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Abstract Let f : Mn → R
n+p be an isometric immersion of an n-dimensional Riemannian

manifold Mn into the (n + p)-dimensional Euclidean space. Its Gauss map φ: Mn →
Gn(R

n+p) into the Grassmannian Gn(R
n+p) is defined by assigning to every point of Mn

its tangent space, considered as a vector subspace of Rn+p . The third fundamental form III
of f is the pullback of the canonical Riemannian metric on Gp(R

n+p) via φ. In this article
we derive a complete classification of all those f with codimension two for which the Gauss
map φ is homothetic; i.e., III is a constant multiple of the Riemannian metric on Mn . We
furthermore study and classify codimension two submanifolds with homothetic Gaussmap in
real space forms of nonzero curvature. To conclude, based on a strong connection established
between homothetic Gauss map and minimal Einstein submanifolds, we pose a conjecture
suggesting a possible complete classification of the submanifolds with the former property
in arbitrary codimension.

Keywords Homothetic Gauss map · Third fundamental form · Minimal Einstein
submanifolds · Codimension two

1 Introduction and statement of the main results

Since the very beginning of differential geometry the Gauss map has played an important role
in surface theory. A natural generalization of this classical map for an isometric immersion
f : Mn → R

n+p of an n-dimensional Riemannian manifold into the (n + p)-dimensional
Euclidean space is defined by assigning to every point x ∈ Mn its tangent space TxM . The
Gauss map φ: Mn → Gn(R

n+p) into the Grassmannian Gn(R
n+p) of n-subspaces of Rn+p
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obtained this way has been extensively studied, and a beautiful survey on results concerning
φ and on alternative definitions of the Gauss map of f can be found in [17]. In this paper
we will mainly consider the pullback III of the canonical Riemannian metric on Gn(R

n+p)

(regarded as a symmetric space) via φ, which is called the third fundamental form of f . It is
very natural to pose the following Main Problem:

Find all Euclidean submanifolds for which the Gauss map is homothetic (i.e., III is a
constant multiple of the Riemannian metric on Mn).

Due to [15], III can be written in terms of the second fundamental form α: T M × T M →
N f M of f as

III(X, Y ) =
n∑

i=1

〈α(X, Xi ), α(Y, Xi )〉, (1)

where X1, . . . , Xn is any orthonormal tangent frame. In terms of themean curvature vector H
of f and of the Ricci tensor Ric of Mn , the Gauss equation leads to the invariant description

III(X, Y ) = n〈α(X, Y ), H〉 − Ric(X, Y ). (2)

Notice that for curves, i.e., n = 1, we have III = κ2〈·, ·〉, where κ is the curvature function.
Thus, a curve has homothetic Gauss map if and only if it has constant curvature, so that we
can assume n ≥ 2.

We obtain from (2) a strong connection between our Main Problem and minimal Ein-
stein submanifolds of Euclidean space, namely, a minimal immersion f : Mn → R

n+p has
homothetic Gauss map if and only if Mn is an Einstein manifold (for n = 2, by an Einstein
surface we mean a surface with constant Gaussian curvature). Another interesting conse-
quence of this equation is the fact that minimal Einstein submanifolds of Euclidean spheres
also have homothetic Gauss map. Indeed, minimality in the sphere easily implies that the
shape operator in the direction of H is a constant multiple of the identity map. There are
important examples of minimal Einstein submanifolds in spheres, the so-called Veronese
embeddings corresponding to the nonzero eigenvalues of the Laplacian on an irreducible
compact symmetric space. They are natural generalizations of the classical Veronese surface
RP

2 ↪→ S
4 ⊂ R

5. See [9,16,19] and Chapter 4, §5–6, of [4] for the definition and other
concrete examples.

A simple geometric construction to obtain new examples of submanifoldswith homothetic
Gauss map out of simple known ones is given by the so-called diagonal immersions. Let
fi : Mn → R

n+pi , 1 ≤ i ≤ k, be k isometric immersions of a Riemannian manifold Mn into
R
n+pi , respectively. For any k real numbers w1, . . . , wk with

∑k
i=1 w2

i = 1, the immersion

f = (w1 f1, . . . , wk fk): Mn → R
n+p, p = (k − 1)n +

k∑

i=1

pi ,

is also an isometric immersion, which is called the diagonal immersion of f1, . . . ,

fk . If f1, . . . , fk have homothetic Gauss map, then so does each diagonal immer-
sion of f1, . . . , fk , since the second fundamental form of an f above splits as α f =
(w1α f1 , . . . , wkα fk ) and accordingly III f = ∑k

i=1 w2
i III fi . In particular, diagonal immer-

sions of minimal immersions fi : Mn → S
n+pi
ci ⊂ R

n+pi+1, 1 ≤ i ≤ k, of an
Einstein manifold Mn into spheres provide a broader class of submanifolds with homo-
thetic Gauss map. Note that in this case the image of f is contained in the sphere Sn+p

c with

p = (k − 1)(n − 1) + ∑k
i=1 pi and c = (

∑
i=1

w2
i

ci
)−1.
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In [14], a partial answer to the Main Problem was obtained by Nölker under the assump-
tion of flat normal bundle. Under this restriction, the only non-totally geodesic solutions are
Riemannian products of totally umbilical submanifolds with mean curvature vectors of the
same constant length, i.e., Euclidean round spheres or curves of constant curvature. Observe
that without the assumption of flat normal bundle the Veronese surface provides a counterex-
ample to Nölker’s theorem already in codimension three. Nevertheless, we show that such
assumption can be dropped in codimension two. Throughout this paper we agree that a round
sphere Sn(r) ⊂ R

N is an n-dimensional totally umbilical submanifold of radius r , even for
n = 1.

Theorem 1 Let Mn be an n-dimensional connected Riemannian manifold, n ≥ 2, and let
f : Mn → R

n+2 be an isometric immersion. Then III = 1
r2

〈·, ·〉 with r > 0 if and only if

f (Mn) is (an open subset of) either a round sphere Sn(r) ⊂ R
n+1 ⊂ R

n+2 or a product of
two round spheres Sm(r) × S

n−m(r) ⊂ R
m+1 × R

n−m+1 = R
n+2.

As a consequence,we have that there is no substantial irreducible codimension twoEuclid-
ean submanifold with homothetic Gauss map (except curves of constant curvature in R

3).
The key fact that the third fundamental form can be written in terms of the second funda-

mental form allows us to naturally extend our Main Problem for isometric immersions into
real space forms QN

c of nonzero curvature.
A version of Nölker’s theorem for the case c 	= 0 can be easily obtained, based on the

notion of extrinsic products of isometric immersions; cf. Remark in Section 1 of [14]. Let us
recall this construction.

Let us regard the space form Q
N−1
c as

Q
N−1
c =

{
X = (x1, . . . , xN ) ∈ E

N : 〈X, X〉 = 1

c

}
.

where E
N denotes either the Euclidean space R

N or the Lorentz space L
N according to

whether c > 0 or c < 0, respectively, and x1 > 0 in the latter case. Given an orthogonal
decomposition

E
N = E

m0 × R
m1 × · · · × R

mk

and immersions f0: Mn0
0 → Q

m0−1
c0 ⊂ E

m0 and fi : Mni
i → S

mi−1
ci ⊂ R

mi , 1 ≤ i ≤ k,
then the image f (Mn) of their product immersion f = f0 × f1 × · · · × fk : Mn =
Mn0

0 × Mn1
1 × · · · × Mnk

k → E
N = E

m0 × R
m1 × · · · × R

mk given by

f (p1, . . . , pk) = ( f0(p0), f1(p1), . . . , fk(pk))

is contained in the space formQ
N−1
c of curvature c =

(∑k
i=0

1
ci

)−1
, provided that

∑k
i=0

1
ci

	=
0. If f is regarded as an immersion into Q

N−1
c , then it is called the extrinsic product of

f0, f1, . . . , fk . On the other hand, consider now an orthogonal decomposition R
N−1 =

R
m1 × · · · × R

mk and isometric immersions fi : Mi → R
mi , 1 ≤ i ≤ k. If we regard each

fi , 1 ≤ i ≤ k, as an isometric immersion intoRN−1 and consider its composition f̃i = j ◦ fi
with the umbilical inclusion j : RN−1 → H

N
c , then we also say that f̃ = j ◦ ( f1 × · · ·× fk)

is the extrinsic product of f̃1, . . . , f̃k .
Under the above notation, Nölker’s argument can be generalized in space forms to show

that every non-totally geodesic isometric immersion into space forms with flat normal bun-
dle and homothetic Gauss map is an extrinsic product of either totally umbilical isometric
immersions f0, f1, . . . , fk or f̃1, . . . , f̃k , where the mean curvature vectors Hi of fi have
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all the same constant length in the latter case, 1 ≤ i ≤ k, and ‖Hi‖ = √
ρ2 − ci for some

ρ > 0 in the former, 0 ≤ i ≤ k.
We say that an isometric immersion in space forms is irreducible if it does not split as an

extrinsic product as above. Our next result shows that the only substantial irreducible solution
of theMainProblem for codimension two submanifolds in space forms is theVeronese surface
in the 4-sphere. This togetherwith the preceding discussion provides a complete classification
of all submanifolds in space forms with codimension two and homothetic Gauss map.

Theorem 2 Let Mn be an n-dimensional connected Riemannian manifold, n ≥ 2, and let
f : Mn → Q

n+2
c be a substantial irreducible isometric immersion with homothetic Gauss

map. Then n = 2, c > 0 and f (Mn) is (an open subset of) the Veronese surface RP2 ↪→ S
4
c .

2 Minimal Einstein submanifolds

Here, we state some results related tominimal Einstein submanifolds whichwill be necessary
for the proofs of Theorems 1 and 2.

As previously mentioned, we have the following fact.

Proposition 1 Let f : Mn → R
n+p be a minimal immersion, with n ≥ 2. Then, f has

homothetic Gauss map if and only if Mn is an Einstein manifold.

By combining a result of Osserman–Chern [5] for the Gauss map and a result of Calabi [3]
for Riemann surfaces in the complex projective spaces, we know that the hyperbolic plane
can not be minimally immersed into a Euclidean space even locally. In other words, we have

Theorem 3 Every minimal surface in Euclidean space with constant Gauss curvature must
be totally geodesic.

The next conjecture, due to Di Scala [8], is the higher-dimensional version of the previous
result.

Conjecture 1 Let Mn be an Einstein manifold, with n ≥ 3. Then, any minimal isometric
immersion f : Mn → R

n+p must be totally geodesic.

According to themain result of [8], the conjecture is true ifMn is alsoKähler. Furthermore,
under the assumption of flat normal bundle, it follows as a corollary of Nölker’s theorem and
Proposition 1. In [11], Matsuyama presented a general proof in codimension two. His result
is stated below.

Theorem 4 Let Mn be an Einstein manifold, with n ≥ 3. Then, any minimal isometric
immersion f : Mn → R

n+2 with codimension two must be totally geodesic.

Theorems 3 and 4 are also true for minimal Einstein submanifolds of hyperbolic space (see
[2,11]).

In the sphere, though, the situation is different. In [10], Kenmotsu has provided a complete
classification of the minimal surfaces with constant Gaussian curvature in the 4-sphere. The
only non-totally geodesic ones are the Clifford torus and the Veronese surface. Notice that the
Clifford torus is reducible in the sense of extrinsic products. In higher dimension,Matsuyama
[11] classified the minimal Einstein submanifolds with codimension two in the sphere. The
only such submanifolds are products of up to three spheres of the same dimension and radius.
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3 The algebraic decomposition

In this section, we prove some algebraic results that will play a key role in the proofs of
Theorems 1 and 2.

We write IV for the identity automorphism on a vector space V . The spectrum of a self-
adjoint operator A and the eigenspace associated to the eigenvalue λ are denoted by �A and
EA(λ), respectively. For convenience, we set EA(λ) = {0} for λ ∈ R \ �A.

Let V andW be real vector spaces of finite dimension with positive definite inner products
and let α: V × V → W be a symmetric bilinear form. For any given ξ ∈ W , we define the
shape operator Aξ : V → V of α with respect to ξ by

〈Aξ X, Y 〉 = 〈α(X, Y ), ξ 〉.
We say that α is adapted to an orthogonal decomposition V = E1⊕ . . .⊕Ek if the subspaces
Ei , 1 ≤ i ≤ k, are preserved by all shape operators. Equivalently,

α(Ei , E j ) = 0, ∀1 ≤ i 	= j ≤ k.

Finally, a bilinear form ϕ: V × V → W is said to be umbilical if there exists a vector
ξ ∈ W such that

ϕ(X, Y ) = 〈X, Y 〉ξ
for all X , Y ∈ V . We start with a useful criterion for umbilical bilinear forms.

Lemma 1 Let V and W be real vector spaces of finite dimension, where V has a positive
definite inner product, and let ϕ: V × V → W be a bilinear form such that ϕ(X, Y ) = 0 for
all pair of orthonormal vectors X, Y ∈ V . Then ϕ is umbilical.

Proof Let {X1, . . . , Xn} be an orthonormal basis of V and write

ϕ(Xi , X j ) = ϕi j , 1 ≤ i , j ≤ n.

By linearity, all we have to prove is that ϕi j = δi jξ for some ξ ∈ W . For i 	= j , it
holds by assumption. For i = j , take the orthonormal vectors X = 1√

2
(Xi + Xk), Y =

1√
2
(Xi − Xk), i 	= k, and use the assumption to conclude that

0 = ϕ(X, Y ) = 1

2
(ϕi i − ϕkk).

Thus ξ = ϕi i does not depend on i and our lemma is proved.

Next, we study some algebraic implications of having umbilical third fundamental form.
We use Eq. (1) as an abstract definition of the third fundamental form associated to a sym-
metric bilinear form α: V × V → W .

Lemma 2 Let V n andW 2 be real vector spaces of dimensions n and 2, respectively, endowed
with positive definite inner products, and let α: V n × V n → W 2 be a symmetric bilinear
form. If the third fundamental form III associated to α is umbilical, then there is an integer
k, 1 ≤ k ≤ n, pairwise distinct nonnegative functions λ j : W 2 → R≥0, 1 ≤ j ≤ k, and an
orthogonal decomposition

V n = E1 ⊕ · · · ⊕ Ek (3)
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to which α is adapted and such that the shape operators satisfy

A2
ξ |E j = λ2j (ξ)IE j

for all ξ ∈ W 2. Moreover, the integer k, the functions λ j , 1 ≤ j ≤ k, and the above
decomposition are unique (up to permutations).

Proof Observe that �A2
ξ

= {κ2 : κ ∈ �Aξ }. Moreover,

EA2
ξ
(κ2) = EAξ (κ) ⊕ EAξ (−κ) (4)

for any ξ ∈ W 2. In particular, Aξ leaves the eigenspaces EA2
ξ
(κ2) of A2

ξ invariant.

We can assume that III 	= 0, since, otherwise, α = 0 by (1) and there is nothing to prove.
The assumption that III is umbilical, say III = 1

r2
〈·, ·〉, is equivalent to A2

ξ1
+ A2

ξ2
= 1

r2
IV ,

where {ξ1, ξ2} is any orthonormal basis of W 2. In other words, the spectra and eigenspaces
of A2

ξ1
and A2

ξ2
are related by

�A2
ξ2

=
{
1

r2
− λ2 : λ2 ∈ �A2

ξ1

}
,

EA2
ξ2

(
1

r2
− λ2

)
= EA2

ξ1
(λ2).

Thus, both Aξ1 and Aξ2 must leave the eigenspaces of A2
ξi
invariant, 1 ≤ i ≤ 2. As we are in

codimension two, it follows that α is adapted to the eigendecomposition of A2
ξi
. But since the

orthonormal basis {ξ1, ξ2} of W 2 was taken arbitrarily, we conclude that α is indeed adapted
to the eigendecomposition of any A2

ξ , ξ ∈ W 2. In other words,

AηEA2
ξ
(λ2) ⊆ EA2

ξ
(λ2), ∀ξ , η ∈ W 2,

where λ2 ∈ �A2
ξ
. In particular, the eigenspaces of each A2

ξ are invariant under any other

A2
η. Since the endomorphisms A2

ξ are self-adjoint, this is equivalent to the existence of a

common eigenbasis for the family {A2
ξ : ξ ∈ W 2}. It is now straightforward to verify that

the components E j in our decomposition (3) must be precisely the eigenspaces of the family
{A2

ξ : ξ ∈ W 2}, i.e., the maximal subspaces of common eigenvectors of all A2
ξ , ξ ∈ W 2.

Equivalently,

E j = ∩ξ∈W 2EA2
ξ

(
λ2j (ξ)

)
,

where the eigenvalues λ2j (ξ) ∈ �A2
ξ
are such that the subspace on the right-hand side of the

above equality is nonzero. This concludes the proof of the lemma.

Remark 1 Notice that, if III = 1
r2

〈·, ·〉, then λ j (ξ1)
2 + λ j (ξ2)

2 = 1
r2

for 1 ≤ j ≤ k and

every orthonormal basis {ξ1, ξ2} of W 2.

The idea now is to understand the algebraic structure of α restricted to each block of
decomposition (3).
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Lemma 3 Let Em and W 2 be real vector spaces of dimensions m and 2, respectively,
endowed with positive definite inner products, and let α: Em × Em → W 2 be a sym-
metric bilinear form. If there exists a positive function λ: W 2 \ {0} → R>0 such that the
shape operators of α satisfy

A2
ξ = λ(ξ)2 IE (5)

for every ξ ∈ W 2 \ {0}, then both λ(ξ) and − λ(ξ) are eigenvalues of Aξ and have the same
multiplicity (in particular, m is even and trace Aξ = 0).

Furthermore, for any orthonormal basis {ξ1, ξ2} of W 2, there exist ρ, σ ∈ R, σ ≥ 0,
satisfying ρ2 + σ 2 = λ(ξ2)

2 and a linear map A: E+ → E− such that

A∗A = σ 2 IE+ AA∗ = σ 2 IE− (6)

and

Aξ1 = λ(ξ1)(π
+ − π−),

Aξ2 = (ρ IE + A)π+ + (−ρ IE + A∗)π−, (7)

where E± = EAξ1
(±λ(ξ1)) and π± is the orthogonal projection π±: Em → E±.

Proof Take any orthonormal basis {ξ1, ξ2} of W 2. We have that

A2
ξ1+ξ2

= (Aξ1 + Aξ2)
2 = A2

ξ1
+ A2

ξ2
+ Aξ1 Aξ2 + Aξ2 Aξ1 .

By the assumption, we obtain

Aξ1 Aξ2 + Aξ2 Aξ1 = β IE (8)

for some real number β.
For simplicity of notation set λ(ξ1) = λ̃. Since A2

ξ1
= λ̃2 IE , it follows that �Aξ1

⊆
{−λ̃, λ̃}. Write

Aξ1 = λ̃(π+ − π−), Aξ2 = (A+ + A)π+ + (A− + B)π−

according to the eigendecomposition of Aξ1 , where A±: E± → E±, A: E+ → E− and
B: E− → E+. As Aξ2 is self-adjoint, we must have

B = A∗. (9)

Then Aξ1 Aξ2 + Aξ2 Aξ1 = 2λ̃(A+π+ − A−π−) and (8) yields

A± = ±ρ IE± (10)

with ρ = β

2λ̃
. Now, it follows using (9) and (10) that A2

ξ2
= ρ2 IE + A∗Aπ+ + AA∗π−.

Since A∗A and AA∗ are positive operators, we conclude by using the assumption on the
shape operators again that λ(ξ2)

2 − ρ2 ≥ 0 and obtain (6) for σ 2 = λ(ξ2)
2 − ρ2. If σ = 0,

then A = 0 and thus Aξ2 = ρ(π+ − π−). But this implies that Aξ = 0 for some ξ 	= 0,
which contradicts the positivity of λ. Therefore, σ 	= 0 and A: E+ → E− is an isomorphism.
In particular, both λ̃ and −λ̃ are eigenvalues of Aξ1 and have the same multiplicity. Since
ξ1 ∈ W 2 \ {0} was taken arbitrarily, the proof is complete.

Remark 2 Observe that λ is positive if and only if Im α = span{α(X, Y ): X , Y ∈ Em} is
two-dimensional. In the case where there is a nonzero vector ξ ∈ W 2 such that λ(ξ) = 0,
(6) and (7) still hold provided that ξ1 is not collinear to ξ . However, A = 0 and then
dim E+ 	= dim E− in general.
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We finally compile the information contained in (6) and (7) by means of certain umbilical
bilinear forms derived fromα and A. DefineαA: E+×E+ → W 2 andαA∗ : E−×E− → W 2

by αA(X, Y ) = α(X, AY ) and αA∗(X, Y ) = α(X, A∗Y ).

Lemma 4 Let α and A be as in Lemma 3. Then the bilinear forms α|E+×E+ , α|E−×E− , αA,
αA∗ are all umbilical. More precisely, we have

α|E+×E+(X, Y ) = 〈X, Y 〉(λ(ξ1)ξ1 + ρξ2), αA(X, Y ) = 〈X, Y 〉σ 2ξ2,

α|E−×E−(X, Y ) = −〈X, Y 〉(λ(ξ1)ξ1 + ρξ2), αA∗(X, Y ) = 〈X, Y 〉σ 2ξ2
(11)

for all X, Y in the corresponding domains.

Proof We argue for αA, the other cases being similar. Since E+ and E− are eigenspaces of
Aξ1 associated to distinct eigenvalues, it follows that

〈αA(X, Y ), ξ1〉 = 0 (12)

for any X , Y ∈ E+. On the other hand, (6) and (7) imply that

〈αA(X, Y ), ξ2〉 = 〈AX, AY 〉 = 〈X, Y 〉σ 2.

Therefore αA(X, Y ) = 〈X, Y 〉σ 2ξ2 and the lemma is proved.

4 Proofs of Theorems 1 and 2

The main goal of this section is to prove Theorems 1 and 2. Additionally, we conclude
posing a conjecture suggesting a possible complete solution to our Main Problem in arbitrary
codimension.

Throughout this section, we denote by ∇ and ∇⊥ the Levi-Civita connection of Mn and
the normal connection of f , respectively.

The following result is of independent interest.

Proposition 2 Let f : Mn → R
n+p be an isometric immersion, and suppose that there exists

a totally geodesic submanifold L in Mn such that α is adapted to (T L , T L⊥ ∩ T M). Then
f |L admits a reduction of codimension to p.

Proof Let (α,∇⊥) and (αL , L∇⊥) denote the second fundamental forms and normal connec-
tions of f and f |L , respectively. In terms of the second fundamental forms, the assumption
that L is a totally geodesic submanifold of Mn means that

αL = α|T L×T L . (13)

In particular, we have N1L ⊆ N1M , where N1M and N1L are the first normal spaces of f
and f |L , respectively.

The assumption that α is adapted to (T L , T L⊥ ∩ T M) implies that Aξ X ∈ T L for all
ξ ∈ N f M whenever X ∈ T L . In other words,

AL
ξ = Aξ |T L (14)

for all ξ ∈ N f M , where AL
ξ denotes the shape operator of f |L with respect to ξ . Hence,

comparing the Weingarten formulas of f and f |L we obtain

L∇⊥
X ξ = ∇⊥

X ξ , ∀X ∈ T L and ξ ∈ N f M.
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Therefore, N f M is a parallel subbundle of rank p of the normal bundle N f |L L containing
N1L . The statement then follows from a well-known fact about reduction of codimension
(cf. [6]).

Remark 3 Let IIIL : T L × T L → R denote the third fundamental form of f |L . Since α is
adapted to (T L , T L⊥ ∩ T M), it follows immediately from (13) that

IIIL = III|T L×T L ,

where III is the third fundamental form of f .

Let us start to carry out the proofs of Theorems 1 and 2. By Lemma 2 we get at each
x ∈ Mn an integer k, 1 ≤ k ≤ n, pairwise distinct nonnegative functions λ j : N f M(x) →
R≥0, 1 ≤ j ≤ k, and an orthogonal decomposition

TxM = E1 ⊕ · · · ⊕ Ek (15)

to which the second fundamental form αx : TxM × TxM → N f M(x) is adapted and such
that the shape operators satisfy

A2
ξ |E j = λ j (ξ)2 IE j , ∀ξ ∈ N f M(x).

In particular, since the integer k, the functions λ j , 1 ≤ j ≤ k, and the above decomposition
are unique up to permutations, we can choose them to be smooth along an open dense subset
U of Mn . In fact, we first claim that, at each point x ∈ Mn , there exists a normal vector
ξx ∈ N f M(x) such that the numbers λ1(ξx ), . . . , λk(ξx ) are pairwise distinct. Suppose
otherwise and let l < k be the maximum number such that λ1(ξ0), . . . , λl(ξ0) are pairwise
distinct for some ξ0 ∈ N f M(x). Pick vectors ξi ∈ N f M(x) for which λl+1(ξi ) 	= λi (ξi ),
1 ≤ i ≤ l. This is possible, since the functions λ1, . . . λk are pairwise distinct. Now, set
ξ = ξ0 + tiξi and observe that, for a unit vector Xm ∈ Em, 1 ≤ m ≤ k, we have

λ2m(ξ) = 〈
A2

ξ0+ti ξi Xm, Xm
〉

= λ2m(ξ0) + 2〈Aξ0 Xm, Aξi Xm〉ti + λ2m(ξi )t
2
i . (16)

Thus, pi = λ2l+1(ξ)−λ2i (ξ) is a quadratic polynomial in the variable ti , and hence has at most
two zeros, 1 ≤ i ≤ l. In particular, pi 	= 0 for ti sufficiently small. So, we can iteratively
reset ξ0 as follows. Choose t1 sufficiently small such that λ1(ξ), . . . , λl(ξ) for ξ = ξ0 + t1ξ1
remain pairwise distinct and p1 	= 0. Reset ξ0 := ξ and repeat the process for t2, getting
a new ξ = ξ0 + t2ξ2 with λ1(ξ), . . . , λl(ξ) pairwise distinct and p1, p2 	= 0. Continue
the process up to the l th step, obtaining a ξ = ξ0 + tlξl such that λ1(ξ), . . . , λl(ξ) remain
pairwise distinct and p j 	= 0 for all 1 ≤ j ≤ l. But it just means that if we add λl+1(ξ) to the
previous list they are still pairwise distinct, contradicting the maximality of l. This concludes
the proof of our claim.

Now, extend ξx to a smooth unit normal vector field ξ in a neighborhood of x . As the
number of eigenvalues of Aξ is a lower semi-continuous function, so is k(x). In particular, k
is constant along the connected components of an open dense subsetU of Mn . Furthermore,
since λ1, . . . , λk and E1, . . . , Ek are, respectively, the eigenvalues and eigenspaces of a
shape operator by the above argument,we conclude that they are smooth along each connected
component of U , as we wished.

To prove Theorem 1, it suffices to show that f has flat normal bundle, and the result will
follow from Nölker’s. Suppose otherwise and take a point x ∈ U at which this property
fails. By the Ricci equation, it means that the shape operators {Aξ : ξ ∈ N f M(x)} are not
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simultaneously diagonalizable. Thus, there is at least one index j , 1 ≤ j ≤ k, such that the
family {Aξ |E j : ξ ∈ N f M(x)} is not simultaneously diagonalizable. In particular, since we
are in codimension two, no Aξ |E j with ξ 	= 0 can vanish identically, so that λ j (ξ) 	= 0 for
every ξ ∈ N f M(x) \ {0} and Lemma 3 applies to α|E j×E j . This clearly remains valid in a
small neighborhood U ′ ⊂ U of x .

Lemma 5 E j is a totally geodesic (hence integrable) distribution on U ′.

Proof Let Ei be another distribution in decomposition (15). Since E j and Ei are orthogonal,
we can define a tensor ϕ: E j × E j → Ei by projecting ∇XY orthogonally onto Ei , i.e.,

ϕ(X, Y ) = (∇XY )Ei . (17)

All we have to prove is that ϕ vanishes identically. Consider U0 ⊂ U ′ the set where there
is a nonzero normal vector ξ ∈ N f M such that λi (ξ) = 0. We point out that U0 may a
priori be empty. Nevertheless, it does not affect the proof at all. Actually, the main reason to
define U0 is that, although the algebraic structure of the second fundamental form provided
by Lemma 3 applies for any chosen orthonormal normal basis {ξ1, ξ2} under the assumption
that λ never vanishes, when working in U0, in order that (6) and (7) can still hold, Remark
2 requires that ξ1 not be collinear to the above ξ , that is, within U0 we need a bit of care to
choose our orthonormal frame in order to be able to carry out the computations making use
of the structure provided in Lemma 3.

So, at each point in U ′, the functions λ j and λi are distinct, so that we can take a (local)
smooth unit normal vector field ξ1 for which λ j (ξ1) 	= λi (ξ1) everywhere. Furthermore,
when working in U0, we choose ξ1 such that λi (ξ1) 	= 0 as explained above. Let {ξ1, ξ2} be
a smooth orthonormal normal frame. We write λ j (ξ1) = λ̃ j , λi (ξ1) = λ̃i for simplicity and
denote by (ρ j , σ j , A j : E+

j → E−
j ) and (ρi , σi , Ai : E+

i → E−
i ) the triples given by Lemma

3 and Remark 2 applied to α|E j×E j and α|Ei×Ei , respectively (recall that σ j 	= 0 and A j is
an isomorphism).

In what follows, the fact that α is adapted to (15), together with (6), (7) and (11), is often
used without explicit mention.

Let us define tensors ϕA±
j
: E±

j × E±
j → Ei by

ϕA±
j
(X, Y ) = ϕ(X, A±

j Y ),

wherewewrite A+
j = A j and A−

j = A∗
j . Since A

±
j : E±

j → E∓
j is an isomorphism, it suffices

to show that ϕ|E±
j ×E±

j
and ϕA±

j
vanish identically to conclude the proof of the lemma. Our

first goal is to show that, since α|E±
j ×E±

j
and αA±

j
are umbilical bilinear forms by Lemma 4,

the same property holds for ϕ|E±
j ×E±

j
and ϕA±

j
. The symbol ∓ is used when ± has already

appeared in the same context, to indicate the sign opposite to the one represented by the latter.
Using that α is adapted to (15) together with (11), the Codazzi equation for (Z ∈ Ei , X ∈

E±
j , Y ∈ E±

j : Y ⊥ X) becomes

α(∇Z X, Y ) + α(X,∇ZY ) = α(∇X Z , Y ) + α(Z ,∇XY ).

Taking the inner product of the equation above with ξ1, the pairwise orthogonality of X , Y , Z
yields (recall that E±

j is the eigenspace of Aξ1 |E j associated to ±λ̃ j )

〈ϕ(X, Y ), (Aξ1 ∓ λ̃ j IEi )Z〉 = 0.

Since ±λ̃ j /∈ �Aξ1 |Ei (after all, λ̃ j 	= λ̃i ), we have that Aξ1 |Ei ∓ λ̃ j IEi is an isomorphism

of Ei and thus ϕ(X, Y ) = 0 for all orthonormal pair X , Y ∈ E±
j . Therefore, it follows from
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Lemma 1 that the bilinear form ϕ|E±
j ×E±

j
is umbilical. In other words, there exists a vector

field P± ∈ Ei such that

ϕ|E±
j ×E±

j
= 〈·, ·〉P±.

Taking now the inner product of the same equation with ξ2, (7) and again the pairwise
orthogonality of X , Y , Z give (we use the above to conclude that the term 〈ϕ(X, Y ), (Aξ2 ∓
ρ j IEi )Z〉 vanishes)

〈
ϕA±

j
(X, Y ), Z

〉
= −

〈
∇Z X, A±

j Y
〉
−

〈
∇ZY, A±

j X
〉
. (18)

In particular, as the right-hand side is symmetric in X , Y , so is the bilinear form ϕA±
j
.

Using that α(X, A±
j Y ) = αA±

j
(X, Y ) = 0 by Lemma 4, the Codazzi equation for (Z ∈

Ei , X ∈ E±
j , A±

j Y : Y ∈ E±
j ; Y ⊥ X) yields

α
(
∇Z X, A±

j Y
)

+ α
(
X,∇Z A

±
j Y

)
= α

(
∇X Z , A±

j Y
)

+ α
(
Z ,∇X A

±
j Y

)
.

Taking the inner product of the above equation with ξ1 and taking into account that A±
j Y ∈

E∓
j , we obtain

〈
ϕA±

j
(X, Y ), (Aξ1 ± λ̃ j IEi )Z

〉
= ∓2λ̃ j

〈
∇Z X, A±

j Y
〉
, (19)

which alongside the symmetry of ϕA±
j
gives 〈∇Z X, A±

j Y 〉 = 〈∇ZY, A±
j X〉. This and (18)

then yield
〈
ϕA±

j
(X, Y ), Z

〉
= −2

〈
∇Z X, A±

j Y
〉
. (20)

Now, multiply (20) by ∓λ̃ j and add the result to (19), to obtain
〈
ϕA±

j
(X, Y ), Aξ1 Z

〉
= 0.

Recalling that we have chosen ξ1 such that λ̃i 	= 0 and hence Aξ1 |Ei is an isomorphism of
Ei , we get that ϕA±

j
(X, Y ) = 0 for all orthonormal pair X , Y ∈ E±

j . Lemma 1 again applies

to conclude that ϕA±
j
is also an umbilical bilinear form. Let Q± ∈ Ei be such that

ϕA±
j

= 〈·, ·〉Q±.

It remains only to show that P± and Q± vanish. The idea now is to explore how the
Codazzi equation relates P± and Q±. First, observe that

ϕ(A j X, A j X) = σ 2
j P

−, ϕ(A j X, X) = Q− (21)

for a unit vector X ∈ E+
j . One can check these identities by simply writing X as X = 1

σ j
A∗
j Y

with Y ∈ E−
j of unit length, since 1

σ j
A∗
j : E−

j → E+
j is an orthogonal transformation, and

then evaluating the left-hand side using (6).
Consider the Codazzi equation for (X ∈ E+

j : ‖X‖ = 1, A j X, Z ∈ E±
i ),

α(∇X A j X, Z) + α(A j X,∇X Z) = α(∇A j X X, Z) + α(X,∇A j X Z). (22)
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Taking the inner product of this with ξ1 and using the equation on the right in (21), we have

(λ̃ j ∓ λ̃i )〈Q−, Z〉 = −(λ̃ j ± λ̃i )〈Q+, Z〉. (23)

On the other hand, the Codazzi equation for (Z ∈ E±
i , X ∈ E+

j : ‖X‖ = 1, X) gives

∇⊥
Z α(X, X) − 2α(∇Z X, X) = −α(∇X Z , X) − α(Z ,∇X X).

Comparing this to the same equation for (Z ∈ E±
i , Y ∈ E−

j : ‖Y‖ = 1, Y ), we see by (11)

that the two terms involving the normal connection ∇⊥ are equal up to sign, so that we can
add the equations up in order to get rid of them. After doing so, take the inner product of the
resulting equation with ξ1 and ξ2 to obtain

(λ̃ j ± λ̃i )〈P−, Z〉 = (λ̃ j ∓ λ̃i )〈P+, Z〉 (24)

and
〈
P−, (ρ j ± ρi )Z + A±

i Z
〉 − 〈

P+, (ρ j ∓ ρi )Z − A±
i Z

〉 = 〈
Q+ + Q−, Z

〉 + 2Ξ,

respectively, where Ξ = 〈∇Z X, A j X〉 + 〈∇ZY, A∗
j Y 〉 is independent of the unit vectors

X ∈ E+
j , Y ∈ E−

j . In particular, setting Y = 1
σ j

A j X [note that ‖Y‖ = 1 by (6)], we
conclude that Ξ = 0. Therefore,

〈Q+ + Q−, Z〉 = 〈
P−, (ρ j ± ρi )Z + A±

i Z
〉 − 〈

P+, (ρ j ∓ ρi )Z − A±
i Z

〉
. (25)

Finally, take the inner product of (22) with ξ2 and use both equations in (21) to get that
〈
Q+, (ρ j ± ρi )Z + A±

i Z
〉 + 〈

Q−, (ρ j ∓ ρi )Z − A±
i Z

〉 = σ 2
j 〈P+ − P−, Z〉. (26)

Now, if we multiply (25) and (26) by (λ̃ j ± λ̃i )(λ̃ j ∓ λ̃i ) = (λ̃2j − λ̃2i ) and use (23) and (24)
into the resulting equations, we obtain a couple of expressions involving only P+ and Q+:

λ̃i (λ̃ j ± λ̃i )〈Q+, Z〉 =
〈
P+, (λ̃ j ∓ λ̃i )(ρ j λ̃i − ρi λ̃ j )Z ∓ λ̃ j (λ̃ j ± λ̃i )A

±
i Z

〉
, (27)

σ 2
j λ̃i (λ̃ j ∓ λ̃i )〈P+, Z〉 =

〈
Q+, (λ̃ j ± λ̃i )(ρi λ̃ j − ρ j λ̃i )Z ± λ̃ j (λ̃ j ∓ λ̃i )A

±
i Z

〉
. (28)

By changing Z to A±
i Z in (27) (remind that A±

i Z ∈ E∓
i ), we obtain

λ̃i (λ̃ j ∓ λ̃i )〈Q+, A±
i Z〉 =

〈
P+, (λ̃ j ± λ̃i )(ρ j λ̃i − ρi λ̃ j )A

±
i Z ± λ̃ j (λ̃ j ∓ λ̃i )σ

2
i Z

〉
. (29)

Multiplying (28) by λ̃i and using (27) and (29) yield an equation just in terms of P+:
(
(ρi λ̃ j − ρ j λ̃i )

2 + σ 2
j λ̃

2
i − σ 2

i λ̃2j

) (
λ̃ j ∓ λ̃i

)
〈P+, Z〉

±2
(
ρi λ̃ j − ρ j λ̃i

)
λ̃ j

(
λ̃ j ± λ̃i

) 〈
P+, A±

i Z
〉 = 0. (30)

We can again change Z to A±
i Z in (30), getting

2σ 2
i (ρi λ̃ j − ρ j λ̃i )λ̃ j (λ̃ j ∓ λ̃i )〈P+, Z〉 ∓

(
(ρi λ̃ j − ρ j λ̃i )

2

+σ 2
j λ̃

2
i − σ 2

i λ̃2j

)
(λ̃ j ± λ̃i )〈P+, A±

i Z〉 = 0. (31)
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Equations (30) and (31) constitute a homogeneous linear system in the variables 〈P+, Z〉
and 〈P+, A±

i Z〉 whose determinant d is given by

d = ±
(
λ̃2i − λ̃2j

) [(
(ρi λ̃ j − ρ j λ̃i )

2 + σ 2
j λ̃

2
i − σ 2

i λ̃2j

)2 + 4σ 2
i (ρi λ̃ j − ρ j λ̃i )

2λ̃2j

]
.

We show next that d 	= 0. Suppose that d = 0. Then, since λ̃ j 	= λ̃i ,

(ρi λ̃ j − ρ j λ̃i )
2 + σ 2

j λ̃
2
i − σ 2

i λ̃2j = 0, (32)

σi (ρi λ̃ j − ρ j λ̃i ) = 0. (33)

Of course, σi 	= 0. Otherwise, (32) and λ̃i 	= 0 would imply that σ j = 0, which is a
contradiction. So, by (33),

ρi λ̃ j = ρ j λ̃i . (34)

This and (32) then give

σ 2
i λ̃2j = σ 2

j λ̃
2
i . (35)

Now, it follows from Lemma 3 and Remark 1 that ρ2
l + σ 2

l = 1
r2

− λ̃2l , for l ∈ {i, j}. Hence,
(34) and (35) imply that

(
1

r2
− λ̃2i

)
λ̃2j =

(
1

r2
− λ̃2j

)
λ̃2i ,

which leads to a contradiction with λ̃ j 	= λ̃i . Therefore, d 	= 0 and thus P+ = 0. Finally,
(27) together with (23) and (24) yields P− = 0 and Q± = 0, as we wished. Hence the lemma
is proved.

We are now in position to prove Theorem 1.

Proof of Theorem 1 Let L be a totally geodesic integral submanifold of E j . Sinceα is adapted
to (T L , T L⊥ ∩ T M), it follows from Proposition 2 that the isometric immersion f |L admits
a reduction of codimension to 2. Moreover, from Lemma 3 and (14) we have that f |L is
minimal. Finally, Remark 3 implies that f |L also has homothetic Gauss map with the same
homothety factor 1

r2
. Therefore, it follows from Proposition 1 that L is an Einstein manifold.

In other words, L is a minimal Einstein submanifold with codimension two. However, this
contradicts Theorem 4 (resp. Theorem 3 if dim L = 2), since f |L is non-totally geodesic.
Therefore, f has flat normal bundle and the theorem follows from Nölker’s theorem.

The following lemma is necessary for the proof of Theorem 2.

Lemma 6 Take an open subset of Mn where E1, . . . , Ek as in the proof of Theorem 1
constitute smooth distributions. Then, every Ei such that λi (ξ1) = 0 for some smooth unit
normal vector field ξ1 ∈ N f M is parallel with respect to the Levi-Civita connection of Mn.

Proof Throughout this proof, we take a unit normal vector field ξ2 orthogonal to ξ1 and use
the normal frame {ξ1, ξ2}. We consider three cases:

(a) R⊥ = 0. The assumption that λi (ξ1) = 0 for some smooth unit normal vector field
ξ1 ∈ N f M is not used in this case. By the Ricci equation, there exists an orthonormal tangent
frame {X1, . . . , Xn} such that

α(Xi , X j ) = 0, 1 ≤ i 	= j ≤ n.
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Therefore, for each x ∈ Mn the tangent space TxM decomposes orthogonally as

TxM = D1(x) ⊕ . . . ⊕ Ds(x),

where each Di (x) is a common eigenspace of all shape operators, that is,

Aξ Xi = μi (ξ)Xi

if Xi ∈ Di (x), 1 ≤ i ≤ s = s(x), and μi 	= μ j for i 	= j . Now, it follows by the uniqueness
part of Lemma 2 that s = k, μi = λi and Di = Ei , 1 ≤ i ≤ k. In this special case, the maps
ξ �→ λi (ξ) are linear and hence there exist unique normal vector fields ηi , 1 ≤ i ≤ k, called
the principal normals of f , such that λi (ξ) = 〈ηi , ξ 〉. Therefore,

Ei = {X ∈ T M : α(X, Y ) = 〈X, Y 〉ηi for all Y ∈ T M}, 1 ≤ i ≤ k,

and the second fundamental form of f has the simple representation

α(X, Y ) =
k∑

i=1

〈Xi , Y i 〉ηi (36)

for all X , Y ∈ T M , where X �→ Xi is the orthogonal projection onto Ei . Then, the assump-
tion on the Gauss map implies that

‖ηi‖2 = III(Xi , Xi ) = 1

r2
, (37)

where Xi ∈ Ei is a unit vector. Therefore, since ηi 	= η j , 1 ≤ i 	= j ≤ k, it follows from
the Cauchy–Schwarz inequality that

〈ηi , η j 〉 <
1

r2
, 1 ≤ i 	= j ≤ k. (38)

Consider the tensor ϕi j : T M×Ei → E j defined by ϕi j (X, Y ) = (∇XY )E j , 1 ≤ i 	= j ≤ k.
To conclude that Ei is parallel in the Levi-Civita connection, 1 ≤ i ≤ k, we must show that
all ϕi j are identically zero, for 1 ≤ i 	= j ≤ k.

The Codazzi equation for (Z ∈ E j , X ∈ Ei , Y ∈ Ei ) and (36) give

〈X, Y 〉∇⊥
Z ηi = 〈ϕi j (X, Y ), Z〉(ηi − η j ). (39)

Taking the inner product with ηi , we have, by (37) and (38),

〈ϕi j (X, Y ), Z〉 = 0. (40)

Since X , Y ∈ Ei , Z ∈ E j and the indices i 	= j have been arbitrarily chosen, the above
equation implies that each Ei is a totally geodesic distribution, 1 ≤ i ≤ k. Thus, in order
to conclude that Ei is parallel in the Levi-Civita connection, it remains only to check (40)
for X ∈ El , Y ∈ Ei , Z ∈ E j and pairwise distinct indices i , j , l, since 〈ϕi j (X, Y ), Z〉 =
−〈ϕ j i (X, Z), Y 〉 = 0 for X , Z ∈ E j , Y ∈ Ei .

We claim that this follows from the Codazzi equation for (X ∈ El , Y ∈ Ei , Z ∈ E j ). In
fact, the latter gives

〈ϕi j (X, Y ), Z〉(η j − ηi ) = 〈ϕl j (Y, X), Z〉(η j − ηl).

But since ηi , η j , ηl are pairwise distinct and have the same norm, it is straightforward to
conclude that the vectors η j − ηi and η j − ηl cannot be collinear, so that

〈ϕi j (X, Y ), Z〉 = 0, (41)
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as we wished.
(b) dim Ei ≥ 2. We show that R⊥ = 0, hence reducing the problem to the previous case.

Since λi (ξ1) = 0, we have that Ei ⊆ ker Aξ1 . Furthermore, the assumption of homothetic
Gauss map implies that

A2
ξ2

|ker Aξ1
= 1

r2
Iker Aξ1

. (42)

From this we then obtain that

A2
ξ |ker Aξ1

=
( 〈ξ, ξ2〉

r

)2

Iker Aξ1

for every ξ ∈ N f M , so that ker Aξ1 fits into decomposition (3). By uniqueness, we conclude
that actually Ei = ker Aξ1 . Now, it is a consequence of (4) and (42) that

Ei ⊆ EAξ2

(
−1

r

)
⊕ EAξ2

(
1

r

)
.

We claim that equality holds in the above inclusion. Indeed, take for instance a vector X ∈
EAξ2

( 1
r

)
. In particular, A2

ξ2
X = 1

r2
X . The assumption on the Gauss map then yields A2

ξ1
X =

0 and, consequently, X ∈ ker Aξ1 = Ei . In other words, EAξ2

( 1
r

) ⊂ Ei . Similarly, we show

that EAξ2

(− 1
r

) ⊂ Ei , so that our claim is proved, i.e.,

Ei = EAξ2

(
−1

r

)
⊕ EAξ2

(
1

r

)
. (43)

Take an orthonormal frame {X1, . . . , Xm} of eigenvectors of Aξ2 |Ei , so that Aξ2 X j = ± 1
r X j ,

1 ≤ j ≤ m. Note that α(X j , Xl) = ± 1
r δ jlξ2. Let ω be the normal connection 1-form on

T M defined by ω(X) = 〈∇⊥
X ξ1, ξ2〉. We will check that ω = 0 to conclude that R⊥ = 0,

since the codimension is two.
We claim that Ei is a totally geodesic distribution. To see this, consider the tensor ϕ :

Ei × Ei → E⊥
i ∩ T M defined by ϕ(X, Y ) = (∇XY )E⊥

i ∩T M . It suffices to show that

ϕ(X j , Xl) = 0 for 1 ≤ j , l ≤ m. The Codazzi equation for (Y ∈ E⊥
i ∩T M, X j , X j ) yields

± 1

r
∇⊥
Y ξ2 = −α(∇X j Y, X j ) − α(Y,∇X j X j ). (44)

Taking the inner product with ξ2 gives 〈ϕ(X j , X j ),
(
Aξ2 ∓ 1

r IT M
)
Y 〉 = 0. But, by (43), we

have that Aξ2 ∓ 1
r IT M maps E⊥

i ∩ T M onto E⊥
i ∩ T M . Thus, we conclude from the above

that ϕ(X j , X j ) = 0 for all 1 ≤ j ≤ m. Take now the inner product of (44) with ξ1. By the
above and Ei = ker Aξ1 we obtain

ω(Y ) = 0 (45)

for all Y ∈ E⊥
i ∩ T M .

On the other hand, the Codazzi equation for (Y ∈ E⊥
i ∩ T M, X j , Xl), j 	= l, now gives

α(∇Y X j , Xl) + α(X j ,∇Y Xl) = α(∇X j Y, Xl) + α(Y,∇X j Xl).

Since Ei = ker Aξ1 , taking the inner product with ξ1 yields

〈ϕ(X j , Xl), Aξ1Y 〉 = 0.
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However, Aξ1 |E⊥
i ∩T M is an isomorphism of E⊥

i ∩ T M , and therefore

ϕ(X j , Xl) = 0.

for j 	= l. This concludes the proof of the claim.
Finally, Codazzi equation for (X ∈ Ei , Y ∈ Ei , ξ1) together with the claim just proved

implies that

ω(Y )Aξ2 X = ω(X)Aξ2Y.

Since Aξ2 |Ei : Ei → Ei is an isomorphism and we are under the assumption dim Ei ≥ 2, it
follows that

ω|Ei = 0.

This and (45) show that ω vanishes identically and thus R⊥ = 0, as we wished.
(c) Neither (a) nor (b) occurs. Let ϕ jl : T M × E j → El be the tensor defined as in case

(a), for any pair of distinct indices j , l. Set

Γ = { j : λ j (ξ) = 0 for some ξ ∈ N f M}.
By assumption, i ∈ Γ . If dim E j ≥ 2 for some j ∈ Γ , we can conclude as in case (b) that
R⊥ = 0. Therefore, there is no loss of generality in assuming that all E j for j ∈ Γ are
line bundles. Let E j be locally spanned by a unit vector field X j . So, {X j : j ∈ Γ } is an
orthonormal basis of F = ⊕ j∈Γ E j that diagonalizes all shape operators. Then, we can use
the same argument as in case (a) to show that, if j ∈ Γ ,

ϕi j (X, Y ) = 0 (46)

for all X ∈ F and Y ∈ Ei . To check that the same holds for X /∈ F , we can assume by
tensoriality that X ∈ El with l /∈ Γ , so that the second fundamental form restricted to El

has the algebraic structure given by Lemma 3. For simplicity, we write λ j (ξ1) = λ̃ j and
λ j (ξ2) = ρ j for j ∈ Γ . Notice that λ̃i = 0 by assumption and ρi = ± 1

r by Remark 1.
Replacing ξ2 by −ξ2 if necessary, we can assume ρi = 1

r . Furthermore, it holds that λ̃ j 	= 0,
for Ei = ker Aξ1 .

Using the Codazzi equation for (Xi , X j , X ∈ E±
l ) we have

α(∇Xi X j , X) + α(X j ,∇Xi X) = α(∇X j Xi , X) + α(Xi ,∇X j X).

Taking the inner product with ξ1 and ξ2 yields

(λ̃ j ∓ λ̃l)〈ϕ jl(Xi , X j ), X〉 = ∓λ̃l〈ϕil(X j , Xi ), X〉 (47)

and

〈
ϕ jl(Xi , X j ), (A

±
l − (ρ j ∓ ρl)IEl )X

〉 =
〈
ϕil(X j , Xi ),

(
A±
l −

(
1

r
∓ ρl

)
IEl

)
X

〉
,(48)

respectively. Multiplying (48) by λ̃l and using (47), we obtain
〈
ϕ jl(Xi , X j ),

(
λ̃ j A

±
l +

(
λ̃ j

(
1

r
∓ ρl

)
∓ λ̃l

(
1

r
− ρ j

))
IEl

)
X

〉
= 0. (49)

Now, using the Codazzi equation for (X ∈ E±
l , Xi , X j ) we have

α(∇X Xi , X j ) + α(Xi ,∇X X j ) = α(∇Xi X, X j ) + α(X,∇Xi X j ).
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On the other hand, taking the inner product with ξ1 and ξ2 we get

(λ̃ j ∓ λ̃l)〈ϕ jl(Xi , X j ), X〉 = −λ̃ j 〈ϕi j (X, Xi ), X j 〉 (50)

and
(
1

r
− ρ j

) 〈
ϕi j (X, Xi ), X j

〉 = 〈
ϕ jl(Xi , X j ),

(
(ρ j ∓ ρl)IEl − A±

l

)
X

〉
, (51)

respectively, where we set for convenience ϕi j (X, Xi ) = 0 in the case i = j . Multiplying
(51) by λ̃ j and using (50) give

〈
ϕ jl(Xi , X j ),

(
λ̃ j A

±
l −

(
λ̃ j

(
1

r
∓ ρl

)
∓ λ̃l

(
1

r
− ρ j

))
IEl

)
X

〉
= 0. (52)

Finally, add (49) and (52) to conclude that 〈ϕ jl(Xi , X j ), A
±
l X〉 = 0 for all X ∈ E±

l . Since
A±
l : E±

l → E∓
l is an isomorphism, it follows that

ϕ jl(Xi , X j ) = 0. (53)

This together with (50) shows that (46) also holds for X ∈ E±
l , l /∈ Γ , and hence ϕi j = 0

for every j ∈ Γ . It remains to verify that ϕil = 0 for l /∈ Γ . But then we know from Lemma
5 that El is a totally geodesic distribution. In particular,

ϕil(X, Xi ) = 0, ∀X ∈ El . (54)

Moreover, it follows from (47) and (53) that (54) also holds for X = X j with j ∈ Γ , and
thus for all X ∈ F . So, in order to conclude that ϕil = 0, it remains only to check (54) for
X ∈ El ′ with l ′ /∈ Γ and l ′ 	= l.

From the Codazzi equation for (X ∈ E+
l ′ , Xi , Y ∈ E+

l ), we obtain

α(∇X Xi , Y ) + α(Xi ,∇XY ) = α(∇Xi X, Y ) + α(X,∇Xi Y ).

Taking the inner product with ξ1 and ξ2 yields

λ̃l〈ϕil(X, Xi ), Y 〉 = (λ̃l − λ̃l ′)〈ϕl ′l(Xi , X), Y 〉 (55)

and
〈
ϕil(X, Xi ),

(
Al −

(
1

r
− ρl

)
IE+

l

)
Y

〉
= 〈ϕl ′l(Xi , X), (Al − (ρl ′ − ρl)IE+

l
)Y 〉

+ 〈ϕll ′(Xi , Y ), Al ′ X〉,

respectively. A similar computation for X ∈ Eε′
l ′ , Y ∈ Eε

l , where ε, ε′ ∈ {+,−}, gives

ε′λ̃l ′
〈
ϕl ′l(Xi , X), Aε

l Y
〉 = ελ̃l

〈
ϕll ′(Xi , Y ), Aε′

l ′ X
〉
. (56)

Now, multiply the above equation by λ̃l and use (56), to get
(

λ̃l

(
1

r
− ρl ′

)
− λ̃l ′

(
1

r
− ρl

))
〈ϕl ′l(Xi , X), Y 〉

= λ̃l ′ 〈ϕl ′l(Xi , X), AlY 〉 − λ̃l〈ϕll ′(Xi , Y ), Al ′ X〉.
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If we then invert the roles of l and l ′ (and X and Y ) in the above equation, we see that,
while the left-hand side remains the same, since 〈ϕl ′l(Xi , X), Y 〉 = −〈ϕll ′(Xi , Y ), X〉, the
right-hand side changes sign. Therefore, both sides must vanish, i.e.,

(
λ̃l

(
1

r
− ρl ′

)
− λ̃l ′

(
1

r
− ρl

))
〈ϕl ′l(Xi , X), Y 〉 = 0

and

λ̃l ′ 〈ϕl ′l(Xi , X), AlY 〉 = λ̃l〈ϕll ′(Xi , Y ), Al ′ X〉. (57)

Suppose, by contradiction, that 〈ϕl ′l(Xi , X), Y 〉 	= 0 for certain X ∈ E+
l ′ and Y ∈ E+

l . Then

λ̃l

(
1

r
− ρl ′

)
= λ̃l ′

(
1

r
− ρl

)
. (58)

Set X = Al ′ X̃ , Y = A∗
l Ỹ in (56) and recall (6), obtaining

λ̃l ′σ
2
l 〈ϕll ′(Xi , Ỹ ), Al ′ X̃〉 = −λ̃lσ

2
l ′ 〈ϕl ′l(Xi , X̃), A∗

l Ỹ 〉.
This and (56) give

(
(λ̃l ′σl)

2 − (λ̃lσl ′)
2
) 〈

ϕl ′l(Xi , X̃), A∗
l Ỹ

〉
= 0.

However, since we are under the assumption that 〈ϕl ′l(Xi , X), Y 〉 	= 0 for certain X ∈
E+
l ′ , Y ∈ E+

l and A∗
l is onto E+

l , it follows that

(λ̃lσl ′)
2 = (λ̃l ′σl)

2. (59)

This together with λ̃2l + ρ2
l + σ 2

l = 1
r2

(and the same for l ′) implies that

λ̃2l

(
1

r2
− ρ2

l ′

)
= λ̃2l ′

(
1

r2
− ρ2

l

)
.

This and (58) imply

λ̃2l

(
1

r
− ρl ′

)
= λ̃2l ′

(
1

r
− ρl

)
. (60)

Comparing it to (58), we finally obtain λ̃l = λ̃l ′ . But then (59) and (60) yield ρl = ρl ′ and
σl = σl ′ . However, those three relations imply that E = El ⊕ El ′ fits into decomposition
(3), which contradicts its uniqueness. Therefore, we have that 〈ϕl ′l(Xi , X), Y 〉 = 0 for all
X ∈ E+

l ′ , Y ∈ E+
l . Finally, (55) then implies that 〈ϕil(X, Xi ), Y 〉 = 0 for every X ∈ E+

l ′ , Y ∈
E+
l . Entirely analogous arguments give 〈ϕil(X, Xi ), Y 〉 = 0 for all X ∈ E±

l ′ , Y ∈ E±
l , and

therefore ϕil = 0. This completes the proof of Lemma 6.

Observe that the proofs of Lemmas 5 and 6 make only use of the Codazzi equation, which
is the same for space forms of nonzero curvature. Thus, we conclude that the lemmas remain
true in this setting. This will be used in the proof of Theorem 2.

Proof of Theorem 2 For the hyperbolic space, the previous proof works mutatis mutandis,
since Theorems 3 and 4 are also true in this setting. The situation for the sphere is more
delicate. By Lemma 6, every distribution Ei such that λi (ξ) = 0 for some smooth unit
normal vector field ξ ∈ N f M is parallel with respect to the Levi-Civita connection of Mn .
But since α is adapted to (15) and we are under the assumption that f is substantial and
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irreducible, it follows that no such Ei must appear. So, we conclude that the only blocks Ei

composing (15) are those to which Lemma 3 applies. They are all ‘minimal blocks’ in the
sense that the trace of any Aξ restricted to Ei is zero. Therefore, f itself must be a minimal
isometric immersion, and consequently Mn is Einstein by Proposition 1, which is valid in
any space form. But since all the possibilities in Matsuyama’s classification are reducible,
then n = 2 and f (Mn) is a piece of the Veronese surface, by Kenmotsu’s result [10], since
the Clifford torus is also reducible.

Remark 4 Case (a) in the proof of Lemma 6 is the quintessence ofNölker’s argument to prove
his theorem. Indeed, first observe that the proof works for arbitrary codimension. Then by
the fact that every Ei , 1 ≤ i ≤ k, is a parallel distribution and de Rham’s theorem, Mn is the
Riemannian product of the integral manifolds M1, . . . , Mk of E1, . . . , Ek through one point
p0 ∈ Mn . Since α is adapted to the product net (E1, . . . , Ek), f is a Riemannian product
of isometric immersions fi : Mi → R

ni , i = 1, . . . , k, by the well-known lemma of Moore
[12, p. 163]. From (36) and (37) follows that f1, . . . , fk are totally umbilical immersions
with mean curvature vectors of constant length, thus Euclidean spheres or curves of constant
curvature.

In light of the results presented so far, we conclude this section posing the following
conjecture suggesting a possible complete solution to our Main Problem in arbitrary codi-
mension.

Conjecture 2 Let f : Mn → Q
n+p
c be an irreducible isometric immersion with homothetic

Gauss map, n ≥ 2. Then Mn is an Einstein manifold and, up to composition with a totally
umbilical inclusion, f is a diagonal immersion of minimal immersions of Mn into spheres.

Remark 5 (i) The preceding conjecture is stronger than Conjecture 1 and also implies the
version of the latter for hyperbolic space forms. The conjecture is true for compact orientable
Einstein submanifolds of Euclidean space whose Gauss map is harmonic, according to a
result due to Mutō [13]. It also holds for equivariant isometric immersions of a compact
connected Riemannian homogeneous manifold with irreducible isotropy action in Euclidean
spaces, see Deprez [7] and Takahashi [18].
(ii)Wepoint out that a diagonal immersion f = (w1 f1, . . . , wk fk): Mn → S

n+p
c ofminimal

immersions fi : Mn → S
n+pi
ci cannot have parallel first normal bundle N1, unless it is itself

a minimal immersion into some sphere. In fact, since each fi , being minimal in a sphere, is
a pseudoumbilical submanifold with constant mean curvature (in the sense that the length of
mean curvature vector H is constant), so must be f . On the other hand, since f (M) ⊂ S

n+p
c ,

it follows that the position vector f is a parallel umbilical normal vector field, and thus there
is a nonzero constant λ such that f = λH + ξ with ξ ∈ N⊥

1 . But differentiating this, the
assumption that N1 is parallel then implies the parallelism of H with respect to the normal
connection, which together with the fact that f is pseudoumbilical yields that f is actually
a minimal immersion into some sphere, as we wished (cf. [1]).

In particular, Conjecture 2 would imply that every irreducible submanifold with homo-
thetic Gauss map and parallel first normal bundle is a minimal Einstein submanifold of a
sphere.
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