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Abstract We find some sufficient conditions under which the permutational wreath product
of two groups has a minimal (irredundant) generating set. In particular we prove that for a
regular rooted tree the group of all automorphisms and the group of all finite-state automor-
phisms of such a tree satisfy these conditions. Thereby we solve the problem that was stated
by B. Csákány and F. Gécseg in 1965.
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1 Introduction

We consider the following problem

Problem 1 Do the group of all automorphisms and the group of all finite-state automor-
phisms of a regular rooted tree have any minimal generating set?

This problem was stated originally by Csákány and Gécseg [6] in terms of automata in
1965. They asked whether the semigroup of all automaton transformations, the semigroup
of all finite automaton transformations, the group of all bijective automaton transformations,
and the group of all finite bijective automaton transformations over a fixed finite alphabet
with at least two elements have a minimal generating set?

The answer for semigroups is negative. This result was obtained independently by Aleshin
[1] in 1970 and Dömösi [7] in 1972. The question about groups (i.e. Problem 1) was also
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formulated in papers of Dömösi. In particular, it appeared in [8, Problem 2.1] and [9,
Problem 2.31]. Moreover this problem is mentioned in the papers [2,16].

Among works related to this problem we mention the result of Andriy Oliynyk from [17].
Namely, it was proven that finite-state wreath product of transformation semigroups is not
finitely generated and in some cases doesn’t have a minimal generating set. We also mention
papers devoted to the study of generating sets in projective limits of wreath products of groups
[3,4,14,18].

We find some sufficient conditions under which the permutational wreath product of a
finite group and an infinite group has a minimal generating set (Theorem 2). We also give
a several examples of groups and classes of groups satisfying such conditions. In particular
we prove that for a regular rooted tree the group of all automorphisms and the group of
all finite-state automorphisms of such a tree satisfy these conditions (Theorems 7 and 9).
Therefore we obtain the main theorem of the paper.

Theorem 1 The group of all automorphisms and the group of all finite-state automorphisms
of a regular rooted tree have minimal generating sets.

Thus Problem 1 is solved positively.
Most results of this paper were announced without proofs in [12,13].

2 Minimal generating sets in permutational wreath products

We first recall the notion of the permutational wreath product.
Let (A, X) be a permutation group and let H be a group. Then the permutational wreath

product (A, X) � H is the semi-direct product (A, X) � HX , where (A, X) acts on the direct
power HX by the respective permutations of the direct factors.

We will say that a permutation group (A, X) satisfies the condition PS if:

1. The group (A, X) is finite and transitive.
2. There are subsets X1, X2 of X and subgroups A1, A2 of A with the following properties:

– (A1, X) and (A2, X) act transitively on X1 and X2 respectively and act trivially on
X \ X1 and X \ X2 respectively.

– X1 and X2 do not intersect.
– |X1| ≥ 2, |X2| ≥ 3.
– If |X1| = 2 then there is a ∈ A satisfying a(X1) ∩ X2 �= ∅ and a(X1) � X2.

We say that a group G satisfies the L-condition, if G is decomposed into permutational
wreath product G = (A, X) � H and there are a normal subgroup H0 of H and an integer
k > 1 with the following properties:

1. The permutation group (A, X) satisfies the condition PS,
2. The quotient H/H0 has infinite minimal generating set,
3. |H/H0| ≥ |H0|,
4. Either H0 < H ′ or H ′ � H0 < HkH ′, where H ′ is the commutator subgroup of H and

Hk = 〈{hk, h ∈ H}〉,
5. If H ′ � H0 < HkH ′ then there is a subset C of some minimal generating set of H/H0

such that

(a) |C | = |H/H0|,
(b) For every coset c ∈ C there is h in the coset c such that hk = e.
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Note that condition 2 of the definition of the L-condition imply that H is infinite.
In this section we prove the following theorem.

Theorem 2 A group with the L-condition has a minimal generating set.

Proof Proof of Theorem 2
At first we fix some notation.
Let G = (A, X) � H and let H0 be a normal subgroup of H . We assume that G, (A, X),

H , and H0 satisfy the conditions of Theorem 2. Let X = {0, 1, . . . , n}, X1 = {0, 1, . . . , l1},
and X2 = {l2, l2 + 1, . . . , n}.

The symbol for the identity element is e and the symbol for the trivial group is E .
The group G is a semidirect product of its subgroups A and K , where K is the direct

product of n+1 copies of H , i.e., K = H × · · · × H
︸ ︷︷ ︸

n+1

.Wewill alsowritewhole subgroup K as

(H, . . . , H
︸ ︷︷ ︸

n+1

). The conjugation of g = (g0, . . . , gn) by an element of (A, X) is a corresponding

permutation of coordinates of the tuple.
Without loss of generality, we will make the following assumptions:
If there exists a ∈ A such that a(X1) ∩ X2 �= ∅ and a(X1) � X2 then let d1 ∈ A be such

that d1(0) /∈ X2 and d1(1) = n.
Otherwise, if a(X1) ∩ X2 �= ∅ implies that a(X1) ⊆ X2 for all a ∈ A then |X1| ≥ 3

by the condition PS. In this case let d2 ∈ A be such that d2(0) = n, d2(1) = n − 1, and
d2(2) = n − 2.

By the L-condition there is a minimal generating set F̄ = { f̄i | i ∈ I} of H/H0, where
I denotes a set of indices. Let ψ : H → H/H0 be the canonical epimorphism. For every
i ∈ I we fix some element fi ∈ H such that ψ( fi ) = f̄i . Denote

F = { fi |i ∈ I}.
Let I1 and I2 be subsets of I with the following properties:

– | I2 | = | I |.
– I1 = I \ I2.

Denote

FI j = { fi |i ∈ I j } for j = 1, 2.

In the case of H ′ � H0 < HkH ′ due to condition 5 of the L-condition we can assume
that for every i ∈ I2 the following equality holds: f ki = e. In the case of H0 < H ′ we can
assume that I2 = I.

Since F̄ is an infinite set the set of the finite words over F̄ has the same cardinality as F̄ .
By the L-condition |H/H0| ≥ |H0|. It follows that

| I2 | = | I | = |H/H0| ≥ |H0|.
Therefore we can fix a surjection φ : I2 → H0. We also define the set of elements of G:

SK = {qi = ( fi , e, . . . , e, φ(i)) | i ∈ I2} ∪ {qi = ( fi , e, . . . , e) | i ∈ I1}.
Let us fix a minimal generating set of A: SA = {s1, s2, . . . , sr }. Let S = SK ∪ SA and

N = 〈S〉. Note that A = 〈SA〉 is contained in N .

Lemma 1 The set S is a minimal generating set of the group N.
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Proof Since G is the semidirect product A � K and SK ⊂ K , any element s of SA cannot
be written as an product of elements of S \ {s} and their inverses.

Further, suppose, contrary to our claim, that the element qi for some i ∈ I is a product of
elements of S \ {qi } and their inverses. It is easy to check that this decomposition of qi can be
transformed to the product of the form qi = (qε1

i1
)a1 . . . (qεm

im
)am , where i1, . . . , im ∈ I \{i},

ε1, . . . , εm ∈ {−1, 1} and a1, . . . , am ∈ A. Consider the 0-th coordinate of qi . We have that
fi is a product of elements of F \ { fi }, their inverses and elements of H0. Applying ψ we
conclude that f̄i is a product of elements of F̄ \ { f̄i } and their inverses. This contradicts the
fact that F̄ is a minimal generating set of the quotient H/H0. ��

We next show that the set S is a generating set of G, i.e., we next show that N = G.

Lemma 2 For every g ∈ 〈F〉 the elements un−2 = (e, . . . , e, g, e, g−1) and un−1 =
(e, . . . , e, g, g−1) are contained in N.

Proof The element g can be decomposed into the product of elements of F and their inverses:
g = f ε1

i1
. . . f εm

im
, where ε1, . . . , εm ∈ {−1, 1}. For every j ∈ X1 \ {0} choose b j ∈ A1 such

that b j (0) = j . Then

t j = b−1
j qε1

i1
. . . qεm

im
b j (q

ε1
i1

. . . qεm
im

)−1 = (g−1, e, . . . , e, g, e, . . . , e) ∈ N ,

where g is located on the j-th coordinate of the tuple.
We consider all possible cases depending on the group A. We will use here the elements

d1 and d2 which were defined at the beginning of the proof of the theorem.

1. There is a ∈ A such that a(X1)∩ X2 �= ∅ and a(X1) � X2. For everym ∈ {n−2, n−1}
choose cm ∈ A2 such that cm(n) = m. Then td11 (td1cm1 )−1 = um ∈ N form = n−2, n−1.

2. For all a ∈ A, the inequality a(X1) ∩ X2 �= ∅ implies that a(X1) ⊆ X2. Then |X1| ≥ 3
and elements un−1 = td21 and un−2 = td22 are contained in N .

Lemma 3 The subgroup (E, . . . , E, H ′) of K is contained in N.

Proof Let h1, h2 ∈ H . Then there exist g j ∈ 〈F〉, i j ∈ I2 for j = 1, 2 such that
h j = g jφ(i j ). By the construction, the set S contains elements qi j = ( fi j , e, . . . , e, φ(i j ))
for j = 1, 2. Let a ∈ A1 be such that a(0) = 1. Then qai2 = (e, fi2 , e, . . . , e, φ(i2)) ∈ N .

By Lemma 2 elements t1 = (e, . . . , e, g−1
1 , e, g1) and t2 = (e, . . . , e, g−1

2 , g2) are
contained in N . Therefore h′

1 = t1qi1 = ( fi1 , e, . . . , e, g
−1
1 , e, g1φ(i1)) and h′

2 =
t2qai2 = (e, fi2 , e, . . . , e, g

−1
2 , g2φ(i2)) are contained in N . Hence h′

1h
′
2h

′
1
−1h′

2
−1 =

(e, . . . , e, h1h2h1−1h2−1) ∈ N . Thus (E, . . . , E, H ′) < N . ��
Lemma 4 If H ′ � H0 < HkH ′ then (E, . . . , E, Hk) < N.

Proof If H ′ � H0 < HkH ′ then for every i ∈ I2 the following equality holds: f ki = e.
Let h ∈ H . Then h = gh0 for some g ∈ 〈F〉 and h0 ∈ H0. Since H0 > H ′ and

FI1 ∪ FI2 = F there exist g1 ∈ 〈FI1〉, g2 ∈ 〈FI2〉, and h1 ∈ H ′ such that g = g1g2h1.
Since H0 > H ′ there exists i ∈ I2 satisfying φ(i) = h1h0. Thus we have h = g1g2φ(i).
By the construction, the set S contains the element qi = ( fi , e, . . . , e, φ(i)). By Lemma 2
element t2 = (e, . . . , e, g−1

2 , g2) is contained in N . Let a ∈ A be such that a(0) = n.
Note that element t1 = a−1(g1, e, . . . , e)a = (e, . . . , e, g1) is contained in N . Therefore
h′ = t1t2qi = ( fi , e, . . . , e, g

−1
2 , g1g2φ(i)) is contained in N . By the condition of the

lemma there is h2 ∈ H ′ such that gp
2 = h2. Let a1 ∈ A2 be such that a1(n − 1) = n. Then

(e, . . . , e, h2, e) = a−1
1 (e, . . . , e, h2)a1 ∈ N by Lemma 3. Therefore h′k(e, . . . , e, h2, e) =

(e, . . . , e, e, hk) ∈ N . Thus (E, . . . , E, Hk) < N . ��
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Lemma 5 N = G.

Proof If H0 < H ′ then (E, . . . , E, H0) < N by Lemma 3. If H0 > H ′ then the conditions
of Lemma 4 hold by condition 5 of the L-condition. Thus in this case (E, . . . , E, H0) <

N too. By construction (F, E, . . . , E) is contained in 〈SK , (E, . . . , E, H0)〉. Therefore
the set (F, E, . . . , E) is contained in N . Let a ∈ A be such that a(0) = n. Then
a−1(F, E, . . . , E)a = (E, . . . , E, F) ⊂ N . Since 〈F〉H0 = H we have (E, . . . , E, H) <

N . Also by transitivity of (A, X) we obtain (H, . . . , H) < N . It follows that N = G. ��
Now the assertion of Theorem 2 follows immediately from Lemma 1 and Lemma 5.

3 Applications and examples

We first give natural constructions of groups with property PS.

Proposition 3 The following groups satisfy PS:

1. The symmetric group of degree m ≥ 5.
2. The permutational wreath product (B1, Y1) � (B2, Y2), where (B1, Y1) and (B2, Y2) are

finite transitive permutation groups and |Y1| ≥ 2, |Y2| ≥ 3.
3. The permutational wreath product (B1, Y1) � (B2, Y2) � (B3, Y3), where (Bi , Yi ) is a finite

transitive permutation group and |Yi | ≥ 2 for i = 1, 2, 3.

Now we formulate two corollaries from Theorem 2 which are more applicable.

Proposition 4 Let G = (A, X) � H and there is an integer k > 1 with the following proper-
ties:

1. (A, X) satisfies PS.
2. H is an infinite group.
3. H ′ > Hk.
4. |H ′| ≤ |H/H ′|.
Then the group G satisfies the L-condition.

Proof Due to Theorem 2 we only need to show that H/H ′ has infinite minimal generating
set. By the conditions of the theorem H/H ′ has exponent k. We conclude from result of [11,
Proposition3.7] that an abelian group of a bounded exponent has a minimal generating set,
and the proposition follows. ��
Proposition 5 Let G = (A, X) � H and there is an infinite subgroup M of H with the
following properties:

1. (A, X) satisfies PS.
2. M has exponent 2.
3. |M | = |H |.
4. M ∩ H2 = E.

Then the group G satisfies the L-condition.

Proof Set H0 = H2. Then H/H0 and M have minimal generating sets (Hamel basis) as
vector spaces over the field with two elements.
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Let I be an index set, and let B = {bi | i ∈ I } be a minimal generating set of M . Let
also ψ : H → H/H2 be the canonical epimorphism. Since M ∩ H2 = E the restriction ψ

onto M is a bijection and the set ψ(B) is a minimal generating set of 〈ψ(B)〉. Since B is
infinite we have |ψ(B)| = |B| = |M | = |H |. Therefore we have |H | = |H/H0| and ψ(B)

can be complemented to Hamel basis F of the space H/H0. It is also evident that b2i = e for
every bi ∈ B. Note that inclusion H ′ < H2 is always true. Thus the group G satisfies the
L-condition. ��

Note that we use existence of Hamel basis of a vector space over a field in the proof of
Proposition 5. Hence this proof uses the axiom of choise in some cases.

In the next section wewill apply Proposition 5 to some groups of automorphisms of rooted
trees, and particularly give positive answer to Problem 1.

3.1 Automorphism groups of rooted trees

We first recall necessary definitions related to rooted trees and groups acting on rooted trees.
All notions which will be defined in this section are well-known, see for instance [10,19,20]
for more details.

Let us fix our notation. Let X = (X1,X2, . . .) be a sequence of finite sets Xi =
{0, 1, . . . , ni } (we assume ni ≥ 1 for all i). Let Xn denote the set of all words of the form
x1x2 . . . xn , where xi ∈ Xi for i = 1, . . . , n. LetX∗ denote the set which consist of the empty
word ∅ and all words of the form x1x2 . . . xn , where n ∈ N and xi ∈ Xi for i = 1, . . . , n.
Let Xω denote the set of all infinite words of the form x1x2 . . ., where xi ∈ Xi . We denote
by X(k) the infinite sequence (Xk,Xk+1, . . .).

We can consider the set of words X∗ as rooted tree TX which can be defined as follows: a
vertex x1x2 . . . xn is adjacent to x1x2 . . . xn−1, ∅ is the root. For the rooted tree TX we also
define the vertex subtree Tv (v ∈ X∗) whose vertices are the words of the form vX∗. We call
the set of vertices Xn the n-th level of TX.

Let Aut TX be the group of all automorphisms of the tree TX. Let G < Aut TX. We recall
the definitions of some standard subgroups of G:

– The subgroup of all elements of G fixing every vertex of n-th level, denoted by StabG(n),
is called the stabilizer of the n-th level.

– For every v ∈ X∗ the subgroup of all elements of G fixing every vertex outside the subtree
Tv , denoted by ristG(v), is called the rigid stabilizer of the vertex v.

– The group generated by the set
⋃

v∈Xn rist v, denoted by RistG(n), is called the rigid
stabilizer of the nth level.

Let Autk TX be the subgroup of Aut TX such that an automorphism g of TX is in Autk TX
if and only if the equality g(uv) = g(u)v is valid for any u ∈ Xk and any v ∈ X∗. Note
that Autk TX acts by permutations faithfully on the set Xk . Note also that StabAut TX(k) =
RistAut TX (k). Therefore the group Aut TX can be decomposed into semidirect product of its
subgroups Autk TX �RistAut TX(k). It follows that Aut TX is isomorphic to the permutational
wreath product (Autk TX,Xk) � ristAut TX(v), where v ∈ Xk and RistAut TX(k) is the base
subgroup of this wreath product.

We define subgroupM0 < Aut TX as infinite direct product: M0 = ∏

i≥0 C
(i)
2 , where each

C (i)
2 is isomorphic to the group of order 2. The action of elements of M0 on the tree TX can

be defined in the following way. A nontrivial element of C (i)
2 acts as follows 00 . . . 0

︸ ︷︷ ︸

i

10v →
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00 . . . 0
︸ ︷︷ ︸

i

11v, 00 . . . 0
︸ ︷︷ ︸

i

11v → 00 . . . 0
︸ ︷︷ ︸

i

10v for every v ∈ X(i+1), and w → w for the other

words of X∗.

Lemma 6 The intersection M0 ∩ (Aut TX)2 is trivial.

Proof For every g ∈ Aut TX and n ≥ 0 we can write g = gn(gv1 , . . . , gvk ), where gn ∈
Autn TX, (gv1 , . . . , gvk ) ∈ RistAut TX (n), and {v1, . . . , vk} = Xn . Write �ng = ∏

v∈Xn gv

for every n ≥ 0.
It is evident that �ng2 is an even permutation of Xn+1 for every g ∈ Aut TX and n ≥ 0.

Therefore �nh is an even permutation of Xn+1 for every h ∈ (Aut TX)2 and n ≥ 0. But for
every nontrivial element g ∈ M0 there is m ≥ 0 such that �mg is an odd permutation of
Xm+1. Thus the intersection M0 ∩ (Aut TX)2 is trivial. ��
Proposition 6 Let G be an infinite automorphism group of TX and there is a positive integer
k with the following properties:

1. The group G can be decomposed into a semidirect product of its subgroups (G ∩
Autk TX,Xk) � RistG(k) provided the group (G ∩ Autk TX,Xk) satisfies PS.

2. |M0 ∩ G| = |G|.
Then the group G satisfies the L-condition.

Proof Let G be a group and k ∈ N be such that all conditions of the statement are satisfied.
Let v = 0 . . . 0 ∈ Xk . Then G is isomorphic to the permutational wreath product (G ∩
Autk TX,Xk) � ristG(v).

Consider the subgroup M = M0 ∩ ristG(v) of the group G. It is obvious that M has
exponent 2. Since M0∩G = (M0∩G∩Autk TX)×M we have |M | = |M0∩G|. Combining
it with the second condition of the statement we obtain |M | = |G|. It follows that |M | =
|G| = | ristG(v)|. By Lemma 6 we have M ∩ (ristG(v))2 < M0 ∩ (Aut TX)2 = E . Thus the
group G satisfies the L-condition by Proposition 5, and the statement follows. ��

3.1.1 Examples of uncountable groups of automorphisms with the L-condition

We recall the definitions of some classes of automorphisms of TX.

– An automorphism g is called finitary if there is a positive integer n such that the equality
g(uv) = g(u)v is valid for every u ∈ Xn and every v ∈ X∗.

– An automorphism g is called weakly finitary if for every w ∈ Xω there are n ∈ N, u ∈ Xn ,
and v ∈ Xω such that w = uv and g(uv) = g(u)v.

– Two words w1, w2 ∈ Xω are called cofinal if there are n ∈ N, u1, u2 ∈ Xn , v ∈ Xω

satisfying w1 = u1v and w2 = u2v.
An automorphism g is called cofinal if it maps cofinal words to cofinal words.

– An automorphism g is called bicofinal if both g and g−1 are cofinal.

Denote byAut f TX, Autw f TX, Autb TX the sets of all finitary, weakly finitary and bicofinal
automorphisms of TX respectively. All of these sets are groups.

Note that, by definitions, we have the following inclusions:

Aut f TX < Autw f TX < Autb TX.

For more details on these groups we refer the reader to [15].
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Theorem 7 The groups Aut TX, Autw f TX and Autb TX satisfy the L-condition and so have
minimal generating sets.

Proof LetG be one of the above groups. ThenG can be decomposed into semidirect product
of its subgroups (Autk TX,Xk) � RistG(k) for a positive integer k. The permutation group
(Autk TX,Xk) satisfies the condition PS for k ≥ 3 by Proposition 3. It is clear that M0 <

Autw f TX < Autb TX < Aut TX. It follows that G satisfies all conditions of Proposition 6,
and the statement follows. ��

3.1.2 Examples of countable groups of automorphisms with L-condition

Proposition 8 Let G be a countable automorphism group of the rooted tree TX with the
following properties:

– Aut f TX < G.
– RistG(k) = StabG(k) for some integer k ≥ 3.

Then the group G satisfies the L-condition.

Proof By the condition of the proposition M0 ∩ G > M0 ∩ Aut f TX. Since the intersection
M0 ∩Aut f TX is countable, |M0 ∩ G| = |G|. Since Aut f TX < G, Autk TX < G. Therefore
G is decomposed into semidirect product (Autk TX,Xk) � RistG(k) of its subgroups. The
permutation group (Autk TX,Xk) satisfies condition PS for k ≥ 3 by Proposition 3. It follows
that G satisfies all conditions of Proposition 6, and the statement follows. ��

From now we assume that X1 = X2 = . . .. In this case TX is called regular rooted tree.
A vertex subtree Tv of TX for every v ∈ Xn can be naturally identified with the whole tree

TX:

πv : vxn+1 . . . xm �→ xn+1xn+2 . . . xm .

Thus for every g ∈ Aut TX and v ∈ X∗ we can define automorphism g|v ∈ Aut TX in the
following way: g|v(u) = w if and only if g(vu) = g(v)w for every u, w ∈ X∗. We call the
automorphism g|v ∈ Aut TX the state of g in v.

An automorphism g ∈ Aut TX is a finite-state automorphism if the set of its states is
finite. All finite-state automorphisms of the tree TX form the group FAut TX of finite-state
automorphisms of the tree TX.

Let us define the number �n(g) = #{v ∈ Xn | g|v �= e} for every g ∈ Aut TX.
The set of all finite-state automorphisms g ∈ FAut TX such that the sequence �n(g) is

bounded by a polynomial in n of degree m forms the group Pol(m) of polynomial automor-
phisms of degree m of the tree TX. The group Pol(0) is also called the group of bounded
automorphisms. The group of polynomial automorphisms, denoted by Pol(∞), is defined to
be the union of increasing chain of groups: Pol(∞) = ⋃∞

m=0 Pol(m).
A subgroup G of Aut TX is self-similar provided g|v ∈ G for all g ∈ G and v ∈ X∗. The

group RAut TX of functionally recursive automorphisms of TX can be defined as the union
of all finitely generated self-similar subgroups of Aut TX.

We refer the reader to [5,19,20] for details concerning groups defined above.

Theorem 9 The groups FAut TX, Pol(m) (m ≥ 0), Pol(∞), and RAut TX satisfy the L-
condition and so have minimal generating sets.
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Proof Let G be one of the groups above. It is well known that G is countable group. By defi-
nition, the groupG contains the group Aut f TX. Furthermore, we have StabG(k) = RistG(k)
for every positive integer k. It follows that G satisfies the L-condition by Proposition 8, and
the theorem follows. ��

Finally we obtain the statement of Theorem 1 as an immediate corollary of Theorems 2,
7 and 9.
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