi (t).

Note, that with a convention that deg 0 = −1, for each nonzero polynomial p:

degψp = deg p − 1.

Lemma 4.6 For all pairs of polynomials p(t), q(t) ∈ Z2[t]
• the state of x p(t)yq(t) at each vertex of the first level is xψp(t−1)+q(t−1)y p(t

−1).
• the state of x p(t−1)yq(t−1) at each vertex of the first level is xtψp(t)+q(t)y p(t).

Proof The result immediately follows from Lemma 4.5 and the fact that the conjugates of x
and y by powers of t commute. ��

To simplify notation, for polynomials p(t), q(t) ∈ Z2[t] we denote x p(t)yq(t) by (p, q)+
and x p(t−1)yq(t−1) by (p, q)−. Also for a spherically homogeneous automorphism g we will
denote by g → g|0 the operation of passing to the state at a vertex of the first level (it is
well defined because states at all vertices of the first level coincide). With these notations
established, Lemma 4.6 can be reformulated as follows:

(p, q)+ → (ψp + q, p)−, (18)

(p, q)− → (tψp + q, p)+. (19)

The next two lemmas constitute the technical heart of the proof of Theorem 4.10.

Lemma 4.7 If there is a pair (p(t), q(t)) of polynomials in Z2[t] such that x p(t)yq(t) is
trivial, then there is a pair (p′(t), q ′(t)) of polynomials with x p′(t)yq

′(t) = 1 and deg p′ =
deg q ′ = max{deg p, deg q}.
Proof Suppose (p, q) is such a pair, i.e. x p(t)yq(t) = (p, q)+ = 1. It is straightfor-
ward to check that x p(t)yq(t) �= 1 if max{deg p, deg q} < 2, so we can assume that
max{deg p, deg q} ≥ 2. Consider three cases.

Case I deg p < deg q .
In this case using (18) and (19) we calculate:

(p, q)+ → (ψp + q, p)− → (t · ψψp+q + p, ψp + q)+

Since for each nonzero polynomial r we have degψr = deg r − 1 and for zero polynomial
degψ0 = deg 0, we have

degψp ≤ deg p < deg q ⇒ deg(ψp + q) = deg q

and therefore

degψψp+q = deg q − 1 ⇒ deg(t · ψψp+q + p) = deg q.
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Case II deg p = deg q + 1 ≥ 2.
First we observe that ta = (ac)a = ca = t−1, xa = x , and ya = yt

−1
. Therefore, for each

pair of polynomials p(t), q(t) ∈ Z2[t] we have
(
x p(t)yq(t)

)a = x p(t−1)yt
−1q(t−1).

In other words, conjugation of (p, q)+ by a produces (p, t · q)−, which also corresponds to
the identity in G. Passing to the first level state now yields:

(p, t · q)− → (t · ψp + t · q, p)+,

where deg(t · ψp + t · q) < deg p since both t · ψp and t · q are polynomials of degree
deg p ≥ 2, so that the highest term cancels in their sum. Thus, we arrived to the previous
case.

Case III deg p > deg q + 1.
In this case we pass to the state on the second level:

(p, q)+ → (ψp + q, p)− → (
t · ψψp+q + p, ψp + q

)+
.

Now observe that deg(ψp + q) = deg p − 1, so degψψp+q = deg p − 2 (since we assumed
deg p ≥ 2) and thus deg(t · ψψp+q + p) = deg p. Therefore we arrive to the situation
described in Case II. ��
Lemma 4.8 For each pair (p(t), q(t)) of polynomials in Z2[t] the automorphism x p(t)yq(t)

is nontrivial.

Proof Assume on the contrary that the statement is false. Choose a pair of polynomials p, q
such that (p, q)+ corresponds to the identity in G and max{deg p, deg q} is the smallest.
Moreover, by Lemma 4.7 without loss of generality we can assume that p and q are of the
same degree that is greater than or equal 2. Passing to the second level state yields:

(p, q)+ → (ψp + q, p)− → (
t · ψψp+q + p, ψp + q

)+
.

Since both t · ψψp+q and p have degree deg p, their sum p1 := t · ψψp+q + p has degree
less than deg p, while deg(ψp + q) = deg p. On the next level we obtain:

(
t · ψψp+q + p, ψp + q

)+ → (
ψp1 + ψp + q, p1

)−
,

where for p2 := ψp1 + ψp + q we have deg p2 = deg p (since degrees of ψp1 and ψp are
less than deg q = deg p). Finally, after passing to the state on the first level for the last time
we obtain:

(p2, p1)
− → (

t · ψp2 + p1, p2
)+

,

where deg(t · ψp2 + p1) = deg p (since deg p1 < deg p), and deg p2 = deg p. However,
in this case (p + t · ψp2 + p1, q + p2)+ will also represent the identity element in G with
deg(p + t · ψp2 + p1) < deg p and deg(q + p2) < deg p, contradicting to the minimality
assumption on the degree of p and q , unless p+ t ·ψp2 + p1 = 0 and q+ p2 = 0. Therefore,
we must have

p2 = ψp1 + ψp + q = q

or
ψp1 = ψp,

which is impossible since degψp1 = deg p1 − 1 < deg p − 1 = degψp . Contradiction. ��
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Lemma 4.9 The group 〈x, y, t〉 is isomorphic to the rank 2 lamplighter group Z
2
2 � Z =

〈x, y〉 � 〈t〉.
Proof It is enough to show that the elements xt

n
, yt

m
, n,m ∈ Z generate (Z2

2)
∞. Any possible

relation must be of the form

1 = xt
n1 xt

n2
. . . xt

nr · ytm1 yt
m2

. . . yt
ms = xt

n1+tn2+···+tnr yt
m1+tm2+···+tms

,

for ni ,m j ∈ Z. Conjugating this relation by sufficiently large power of t we obtain
x p(t)yq(t) = 1 for some p, q ∈ Z2[t], which contradicts Lemma 4.8. ��
Theorem 4.10 The group G is isomorphic to the index 2 extension of the rank 2 lamplighter
group:

G ∼= (
Z
2
2 � Z

)
� Z2 = (〈x, y〉 � 〈t〉) � 〈a〉,

where the action of a on x, y, t is defined as follows: xa = x, ya = yt
−1
, ta = t−1.

Proof Follows immediately fromLemma4.9 and the fact that a is an involution not belonging
to 〈x, y, t〉. ��

5 State-closed actions of the lamplighter group on the binary tree

In the Introduction we observed that in all known faithful state-closed representations of
lamplighter type groups on the rooted trees the base group is represented by spherically
homogeneous automorphisms. In this section we show that modulo conjugation (see [5,
Proposition 3]), this is always the case for the faithful automaton (or state-closed) actions of
lamplighter group Z2 � Z group on the binary tree arising from similarity pairs. We start by
recalling the technique of virtual endomorphisms used, in particular, to study state-closed
representations of abelian, nilpotent, and lamplighter type groups in [5], [4], and [7], respec-
tively.

State-closed representations of a group G on d-ary tree can be obtained from similarity
pairs (H, f ), where H is a subgroup of index d in G and f : H → G is a homomorphism,
called virtual endomorphism of G. Each similarity pair (H, f ) defines a representation
φ : G → Aut(Td) constructed as follows [15]. As before, we will identify Td with the set X∗
of all finite words over the alphabet X = {0, 1, . . . , d − 1}. Let T = {e, t2, . . . , td−1} be a
right transversal of H in G and ν : G → Sym(T ) be the permutational representation of G
on T . Then for each g ∈ G we define φ(g) recursively via the wreath recursion as

φ(g) = (
φ ( f (hi )) | 0 ≤ i ≤ d − 1

)
ν(g), (20)

where hi are the Schreier elements of H defined by

hi = (ti g)(t j )
−1, t j = (

ν(g)
)
(ti ).

The image φ(G) is a state-closed subgroup of Aut(Td), and the kernel of φ, called the
f -core of H , is the largest subgroup K of H which is normal in G and f -invariant (in the
sense f (K ) < K ); when the kernel is trivial, f and the similarity pair (H, f ) are said to be
simple. In this (and only this) case the representation φ is faithful.

Let now G = Z2 � Z = 〈a〉 � 〈x〉 be the lamplighter group, where a and x denote the
standard generators of order 2 and infinity, correspondingly. Let A be the normal closure of
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a in G. Then, since the conjugates of a by powers of x commute, as in (9), we can write each
element of A as

ax
i1+xi2+···+xin := ax

i1 ax
i2

. . . ax
in

.

In particular, a p(x) ∈ A is defined for each Laurent polynomial p(x) ∈ Z2[x, x−1].
Theorem 5.1 Each state-closed faithful representations of the lamplighter group Z2 � Z on
the binary tree arising from a similarity pair is conjugate to the one with the base group
consisting of spherically homogeneous automorphisms.

Proof The commutator subgroup [G,G] of G is A0 = {a(1+x)r(x) | r(x) ∈ Z2[x, x−1]}. To
construct a representation of G on the binary tree we start by picking an index 2 subgroup
H in G. The only such subgroups in G are A0〈x〉 and A0〈ax〉. We will provide an argument
below only for H = A0〈x〉. The case H = A0〈ax〉 is treated similarly.

According to [7] a simple virtual endomorphism f : G → H must map A0 to A by

f : a(1+x)r(x) �→ au(x)r(x),

where 1 + x is not a factor of u(x). To write down the representation φ of G on the tree X∗
for X = {0, 1} we use decomposition (20). First we choose the transversal T = {e, a} of
H in G; any other choice will produce a conjugate representation. Then a straightforward
calculation yields:

φ(a) = (
φ( f ((e · a)a−1)), φ( f ((a · a)e−1))

)
σ = (1, 1)σ,

where σ is the nontrivial element of Sym(X). Further,

φ(x) =
(
φ
(
f ((e · x)e−1)

)
, φ

(
f
(
(a · x) a−1))

)
= (

φ ( f (x)) , φ
(
f (xa)

))

=
(
φ ( f (x)) , φ

(
f
(
xa1+x))

)

= (
φ ( f (x)) , φ( f (x))φ

(
f
(
a1+x)))

=
(
φ ( f (x)) , φ ( f (x)) φ

(
au(x)

))
= φ( f (x))(1) · (

1, φ
(
au(x)

))
.

Therefore,

φ(ax ) =
(
φ

(
au(x)

)
, φ

(
au(x)

))
σ

and using the definition of f for each r(x) ∈ Z2[x, x−1] we obtain that there exists l(x) ∈
Z2[x, x−1] such that

φ
(
a(1+x)r(x)

)
=

(
φ

(
al(x)

)
, φ

(
al(x)

))
.

This proves that each element of the base group A maps under the faithful representation
φ to a spherically homogeneous automorphism of X∗. ��

6 Open questions

We conclude the paper with several questions regarding the class of affine automorphisms.
The most natural question is about the general structure of groups generated by automata

defining affine automorphisms. The studied examples suggest the following question:
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Question 1 Is it always the case that a group generated by an automaton defining an affine
automorphism is either finite, or is a finite extension of the lamplighter type group of the form
Z
k
d � Z

l ?

Lamplighter type groups are often defined by reversible and bireversible automata. Our
main example in Sect. 4 is defined by bireversible automaton, and this is also the case for the
3-state 3-letter automaton generating Z3 � Z studied by Bondarenko, D’Angeli and Rodaro
in [1]. The inverse of the standard representation of the lamplighter is defined by a reversible
automaton. Since lamplighter groups are closely related to affine automorphisms, it is natural
to ask the following question.

Question 2 Under what conditions is the automaton defining an affine automorphism
reversible? bireversible?

From the algorithmic viewpoint, it is not clear how to check whether a given automaton
defines an affine automorphism. In all examples that we dealt with, the proof relied on
Theorem 3.11 and on a particular structure of a group. This would be useful to have a more
uniform and efficient procedure.

Question 3 Is there an algorithm deciding whether a given automorphism of the tree defined
by a finite initial automaton is affine?
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