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1 Introduction and the main result

This paper is devoted to the classification of generalized Wallach spaces, a remarkable class
of compact homogeneous spaces. These spaces were introduced in the paper [18], where they
were called three-locally-symmetric spaces. Nowwe prefer to call them generalized Wallach
spaces as in [20], because this term is less confusing and more informative. We begin with
recalling some notations and definitions.

Let G/H be a compact homogeneous spaces with connected compact semisimple Lie
groupG and a compact subgroup H . Denote by g and h Lie algebras ofG and H respectively.
We suppose thatG/H is almost effective, i. e. there are no non-trivial ideals of the Lie algebra
g in h ⊂ g. Denote by B = B(· , ·) the Killing form of g. Since G is compact, B is negatively
definite on g. Therefore, 〈· , ·〉 := −B(· , ·) is a positive definite inner product on g. Properties
of B imply that 〈· , ·〉 is bi-invariant, i. e. 〈[Z , X ], Y 〉 + 〈X, [Z , Y ]〉 = 0 for all X, Y, Z ∈ g.

Let p be the 〈· , ·〉-orthogonal complement to h in g. It is clear that p is Ad(H)-invariant
(and ad(h)-invariant, in particular). Themodule p is naturally identifiedwith the tangent space

B Yu. G. Nikonorov
nikonorov2006@mail.ru

1 Southern Mathematical Institute of Vladikavkaz Scientific Centre of the Russian Academy of
Sciences, Markus St. 22, Vladikavkaz, Russia 362027

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10711-015-0119-z&domain=pdf


194 Geom Dedicata (2016) 181:193–212

to G/H at the point eH , see e. g. [4, 7.23]. Every G-invariant Riemannian metric on G/H
generates an Ad(H)-invariant inner product on p and vice versa [4, 7.24]. Therefore, it
is possible to identify invariant Riemannian metrics on G/H with Ad(H)-invariant inner
products on p. Note that the Riemannian metric generated by the inner product 〈· , ·〉∣∣

p
is

called standard or Killing.

Remark 1 A linear subspace q ⊂ p is ad(h)-invariant if and only if it is Ad(H0)-invariant,
where H0 is the unit component of the group H . Hence, these two notions are equivalent for
connected H . It should be noted also, that the group H is connected provided that the space
G/H is simply connected.

Suppose that a homogeneous space G/H has the following property: the module p is
decomposed as a direct sum of three Ad(H)-invariant irreducible modules pairwise orthog-
onal with respect to 〈· , ·〉, i. e.

p = p1 ⊕ p2 ⊕ p3, (1)

such that
[pi , pi ] ⊂ h for i ∈ {1, 2, 3}. (2)

Homogeneous spaces with this property are called generalized Wallach spaces.

Remark 2 The authors of [15,18] called these spaces three-locally-symmetric, since the con-
dition (2) resembles the condition of local symmetry for homogeneous spaces

(

a locally
symmetric homogeneous space G/H is characterized by the relation [p, p] ⊂ h, where
g = h ⊕ p and p is Ad(H)-invariant [4, 7.70]

)

.

A detailed discussion on generalizedWallach spaces could be found in [20, pp.6346–6347]
or [15], but we recall some important properties of these spaces for the reader’s convenience.

There are many examples of these spaces, e. g. the manifolds of complete flags in the
complex, quaternionic, and Cayley projective planes (a complete flag in any of these planes
is a pair (p, l)where p is a point in the plane and l a line (complex, quaternionic or octonionic)
containing the point p):

SU (3)/Tmax, Sp(3)/Sp(1) × Sp(1) × Sp(1), F4/Spin(8).

These spaces (known as Wallach spaces) are also interesting in that they admit invari-
ant Riemannian metrics of positive sectional curvature (see [22]). The Lie group SU (2)
(

H = {e}) also could be considered as an example of generalized Wallach spaces. Note
also that SO(3)/(Z2 × Z2) is the manifold of complete flags in the real projective plane. It
is interesting that the above manifolds of complete flags have representations as so-called
Cartans isoparametric submanifolds, see e. g. [21] for details.

Other examples of generalized Wallach spaces are some Kähler C-spaces such as

SU (n1 + n2 + n3)
/

S
(

U (n1) ×U (n2) ×U (n3)
)

,

SO(2n)/U (1) ×U (n − 1), E6/U (1) ×U (1) × Spin(8).

There are two more 3 -parameter families of generalized Wallach spaces:

SO(n1 + n2 + n3)
/

SO(n1) × SO(n2) × SO(n3),

Sp(n1 + n2 + n3)
/

Sp(n1) × Sp(n2) × Sp(n3).

Note that every generalized Wallach space admits a 3 -parameter family of invariant Rie-
mannian metrics determined by Ad(H)-invariant inner products

(· , ·) = x1 〈· , ·〉|p1 + x2 〈· , ·〉|p2 + x3 〈· , ·〉|p3 , (3)

where x1, x2, x3 are positive real numbers.

123



Geom Dedicata (2016) 181:193–212 195

In [18], it was shown that every generalized Wallach space admits at least one invariant
Einstein metric. This result could not be improved in general (e. g. SU (2) admits exactly
one invariant Einstein metric). Later in [15], a detailed study of invariant Einstein metrics
was developed for all generalized Wallach spaces. In particular, it is proved that there are
at most four Einstein metrics (up to homothety) for every such space. A detailed discussion
and the references related to all known results on Einstein invariant metrics on generalized
Wallach spaces one can find in [20]. More detailed information on invariant Einstein metric
on general homogeneous spaces could be found in [4–6,23,24].

In the recent papers [1,2], generalizedWallach spaces were studied from the point of view
of the Ricci flow. Some results of these papers we will discuss in the last section.

Denote by di the dimension of pi . Let
{

e ji
}

be an orthonormal basis in pi with respect to
〈· , ·〉, where i ∈ {1, 2, 3}, 1 ≤ j ≤ di = dim(pi ). Consider the expression [i jk] defined by
the equality

[i jk] =
∑

α,β,γ

〈[

eα
i , eβ

j

]

, eγ

k

〉2
, (4)

where α, β, and γ range from 1 to di , d j , and dk respectively, see [25]. The symbols [i jk] are
symmetric in all three indices by the bi-invariance of the metric 〈· , ·〉. Moreover, for spaces
under consideration, we have [i jk] = 0 if two indices coincide. Therefore, the quantity

A := [123] (5)

plays an important role. It easy to see that di ≥ 2A for all i = 1, 2, 3 (see [18] or Lemma 7
below). Hence the following constants

ai = A

di
, i ∈ {1, 2, 3}, (6)

are such that (a1, a2, a3) ∈ [0, 1/2]3. Note that these constants completely determine some
important properties of a generalizedWallach spaceG/H , e. g. the equation of the Ricci flow
on G/H , see [1,2]. Of course, not every triple (a1, a2, a3) ∈ [0, 1/2]3 corresponds to some
generalized Wallach space. A complete description of suitable triples we will get together
with the classification of generalized Wallach spaces.

Now we are ready to state the main result of this paper.

Theorem 1 Let G/H be a connected and simply connected compact homogeneous space.
Then G/H is a generalized Wallach space if and only if it is of one of the following types:

1) G/H is a direct product of three irreducible symmetric spaces of compact type (A =
a1 = a2 = a3 = 0 in this case);

2) The group G is simple and the pair (g, h) is one of the pairs in Table 1 (the embedding
of h to g is determined by the following requirement: the corresponding pairs (g, ki ) and
(ki , h), i = 1, 2, 3, in Table 2 are symmetric);

3) G = F × F × F × F and H = diag(F) ⊂ G for some connected simply connected
compact simple Lie group F, with the following description on the Lie algebra level:

(g, h) = (

f ⊕ f ⊕ f ⊕ f, diag(f) = {(X, X, X, X) | X ∈ f }),
where f is the Lie algebra of F, and (up to permutation) p1 = {(X, X,−X,−X) | X ∈ f },
p2 = {(X,−X, X,−X) | X ∈ f }, p3 = {(X,−X,−X, X) | X ∈ f } (a1 = a2 = a3 =
1/4 in this case).
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The paper is divided into five sections. In Sect. 2 we discuss connections between general-
ized Wallach spaces and Z2 ×Z2-subgroups in the automorphism groups Aut(g) of compact
Lie algebras g. The second section is devoted to general structural results on generalized
Wallach spaces G/H with connected H . In Sect. 4 we get a classification of generalized
Wallach spaces G/H with simple G and connected H . In Sect. 5 we calculate the values of
a1, a2, a3 for all pairs in Table 1. Finally, in the last section we discuss properties of the set of
points (a1, a2, a3) ∈ [0, 1/2]3 ⊂ R

3 and Einstein invariant metrics on generalized Wallach
spaces.

The proof of Theorem 1 follows immediately from Theorem 3, Theorem 4, and Propo-
sition 2. The calculations of a1, a2, a3 for all pairs in Table 1 are performed in Sect. 6.

When this paper was completed, the author saw the very recent paper [7], where (in par-
ticular) the classification of generalized Wallach spaces G/H with simple G was obtained.

2 Generalized Wallach spaces and involutive automorphisms

Let us consider connected compact homogeneous spaces G/H with the properties (1) and
(2). We emphasize that we do not demand that the modules pi are Ad(H)-irreducible now.
The inclusion [pi , pi ] ⊂ h implies that

ki := h ⊕ pi (7)

is a subalgebra of g for any i , and the pair (ki , h) is symmetric (it could be non-effective,
of course). From (1) and (2) we easily get that [p j , pk] ⊂ pi for pairwise distinct i, j, k.
Therefore,

[p j ⊕ pk, p j ⊕ pk] ⊂ h ⊕ pi = ki , {i, j, k} = {1, 2, 3},
and all the pairs (g, ki ) are also symmetric.

Let us consider involutive automorphisms

σi : g 	→ g, i ∈ {1, 2, 3},
of the Lie algebra g, such that

σi |ki = Id, σi |p j⊕pk = − Id,

which do exist due to well known structure results (see e. g. [26, theorem 8.1.4]). It is easy
to see that

σi ◦ σ j = σ j ◦ σi = σk

for pairwise distinct i, j, k. Keeping in mind that σ1 ◦ σ1 = σ2 ◦ σ2 = σ3 ◦ σ3 = Id on g, we
get the following

Proposition 1 The automorphisms σ1, σ2, and σ3 generate a Z2 × Z2-subgroup in Aut(g),
the group of automorphisms of the Lie algebra g. Every pair of these automorphisms is a set
of generators of this group.

Now, let g be a compact semisimple Lie algebra and let Γ be a Z2 × Z2-subgroup in the
group of automorphismsAut(g) of g. Suppose thatσ1 andσ2 are generators ofΓ , and consider
an inner product −B on g, where B is the Killing form of g. Since σ1 ◦ σ1 = σ2 ◦ σ2 = Id
and σ1 ◦σ2 = σ2 ◦σ1, we have commutating normal operators σ1 and σ2 on the Euclidean
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space (g,−B). Moreover, since they are involutions, their eigenvalues are exactly 1 and −1.
Therefore, these operator could be diagonalized simultaneously, see e. g. [11, 2.5.15].

Let us consider the following linear subspaces of g:

h = {X ∈ g | σ1(X) = σ2(X) = X}, p1 = {X ∈ g | − σ1(X) = σ2(X) = X},
p2 = {X ∈ g | σ1(X) = −σ2(X) = X}, p3 = {X ∈ g | − σ1(X) = −σ2(X) = X}.

It is clear that all these subspaces are pairwise orthogonal with respect to −B, h is a Lie
subalgebra in g, g = h ⊕ p1 ⊕ p2 ⊕ p3, and [pi , pi ] ⊂ h, i ∈ {1, 2, 3}. Therefore, we get a
compact homogeneous space G/H with the properties (1) and (2), where G is a connected
and simply connected Lie group with the Lie algebra g and H is a connected subgroup
corresponding to the Lie subalgebra h. Hence we get the following

Theorem 2 There is a one-to-one correspondence between Z2 × Z2-subgroups in the auto-
morphism groups Aut(g) of compact semisimple Lie algebras g and connected and simply
connected compact homogeneous spaces with the properties (1) and (2).

In order to classify all (connected and simply connected) generalized Wallach spaces, it
is enough to classify “suitable” Z2 ×Z2-subgroups in the group of automorphisms Aut(g) of
compact semisimple Lie algebras g. Here, “suitable” means that the corresponding modules
pi are Ad(H)-irreducible or, equivalently (due to connectedness of H ), ad(h)-irreducible.
We will realize this idea for generalized Wallach spaces G/H with simple G in Sect. 5. But
in the general case we should get more detailed structural results in the next section.

3 On the structure of generalized Wallach spaces

Here we consider the structure of a generalized Wallach space G/H with connected H .
Recall that the properties of a module q ⊂ p to be Ad(H)-invariant and ad(h)-invariant are
equivalent for a connected group H . We will use notations as above. Since the Lie algebra g
is semisimple, then we can decompose it into a (〈· , ·〉-orthogonal) sum of simple ideals

g = g1 ⊕ g2 ⊕ · · · ⊕ gs .

Let ϕi : h → gi be the 〈· , ·〉-orthogonal projection. It is easy to see that all these projections
are Lie algebra homomorphisms.We rearrange indices so that ϕi (h) �= gi for i = 1, 2, . . . , p
and ϕi (h) = gi for i = p + 1, . . . , s.

Since the Lie algebra h is compact, then we can decompose it into a (〈· , ·〉-orthogonal)
sum of the center and simple ideals

h = R
l ⊕ h1 ⊕ h2 ⊕ · · · ⊕ hm .

For i = 1, . . . ,m, we denote by ai the vector (ai1, a
i
2, . . . , a

i
s) ∈ R

s , where aij = 1, if

ϕ j (hi ) is isomorphic to hi , and aij = 0, if ϕ j (hi ) is a trivial Lie algebra (there is no another

possibility, because ϕ j is a Lie algebra homomorphism). It is easy to see that
∑m

i=1 a
i
j = 1

for j = p + 1, . . . , s, since ϕ j (h) = g j is a simple Lie algebra. Denote also the number
dim(ϕi (R

l)) by ui for i = 1, . . . , s, and put u = ∑s
i=1 ui , vi = ∑s

j=1 a
i
j for i = 1, . . . ,m.

It is clear that u ≥ l and vi ≥ 1 for all i .

Lemma 1 In the above notation, the following inequality holds:

p + u +
m

∑

i=1

vi − l − m = p + (u − l) +
m

∑

i=1

(vi − 1) ≤ 3.
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Proof For i = 1, 2, . . . , p, every gi contains at least one irreducible modules p j ⊂ p, since
ϕi (h) �= gi and 〈· , ·〉-orthogonal complement to ϕi (h) in gi is a subset of p. This gives at
least p irreducible modules. Further, an 〈· , ·〉-orthogonal complement to R

l in ⊕s
i=1ϕi (R

l)

is also a subset of p. It is clear that ad(h) acts trivially on this complement, hence we get
exactly u− l one-dimensional irreducible submodules in it. Finally, for any i = 1, . . . ,m, an
〈· , ·〉-orthogonal complement to hi in ⊕s

j=1ϕ j (hi ) is also subset of p. In fact, we deal with
compliment to diag(hi ) in hi ⊕hi ⊕· · ·⊕hi (vi pairwise isomorphic summands). In this case
we have exactly (vi − 1) ad(h)-irreducible modules. Summing all numbers of irreducible
submodules, we get the lemma.

Without loss of generality we may rearrange the indices so that v1 ≥ v2 ≥ · · · ≥ vm−1 ≥
vm(≥ 1). Then we get the following

Corollary 1 In the above notation, the following inequality holds:

p ≤ 3, u − l ≤ 3, v4 = 1, v3 ≤ 2.

Lemma 2 If two of the modules p1, p2, p3 are subsets of gi for some i = 1, . . . s, then the
third module is also a subset of gi . In this case p = 1.

Proof Suppose, e. g. that p1, p2 ⊂ gi , then [p1, p2] ⊂ gi∩p3. If [p1, p2] �= 0, then a nonempty
module gi ∩ p3 is ad(h)-invariant, since this property have both p3 and gi (as an ideal in g).
On the other hand, gi ∩ p3 ⊂ p3 and p3 is ad(h)-irreducible. Therefore, gi ∩ p3 = p3 and
p3 ⊂ gi .

If gi �= ϕi (h) + p1 + p2, then we get p3 ⊂ gi again, because an 〈· , ·〉-orthogonal comple-
ment to ϕi (h) in gi is a subset of p.

Now, suppose that [p1, p2] = 0 and gi = ϕi (h) + p1 + p2. Note that [ϕi (h), p1] ⊂ p1
([Y, X ] = [ϕi (Y ), X ] ⊂ p1 for every Y ∈ h and every X ∈ p1 ⊂ gi ), [p2, p1] = 0, and
[p1, p1] ⊂ h ∩ gi , hence [gi , p1] ⊂ [p1, p1] + p1 and [gi , [p1, p1]] ⊂ [p1, [p1, p1] + p1] ⊂
[p1, p1] + p1 (by the Jacoby equality). Therefore, [p1, p1] + p1 is a proper ideal in gi , that is
impossible.

The last assertion of the lemma is obvious.

Lemma 3 If A = 0, then G/H is locally a direct product of three irreducible symmetric
spaces of compact type. A simply connected G/H with A = 0 is a direct product of three
irreducible symmetric spaces of compact type.

Proof It is known that A = 0 if and only if the space G/H is locally a direct product of
three compact irreducible symmetric spaces (see [15, Theorem 2]). Finally, we remind that
complete (in particular, homogeneous) and simply connected locally symmetric space is a
symmetric space, see e. g. [10, Theorem 5.6]. Hence we get the lemma.

Corollary 2 If p ≥ 2, then A = 0, consequently, G/H locally is a direct product of three
irreducible symmetric spaces of compact type.

Proof By Lemma 2 we get that one of the modules p1, p2, p3 is in g1 and the second one is
in g2. Hence, [p1, p2] = 0 and A = 0. Now, it suffices to apply Lemma 3.

Lemma 4 If p = 1, then s = 1 and the Lie algebra g = g1 is simple.

Proof Suppose the contrary, s ≥ 2. Without loss of generality we may assume that p1 ⊂
g1. Then by Lemma 2, p2 and p3 are not subsets of g1. Hence, p1 is an 〈· , ·〉-orthogonal
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complement to ϕ1(h) in g1. By definition of p, gi = ϕi (h) for 2 ≤ i ≤ s. Hence, ui =
dim(ϕi (R

l)) = 0 for i ≥ 2, and u = u1 = dim(ϕ1(R
l)) = l. Since p = 1 and u = l we get

∑m
j=1(v j − 1) ≤ 2 by Lemma 1.
If v j = 1 for j = 1, . . . ,m, then all gi = ϕi (h) are ideals of g in h for 2 ≤ i ≤ s, that is

impossible due to the effectiveness of the pair (g, h).
Since v1 ≥ v2 ≥ v3 ≥ · · · ≥ vm ≥ 1, we should check the following possibilities:

(v1, v2) = (2, 1), (v1, v2) = (3, 1), and (v1, v2, v3) = (2, 2, 1). Note that all h j with v j = 1
are such that ϕi (h j ) is trivial for 2 ≤ i ≤ s, otherwise gi = ϕi (h j ) = ϕi (h) are ideals of g
in h.

The case (v1, v2) = (2, 1) is impossible, because p in this case contains only two ad(h)-
irreducible modules.

Let us consider the case (v1, v2) = (3, 1). If ϕ1(h1) is trivial, then [p1, p2 ⊕ p3] = 0
and A = 0, that is impossible due to Lemma 3. Hence, without loss of generality we may
assume that a11 = a12 = a13 = 1 and a1i = 0 for i ≥ 4. Then, p2 ⊕ p3 should coincide
with an 〈· , ·〉-orthogonal complement to diag(h1) in ϕ1(h1) ⊕ ϕ2(h1) ⊕ ϕ3(h1) � 3h1. But
[p1, p2] ⊂ g1 (since g1 is an ideal in g), that contradicts to [p1, p2] ⊂ p3.

Finally, consider the case (v1, v2, v3) = (2, 2, 1). If ϕ1(h1) or ϕ1(h2) is trivial, then
[p1, p2] = 0 or [p1, p3] = 0 which implies A = 0, that is impossible due to Lemma
3. Hence, without loss of generality we may assume that a11 = a12 = 1, a1i = 0 for i ≥ 3,
a21 = a23 = 1, a3i = 0 for other i . Further, without loss of generality, p2 is an 〈· , ·〉-orthogonal
complement to diag(h1) in ϕ1(h1)⊕ϕ2(h1) � 2h1 and p3 is an 〈· , ·〉-orthogonal complement
to diag(h2) in ϕ1(h2)⊕ϕ3(h2) � 2h2. As in the previous case, [p1, p2] ⊂ g1, that contradicts
to [p1, p2] ⊂ p3. The lemma is proved.

Lemma 5 If p = 0, then either A = 0 or (g, h) = (f ⊕ f ⊕ f ⊕ f, diag(f) =
{(X, X, X, X) | X ∈ f }) for a simple compact Lie algebra f. Moreover, up to permu-
tation, we have p1 = {(X, X,−X,−X) | X ∈ f }, p2 = {(X,−X, X,−X) | X ∈ f },
p3 = {(X,−X,−X, X) | X ∈ f }.
Proof Since p = 0, then ui = dim(ϕi (R

l)) = 0 for all i , and u = 0 = l. Since p = 0 and
u = l we get

∑m
j=1(v j − 1) ≤ 3 by Lemma 1. Since gi = ϕi (h) for all i , then every gi is

isomorphic to some simple Lie algebra h j .
If v j = 1 for some j = 1, . . . ,m, then all h j is an ideal of g in h (indeed, there is

exactly one i ∈ 1, . . . , s with a j
i = 1, hence gi = ϕi (h j ) = ϕi (h)), that is impossible

due to the effectiveness of the pair (g, h). Therefore, v j ≥ 2 for all j = 1, . . . ,m. Since
∑m

j=1(v j − 1) ≤ 3, then we we should check the following possibilities: m = 3, m = 2 and
m = 1.

If m = 3, then v1 = v2 = v3 = 2. It is easy to see, that (up to permutation) p1 is
the 〈· , ·〉-orthogonal complement to diag(h1) in ϕ1(h1) ⊕ ϕ2(h1) � 2h1, p2 is the 〈· , ·〉-
orthogonal complement to diag(h2) in ϕ3(h2)⊕ϕ4(h2) � 2h2 and p3 is the 〈· , ·〉-orthogonal
complement to diag(h3) in ϕ5(h3) ⊕ ϕ6(h3) � 2h3. Obviously in this case we have A = 0.

If m = 2, then either (v1, v2) = (2, 2) or (v1, v2) = (3, 2). The case (v1, v2) = (2, 2) is
impossible, because p in this case contains only two ad(h)-irreducible modules. If (v1, v2) =
(3, 2), then p1 ⊕ p2 is the 〈· , ·〉-orthogonal complement to diag(h1) in ϕ1(h1) ⊕ ϕ2(h1) ⊕
ϕ3(h1) � 3h1, and p3 is the 〈· , ·〉-orthogonal complement to diag(h2) in ϕ4(h2) ⊕ ϕ5(h2) �
2h2. Since [p1 ⊕ p2, p3] = 0, we get A = 0 (in fact, it is easy to prove that this variant is
impossible at all).

Ifm = 1, then we have (g, h) = (s ·h1, diag(h1)), and G/H is a so-called Ledzer – Obata
space, see [14, section 4] or [19]. It should be noted also that for any compact Lie group F ,
a Ledzer – Obata space Fs/ diag(F) is diffeomorphic to the Lie group Fs−1 [14, P. 453].
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It is known that the module p decomposed in this case into the sum of s − 1 pairwise
ad(h)-isomorphic irreducible summand, but such a decomposition is not unique, see [19].
Hence, s = 4 and (g, h) = (f ⊕ f ⊕ f ⊕ f, diag(f)) for some simple Lie algebra f(= h1).

Clear that h = {(X, X, X, X) | X ∈ f }. Any ad(h)-irreducible module in p has the form
q = {(α1X, α2X, α3X, α4X) | X ∈ f }, where α = (α1, α2, α3, α4) ∈ R

4 is of unit length
and satisfies α1 +α2 +α3 +α4 = 0. Therefore, p could be decomposed into a sum of ad(h)-
irreducible and pairwise 〈· , ·〉-orthogonal modules only as follows (see details in [19]):
p = p1 ⊕ p2 ⊕ p3, where

p1 = {(α1X, α2X, α3X, α4X) | X ∈ f }, p2 = {(β1X, β2X, β3X, β4X) | X ∈ f },
p3 = {(γ1X, γ2X, γ3X, γ4X) | X ∈ f }, (α, α) = (β, β) = (γ, γ ) = 1,

α1 + α2 + α3 + α4 = 0, β1 + β2 + β3 + β4 = 0, γ1 + γ2 + γ3 + γ4 = 0,

(α, β) = (α, γ ) = (β, γ ) = 0, where (x, y) = x1y1 + x2y2 + x3y3 + x4y4, x, y ∈ R
4.

Since [pi , pi ] ⊂ h, i = 1, 2, 3, then |α1| = |α2| = |α3| = |α4| = |β1| = |β2| =
|β3| = |β4| = |γ1| = |γ2| = |γ3| = |γ4| = 1/2. Therefore, up to permutation,
α = (1/2, 1/2,−1/2,−1/2), β = (1/2,−1/2, 1/2,−1/2), γ = (1/2,−1/2,−1/2, 1/2).
The lemma is proved.

From the previous results of this section we immediately get

Theorem 3 Let G/H be a generalized Wallach space with connected H. Then one of the
following assertions holds:

1) G/H is locally a direct product of three irreducible symmetric spaces of compact type;
2) The group G is simple;
3) On the Lie algebra level, (g, h) = (f ⊕ f ⊕ f ⊕ f, diag(f) = {(X, X, X, X) | X ∈

f }) for a simple compact Lie algebra f and, up to permutation, we have p1 =
{(X, X,−X,−X) | X ∈ f }, p2 = {(X,−X, X,−X) | X ∈ f }, and p3 = {(X,−X,

−X, X) | X ∈ f }.
Proposition 2 Let G/H be a generalized Wallach space such that (g, h) = (f ⊕
f ⊕ f ⊕ f, diag(f) = {(X, X, X, X) | X ∈ f }) for a simple compact Lie algebra f

and p1 = {(X, X,−X,−X) | X ∈ f }, p2 = {(X,−X, X,−X) | X ∈ f }, p3 =
{(X,−X,−X, X) | X ∈ f }. Then A = 1

4 dim(f) and a1 = a2 = a3 = 1
4 .

Proof Let ei , i = 1, . . . , dim(f), be an orthonormal frame with respect to −Bf (the
minus Killing form of the Lie algebra f). Then 1

2 (ei , ei ,−ei ,−ei ), 1
2 (ei ,−ei , ei ,−ei ), and

1
2 (ei ,−ei ,−ei , ei ), i = 1, . . . , dim(f), forms 〈· , ·〉-orthonormal bases in p1, p1, and p3
respectively. Therefore,

A =
dim(f)
∑

i, j,k=1

〈[
1

2
(ei , ei ,−ei ,−ei ),

1

2
(e j ,−e j , e j ,−e j )

]

,
1

2
(ek,−ek,−ek, ek)

〉2

= 1

64

dim(f)
∑

i, j,k=1

〈[

(ei , ei ,−ei ,−ei ), (e j ,−e j , e j ,−e j )
]

, (ek,−ek,−ek, ek)
〉2

= 1

64

dim(f)
∑

i, j,k=1

16 · (−Bf([ei , e j ], ek))2 = 1

4

dim(f)
∑

i, j=1

(−Bf([ei , e j ], [ei , e j ]))
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= −1

4

dim(f)
∑

i, j=1

(−Bf([ei , [ei , e j ]], e j ])) = −1

4

dim(f)
∑

i=1

trace(ad(ei ) · ad(ei ))

= −1

4

dim(f)
∑

i=1

Bf(ei , ei ) = 1

4
dim(f).

Here we have used the definition of the Killing form: Bf(X, Y ) = trace(ad(X) · ad(Y )) and
the fact that all operators ad(X) are skew-symmetric with respect to Bf.

Since dim(p1) = dim(p2) = dim(p3) = dim(f), then a1 = a2 = a3 = 1/4. Note also
that this result follows also from more general calculations for an arbitrary Ledger – Obata
space in § 4 of [19].

4 Generalized Wallach spaces and Z2 × Z2-symmetric spaces

Let Γ be a finite abelian subgroup of the automorphism group of a Lie group G. Then the
homogeneous space G/H is called a Γ -symmetric space, if (GΓ )0 ⊂ H ⊂ GΓ , where the
subgroup GΓ consists of elements of G invariant with respect to Γ , and (GΓ )0 is its unit
component [16]. We get symmetric spaces for Γ = Z2 and k -symmetric spaces for Zk [27].
For the Klein four-group Z2 × Z2, the above definition give us Z2 × Z2-symmetric spaces,
which were studied in [3] and [13], In particular, a classification of these spaces for simple
compact groups G were obtained in these two papers.

Another approach for this classification was applied in the paper [12]. On the Lie algebra
level this classification is equivalent to the classification of Z2 × Z2-groups in the automor-
phism group Aut(g) for all simple compact Lie algebra g. It is clear that any Z2 × Z2-group
are generated with two commuting involutive automorphisms of g.

By Theorem 2, every generalized Wallach spaces G/H with simple G is a Z2 × Z2-
symmetric space. Hence, we obtain the following algorithm. We should consider a complete
list of Z2 × Z2-symmetric spaces. It is useful to deal with a such classification on the Lie
algebra level, i. e. with the classification of simple compact Lie algebras g with Z2 × Z2-
groups Γ in Aut(g). A list of such objects is given e. g. in [12] (see Tables 3, 4 there). We
reproduce it in our Table 2. We denote by h a Lie subalgebra of g consisted of fixed points
of the corresponding group Γ . By k1, k2, and k3 we denote symmetric subalgebras in g, that
consist respectively of fixed points of involutions σ1, σ2, and σ3 = σ1σ2, such that σ1 and
σ2 generate Γ . This information could be easily derived from Tables 2, 3, and 4 of the paper
[12]. Of course, we consider these subalgebras up to permutation. Recall also that all the
pairs (ki , h), i = 1, 2, 3, are also symmetric.

Our final step is the following. For each line of Table 2, we should determine the “effective
parts“ (k̃i , h̃i ) of the pairs (ki , h), i = 1, 2, 3. This means that we need to eliminate nontrivial
ideals of g from h. More precisely, let a be a maximal ideal of ki in h, then k̃i (respectively, h̃i )
is a Bg-orthogonal compliment to a in ki (respectively, h), where Bg is the Killing form of the
Lie algebra g. Further, we should check that pi , a Bg-orthogonal compliment to h̃i in k̃i (or,
equivalently, a Bg-orthogonal compliment to h in k) is ad(h̃i )-irreducible (or, equivalently,
ad(h)-irreducible). We have the following obvious result

Lemma 6 Let (g, h) be a pair from Table 2. Then the following conditions are equivalent:

1) (g, h) corresponds to a generalized Wallach space G/H with connected H;
2) the modules pi , i = 1, 2, 3, are ad(h)-irreducible;
3) the symmetric pairs (k̃i , h̃i ), i = 1, 2, 3, are irreducible.
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Table 3 The values of dim(g) and Bg(βm , βm ) for compact simple Lie algebras g

g so(n) sp(n) su(n) g2 f4 e6 e7 e8

dim(g) n(n − 1)/2 2n2 + n n2 − 1 14 52 78 133 248

Bg(βm , βm ) 4(n − 2) 4(n + 1) 4n 16 36 48 72 120

Removing from Table 2 all pairs that do not satisfy the conditions of Lemma 6 we get the
Table 1, that contains all possible (g, h) corresponding to generalized Wallach space with
simple groups G.

Theorem 4 For any generalized Wallach space G/H with simple G and connected H, the
pair (g, h) is in Table 2. A pair (g, h) from Table 2 generates a generalized Wallach space if
and only if it is in Table 1.

Proof The first assertion we get immediately from Theorem 2. Let us prove the second
assertion. We have to check all pairs from Table 2, using Lemma 6. For a list of irreducible
symmetric pairs see e. g. [10] or [26].

Let us consider line 1. It is easy to see that the pairs (k̃1, h̃1) and (k̃2, h̃2) are irreducible
symmetric, but the pair (k̃3, h̃3) = (s(u(p) ⊕ u(p)), so(r) ⊕ so(q)) is not. Hence the pair
(g, h) does not generate a generalized Wallach space in this case.

Now, consider line 2. The pairs (k̃1, h̃1), (k̃2, h̃2), and (k̃3, h̃3) = (

su(p) ⊕ su(p), diag
(su(p))

)

are irreducible symmetric and we get line 4 in Table 1.
For line 3, the pairs (k̃1, h̃1) and (k̃2, h̃2) are irreducible symmetric, but the pair (k̃3, h̃3) =

(s(u(2p) ⊕ u(2q)), sp(p) ⊕ sp(q)) is not.
For line 5, all the pairs (k̃i , h̃i ), i = 1, 2, 3, are not irreducible. The same is true for the

lines 9 and 10.
Let us check line 6 in Table 2. In this case we have

(g, h) = (so(p + q + r + s), so(p) ⊕ so(q) ⊕ so(r) ⊕ so(s)),

k1=so(p + q) ⊕ so(r + s), k2=so(p + r) ⊕ so(q + s), k3=so(p + s) ⊕ so(q + r).

It is easy to see that the symmetric pair (ki , h) is decomposed into the sum of two symmetric
pairs provided that p · q · r · s �= 0. In order to get ad(h)-irreducible modules pi , we should
put s = 0 (without loss of generality). Then we get (k̃1, h̃1) = (so(p + q), so(p) ⊕ so(q)),
(k̃2, h̃2) = (so(p+r), so(p)⊕so(r)), and (k̃3, h̃3) = (so(r+q), so(r)⊕so(q)). We see that
the modules pi , i = 1, 2, 3, are ad(h)-irreducible for all p, q, r ≥ 1 and s = 0. Hence we get
line 1 of Table 1. Note that for p = q = r = 1 we get the Lie algebra so(3) � su(2) � sp(1)
that generate the group SU (2), a 3-dimensional generalized Wallach space.

Applying the same argument to lines 4 and 13 in Table 2 we get lines 2 and 3 in Table 1.
For line 7, the pair (k̃3, h̃3) = (u(p), so(p)) is not irreducible.
For line 8, the pairs (k̃2, h̃2) and (k̃3, h̃3) (that coincide with

(

su(p+q), s(u(p)⊕u(q))
)

)
are irreducible symmetric, the pair (k1, h) = (so(2p) ⊕ so(2q), u(p) ⊕ u(q)) is irreducible
only if q = 1 or p = 1. Hence, we get the line 5 in Table 1.

For line 11, the pair (k̃3, h̃3) = (sp(p) ⊕ sp(q), u(p) ⊕ u(q)) is not irreducible.
For line 12, the pair (k̃1, h̃1) = (u(2p), sp(p)) is not irreducible.
By the same manner we check lines 13–37, corresponding to exceptional Lie algebras

g. We do not write all details here, because this is a direct and easy procedure. Recall
the following isomorphisms between Lie algebras, which simplify the mentioned check:
sp(1) � su(2) � so(3), sp(2) � so(5), and su(4) � so(6).
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Note that the pairs in lines 15, 17, 18, 23, 25, 29, 31, 33, 35, and 36 generate generalized
Wallach spaces (see lines 6–15 of Table 1). All other pairs (g, h) with exceptional g from
Table 2 are such that at least one of the pairs (k̃i , h̃i ), i = 1, 2, 3, is not irreducible symmetric.
As a final result, we completes Table 1.

5 Calculation of a1, a2, a3

Let G/H be a compact homogeneous space with semisimple G, then the Killing form B
of the Lie algebra g is negatively defined, and p, the B-orthogonal complement to h in g,
could be naturally identified with the tangent space of G/H at the point eH . Note that for
any Riemannian invariant metric ρ on G/H , the isotropy representation τ : H 	→ End(p)
of the isotropy group H is such that every τ(a) = Ad(a)|p is orthogonal transformation.
Moreover, the isotropy representation dτ : h 	→ End(p) of the isotropy algebra h is such that
every dτ( f ) = ad( f )|p is a skew-symmetric.

For the inner product 〈· , ·〉|h = −B|h on h we can consider the Casimir operator C of

the (restruction of the) adjoint representation of h on p. Let
{

e j0
}

be an orthonormal basis in h
with respect to 〈· , ·〉, 1 ≤ j ≤ dim(h), then (see e. g. [4, 7.88])

C = −
∑

1≤ j≤dim(h)

ad
(

e j0
)∣
∣
p

◦ ad
(

e j0
)∣
∣
p
.

For any ad(h)-irreducible submodule q ⊂ p, the operator C is proportional to the identity
operator. If p is the sum of ad(h)-irreducible submodules pi , then we haveC |pi = ci Id |pi for
some constant ci , that are called the Casimir constants. Since ad

(

e j0
)∣
∣
p
is skew-symmetric,

then
ci =

∑

1≤ j≤dim(h)

〈

[e j0 , e], [e j0 , e]
〉

(8)

for an arbitrary unit (with respect to 〈· , ·〉 = −B) vector e in pi . In particular, ci ≥ 0.
Now, we continue to study generalized Wallach spaces. Recall one important property of

the numbers [i jk], see (4). According to lemma 1.5 in [25], we get the formula
∑

j,k

[i jk] = di (1 − 2ci ),

for all i = 1, 2, 3, where ci is the corresponding Casimir constant, di = dim(pi ). Using the
above consideration we can rewrite this equality as follows (see (5)):

2A = [i jk] + [ik j] = di (1 − 2ci ), i �= j �= k �= i. (9)

Hence we get the following result (obtained in [18] and [15]).

Lemma 7 For a generalized Wallach space, we have di ≥ 2A for all i = 1, 2, 3. Moreover,
the equality di = 2A is equivalent to the condition [h, pi ] = 0.

Now,we give a convenient method for calculating ci and A for generalizedWallach spaces
G/H with simpleG. Consider a connected Lie subgroup Ki inG with Lie algebra ki = h⊕pi
as in (7). It is clear that the homogeneous spaces Ki/H and G/Ki are locally symmetric
(see Sect. 3 and [4, 7.70]). If Ki does not act almost effectively on M = Ki/H , consider
its subgroup K̃i acting on M = Ki/H = K̃i/ H̃i almost effectively (here we denote by
H̃i the corresponding isotropy group). The pair of the corresponding Lie algebras

(

k̃i , h̃i
)

123



Geom Dedicata (2016) 181:193–212 207

is irreducible symmetric (see [4, 7.100]). A more direct and convenient way to produce the
pair

(

k̃i , h̃i
)

is the following: If a is a maximal ideal of ki in h, then k̃i (respectively, h̃i ) is a
〈· , ·〉-orthogonal compliment to a in ki (respectively, h).

If k̃i is a simple Lie algebra then its Killing form Bk̃i
is proportional to the restriction of

the Killing form B of g to k̃i . Therefore, there exists a positive number γi with the property

Bk̃i
= γi · B∣

∣
k̃i

. (10)

Lemma 8 In the notations as above, we have ci = γi/2 and A = di (1 − γi )/2.

Proof Clearly, k̃i = h̃i ⊕ pi . Since for a locally symmetric space, the Casimir constant is
equal to 1/2 (see [4, 7.93]), we may calculate ci as follows. Consider any 〈· , ·〉-orthonormal
basis

{

e0j
}

in h, such that e0j ∈ h̃i for 0 ≤ j ≤ dim(h̃) and 〈e0j , h̃i 〉 = 0 for j > dim(h̃).

Obviously,
[

e0j , e
] = 0 for all e ∈ pi and j > dim(h̃). Therefore,

ci =
∑

0≤ j≤dim(h)

〈

[e0j , e], [e0j , e]
〉

=
∑

0≤ j≤dim(h̃)

〈

[e0j , e], [e0j , e]
〉

for every unit vector e ∈ pi . Consider the vectors f 0
j = 1√

γi
e0j , 1 ≤ i ≤ dim(h̃). They

form an orthonormal basis in h̃i with respect to −Bk̃. Suppose that ẽ = 1√
γi
e, where e is a

vector of unit length with respect to −B(· , ·) = 〈· , ·〉. Then, the Casimir constant (= 1/2)
of the adjoint representation of h̃i on pi satisfies the following equality:

1

2
=

∑

0≤ j≤dim(h̃)

−Bki ([ f 0
j , ẽ ], [ f 0

j , ẽ ])

=
∑

0≤ j≤dim(h̃)

γi

〈

[ f 0
j , ẽ ], [ f 0

j , ẽ ]
〉

= 1

γi

∑

0≤ j≤dim(h̃)

〈

[e0j , e], [e0j , e]
〉

= ci
γi

.

Therefore, γi = 2ci . Furthermore, since 2A = di (1 − 2ci ), we have A = di (1 − γi )/2.
The lemma is proved.

Remark 3 Since ai = A/di , i = 1, 2, 3, then a1 = a2 = a3 if and only if c1 = c2 = c3.
Note that the last equality holds if and only if the Killing (the standard) metric on the space
G/H is Einstein [4, 7.92]. Therefore, the equality a1 = a2 = a3 means the same property.

The following formulas for the Killing forms of classical Lie algebra are well known:

Bso(n)(X, Y ) = −(n − 2) trace(XY ), Bsp(n)(X, Y ) = −2(n + 1) trace(XY ),

Bsu(n)(X, Y ) = −2n trace(XY ).

Hence, if we consider the inclusion so(k + l) ⊂ so(k + l +m) with X 	→ diag(X, 0) =: X ′,
then

Bso(k+l)(X, Y ) = −(k + l − 2) trace(XY ),

Bso(k+l+m)(X ′, Y ′) = −(k + l + m − 2) trace(X ′Y ′) = −(k + l + m − 2) trace(XY ),

and, consequently, Bso(k+l) = k+l−2
k+l+m−2 · Bso(k+l+m). Using the same argument for other two

type of classical Lie algebras and Lemma 8, we easily get the values of A, a1, a2, and a3 for
the spaces (see Table 1):

SO(k + l + m)/SO(k) · SO(l) · SO(m), Sp(k + l + m)/Sp(k) · Sp(l) · Sp(m),

SU (k + l + m)/S(U (k) ·U (l) ·U (m)).
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Let us consider the pair (g, h) = (su(2l), u(l)). In this case we have k1 = so(2l),
k2 = sp(l), and k3 = s(u(l) ⊕ u(l)). From the standard inclusion so(2l) ⊂ su(2l) we
get Bso(2l)(X, Y ) = −(2l − 2) trace(XY ) and Bsu(2l)(X, Y ) = −4l trace(XY ), therefore,
γ1 = l−1

2l . By Lemma 8 we get a1 = l+1
4l . Since d1 = l(l−1), d2 = l(l+1), and d3 = l2−1,

then we get A = (l2 − 1)/4, a2 = l−1
4l , and a3 = 1/4 (recall that aidi = A). Note that

(k̃3, h̃3) = (

su(l) ⊕ su(l), diag(su(l))
)

in this case. In particular, k̃3 = su(l) ⊕ su(l) is not a
simple Lie algebra.

For all other cases in Table 1 we will apply Lemma 8 and the following method. Consider
an inclusion k ⊂ g of simple compact Lie algebras and try to determine a constant γ such
that Bk = γ · Bg, where Bk and Bg are the Killing forms of the Lie algebras k and g.
Suppose that βm (respectively, β ′

m) is one of the roots of maximal length in the Lie algebra g
(respectively, k). Then the formula

γ = Bk(β
′
m, β ′

m)

j · Bg(βm, βm)
(11)

holds, where j means the Dynkin index of the Lie subalgebra k in g, see e. g. [8, pp. 38–40]
for details. Note that the Dynkin index is a natural number and it was computed for all simple
subalgebras of exceptional Lie algebras in [9] (see also [17]). The value Bg(βm, βm) for
simple Lie algebra are shown in Table 3 (this is a reproduction of Table 3 in [8]).

Let us use this algorithm for the pair (g, h) = (so(2l), u(1) ⊕ u(l − 1)). In this case
k1 = su(l) ⊕ R, k2 = su(l) ⊕ R, and k3 = so(2l − 2) ⊕ R. Note that (k̃1, h̃1) = (k̃2, h̃2) =
(su(l), s(u(1)⊕u(l −1)), (k̃3, h̃3) = (so(2l −2), u(l −1)). Note also that the Dynkin index
j for subalgebras su(l) and so(2l−2) in so(2l) is 1. Using Table 3, we get γ1 = γ2 = l

2(l−1)

and γ3 = l−2
l−1 . Therefore, by Lemma 8 we have a1 = a2 = l−2

4(l−1) and a3 = 1
2(l−1) . Since

d1 = d2 = 2(l − 1), d3 = (l − 1)(l − 2), we also get A = (l − 2)/2.
We list all (which will be needed) symmetric pairs (g, h)with exceptional g, with pointing

of the Dynkin index j of some simple summands ( j for k is shown as k j ) in subalgebras (see
[9]):

(

e6, su(6)1 ⊕ su(2)
)

,
(

e6, so(10)
1 ⊕ R

)

,
(

e6, sp(3)
1 ⊕ sp(1)

)

, (e6, f 14 ),
(

e6, sp(4)
1) ,

(

e7, so(12)
1 ⊕ sp(1)

)

,
(

e7, e
1
6 ⊕ R

)

,
(

e7, su(8)1
)

,
(

e8, e
1
7 ⊕ sp(1)

)

,
(

e8, so(16)
1) ,

(

f4, sp(3)
1 ⊕ sp(1)

)

,
(

f4, so(9)
1) ,

This information, together with Table 2 and Table 3, the equality (11) and Lemma 8 allow
us to calculate the values of A, a1, a2, and a3 for all pairs in Table 1 with exceptional g.

Therefore, we get the numbers a1, a2, and a3 for all pairs in Table 1.

6 The set of points (a1, a2, a3) in [0, 1/2]3 and Einstein metrics

Recall that the singular points of the normalized Ricci flow on a given homogeneous space
are exactly invariant Einstein metrics. The authors of [1,2] studied local properties of the
normalized Ricci flow for generalized Wallach spaces. It is remarkable that the normalized
Ricci flow for these spaces could be represented as a planar dynamical system depended
in addition on the constants a1, a2, and a3. Even not every triple (a1, a2, a3) ∈ [0, 1/2]3
corresponds to some generalized Wallach space, it is useful to study this dynamical system
with all such triples.
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Let us consider one special algebraic surface Ω ⊂ R
3, defined by the equation

Q(a1, a2, a3) = 0, where

Q(a1, a2, a3) = (2s1 + 4s3 − 1)
(

64s51 − 64s41 + 8s31 + 12s21 − 6s1 + 1

+ 240s3s
2
1 − 240s3s1 − 1536s23s1 − 4096s33 + 60s3 + 768s23

)

− 8s1(2s1 + 4s3 − 1)(2s1 − 32s3 − 1)(10s1 + 32s3 − 5)s2
− 16s21

(

13 − 52s1 + 640s3s1 + 1024s23 − 320s3 + 52s21
)

s22

+ 64(2s1 − 1)(2s1 − 32s3 − 1)s32 + 2048s1(2s1 − 1)s42 , (12)

and

s1 = a1 + a2 + a3, s2 = a1a2 + a1a3 + a2a3, s3 = a1a2a3.

Obviously, Q(a1, a2, a3) is a symmetric polynomial in a1, a2, a3 of degree 12. The surface
Ω was very important for the statement of Theorem 7 in [1], which provides a general result
about the type of the non-degenerate singular points of the normalized Ricci flow for a
generalized Wallach space with given a1, a2, and a3.

In the rest of this section we deal only with points of the surface Ω in the cube [0, 1/2]3.
It should be noted that the position of a given point (a1, a2, a3) ∈ (0, 1/2]3 with respect to
the surface Ω determines the number and some properties of Einstein invariant metrics on
the corresponding generalized Wallach spaces. As it was pointed in Introduction, there are
many papers devoted to the classification of Einstein metric on generalized Wallach spaces.
Here, we give some general exposition of Einstein metrics on generalized Wallach spaces in
terms of the surface Ω .

We recall some important properties of Ω , see [1] for details. The points (0, 0, 1/2),
(0, 1/2, 0), and (1/2, 0, 0) are all vertices of the cube [0, 1/2]3, that are points of Ω . For
a1 = 1/2 and a2, a3 ∈ (0, 1/2] points ofΩ form a curve homeomorphic to the interval [0, 1]
with endpoints (1/2, 1/2,

√
2/4 ≈ 0.3535533905) and (1/2,

√
2/4 ≈ 0.3535533905, 1/2)

and with the singular point (a cusp) at the point a3 = a2 = (
√
5 − 1)/4 ≈ 0.3090169942.

The same is also valid under the permutation a1 → a2 → a3 → a1.
The plane s1 = a1 + a2 + a3 = 1/2 intersects the set Ω ∩ [0, 1/2]3 exactly for points in

the boundary of the triangle with the vertices (0, 0, 1/2), (0, 1/2, 0), and (1/2, 0, 0). For all
other points in Ω ∩ (0, 1/2]3 we have the inequality s1 = a1 + a2 + a3 > 1/2.

It is not difficult to show that (1/4, 1/4, 1/4) is the only point in Ω ∩ [0, 1/2]3 satisfying
the additional condition s1 = a1 + a2 + a3 = 3/4. It turns out that the point (1/4, 1/4, 1/4)
is a singular point of degree 3 of the algebraic surface Ω (see Fig. 1). This point is an elliptic
umbilic (in the sense of Darboux) on the surface Ω .

Now, we discuss a part of the surface Ω in the cube (0, 1/2)3. Recall that Ω is invariant
under the permutation a1 → a2 → a3 → a1. It should be noted that the set (0, 1/2)3 ∩ Ω is
connected. There are three curves (“edges”) of singular points onΩ (i. e. points where∇Q =
0): one of themhas parametric representation a1 = − 1

2
16t3−4t+1

8t2−1
, a2 = a3 = t , and the others

are defined by permutations of ai . These curves have a common point (1/4, 1/4, 1/4) (see
Fig. 1). The part of Ω in (0, 1/2)3 consists of three (pairwise isometric) “bubbles” spanned
on every pair of “edges”.

Another important observation is the following: the set (0, 1/2)3 \ Ω has exactly three
connected components. According to [1], we denote by O1, O2, and O3 the components
containing the points (1/6, 1/6, 1/6), (7/15, 7/15, 7/15), and (1/6, 1/4, 1/3) respectively.
Note that Q(a1, a2, a3) < 0 for (a1, a2, a3) ∈ O1 ∪ O2 and Q(a1, a2, a3) > 0 for
(a1, a2, a3) ∈ O3.
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Fig. 1 The surface Ω ∩ [0, 1/2]3

It is shown in [1] that the normalized Ricci flow for a generalized Wallach space with
(a1, a2, a3) ∈ (0, 1/2)3 \ Ω has no degenerate singular point, as a planar dynamical system.
By Theorem 7 in [1], for (a1, a2, a3) ∈ Oj the following possibilities for singular points
(i. e. Einstein metrics) of this system can occur:

(1) If j = 1 then there is four singular point, one of them is an unstable node and three
other are saddles;

(2) If j = 2 then there is four singular point, one of them is a stable node and three other
are saddles;

(3) If j = 3 then there are two singular points, that are saddles.

Now we describe the location of points (a1, a2, a3) ∈ R
3 determined by generalized

Wallach spaces from Theorem 1. Recall that every such space determines not only one point
(a1, a2, a3) but also the points obtained by permuting the values a1, a2, and a3.

For the spaces SU (k + l + m)/S
(

U (k) ×U (l) ×U (m)
)

, k ≥ l ≥ m ≥ 1, we have

a1 = k

2(k + l + m)
, a2 = l

2(k + l + m)
, a3 = m

2(k + l + m)
,

and a1 + a2 + a3 = 1/2. It is clear that all such points (a1, a2, a3) are in the component
O1. Moreover, the closure of the set of all such points coincides with the triangle in R

3 with
the vertices (0, 0, 1/2), (0, 1/2, 0), and (1/2, 0, 0). Indeed, the last assertion easily follows
from considering of the barycentric coordinates in this triangle.

For the spaces Sp(k + l + m)/Sp(k) × Sp(l) × Sp(m), k ≥ l ≥ m ≥ 1, we get

a1 = k

2(k + l + m + 1)
, a2 = l

2(k + l + m + 1)
, a3 = m

2(k + l + m + 1)
,

and a1 + a2 + a3 < 1/2. Hence, all such point are also in the component O1.
The case SO(k + l +m)/SO(k) × SO(l) × SO(m), k ≥ l ≥ m ≥ 1, is more interesting.

We have

a1 = k

2(k + l + m − 2)
, a2 = l

2(k + l + m − 2)
, a3 = m

2(k + l + m − 2)
.

For l = m = 1 we get a1 = 1/2 and a2 = a3 = 1
2k . Hence, (a1, a2, a3) /∈ (0, 1/2)3. Then

wemay assume that l ≥ 2 without loss of generality. Therefore, k ≥ l ≥ 2 and k+l+m ≥ 5.
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Note that a1 + a2 + a3 = k+l+m
2(k+l+m−2) = g(k + l + m), where g(x) = x

2(x−2) . Since the
function x 	→ x

2(x−2) decreases for x > 2, then we get that the inequality a1 + a2 + a3 ≤
3/4 = g(6) holds for all k, l,m with k + m + l ≥ 6.

For k + m + l ≤ 5 we should check only the space SO(5)/SO(2) × SO(2) × SO(1)
with a1 = a2 = 1/3 and a3 = 1/6. It is easy to see that the point (1/3, 1/3, 1/6) is in O3,
because for all points in O2 we have the inequality ai ≥ 1/4, i = 1, 2, 3.

If k + m + l = 6, then a1 + a2 + a3 = 3/4. Recall that the plane a1 + a2 + a3 = 3/4
intersects the surface Ω ∩ (0, 1/2)3 exactly in the point (1/4, 1/4, 1/4) corresponding to
the space SO(6)/SO(2)3. All other points of this plane in the cube (0, 1/2)3 are situated in
the component O3. This is the case for (a1, a2, a3) = (3/8, 1/4, 1/8) corresponding to the
space SO(6)/SO(3) × SO(2) × SO(1).

For k +m + l ≥ 7 we get a1 + a2 + a3 ≤ 7/10 = g(7) < 3/4, and such points are either
in O1 ∪O3 or in Ω . It is easy to see that there are infinitely many points of this type in O1. In
order to find all triples in O1 one should solve an inequality F(k, l,m) < 0 for natural k, l,m,
where F is a polynomial of degree 12. We will not deal with this special problem here.

In any case, for the spaces SO(k + l + m)/SO(k) × SO(l) × SO(m), there is no point
(a1, a2, a3) in the component O2.

Now, we determine the corresponding component Oi for all other generalized Wallach
spaces. For this goal we may use all the ideas as above and one more simple observation:
For a1 = a2 = a3 =: a, the point (a1, a2, a3) is in O1 (respectively, O2), if a < 1/4
(respectively, a > 1/4).

Simple calculations show that the spaces from lines 4, 7, 9, and 15 of Table 1 are such
that (a1, a2, a3) ∈ O1.

Further, the spaces from lines 5, 6, 8, 10, 12, and 14 of Table 1 are such that (a1, a2, a3) ∈
O3. Due to the first of these examples (where we have 1 -parameter family of spaces), we con-
clude that there are infinitely many points (a1, a2, a3) corresponding to generalized Wallach
spaces in O3.

The spaces from the lines 11 and 13 of Table 1 satisfy the condition (a1, a2, a3) ∈ O2.
It is interesting that there are only two generalized Wallach spaces with this property. These
spaces give an affirmative answer to the question of Christoph Böhm on the existence of
specific examples of generalized Wallach spaces with the property (a1, a2, a3) ∈ O2.

Note also that for a symmetric space G/H that is a product of three irreducible symmetric
space, we have A = 0 and (a1, a2, a3) = (0, 0, 0). Finally, for all spaces (F × F × F ×
F)/ diag(F), the equalitya1 = a2 = a3 = 1/4holds, aswell as for the space SO(6)/SO(2)3.
Recall that the point (1/4, 1/4, 1/4) is an an elliptic umbilic on the surface Ω .
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