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Abstract In this paper, we study the Hamiltonian L-stability of Lagrangian translating
solitons to the mean curvature flow. We prove that any Lagrangian translating soliton is
Hamiltonian L-stable.
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1 Introduction

An n-dimensional submanifold �n of Rn+p is called a self-shrinker if it is the time t = −1
slice of a self-shrinkingmean curvature flow that disappears at (0, 0), i.e., of amean curvature
flow satisfying �t = √−t�−1. We can also consider a self-shrinker as a submanifold that
satisfies

H = −1

2
x⊥.

An n-dimensional submanifold �n of Rn+p is called a translating soliton if there is a
constant vector T so that �t = � + tT is a solution to the mean curvature flow. We can also
consider a translating soliton as a submanifold that satisfies

H = T⊥.

According to the blow up rate of the second fundamental form, Huisken [6] classified
the singularities of mean curvature flows into two types: Type I and Type II. Any Type I
singularity of the mean curvature flow must be a self-shrinker [6]. Type II singularity is one
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class of eternal solutions, which is defined for −∞ < t < ∞. One of the most important
examples of Type II singularity is the translating soliton [5,7].

In this paper, we mainly study the stability (in some sense) of translating solitons. This
was motivated by the work of Colding–Minicozzi [4], where they introduced the concept of
F-stability of an n-dimension self-shrinker in Rn+1.

Given x0 ∈ Rn+1 and t0 > 0, Fx0,t0 is defined by

Fx0,t0(�) = (4π t0)
− n

2

∫
�

e
− |x−x0 |2

4t0 dμ. (1.1)

In [4], Colding–Minicozzi proved that self-shrinkers are the critical points for the F0,1 func-
tional by computing the first variation formula of F0,1. They also computed the second
variation formula, and defined F-stability of a self-shrinker by modding out translations in
space and time. They showed that the round sphere and hyperplanes are the only F-stable
self-shrinkers in Rn+1.

In 2012, Andrews et al. [1], Arezzo and Sun [2] and Lee and Lue [8] independently
generalized some ofColding–Minicozzi’swork [4] from the hypersurface case to higher codi-
mensional cases. They computed the first and second variation formulas for the F-functional,
and studied F-stability of self-shrinkers in higher codimension.

Recently, motivated by an observation by Oh [10], Li and Zhang [9] and Yang [12] studied
the Lagrangian F-stability and Hamiltonian F-stability of Lagrangian self-shrinkers, and
proved characterization theorems for Hamiltonian F-stability of Lagrangian self-shrinkers,
which characterize the Hamiltonian F-stablity by the eigenvalues and eigenspaces of the
drifted Laplacian.

With the above known results for self-shrinkers, it is natural to think that translating
solitons might also have some similar properties. In fact, translating solitons are also critical
points for an F-functional (cf. [3,11,13]). The F-functional is defined by

F(�) =
∫

�

e〈T,x〉dμ.

Note that the F-functional (1.1) for a self-shrinker is finite as long as the self-shrinker has
polynomial volume growth, while here F(�) is usually infinity if � is a translating soliton,
since any translating soliton is noncompact and e〈T,x〉 → ∞ very quickly as x → ∞. This
makes it hard to get as many corresponding results in the translating soliton case as in the
self-shrinker case.

However, if we require variation vector fields to have compact supports, one can still com-
pute the first and second variation formulas of F , and consider L-stability (see Definition
2.1) of translating solitons. In [11], Shahriyari defined L-stability of translating surfaces in
R3, and proved that any translating graph inR3 is L-stable. In [3], Arezzo and Sun computed
variation formulas of the F-functional for general conformal solitons, which include trans-
lating solitons as special cases. They proved that the grim-reaper cylinderRn−1 ×� in Rn+1

is an L-stable translating soliton, where � is the grim reaper in R2.
Especially, if a translating soliton is also a Lagrangian submanifold of the Euclidean space,

we call it a Lagrangian translating soliton. In this paper, we consider Hamiltonian L-stability
(see Definition 2.3) of Lagrangian translating solitons. Our main theorem is

Theorem 1.1 Any Lagrangian translating soliton is Hamiltonian L-stable.

Since we have this theorem, an interesting question is whether this theorem has some
application that could help us study the Lagrangian mean curvature flow. Besides, we are
also interested in the L-stability of translating solitons in the hypersurface case.
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2 Variation formulas and Hamiltonian L-stability

2.1 Variation formulas and L-stability

In this subsection, we sketch the first and second variation formulas of the F-functional as
well as the definition of the L-stability of translating solitons (see also [3,11]). Recall that
the F-functional is defined by

F(�) =
∫

�

e〈T,x〉dμ.

The first variation formula of F is

Lemma 2.1 Let�s ⊂ Rn+p be a compactly supported variation of� with normal variation
vector field V , then

∂

∂s
(F(�s)) =

∫
�

〈T⊥ − H, V 〉e〈T,x〉dμ�. (2.1)

Proof From the first variation formula (for area), we know that

(dμ)′ = −〈H, V 〉dμ.

It follows that

∂

∂s
(F(�s)) =

∫
�

e〈T,x〉〈T, V 〉dμ −
∫

�

e〈T,x〉〈H, V 〉dμ =
∫

�

〈T⊥ − H, V 〉e〈T,x〉dμ.

This proves the lemma. ��

It follows that

Proposition 2.2 � is a critical point for F if and only if H = T⊥.

The second variation formula at a critical point is

Theorem 2.3 Suppose that� is a critical point for F. If�s is a compactly supported normal
variation of �, and

∂s

∣∣∣
s=0

�s = V,

then setting F ′′ = ∂ss

∣∣∣
s=0

(F(�s)) gives

F ′′ =
∫

�

−〈V, LV 〉e〈T,x〉dμ, (2.2)

where

LV = �⊥V + ∇⊥
T T V + 〈〈A, V 〉, A〉

=
(
�V α + 〈T,∇V α〉 + gikg jl V βhβ

i j h
α
kl

)
eα.
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Proof We sketch the proof here. Letting primes denote derivatives with respect to s at s = 0,
differentiating (2.1) gives

F ′′ =
∫

�

{
∂

∂s

∣∣∣
s=0

(〈T − H, V 〉) + 〈T⊥ − H, V 〉2
∣∣∣
s=0

}
e〈T,x〉

=
∫

�

{−〈H ′, V 〉 + 〈T − H, V ′〉} e〈T,x〉. (2.3)

Similar to the derivation of the second variation formula for the area, we have

〈H ′, V 〉 = 〈�⊥V + gikg jl V βhβ
i j h

α
kleα, V 〉. (2.4)

On the other hand, since 〈[V, T T
]
, V 〉 = 0, it follows that

〈T − H, V ′〉 = 〈T − H,∇T
V V 〉 = 〈T,∇T

V V 〉 = 〈T T ,∇V V 〉 = −〈∇V T
T , V 〉

= −〈∇T T V, V 〉 = −〈∇⊥
T T V, V 〉. (2.5)

Putting (2.4) and (2.5) into (2.3) gives (2.2). This proves the theorem. ��
Thus we are led to the following definition.

Definition 2.1 We say a translating soliton � is L-stable if for every compactly supported
variations �s with �0 = �, F ′′ = ∫

�
−〈V, LV 〉e〈T,x〉 ≥ 0.

2.2 Properties of L and L

Notice that T = T T + H , where T T = ∇〈T, x〉, the linear operator defined by
Lv = �v + 〈T,∇v〉 = e−〈T,x〉div�

(
e〈T,x〉∇v

)
(2.6)

is self-adjoint in a weighted L2 space. More precisely, we have the following lemma which
follows immediately from Stokes’ theorem and (2.6).

Lemma 2.4 If� ⊂ Rn+p is a submanifold ofRn+p, u is aC1 functionwith compact support,
and v is a C2 function, then∫

�

u(Lv)e〈T,x〉 = −
∫

�

〈∇v,∇u〉e〈T,x〉 (2.7)

The next corollary is an extension of Lemma 2.4, which follows by choosing cut-off
functions and applying the dominated convergence theorem. The proof is similar to that of
Corollary 3.10 in [4].

Corollary 2.5 Suppose that � ⊂ Rn+p is a complete submanifold of Rn+p without bound-
ary. If u, v are C2 functions with∫

�

(|u∇v| + |∇u||∇v| + |uLv|)e〈T,x〉 < ∞,

then ∫
�

u(Lv)e〈T,x〉 = −
∫

�

〈∇v,∇u〉e〈T,x〉.

123



Geom Dedicata (2015) 179:169–176 173

Now we compute some equalities that may be useful in the future. Denote by x A (A =
1, 2, . . . , x + p) the coordinate functions of � in Rn+p , i.e. x A is the A-th component of the
position vector x , then

Proposition 2.6 If �n ⊂ Rn+p is a translating soliton, then for every constant vector field
y,

Ly⊥ = 0. (2.8)

Especially, choosing y = T , we get

LH = 0. (2.9)

Moreover, we have

Lx A = T A. (2.10)

Proof Fix p ∈ � and choose an orthonormal frame {ei } such that ∇ei e j (p) = 0, gi j = δi j
in a neighborhood of p. We have

∇⊥
ei y

⊥ = ∇⊥
ei (y − 〈y, e j 〉e j ) = −〈y, e j 〉hα

i j eα. (2.11)

Especially, choosing y = T , we have

∇⊥
ei H = ∇⊥

ei T
⊥ = −〈T, e j 〉hα

i j eα, (2.12)

i.e.,

Hα
,i = −〈T, e j 〉hα

i j . (2.13)

Taking another covariant derivative at p, it gives

∇⊥
ek∇⊥

ei y
⊥ = − ek〈y, e j 〉hα

i j eα − 〈y, e j 〉hα
i j,keα

= −〈y, hβ
k j eβ〉hα

i j eα − 〈y, e j 〉hα
ik, j eα, (2.14)

where we used (2.11), ∇ek e j (p) = 0, and the Codazzi equation in the last equality. Taking
the trace of (2.14) and using H = T⊥, we conclude that

�⊥y⊥ = − 〈y, hβ
i j eβ〉hα

i j eα − 〈y, e j 〉Hα
, j eα

= − yβhβ
i j h

α
i j eα + 〈y, e j 〉〈T, ei 〉hα

i j eα

= − yβhβ
i j h

α
i j eα − 〈T, ei 〉∇⊥

ei y
⊥

= − yβhβ
i j h

α
i j eα − ∇⊥

T T y
⊥.

This proves (2.8).
Since �x = H and H = T⊥, we have

�x A = 〈H, EA〉 = 〈T⊥, EA〉 = 〈T, E⊥
A 〉 = 〈T, EA〉 − 〈T, ET

A 〉 = T A − 〈T, ET
A 〉.

Hence

Lx A = �x A + 〈T,∇x A〉 = �x A + 〈T, (EA)T 〉 = T A,

This proves (2.10). ��
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2.3 Hamiltonian L-stability

In this subsection, we will define Hamiltonian L-stability of Lagrangian translating solitons.
Recall the definition of Hamiltonian variations on a Lagrangian submanifold.

Definition 2.2 [10] Let (M, ω̄) be a symplectic manifold M . Let � ⊂ M be a Lagrangian
submanifold and V be a vector field along �. V is called a Hamiltonian variation if the one
form i∗(V �ω̄) on � is exact.

The Hamiltonian variation has an equivalent definition.

Lemma 2.7 [10] A normal variation V on � is Hamiltonian if and only if

V = J∇ f,

where f is a function on � and ∇ is the gradient on � with respect to the induced metric.

Now we define Hamiltonian L-stability of Lagrangian translating solitons.

Definition 2.3 We say a Lagrangian translating soliton� is Hamiltonian L-stable if for every
compactly supported Hamiltonian variations �s with �0 = �, F ′′ = ∫

�
−〈V, LV 〉e〈T,x〉 ≥

0.

3 Proof of the main theorem

Note that the normal bundle brings much difficulty to the study of L-stability of translating
solitons in the general higher codimension case. However, in [10], Oh studied Hamiltonian
stability of minimal Lagrangian submanifolds in Kähler–Einstein manifolds, and character-
ized Hamiltonian stability by a condition on the first eigenvalue of � acting on functions.
The key point of Oh’s proof is an observation that for a minimal Lagrangian submanifold of
a Kähler–Einstein manifold, the set of Hamiltonian variations is an invariant subspace of the
Jacobi operator. This idea was recently used to study Hamiltonian F-stability of Lagrangian
self-shrinkers [9,12]. It is natural to think that this property also holds for Lagrangian translat-
ing solitons. This property inspired us to show the following equality,whichwell characterizes
how the operator L acts on Hamiltonian variations.

Theorem 3.1 Suppose�n ⊂ Cn is a Lagrangian translating soliton. Then for every function
f on �,

L J∇ f = J∇L f. (3.1)

This implies that the set of Hamiltonian variations is an invariant subspace of the operator
L.

Proof Fix a point p.We choose a local orthonormal basis {ei }ni=1 of T� such that∇ei e j (p) =
0. Then since � is Lagrangian, {en+i = Jei }ni=1 is a local orthonomal basis of N�. In the
following we compute at the point p. It is easy to compute that

L J∇ f = �⊥(J∇ f ) + ∇⊥
T T (J∇ f ) + hn+k

il fkh
n+ j
il J e j

=
(
f j i i + 〈T, ek〉 f jk + fkh

n+l
ik hn+l

i j

)
Je j ,
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where in the last equality we used the Lagrangian property hn+k
il = hn+l

ik . On the other hand,

J∇L f = J∇
(
� f + T T f

)

= fii j J e j + J∇〈T T ,∇ f 〉
=

(
fi j i − fi R jkik + e j 〈T T ,∇ f 〉

)
Je j

=
(
f j i i − fi h

n+l
i j hn+l

kk + fi h
n+l
jk hn+l

ik + 〈∇e j T
T ,∇ f 〉 + 〈T T ,∇e j ∇ f 〉

)
Je j

=
(
f j i i − fi h

n+l
i j 〈T⊥, en+l〉 + fkh

n+l
ik hn+l

i j + 〈∇e j T,∇ f 〉 − 〈∇e j T
⊥,∇ f 〉

+ f jk〈T, ek〉
)
Je j

=
(
f j i i − fi h

n+l
i j 〈T⊥, en+l〉 + fkh

n+l
ik hn+l

i j +
〈
T⊥,∇e j ( fkek)

〉
+ 〈T, ek〉 f jk

)
Je j

=
(
f j i i − fi h

n+l
i j 〈T⊥, en+l〉 + fkh

n+l
ik hn+l

i j + fk〈T⊥, hn+l
jk en+l〉 + 〈T, ek〉 f jk

)
Je j

=
(
f j i i + 〈T, ek〉 f jk + fkh

n+l
ik hn+l

i j

)
Je j ,

where in the third equality we used the Ricci formula; in the fourth equality we used the
Gauss equation; and in the fifth equality we used the translating soliton equation H = T⊥.
This proves the theorem. ��

Now we prove our main theorem.

Theorem 3.2 Any Lagrangian translating soliton is Hamiltonian L-stable.

Proof Recall that the second variation formula for F is

F ′′ =
∫

�

−〈V, LV 〉e〈T,x〉. (3.2)

Now Assume V is a compactly supported Hamiltonian variation, then there exists a function
f , such that V = J∇ f . Putting it into (3.2), and using (3.1), we get

F ′′ =
∫

�

−〈J∇ f, L J∇ f 〉e〈T,x〉 =
∫

�

−〈J∇ f, J∇L f 〉e〈T,x〉 =
∫

�

(L f )2e〈T,x〉 ≥ 0,

(3.3)

where the last equality used Lemma 2.4 and the fact that V = J∇ f is compactly supported
implies that L f is compactly supported. This proves the theorem. ��
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