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Abstract Recently Böröczky, Lutwak, Yang and Zhang have proved the log-Brunn–
Minkowski inequality which is stronger than the classical Brunn–Minkowski inequality for
two origin-symmetric convex bodies in the plane. This paper presents a new proof of this
inequality andproves the uniqueness of the cone-volumemeasure byusing the log-Minkowski
inequality.

Keywords L0-Minkowski addition · Log-Minkowski inequality · Log-Brunn–Minkowski
inequality · Minkowski mixed-volume inequality

Mathematical Subject Classification (2000) 52A40

1 Introduction

Let Kn be the set of all convex bodies, i.e., compact convex sets with non-empty interior, in
the n dimensional Euclidean space En . The volume of a set M ⊂ E

n , is denoted by V (M).
For two convex bodies K , L ∈ Kn , the Minkowski addition is denoted K + L = {x + y :
x ∈ K , y ∈ L}, and the classical Brunn–Minkowski inequality states that

V (K + L)
1
n ≥ V (K )

1
n + V (L)

1
n , (1.1)

with equality if and only if K and L are homothetic. It became an extremely powerful
tool in convex geometry with significant applications to various other areas of mathematics.
Gardner’s article [8] and Schneider’s classic text [26] are excellent survey and source of
references.

In the early 1960s, Firey [6] extended the Minkowski addition of convex bodies to L p-
Minkowski addition for each p ≥ 1 (now known as Firey-Minkowski L p-addition). Fur-
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thermore, he also established the L p-Brunn–Minkowski inequality (an inequality that is also
known as the Brunn–Minkowski–Firey inequality), which states as follows:

V (K +p L)
p
n ≥ V (K )

p
n + V (L)

p
n , (1.2)

with equality if and only if K and L are dilatates. In the mid 1990s, it was shown in [14,15],
that when Firey-Minkowski L p-addition is combined with volume the result is an embryonic
L p-Brunn–Minkowski theory. This theory has expanded rapidly. (See e.g.[16–21]).

Recently, Böröczky, Lutwak, Yang and Zhang in [4] defined the L0-Minkowski addition
of convex bodies, for 0 ≤ λ ≤ 1,

(1 − λ) · K +0 λ · L =
⋂

u∈Sn−1

{x ∈ E
n : x · u ≤ hK (u)1−λhL(u)λ}, (1.3)

where hK and hL are the support functions of K and L and conjectured that for origin-
symmetric convex bodies K and L in E

n and 0 ≤ λ ≤ 1,

V ((1 − λ) · K +0 λ · L) ≥ V (K )1−λV (L)λ. (1.4)

They call (1.4) the log-Brunn–Minkowski inequality and note that while it is not true for gen-
eral convex bodies, it implies the classical Brunn–Minkowski inequality for origin-symmetric
convex bodies. In [4], (1.4) is proved when n = 2, and it is also shown that for all n, (1.4) is
equivalent to the log-Minkowski inequality

∫

Sn−1

log

(
hL
hK

)
dVK ≥ V (K ) log

(
V (L)

V (K )

) 1
n

, (1.5)

where VK is the cone-volume measure of K .
In fact, Böröczky, Lutwak, Yang and Zhang in [4] first proved the uniqueness of the

cone-volume measure, then used the uniqueness of the cone-volume measure to prove the
log-Brunn-Minkowski inequality. The cone-volumemeasure of a convex body is defined as if
K is a convex body inEn that contains the origin in its interior, then the cone-volumemeasure,
VK , of K is a Borel measure on the unit sphere Sn−1 defined for a Borel set ω ∈ Sn−1, by

VK (ω) = 1

n

∫

x∈ν−1
K (ω)

x · νK (x)dHn−1(x), (1.6)

where νK : ∂K → Sn−1 is the Gauss map of K , defined on ∂K , the set of points of ∂K that
have a unique outer unit normal, and Hn−1 is (n − 1)-dimensional Hausdorff measure. In
recent years, cone-volume measures have appeared in e.g. [3,5,10,12,13,23–25].

In this paper, we present a new proof for the log-Minkowski inequality in the plane, and
then prove the uniqueness of the cone-volume measure of a convex body in the plane by
using the log-Minkowski inequality.

2 Preliminaries

In this section, we will review some basic facts in convex geometry, which are useful for our
later discussion. Good general references for the theory of convex bodies are provided by the
books of Gardner [9], Gruber [11], Leichtweiss [22], Schneider [26], and Thompson [29].
Firstly, we will give the definition of a compact convex set and its support function.
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If K ⊆ Kn , its support function h(K , ·) : En → E is defined by

hK (u) = max{x · u : x ∈ K }. (2.1)

A convex body K in E
n is origin-symmetric if and only if

hK (u) = hK (−u), (2.2)

for all u ∈ Sn−1.
Let K be a convex body in En that contains the origin in its interior, then the cone-volume

measure, VK , of K is a Borel measure on the unit sphere Sn−1 defined for a Borel set
ω ∈ Sn−1, by

VK (ω) = 1

n

∫

x∈ν−1
K (ω)

x · νK (x)dHn−1(x). (2.3)

There are formulas

VK = 1

n
hK SK ,

and

V (K ) = 1

n

∫

Sn−1

hK (u)dSK (u). (2.4)

Let K , L ⊆ Kn and if hK , hL are the support functions of K and L , the Minkowski
addition can be equivalently defined as the compact convex set such that

hK+L = hK + hL . (2.5)

The Minkowski–Steiner formulas state that

V (K + t L) =
n∑

i=0

(
n

i

)
Vi (K , L)t i , (2.6)

and

Vi (K + t L , L) =
n−i∑

j=0

(
n − i

j

)
Vi+ j (K , L)t j , (2.7)

where t ≥ 0,
and

Vi (K , L) = V (K , · · · , K︸ ︷︷ ︸
n−i

, L , · · · , L︸ ︷︷ ︸
i

),

is called the the i-th mixed volume of K and L . In particular, we have V0(K , L) = V (K ),
Vn(K , L) = V (L) and Vi (K , L) = Vn−i (L , K ).

Differentiating both sides of (2.6) with respect to t , and using (2.7), we have

V ′(K + t L) =
n∑

i=1

i

(
n

i

)
Vi (K , L)t i−1 = nV1(K + t L , L). (2.8)

In the planar case, write V1(K , L) as V (K , L). Then the formula (2.6) becomes

V (K + t L) = V (K ) + 2V (K , L)t + V (L)t2, (2.9)
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where V (K , L) = V (L , K ). So

V ′(K + t L) = 2V (K , L) + 2V (L)t = 2V (K + t L , L). (2.10)

3 The Log-Brunn–Minkowski inequality

The following lemma, proved in [4], will be needed.

Lemma 3.1 If K , L are origin-symmetric plane convex bodies, then
∫

S1

hK (u)

hL(u)
dVK (u) ≤ V (K )V (L , K )

V (L)
. (3.1)

with equality if and only if K and L are dilates, or K and L are parallelograms with parallel
sides.

Theorem 3.1 If K and L are planar origin-symmetric convex bodies, then

∫

S1

log

(
hL
hK

)
dVK ≥ V (K ) log

(
V (L)

V (K )

) 1
2

. (3.2)

with equality if and only if K and L are dilates, or K and L are parallelograms with parallel
sides.

Proof Let

F(t) =
∫

S1

log

(
hL+t K

hK

)
dVK − V (K ) log

(
V (L + t K )

V (K )

) 1
2

. (3.3)

Now, differentiating F(t) with respect to t , we have

F ′(t) = d

dt

⎛

⎜⎝
∫

S1

log

(
hL+t K

hK

)
dVK − V (K ) log

(
V (L + t K )

V (K )

) 1
2

⎞

⎟⎠

= d

dt

⎛

⎜⎝
∫

S1

log

(
hL + thK

hK

)
dVK − V (K ) log

(
V (L) + 2V (L , K )t + V (K )t2

V (K )

) 1
2

⎞

⎟⎠

=
∫

S1

hK
hL + thK

dVK − V (K ) (V (L , K ) + V (K )t)

V (L) + 2V (L , K )t + V (K )t2

=
∫

S1

hK (u)

hL+t K (u)
dVK − V (K )V (L + t K , K )

V (L + t K )
.

Thus, from Lemma 3.1 we get

F ′(t) =
∫

S1

hK (u)

hL+t K (u)
dVK − V (K )V (K , L + t K )

V (L + t K )
≤ 0. (3.4)
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This shows that F(t) is decreasing on [0,+∞).
Since

F(t) =
∫

S1

log

(
hL+t K

hK

)
dVK −

∫

S1

log

(
V (L + t K )

V (K )

) 1
2

dVK

=
∫

S1

log

(
hL+t K

hK

√
V (K )

V (L + t K )

)
dVK . (3.5)

By mean value theorem for integrals there exists ξ ∈ S1 such that

F(t) = V (K ) log

(
hL+t K (ξ)

hK (ξ)

√
V (K )

V (L + t K )

)

= V (K ) log

(
hL(ξ) + thK (ξ)

hK (ξ)

√
V (K )

V (L) + 2V (L , K )t + V (K )t2

)
.

Then

lim
t→+∞ F(t) = lim

t→+∞ V (K ) log

(
hL(ξ) + thK (ξ)

hK (ξ)

√
V (K )

V (L) + 2V (L , K )t + V (K )t2

)

= V (K ) lim
t→+∞ log

(
hL(ξ) + thK (ξ)

hK (ξ)

√
V (K )

V (L) + 2V (L , K )t + V (K )t2

)

= V (K ) · log (1) = 0. (3.6)

Thus
F(t) ≥ 0, (3.7)

in particular,
F(0) ≥ 0. (3.8)

This yields the desired inequality (3.2).
We will now establish the equality conditions in (3.2). To that end, suppose:

F(t) =
∫

S1

log

(
hL+t K

hK

)
dVK − V (K ) log

(
V (L + t K )

V (K )

) 1
2 = 0. (3.9)

Therefore,

F ′(t) =
∫

S1

hK (u)

hL+t K (u)
dVK − V (K )V (K , L + t K )

V (L + t K )
= 0. (3.10)

Conversely, if F ′(t) = 0. Then, there exists a constant C such that F(t) = C.

However, by (3.6), this means that

F(t) =
∫

S1

log

(
hL+t K

hK

)
dVK − V (K ) log

(
V (L + t K )

V (K )

) 1
2 = C = 0. (3.11)

From the above discussion, we have F(t) = 0 if and only if F ′(t) = 0.
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Thus, from Lemma 3.1 we get F(t) = 0 if and only if K and L + t K are dilates, or K
and L + t K are parallelograms with parallel sides.

In particular, when t = 0, We can see that F(0) = 0 if and only if K and L are dilates, or
K and L are parallelograms with parallel sides.

It is easily seen that the equality holds in (3.2) if and only if K and L are dilates, or K
and L are parallelograms with parallel sides. 
�

In [4], Böröczky, Lutwak, Yang and Zhang also showed that the following lemma is true.

Lemma 3.2 For origin symmetric convex bodies inEn, the log-Brunn–Minkowski inequality
(1.4) and the log-Minkowski inequality (1.5) are equivalent.

Theorem 3.2 If K and L are origin-symmetric convex bodies in the plane, then for all real
λ ∈ [0, 1],

V ((1 − λ) · K +0 λ · L) ≥ V (K )1−λV (L)λ. (3.12)

When λ ∈ (0, 1), equality in the inequality holds if and only if K and L are dilates or K and
L are parallelograms with parallel sides.

4 Uniqueness question for planar cone-volume measures

Given afiniteBorelmeasure on the unit sphere, underwhat necessary and sufficient conditions
is the measure the cone-volume measure of a convex body? This is the existence question for
the unsolved log-Minkowski problem. It requires solving a Monge-Ampère equation and is
connectedwith some important curvature flows (see e.g. [1,2,7,27]). The uniqueness question
for the log-Minkowski problem asks under what conditions can two different bodies have
identical cone-volume measures. The uniqueness question appears to be more difficult than
the existence question. In the plane,Gage [7] showed thatwithin the class of origin-symmetric
plane convex bodies that are smooth and have positive curvature, the cone-volume measure
determines the convex body uniquely. For even discrete measures, the uniqueness question
for the log-Minkowski problem, for plane convex bodies, was treated by Stancu [27]. The
uniqueness question for the log-Minkowski problem for arbitrary origin-symmetric plane
convex bodies was settled by Böröczky, Lutwak, Yang and Zhang [5]. For convex bodies in
E
n , the problem remains open.
The following theorem was established by Gage [7] when the convex bodies are smooth

and have positive curvature. When the convex bodies are polytopes it is due to Stancu [28].
The proof of the general case is due to Böröczky, Lutwak, Yang and Zhang [4]. Here, we
will prove it by the log-Minkowski inequality.

Theorem 4.1 If K and L are planar origin-symmetric convex bodies that have the same
cone-volume measure, then either K = L or else K and L are parallelograms with parallel
sides.

Proof Assume that K �= L .
Since

VK = VL ,

it follows that V (K ) = V (L). Thus, since K �= L , the bodies can not be dilates.
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By the log-Minkowski inequality (3.2), we have
∫

S1

log (hL) dVK ≥
∫

S1

log (hK ) dVK , (4.1)

and ∫

S1

log (hK ) dVL ≥
∫

S1

log (hL) dVL , (4.2)

with equality, in either inequality, if and only if K and L are parallelograms with parallel
sides. Using (4.1), VK = VL , (4.2) and VL = VK , we get

∫

S1

log (hL) dVK ≥
∫

S1

log (hK ) dVK =
∫

S1

log (hK ) dVL

≥
∫

S1

log (hL) dVL =
∫

S1

log (hL) dVK (4.3)

Thus, we have equalities in both inequalities of (4.1) and (4.2) By the equality conditions of
(4.1) and (4.2), we conclude that K and L are parallelograms with parallel sides.

5 Open problems

The following conjecture was made by Böröczky, Lutwak, Yang and Zhang in [4].

Conjecture 1 If K and L are origin-symmetric convex bodies in E
n, then

∫

Sn−1

log

(
hL
hK

)
dVK ≥ V (K ) log

(
V (L)

V (K )

) 1
n

. (5.1)

We conjecture that the following result is true.

Conjecture 2 If K , L are origin-symmetric convex bodies in E
n, then

∫

Sn−1

hK
hL

dVK ≤ V (K )V1(L , K )

V (L)
. (5.2)

Remark 1 In fact, if Conjecture 2 is true, by (2.8) and using methods similar to the proof of
Theorem 3.1, we can prove that Conjecture 1 is also true.
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