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Abstract Given a smooth toric variety X , the action of the torus T lifts to the moduli
space M of stable sheaves on X . Using the pioneering work of Klyacho, a fairly explicit
combinatorial description of the fixed point locus MT can be given (as shown by earlier
work of the author). In this paper, we apply this description to the case of torsion free sheaves
on a smooth toric surface S. A general expression for the generating function of the Euler
characteristics of such moduli spaces is obtained. The generating function is expressed in
terms of Euler characteristics of certain moduli spaces of stable configurations of linear
subspaces appearing in classical GIT. The expression holds for any choice of S, polarization,
rank, and first Chern class. Specializing to various examples allows us to compute some new
as well as known generating functions.
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Configurations of linear subspaces
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1 Introduction

Themoduli spaceM ofGieseker stable1 sheaves is a complicated object. It satisfiesMurphy’s
Law, meaning every singularity type of finite type over Z appears on one of its components
[28]. Many geometrically interesting invariants are defined on components of this moduli
space and their computation requires us to have some understanding of these components.
Examples of invariants aremotivic invariants such as Euler characteristic or (virtual) Poincaré
polynomial. Another example is the Donaldson-Thomas invariants of a Calabi–Yau 3-fold.

1 For the definition of Gieseker stability, see [12, Def. 1.2.4].
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Let X be a polarized2 smooth projective toric variety3 with torus T . The action of T on
X lifts to M. One can hope that this action facilitates explicit computation of invariants of
M by reduction to the fixed point locus MT ⊂ M. Based on ideas of Klyachko [16–19],
the author gives a fairly explicit description of the fixed point locus MT in [20]. In the
case ofμ-stability4 and reflexive sheaves, this description simplifies significantly [20]. In the
present paper, we systematically specialize these ideas to the case X = S is a toric surface.
For applications to pure dimension 1 sheaves on toric surfaces, see [2,3], and [21, Sect. 2.4].

Let S be a smooth complete toric surface with polarization H . Denote by MH
S (r, c1, c2)

the moduli space of μ-stable torsion free sheaves on S with rank r and Chern classes c1, c2.
The main result of this paper is an expression for the generating function

∑

c2

e(MH
S (r, c1, c2))q

c2 , (1)

for any S, H, r, c1. Here e(·) denotes topological Euler characteristic. The expression is in
terms of Euler characteristics of moduli spaces of stable configurations of linear subspaces5

(Theorem 3.5). The expression can be further simplified in examples. The dependence on
H allows us to study wall-crossing phenomena in examples. Note that we compute Euler
characteristics of moduli spaces of μ-stable torsion free sheaves only, even when strictly
μ-semistable torsion free sheaves are present.

This paper is organized as follows. In Sect. 2, we recall the relevant results from [20].
In Sect. 3, we give an explicit formula for the Chern character of an arbitrary T -equivariant
locally free sheaf on S. Each torsion free sheaf on S embeds in its double-dual, which is
reflexive and hence locally free (because dim(S) = 2). Using the double-dual map, the
generating function (1) can be written as a product of an explicit 0-dimensional part times

∑

c2

e(N H
S (r, c1, c2))q

c2 , (2)

whereN H
S (r, c1, c2) is the moduli space ofμ-stable locally free sheaves on S with rank r and

Chern classes c1, c2. This product structure was first pointed out by Göttsche and Yoshioka
[10, Prop. 3.1]. The generating function (2) can be expressed explicitly in terms of Euler
characteristics of moduli spaces of stable configurations of linear subspaces (Theorem 3.5).
In Sect. 4, we apply the formula to various examples and compare to results in the literature.
For rank 1, this gives the formula of Ellingsrud and Strømme [5] and Göttsche [8]. Note that
Göttsche’s formula holds on any smooth complete surface. For rank 2 and S = P

2, we obtain
a simple formula which we compare to work of Klyachko [19] and Yoshioka [30]. For rank
2 and S = P

1 × P
1 or any Hirzebruch surface Fa , we make the dependence on choice of

ample divisor H explicit. This allows us to study wall-crossing phenomena and compare to
work of Göttsche [9] and Joyce [14]. We perform various consistency checks. Finally, we
compute6 an explicit expression for rank 3 and S = P

2. We would like to point out that
[5,19] use torus localization, whereas [8,9,30] use very different techniques namely theWeil

2 Recall that the notion of stability depends on the choice of polarization.
3 In this paper, we work with varieties, schemes, and stacks over ground field C.
4 For the definition of μ-stability, also known as slope or Mumford-Takemoto stability, see [12, Def. 1.2.12].
5 Configurations of linear subspaces and their moduli spaces are a classical topic in GIT. See [4, Ch. 11] for
a discussion.
6 This example was considered independently around the same time by Weist using techniques of toric
geometry and quivers [29].
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Conjectures. Also [14] uses very different techniques namely his theory of wall-crossing for
motivic invariants counting (semi)stable objects in an abelian category.

Finally, we would like to point out some important related literature. In [1], Bruzzo,
Poghossian, and Tanzini study moduli spaces of framed torsion free sheaves on Hirzebruch
surfaces using localization techniques. Furthermore, after the appearance of the preprint
version of this paper, Manschot addressed modularity of the rank 3 generating function on
S = P

2. Using a blow-up formula to get from P
2 to F1 and a wall-crossing computation

on F1, he computes an expression for the generating function in terms modular forms and
indefinite theta functions [22]. Further recent computations on rational and ruled surfaces
can be found in [23–25].

Notation Two pieces of notation. (1) We denote by Gr(k, n) the Grassmannian of k-
dimensional subspaces V ⊂ C

⊕n . (2) Let a, b ∈ Z with a �= 0. We write a | b whenever
b = ak for some k ∈ Z.

2 Moduli spaces of sheaves on toric varieties

This section is a brief exposition of the main results of [17,19,20,26]. We review Klyacho’s
and Perling’s descriptions of T -equivariant coherent, torsion free, and reflexive sheaves on
toric varieties.We also discuss Klyachko’s formula for the Chern character of a T -equivariant
torsion free sheaf.

2.1 Equivariant sheaves on toric varieties

Let X be a smooth toric variety of dimension d with torus T . Let M = X (T ) be the character
group of T (written additively) and denote its dual by N . Denote the natural pairing by
〈·, ·〉 : M × N → Z. Then N is a rank d lattice containing a fan7 � and the data (N ,�)

completely describes X . We refer to Fulton’s book [6] for the general theory. We recall that
there is a bijection between the cones σ ∈ � and the T -invariant affine open subsetsUσ ⊂ X .

The affine case. Suppose X = Uσ . Let Sσ = {m ∈ M : 〈m, σ 〉 ≥ 0}. This semi-group
gives rise to an algebra C[Sσ ], which is exactly the coordinate ring of Uσ . Therefore, quasi-
coherent sheaves on Uσ are the same as C[Sσ ]-modules. More precisely, the global section
function gives an equivalence of categories

H0(·) : Qco(Uσ ) → C[Sσ ]-Mod.

Under this equivalence, coherent sheaves correspond to the finitely generatedmodules. It will
not come as a surprise that this equivalence can be extended to an equivalence between the cat-
egories of T -equivariant quasi-coherent sheaves and C[Sσ ]-modules with regular T -action.
For a T -equivariant quasi-coherent sheaf (F,�) on Uσ , use the T -equivariant structure �

to define a regular T -action on H0(F). Since T is diagonalizable, a T -action on H0(F) is
equivalent to a decomposition of H0(F) into weight spaces

H0(F) =
⊕

m∈M
H0(F)m .

Therefore T -equivariant quasi-coherent sheaves on Uσ are nothing but M-graded C[Sσ ]-
modules, i.e. there exists an equivalence of categories

H0(·) : QcoT (Uσ ) → C[Sσ ]-ModM-graded.

7 We always assume � contains cones of dimension d.

123



244 Geom Dedicata (2015) 176:241–269

See [15,26] for details.

Repackaging in terms of σ -families. Following Perling [26],wewrite the data of anM-graded
C[Sσ ]-module in a slightly more explicit way.

Definition 2.1 (Perling) For each m,m′ ∈ M we write m ≤σ m′ when m′ − m ∈ Sσ . A
σ -family F̂ consists of the following data: a collection of complex vector space {Fm}m∈M
and linear maps {χm,m′ : Fm → Fm′ }m≤σm′ such that:

(i) χm,m = idFm ,
(ii) χm′,m′′ ◦ χm,m′ = χm,m′′ for all m ≤σ m′ ≤σ m′′.

Amorphism between σ -families F̂, Ĝ is a collection φ̂ of linear maps {φm : Fm → Gm}m∈M
commuting with the χ’s. 


An M-graded module F =⊕m∈M Fm gives rise to a σ -family as follows.We simply take
{Fm}m∈M to be the collection ofweight spaces. For eachm ≤σ m′ wehavem′−m ∈ Sσ ⊂ M ,
so multiplication by the character m′ − m gives a linear map Fm → Fm′ . This gives an
equivalence of categories [26, Prop. 5.5]

C[Sσ ]-ModM-graded → σ -Families.

When σ is a cone of maximal dimension d , we can choose an order of its rays (ρ1, . . . , ρd)

and choose a primitive generator ni of each ray ρi . By smoothness of Uσ , this gives a basis
(n1, . . . , nd) of the lattice N . Denote the dual basis by (m1, . . . ,md). This choice induces
an isomorphism Uσ

∼= C
d . Let F̂ be a σ -family. Writing each m ∈ M as m =∑i λimi , we

define

F(λ1, . . . , λd) := Fm .

Moreover, multiplication by χm,m+mi gives linear maps

χi (λ1, . . . , λd) := χm,m+mi : F(λ1, . . . , λd) → F(λ1, . . . , λi−1, λi + 1, λi+1, . . . , λd)

satisfying the usual commutativity requirements. We note some important properties.

(i) Let F be a T -equivariant quasi-coherent sheaf with σ -family F̂ . Then F is coherent if
only if F̂ has finitely many homogeneous generators. We call such σ -families finite [26,
Def. 5.10].

(ii) Let F be a T -equivariant coherent sheaf with σ -family F̂ . Then F is torsion free if
only if all maps {χm,m′ }m≤σm′ are injective. This can be seen by noting that a non-trivial
kernel of some χm,m′ would give rise to a lower dimensional T -equivariant subsheaf of
F , which violates torsion freeness (e.g. see [20, Prop. 2.8]).

Equivariant torsion free sheaves. Let F be an T -equivariant coherent sheaf on X . Let
{σ1, . . . , σe} be the cones of maximal dimension. Note that e = e(X) is the number of T -
fixed points of X , which is equal to the Euler characteristic of X . The open subsetsUσi

∼= C
d

provide a T -invariant open affine cover of X and the restrictionsF |Uσi
give us a collection of

finite σ -families {F̂σi }i=1,...,e. Now suppose we are given any collection of finite σ -families
{F̂σi }i=1,...,e. When do they “glue” to an T -equivariant coherent sheaf on X? In this paper,
we are only interested in the torsion free case, so we describe the answer in this case only.8

8 For gluing conditions for general T -equivariant coherent sheaves see [26, Sect. 5.2].
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As mentioned above, in the torsion free case all the maps χ
σi
m,m′ between the weight spaces

are injective. We can assume all these maps are actually inclusions.9

We now describe the gluing conditions. For each i = 1, . . . , e, let (ρ
(i)
1 , . . . , ρ

(i)
d ) be

an ordering of rays of σi . Fix any two i, j , then the intersection σi ∩ σ j is a cone of some

dimension p. Assumew.l.o.g. that σi ∩σ j is spanned by the first p rays among (ρ
(i)
1 , . . . , ρ

(i)
d )

and (ρ
( j)
1 , . . . , ρ

( j)
d ). Then the corresponding gluing condition is

Fσi (λ1, . . . , λp,∞, . . . ,∞) = Fσ j (λ1, . . . , λp,∞, . . . ,∞), ∀ λ1, . . . , λp ∈ Z. (3)

This needs some explanation. For fixed λ1, . . . , λp ∈ Z consider

{Fσi (λ1, . . . , λp, μp+1, . . . , μd)}μp+1,...,μd∈Z.

Since the σ -family F̂σi is finite, these vector spaces stabilize for sufficiently large μp+1, . . .,
μd and we denote the limit by Fσi (λ1, . . . , λp,∞, . . . ,∞). Moreover, the vector spaces
Fσi (λ1, . . . , λd) form a multi-filtration of some limiting finite dimensional vector space
Fσi (∞, . . . ,∞) of dimension rk(F). The idea is that the left hand side of (3) is the σ -family
of F |Uσi

restricted to Uσi ∩ Uσ j and the right hand side is the σ -family of F |Uσ j
restricted

to Uσi ∩ Uσ j . This description of T -equivariant torsion free sheaves is originally due to
Klyachko [17,19]. We summarize:

Theorem 2.2 (Klyachko) Let X be a smooth toric variety described by a fan � in a lattice
N of rank d. Let {σ1, . . . , σe} be the cones of maximal dimension. For each i = 1, . . . , e,
let (ρ

(i)
1 , . . . , ρ

(i)
d ) be an ordering of the rays of σi . The category of T -equivariant torsion

free sheaves on X is equivalent to a category T which can be described as follows. The
objects of T are collections of finite σ -families {F̂σi }i=1,...,e, with all maps χ

σi
m,m′ inclusions,

satisfying the following gluing condition. For any two i, j , σi ∩σ j is a cone of some dimension

p. Assume w.l.o.g. that σi ∩ σ j is spanned by the first p rays among both (ρ
(i)
1 , . . . , ρ

(i)
d )

and (ρ
( j)
1 , . . . , ρ

( j)
d ). Then F̂σi , F̂σ j satisfy10 (3). The maps of T are collections of maps of

σ -families {φ̂σi : F̂σi → Ĝσi }i=1,...,e such that for each i, j as above10

φσi (λ1, . . . , λp,∞, . . . ,∞) = φσ j (λ1, . . . , λp,∞, . . . ,∞), ∀ λ1, . . . , λp ∈ Z.

Although the description in this theorem is not entirely coordinate invariant, the only
choice we made is an ordering of the rays of each cone σi of maximal dimension. For an
extension of this theorem to any T -equivariant pure sheaves, see [20, Sect. 2].
Equivariant reflexive sheaves. Let (·)∗ = Hom(·,OX ). A coherent sheaf F on X is called
reflexive if the natural morphism F → F∗∗ is an isomorphism. A T -equivariant reflexive
sheaf on X is T -equivariant torsion free.However, T -equivariant reflexive sheaves have a sim-
pler description than T -equivariant torsion free sheaves. The reason is that reflexive sheaves
are fully determined by their behaviour off any codimension≥ 2 closed subset [11, Prop. 1.6].
In particular, a reflexive sheaf on aT -invariant affineopen subsetUσi

∼= C
d is fully determined

by its restriction to the complement of the union of all codimension 2 coordinate hyperplanes

(C × C
∗ × · · · × C

∗) ∪ (C∗ × C × C
∗ × · · · × C

∗) ∪ · · · ∪ (C∗ × · · · × C
∗ × C).

9 The precise statement is this. The category of T -equivariant torsion free sheaves onUσi is equivalent to the

category of finite σi -families with all maps χ
σi
m,m′ injective. This category is equivalent to its full subcategory

of finite σi -families with all maps χ
σi
m,m′ inclusions.

10 It should be clear how the gluing conditions read when the rays of σi ∩ σ j do not necessarily correspond
to the first p rays of σi and σ j .
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The restrictions to the components of this union are easy to describe. We give the final result:
Let�(1) be the collection of rays of the fan� of X . We introduce a categoryR. Its objects

are collections of vector spaces {V ρ(λ)}ρ∈�(1),λ∈Z which form flags

· · · ⊂ V ρ(λ − 1) ⊂ V ρ(λ) ⊂ V ρ(λ + 1) ⊂ · · · .

We require these flags to be finite meaning V ρ(λ) = 0 for λ � 0. They are also required to be
full meaning V ρ(λ) = V ρ(λ+1) for λ � 0.We denote the limiting vector space by V ρ(∞).
The maps in the categoryR are the obvious: linear maps between the limiting vector spaces
preserving the flags. There is a natural fully faithful functor R → T defined as follows. As
before, denote the cones of� of maximal dimension by σ1, . . . , σe. For each i = 1, . . . , e, let
(ρ

(i)
1 , . . . , ρ

(i)
d ) be an ordering of rays of σi . Thenwemap {V ρ(λ)}ρ∈�(1),λ∈Z to the following

collection of finite σ -families

Fσi (λ1, . . . , λd) := V ρ
(i)
1 (λ1) ∩ · · · ∩ V ρ

(i)
d (λd), ∀λ1, . . . , λd ∈ Z.

Under the equivalence of categories of Theorem 2.2, the T -equivariant reflexive sheaves on

X correspond to the elements of the image of R → T [16,17], [26, Thm. 5.19]. From the
fact that rank 1 reflexive sheaves are line bundles, one easily deduces that the T -equivariant
Picard group PicT (X) is isomorphic to Z

#�(1).

2.2 Moduli spaces of equivariant sheaves

Theorem 2.2 allows one to construct explicit moduli spaces of T -equivariant torsion free
sheaves. A natural topological invariant of a T -equivariant sheaf is its characteristic function
[20, Def. 3.1]. Again, in this section we only consider the torsion free case.11

Definition 2.3 Let the notation be as in Theorem 2.2. Let F be a T -equivariant torsion free
sheaf on X , then the characteristic function χF of F is

χF : M −→ Z
e,

χF (m) = (χ
σ1
F (m), . . . , χ

σe
F (m)) = (dim(Fσ1

m ), . . . , dim(Fσe
m )).

We denote the set of all characteristic functions by X . 


Given a T -equivariant S-flat family of coherent sheaves, it is not hard to see that char-
acteristic functions are locally constant on the base S [20, Prop. 3.2]. This makes it a good
topological invariant. Moreover, it is finer than Hilbert polynomial. More precisely, fixing a
polarization on X , any two T -equivariant torsion free sheaves on X with the same characteris-
tic function χ have the same Hilbert polynomial [20, Prop. 3.14]. We refer to this polynomial
as the Hilbert polynomial determined by χ . For a fixed Hilbert polynomial P , we denote by
XP ⊂ X the set of characteristic functions which determine the Hilbert polynomial P .

For any χ ∈ X , one can now define moduli functors

Mss
χ : (Sch/C)o −→ Sets

Ms
χ : (Sch/C)o −→ Sets

11 Large parts of this section hold for T -equivariant pure sheaves in general [20].
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of T -equivariant flat families12 with fibres Gieseker semistable (respectively geometrically
Gieseker stable) T -equivariant torsion free sheaves on X with characteristic function χ .

Using Theorem 2.2, it is a straight-forward exercise in GIT to define candidate schemes
Mτ,ss

χ ,Mτ,s
χ corepresenting these functors. One takes certain closed subschemes of products

of Grassmannians (describing the multi-filtrations of Theorem 2.2) and considers the natural
G = SL(r,C) action on it. Here r = χσ1(∞, . . . ,∞) = · · · = χσe (∞, . . . ,∞) is the
dimension of the limiting vector space. Then two objects are T -equivariantly isomorphic if
and only if the corresponding points lie in the same G-orbit. The hard part is to find a G-
equivariant line bundle which reproduces Gieseker stability. SuchG-equivariant line bundles
are constructed in [20, Thm. 3.21].

Theorem 2.4 ([20, Thm. 3.12]) Let X be a polarized smooth projective toric variety and
let χ ∈ X . Then Mss

χ is corepresented by a projective scheme Mss
χ explicitly constructed

using GIT in [20, Sect. 3.3]. Moreover, there is an open subsetMs
χ ⊂ Mss

χ such thatMs
χ is

corepresented by Ms
χ and Ms

χ is a coarse moduli space.

The construction of the moduli spaces Mss
χ , Ms

χ simplifies considerably if one replaces
“torsion free” by “reflexive” and “Gieseker stable” by “μ-stable” [20, Sect. 4.4]. Denote by
X refl ⊂ X be the subset of characteristic functions of T -equivariant reflexive sheaves on X .
For any χ ∈ X refl, define moduli functors

Nμss
χ : (Sch/C)o −→ Sets

Nμs
χ : (Sch/C)o −→ Sets

of T -equivariant S-flat families with fibres μ-semistable (resp. geometrically μ-stable) T -
equivariant reflexive sheaves on X with characteristic function χ . Again, straightforward
use of GIT yields candidate schemes Nμss

χ ,Nμs
χ corepresenting these. This time the G-

equivariant line bundles reproducing μ-stability are of a particularly explicit form. With this
choice Nμss

χ is corepresented by the (quasi-projective) scheme Nμss
χ . Moreover, the open

subset Nμs
χ ⊂ Nμss

χ corepresents Nμs
χ and is a coarse moduli space [20, Thm. 4.14].

2.3 Fixed point loci of moduli spaces of sheaves

Let X be a polarized projective scheme. For any choice of Hilbert polynomial P , there are
natural moduli functors

Mss
P : (Sch/C)o −→ Sets

Ms
P : (Sch/C)o −→ Sets

of S-flat families with fibres Gieseker semistable (resp. geometrically Gieseker stable)
sheaves with Hilbert polynomial P . See [12, Sect. 4.1] for details. There exists a projec-
tive scheme Mss

P corepresenting Mss
P , an open subset Ms

P ⊂ Mss
P corepresenting Ms

P ,
and Ms

P is a coarse moduli scheme [12, Thm. 4.3.4]. Now let X be a smooth projective
toric variety and let P have degree dim(X). For any χ ∈ XP , forgetting the T -equivariant
structure induces a closed embeddingMs

χ ⊂ Ms
P . The action of T on X lifts to an action on

Ms
P and obviously Ms

χ ⊂ (
Ms

P

)T . In fact, the fixed point locus
(
Ms

P

)T can be explicitly
expressed as a union of moduli spaces of T -equivariant sheaves.

12 As usual, two such families F1, F2 are identified if there exists a line bundle L on S and a T -equivariant
isomorphism F1 ∼= F2 ⊗ p∗

S L . See [20, Sect. 3.1] for details.
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Theorem 2.5 ([20, Cor. 4.10]) Let X be a polarized smooth projective toric variety and let
P be a choice of Hilbert polynomial of degree dim(X). Then the forgetful map induces an
isomorphism of schemes (

Ms
P

)T ∼=
∐

χ∈(XP )fr

Ms
χ .

Here (XP )fr ⊂ XP is the collection of framed characteristic functions. These are defined
as follows. Given a T -equivariant torsion free sheaf F on X with σ -families {F̂σi }i=1,...,e,
there are unique maximally chosen integers u1, . . . , ud with the property

Fσ1(λ1, . . . , λd) = 0, unless λ1 ≥ u1 and . . . and λd ≥ ud .

A characteristic function χ ∈ XP is called framed if the first component χσ1 has the property
that the integers u1, . . . , ud described above are all zero. For any T -equivariant torsion
free sheaf F on X , there exists a unique character m ∈ M such that F ⊗ O(m) has framed
characteristic function.HereO(m) denotes the trivial line bundlewith T -equivariant structure
induced by the character m. The framing ensures the forgetful map is injective. Obviously,
many other choices of framing are possible.

For reflexive sheaves, there is a natural moduli functor [20, Sect. 4.4]

Nμs
P : (Sch/C)o −→ Sets

of S-flat familieswith fibres geometricallyμ-stable reflexive sheaveswithHilbert polynomial
P . There is an open subset Nμs

P ⊂ Ms
P corepresenting Nμs

P and Nμs
P is a coarse moduli

space [20, Sect. 4.4]. The torus action on Ms
P restricts to Nμs

P and the fixed point locus has
the following description.

Theorem 2.6 ([20, Thm. 4.14]) Let X be a polarized smooth projective toric variety and let
P be a choice of Hilbert polynomial of a reflexive sheaf on X. Then the forgetful map induces
an isomorphism of schemes (

Nμs
P

)T ∼=
∐

χ∈(X refl
P )fr

Nμs
χ .

2.4 Chern classes of equivariant sheaves

In this paper, we want to fix the Chern classes of a sheaf rather than the Hilbert polynomial.
Like in the case of Hilbert polynomial, the Chern classes of a T -equivariant torsion free
sheaf on a toric variety are fully determined by its characteristic function. In fact, Klyachko
[19, Sect. 1.2, 1.3] gives an explicit formula.13 For our purposes, we only need to know that
the Chern classes are fully determined by the characteristic function, whereas the precise
formula is not relevant. However, for completeness we include it.

Definition 2.7 Let {F(λ1, . . . , λd)}(λ1,...,λd )∈Zd be a collection of finite-dimensional com-
plex vector spaces. For each i = 1, . . . , d , we define a Z-linear operator �i on the free
abelian group generated by the vector spaces {F(λ1, . . . , λd)}(λ1,...,λd )∈Zd determined by

�i F(λ1, . . . , λd) := F(λ1, . . . , λd) − F(λ1, . . . , λi−1, λi − 1, λi+1, . . . , λd).

13 In the previous sections, we followed Perling’s convention of ascending directions for the maps between
the weight spaces as opposed to Klyachko’s convention of descending directions. This results in some minus
signs compared to Klyachko’s original formula.
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We then define [F](λ1, . . . , λd) := �1 · · · �d F(λ1, . . . , λd). Furthermore,we define dimen-
sion dim as a Z-linear operator on the free abelian group generated by the vector spaces
{F(λ1, . . . , λd)}(λ1,...,λd )∈Zd in the obvious way so we can speak of dim[F](λ1, . . . , λd). For
example

dim[F](λ) = dim F(λ) − dim F(λ − 1),

dim[F](λ1, λ2) = dim F(λ1, λ2) − dim F(λ1 − 1, λ2) − dim F(λ1, λ2 − 1)

+ dim F(λ1 − 1, λ2 − 1).




Proposition 2.8 (Klyachko’s Formula) Let X be a smooth projective toric variety with fan
� and lattice N of rank d. Let {σ1, . . . , σe} be the cones of dimension d and for each
i = 1, . . . , e, let

(
ρ

(i)
1 , . . . , ρ

(i)
d

)
be an ordering of the rays of σi . Then any T -equivariant

torsion free F on X with σ -families {F̂σi }i=1,...,e satisfies

ch(F) =
∑

σ∈�, λ∈Zdim(σ )

(−1)codim(σ ) dim[Fσ ](λ) exp
(

−
∑

ρ∈σ(1)

〈λ, n(ρ)〉V (ρ)
)
.

In this proposition, σ(1) denotes the collection of rays of σ and n(ρ) ∈ N is the primitive
generator of the ray ρ. Furthermore, 〈·, ·〉 : M×N → Z is the natural pairing and V (ρ) ⊂ X
denotes the toric divisor corresponding to the ray ρ. Any cone σ ∈ � is a face of a cone σi of
dimension d . Assume σ has dimension p. Without loss of generality, let

(
ρ

(i)
1 , . . . , ρ

(i)
p
) ⊂(

ρ
(i)
1 , . . . , ρ

(i)
r
)
be the rays spanning σ ⊂ σi . Then the σ -family of the torsion free sheaf

F |Uσ is given by [20, Prop. 2.9]

Fσ (λ1, . . . , λp) = Fσi (λ1, . . . , λp,∞, . . . ,∞).

2.5 Generating functions of Euler characteristics

In this paper, we consider the case X = S is a smooth complete toric surface with polarization
H . Instead of fixing Hilbert polynomial, we fix rank r and Chern classes c1, c2. We denote by
MH

S (r, c1, c2) the moduli space of μ-stable torsion free sheaves on S with rank r and Chern
classes c1, c2.Wewant to compute the generating function of topological Euler characteristics

∑

c2

e(MH
S (r, c1, c2))q

c2 .

By the Bogomolov inequality [12, Thm. 3.4.1], this generating function is a formal Laurent
series in q . Note that we compute Euler characteristics of moduli spaces of μ-stable torsion
free sheaves MH

S (r, c1, c2) only and ignore strictly μ-semistables. The reason is that the
descriptions of fixed point loci of Theorems 2.5, 2.6 rely on simpleness in an essential way
[20]. In the case rank and degree are coprime, i.e. gcd(r, c1 ·H) = 1,μ-stability and Gieseker
stability coincide and there are no strictly semistables, so the moduli spaces MH

S (r, c1, c2)
are projective.

For any torsion free sheaf F , the natural map to its double-dual (which is reflexive [11,
Cor. 1.2]) is an injection F ↪→ F∗∗ [12, Prop. 1.1.10]. On a surface, reflexive and locally
free sheaves are the same [11, Cor. 1.4] and the cokernel of F ↪→ F∗∗ is 0-dimensional.
Using this map, one can show the following [10, Prop. 3.1].
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Proposition 2.9 Let S be a smooth complete surface with polarization H. Let r > 0 and
c1 ∈ H2(S,Z). Then

∑

c2

e(MH
S (r, c1, c2))q

c2 = 1∏∞
k=1(1 − qk)re(S)

∑

c2

e(N H
S (r, c1, c2))q

c2 ,

where N H
S (r, c1, c2) is the moduli space of μ-stable locally free sheaves on S with rank r

and Chern classes c1, c2.

In the toric case, we have a torus action on the moduli spaces so e(N H
S (r, c1, c2)) =

e(N H
S (r, c1, c2)T ). Together with Theorem 2.6, this gives the following formula.

Proposition 2.10 Let S be a smooth complete toric surface with polarization H. Let r > 0
and c1 ∈ H2(S,Z). Then

∑

c2

e(MH
S (r, c1, c2))q

c2 = 1∏∞
k=1(1 − qk)re(X)

∑

c2

∑

χ∈
(
X refl

(r,c1,c2)

)fr
e(Nμs

χ )qc2 ,

where X refl
(r,c1,c2)

⊂ X refl is the collection of characteristic function determining rank r and
Chern classes c1, c2 via Klyacho’s formula Prop. 2.8.

3 A formula for the generating function

For any smooth complete toric surface S with polarization H and r > 0, c1 ∈ H2(S,Z), we
are interested in the generating function

∑

c2

e(MH
S (r, c1, c2))q

c2

introduced in Sect. 2.5. In this section, we use the toric description of Proposition 2.10 to
express this generating function in terms of Euler characteristics of certain explicit moduli
spaces of stable configurations of linear subspaces (Theorem 3.5 below). We recall that we
consider μ-stable torsion free sheaves only and ignore strictly μ-semistables. However, we
do keep H, r, c1 completely arbitrary. In the next section, we simplify the general formula of
Theorem 3.5 further in the cases: S arbitrary and r = 1, S = P

2 and r = 1, 2, 3, and S = Fa

and r = 1, 2. Here Fa denotes the ath Hirzebruch surfaces and F0 := P
1 × P

1.

3.1 Chern classes of equivariant locally free sheaves

By Proposition 2.10, we only need to consider reflexive, i.e. locally free, sheaves on S. In
this section, we compute the Chern classes of such sheaves. We start by recalling some basic
facts about toric surfaces. Smooth complete toric surfaces are classified by the following
proposition [6, Sect. 2.5].

Proposition 3.1 All smooth complete toric surfaces are obtained by successive blow-ups of
P
2 and Fa at fixed points.

Combinatorially, such blow-ups are described by stellar subdivisions, i.e. creating a fan �̃

out of a fan� by subdividing a cone through the sum of the two primitive lattice vectors of its
rays. From now on, we fix the lattice N = Z

2 and let � be the fan of a smooth complete toric
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surface S. We denote the 2-dimensional cones by σ1, . . . , σe, where e = e(S). We denote
the rays by ρ1, . . . , ρe and we let σi be spanned by ρi , ρi+1. Here the index i is understood
modulo e so σe is spanned by ρe, ρ1. Without loss of generality, we take the primitive lattice
vector of ρ1 to be (1, 0), of ρ2 to be (0, 1), and order the rays ρi counter-clockwise.

The cohomology ring H2∗(S,Z) can be easily described in terms of this data. First note
that H0(S,Z) ∼= Z is generated by [S] and H4(S,Z) ∼= Z by pt . Denote the primitive lattice
vector of ρi by ni and denote the toric divisor corresponding to ρi by Di . Then H2(S,Z) is
generated by D1, . . . , De modulo the relations [6, Sect. 5.2]

D1 +
e∑

i=3

〈(1, 0), ni 〉Di = 0,

D2 +
e∑

i=3

〈(0, 1), ni 〉Di = 0.

Here M = Z
2 and 〈·, ·〉 is the standard inner product. By [6, Sect. 2.5], Di D j = 0 unless

j = i + 1 and

D1D2 = D2D3 = · · · = De−1De = DeD1 = pt.

Finally, the self-intersections D2
i = −ai are determined by the equation ni−1 + ni+1 = aini

[6, Sect. 2.5]. For future reference, it is convenient to define ξi := −〈(1, 0), ni 〉 and ηi :=
−〈(0, 1), ni 〉. Note that the integers {ai }ei=1, {ξi }ei=3, {ηi }ei=3 are entirely determined by the
fan �.

By Theorem 2.2, a T -equivariant rank r torsion free sheaf F on S is described by multi-
filtrations {Fσi (λ1, λ2)}i=1,...,e of C⊕r satisfying the gluing conditions

Fσi (∞, λ) = Fσi+1(λ,∞), for all λ ∈ Z. (4)

Moreover, a T -equivariant rank r locally free sheaf F on S is simply described by flags
{V ρi (λ)}i=1,...,e ofC⊕r (Sect. 2.1).Aswe discussed, the correspondingσ -families are defined
by

Fσi (λ1, λ2) := V ρi (λ1) ∩ V ρi+1(λ2).

The flags {V ρi (λ)}i=1,...,e can be described by indicating the integers where the vector
spaces jump together with the subspaces occurring in the flag. More precisely, for each
i = 1, . . . , e, there exist unique integers ui ∈ Z, v1,i , . . . , vr−1,i ∈ Z≥0 and subspaces
p1,i ∈ Gr(1, r), . . . , pr−1,i ∈ Gr(r − 1, r) such that

V ρi (λ) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 if λ < ui
p1,i if ui ≤ λ < ui + v1,i
p2,i if ui + v1,i ≤ λ < ui + v1,i + v2,i
. . .

C
⊕r if ui + v1,i + . . . + vr−1,i ≤ λ.

(5)

Note that va,i could be zero in which case pa,i does not occur. At such places, the flag jumps
more than 1 in dimension.

Definition 3.2 Instead of describing a T -equivariant locally free sheaf F on S by the flags
{V ρi (λ)}i=1,...,e, we can also describe it by the data {(ui , va,i , pa,i )}a=1,...,r−1,i=1,...,e intro-
duced above. We refer to {(ui , va,i , pa,i )}a=1,...,r−1,i=1,...,e as toric data and abbreviate it by
(u, v,p). 
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Proposition 3.3 Let F be a T -equivariant rank r locally free sheaf on S described by toric
data (u, v,p). Then

c1(F) = −
e∑

i=1

(
rui +

r−1∑

a=1

(r − a)va,i

)
Di ,

ch2(F) = 1

2

(
e∑

i=1

ui Di

)2

+ 1

2

r−1∑

a=1

(
e∑

i=1

(
ui +

a∑

b=1

vb,i

)
Di

)2

−
e∑

i=1

r−1∑

a,b=1

va,ivb,i+1
(
min{a, b} − dim(pa,i ∩ pb,i+1)

)
pt.

Proof In the case r = 1, the sheaf F is a line bundle and described by integers u1, . . . , ue
(Sect. 2.1). It is easy to see that [20, Sect. 4.2]

c1(F) = −
e∑

i=1

ui Di .

Therefore

ch(F) = exp

(
−

e∑

i=1

ui Di

)
= 1 −

e∑

i=1

ui Di + 1

2

(
e∑

i=1

ui Di

)2

.

In the case r > 0 and pa,i = pa,i+1 for all a, i , the sheafF is a direct sum of T -equivariant
line bundles

F =
r⊕

a=1

La .

Here La is defined by flags {Lρi
a (λ)}i=1,...,e, where Lρi

a (λ) = C if λ ≥ ui +∑a−1
b=1 vb,i and

Lρi
a (λ) = 0 otherwise. This immediately implies the following formula

ch(F) =
∑

a

ch(La)

= r −
e∑

i=1

(
rui +

r−1∑

a=1

(r − a)va,i

)
Di

+1

2

(
e∑

i=1

ui Di

)2

+ 1

2

r−1∑

a=1

(
e∑

i=1

(
ui +

a∑

b=1

vb,i
)
Di

)2

. (6)

For the general case, we use Klyachko’s formula (Proposition 2.8). Actually, we do not
need the precise form of the formula, but merely observe ch(F) only depends on the charac-
teristic function χF (Definition 2.3). For each a = 1, . . . , r , define a T -equivariant torsion
free subsheaf Ga ⊂ La by the following σ -families {Gσi

a (λ1, λ2)}i=1,...,e

Gσi
a (λ1, λ2) =

{
C if dim(Fσi (λ1, λ2)) ≥ a
0 otherwise.

Then by construction χF = ∑a χGa
= χ⊕

a Ga
so ch(F) = ch(

⊕
a Ga). The sheaf

⊕
a Ga

is a T -equivariant subsheaf of
⊕

a La with 0-dimensional cokernel Q. The length of Q is
easily seen to be
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e∑

i=1

r−1∑

a,b=1

va,ivb,i+1
(
min{a, b} − dim(pa,i ∩ pb,i+1)

)
.

Subtracting this from Eq. (6) gives the answer. ��
3.2 Main theorem

Characteristic functions of locally free sheaves. By Proposition 3.3, we now know how a
characteristic function χ ∈ X refl determines rank and Chern classes. Next, we want to say
a bit more about χ itself. Let σi ∈ � be a cone of maximal dimension and consider the
corresponding T -invariant affine open subset Uσi . Let F be a T -equivariant locally free
sheaf of rank r on S. The restriction F |Uσi

splits into a sum of T -equivariant line bundles on
Uσi

F |Uσi
∼=

r⊕

a=1

La .

Note that in general, we do not have such a splitting globally. From this splitting, we can read
off the i th component χσi

F of the characteristic function χF . Indeed, let La be generated by a
homogeneous element with character mσi

a , then the collection of characters {mσi
1 , . . . ,mσi

r }
completely determineχ

σi
F . Let usmake this explicit. As before, denote the primitive generator

of ray ρi by ni and the pairing by 〈·, ·〉. Define the Heaviside function
Hm

σi
a

: M → Z,

Hm
σi
a

(λ1, λ2) =
{
1 if λ1 ≥ 〈mσi

a , ni 〉 and λ2 ≥ 〈mσi
a , ni+1〉

0 otherwise.

Recall that we use the primitive generators (ni , ni+1) as a basis for N and the dual basis as
a basis for M (Sects. 2.1 and 3.1). Then

χ
σi
F =

r∑

a=1

Hm
σi
a

.

So indeed {mσi
1 , . . . ,mσi

r } fully determines χσi and vice versa. By the gluing conditions
(4), a sequence {{mσi

1 , . . . ,mσi
r }}i=1,...,e determines a characteristic function of a rank r

T -equivariant locally free sheaf on S if and only if

〈mσi
a , ni+1〉 = 〈mσi+1

a , ni+1〉,
for all a = 1, . . . , r and i = 1, . . . , e.

Now let F be any T -equivariant locally free sheaf on S with characteristic function
{{mσi

1 , . . . ,mσi
r }}i and toric data (u, v,p). The notion of toric data was introduced in Def-

inition 3.2. The integers ui , va,i are full determined by the characteristic function via the
following equations

〈mσi
1 , ni 〉 = 〈mσi−1

1 , ni 〉 = ui ,

〈mσi
2 , ni 〉 = 〈mσi−1

2 , ni 〉 = ui + v1,i ,

· · ·
〈mσi

r , ni 〉 = 〈mσi−1
r , ni 〉 = ui + v1,i + · · · + vr−1,i .

Although a characteristic function does not determine the continuous parameters pa,i , it does
determine the dimensions
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dim(pa,i ∩ pb,i+1),

for all i = 1, . . . e and a, b = 1, . . . , r − 1. We denote these dimensions by δa,b,i :=
dim(pa,i ∩ pb,i+1). Note that δa,b,i ∈ {0, 1, . . . ,min{a, b}}. We abbreviate the data
{(ui , va,i , δa,b,i )}a,b,i by (u, v, δ). Clearly the data of a characteristic function χ is equivalent
to the data (u, v, δ). From now on, we identify the two notions

χ ↔ (u, v, δ).

The reason for introducing this notation is because Proposition 3.3 expresses the Chern
classes of a T -equivariant locally free sheaf with characteristic function (u, v, δ) in terms of
this data.

Stratification. As we have seen in Sects. 2.1 and 3.1, T -equivariant locally free sheaves of
rank r on S are described by toric data (u, v,p). Such toric data is naturally parametrized by
the closed points of the following variety

∐

u1,...,ue∈Z

∐

v1,1, . . . , vr−1,1 ≥ 0
. . .

v1,e, . . . , vr−1,e ≥ 0

e∏

i=1

Flag(ui , v1,i , . . . , vr−1,i ), (7)

where Flag(ui , v1,i , . . . , vr−1,i ) is the partial flag variety of flags p1,i ⊂ · · · ⊂ pr−1,i ⊂ C
⊕r .

The labels ui , va,i allow us to recover the toric data by formula (5). For any (u, v, δ) ∈
X refl, we denote by D(u,v,δ) the collection of toric data (u, v,p) with characteristic function
(u, v, δ). Clearly, D(u,v,δ) is naturally a locally closed14 subset of (7). We can now stratify
(7) as follows

∐

u1,...,ue∈Z

∐

v1,1, . . . , vr−1,1 ≥ 0
. . .

v1,e, . . . , vr−1,e ≥ 0

∐

δa,b,i ∈ {0, 1, . . . ,min{a, b}}
for all i = 1, . . . , e

and a, b = 1, . . . , r − 1

D(u,v,δ).

The advantage of this stratification is that any T -equivariant locally free sheaf on S with toric
data in D(u,v,δ) has the same Chern character by Proposition 3.3.

Each component of the variety (7) is naturally a closed subscheme of

e∏

i=1

r−1∏

a=1

Gr(a, r),

where we omit the factor indexed by a, i when va,i = 0. This product of Grassmannians
carries a natural action of SL(r,C), which keeps each factor D(u,v,δ) invariant. Equivariant
isomorphism classes of ample linearizations on

∏e
i=1
∏r−1

a=1 Gr(a, r) are in 1–1 correspon-
dence with sequences of positive integers {κa,i }a=1,...,r−1,i=1,...,e by [4, Sect. 11.1]. On a
factor D(u,v,δ), we are interested in the following linearization. The toric data in D(u,v,δ)
gives rise to integers ui , va,i and we take the ample linearization

{(H · Di )va,i }a,i

on the product of Grassmannians and restrict it to D(u,v,δ). Recall that H is the (fixed)
polarization on S and the Di are the toric divisors (Sect. 3.1). It is proved in [20, Prop. 3.20],

14 Note that for any finite product of Grassmannians
∏

i Gr(ni , N ), the map {pi }i �→ dim
(⋂

i pi
)
is upper

semicontinuous.

123



Geom Dedicata (2015) 176:241–269 255

that the notion of GIT stability on D(u,v,δ) we obtain in this way coincides with μ-stability.
More precisely, any T -equivariant locally free sheaf F on S with toric data in (u, v,p) ∈
D(u,v,δ) is μ-semistable if and only if (u, v,p) corresponds to a GIT semistable point and F
is μ-stable if and only if (u, v,p) corresponds to a properly GIT stable point (with respect
to the chosen linearization). The previous discussion combined with Theorem 2.6 gives the
following proposition.

Proposition 3.4 Let S be a smooth complete toric surface with polarizarion H. Let r > 0
and c1 ∈ H2(S,Z). Then for any c2 ∈ H4(S,Z) ∼= Z, there is a canonical isomorphism

N H
S (r, c1, c2)

T ∼=
∐

ui , va,i
giving rise to c1

∐

δa,b,i
giving rise to c2

Ds
(u,v,δ)/SL(r,C),

whereDs
(u,v,δ) ⊂ D(u,v,δ) is the open subset of properly GIT stable points with respect to the

polarization {(H · Di )va,i }a,i and the quotients are good geometric quotients.

Some comments about this proposition are in order. Firstly, in the union over u1, . . . , ue ∈
Z we take u1 = u2 = 0 and u3, . . . , ue ∈ Z arbitrary. This is because the disjoint union in
Theorem 2.6 is over framed characteristic functions. Secondly, we note that it makes sense
to speak of ui , va,i giving rise to some fixed c1 ∈ H2(S,Z) by the formula of Proposition
3.3. Thirdly, by the same proposition, it makes sense to speak of ui , va,i , δa,b,i giving rise to
some fixed c2 ∈ H4(S,Z) ∼= Z.

Main theorem. We introduce some final notation. For a fixed c1 =∑e
i=3 fi Di ∈ H2(X,Z),

we define

C := {{va,i }a,i ∈ Z
(r−1)e
≥0 : r | − fi +

r−1∑

a=1

a
(
va,1ξi + va,2ηi + va,i

) ∀ i = 3, . . . e
}
.

We suppress the dependence ofC on S, r , and c1 as we think of these as fixed. Recall that the
integers ξi , ηi were introduced in Sect. 3.1 and are entirely determined by the fan of S. We
also introduce the following complicated quadratic polynomial in the variables v = {va,i }a,i

Q(v) := 1

2

(
e∑

i=3

fi Di

)2

− 1

2r2

r−1∑

a=0

[
e∑

i=3

(
− fi −

r−1∑

b=1

(r − b)vb,i +
{

−
r−1∑

b=1

(r − b)vb,1 +
a∑

b=1

rvb,1

}
ξi

+
{

−
r−1∑

b=1

(r − b)vb,2 +
a∑

b=1

rvb,2

}
ηi +

a∑

b=1

rvb,i

)
Di

]2
.

As before, we suppress the dependence of Q on S, r, c1. For any v = {va,i }a,i ∈ C and
u1 = u2 = 0, there are unique u3, . . . , ue such that ui , va,i determine c1 by the formula of
Proposition 3.3. For any choice of δ = {δa,b,i }a,b,i we define

R(v, δ) :=
e∑

i=1

r−1∑

a,b=1

va,ivb,i+1
(
min{a, b} − δa,b,i

)
,

D(v,δ) := D(u,v,δ), where u1 = u2 = 0 and u3, . . . , ue determine c1.
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Combining Propositions 2.10, 3.3, 3.4 gives the following explicit formula for the generating
function for any S, H, r , and c1.

Theorem 3.5 Let S be a smooth complete toric surface with polarizarion H. Let r > 0 and
c1 =∑e

i=3 fi Di ∈ H2(S,Z). Then

∑

c2

e(MH
S (r, c1, c2))q

c2 = 1∏∞
k=1(1 − qk)re(X)

∑

v∈C

∑

δ

e(Ds
(v,δ)/SL(r,C)) qQ(v)+R(v,δ),

where Ds
(v,δ) ⊂ D(v,δ) is the open subset of properly GIT stable point with respect to the

polarization {(H · Di )va,i }a,i and the quotients are good geometric quotient.

4 Examples

In this section we specialize the expression of Theorem 3.5 to the following cases: any S
and r = 1, S = P

2 and r = 1, 2, 3, and S = Fa and r = 2. Some of these cases have been
considered individually by various authors including Ellingsrud and Strømme, Göttsche,
Klyachko, Yoshioka and Weist. In the case S = Fa , we study the dependence on the choice
of polarization and compare to Joyce’s general theory of wall-crossing for motivic invariants
counting (semi)stable objects in an abelian category.

The case of any toric surface S and r = 1 trivially gives

∑

c2

e(MS(1, c1, c2))q
c2 = 1∏∞

k=1(1 − qk)e(X)
.

For any (not necessarily toric) surface S, we have MS(1, c1, c2) ∼= Pic0(S) × Hilbc2(S),
where Hilbc2(S) is the Hilbert scheme of c2 points on S and Pic0(S) is the Picard torus of
S. Therefore, the above is also the generating function of Euler characteristics of Hilbert
schemes of points on S. For S = P

2 or Fa , Ellingsrud and Strømme [5] computed the Betti
numbers of Hilbn(S) using localization techniques. Subsequently, Göttsche [8] computed
the Betti numbers of Hilbn(S) for any smooth complete surface S. His proof uses the Weil
conjectures.

4.1 Rank 2 on P
2 and Fa

In the r = 2 case, the expression of Theorem 3.5 involves Euler characteristics of configu-
ration spaces of points on P

1. Note that these configuration spaces depend explicitly on the
choice of polarization H on S. For the toric data (Definition 3.2) (u, v,p) of a rank 2 locally
free sheaf on S, we define vi := v1,i and pi := p1,i . For the characteristic function (see Sect.
3.2) (u, v, δ) of such a sheaf, we moreover write δi := δ1,i .

4.1.1 Rank 2 on P
2

Let S = P
2. The generating function does not depend on choice of polarization, so we

suppress it from the notation. Since e(S) = 3 and r = 2, the spaces D(v,δ) of Theorem 3.5
are locally closed subsets of (P1)3. The only possibly non-empty quotients Ds

(v,δ)/SL(2,C)

are those for which all vi > 0 and all δi are 0. In this case

Ds
(v,0) ⊂ (P1)3
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is the open subset of triples (p1, p2, p3) with all pi mutually distinct. The quotients
Ds

(v,0)/SL(2,C) are either empty or consist of one reduced point depending on the value
of the polarization. Specifically

Ds
(v,0)/SL(2,C) =

{
pt if vi < v j + vk for all {i, j, k} = {1, 2, 3}
0 otherwise.

The notation “for all {i, j, k} = {1, 2, 3}” means “for all i ∈ {1, 2, 3}, j ∈ {1, 2, 3} \ {i}, and
k ∈ {1, 2, 3} \ {i, j}”. Writing the first Chern class as c1 = f H , where H is the hyperplane
class, Theorem 3.5 gives

∞∏
k=1

(1 − qk)6
∑
c2

e(MP2(2, c1, c2))qc2 = ∑

v1, v2, v3 > 0 s.t.
2 | − f + v1 + v2 + v3

v1 < v2 + v3
v2 < v1 + v3
v3 < v1 + v2

q
f 2

4 + 1
2

∑
i< j viv j− 1

4

∑
i v2i .

(8)

Let S be any smooth complete surface, H an ample divisor, r > 0, c1 ∈ H2(S,Z) and
c2 ∈ H4(S,Z) ∼= Z. Let a be aWeil divisor. Applying−⊗OS(a), we obtain an isomorphism

MH
S (r, c1, c2) ∼= MH

S (r, c1 + ra, (r − 1)c1a + 1

2
r(r − 1)a2 + c2).

This uses the fact that − ⊗ OS(a) preserves μ-stability. We deduce
∑

c2

e(MH
S (r, c1 + ra, c2))q

c2 = q(r−1)c1a+ 1
2 r(r−1)a2

∑

c2

e(MH
S (r, c1, c2))q

c2 . (9)

So for S = P
2 and r = 2, the only two interesting values for c1 are 0 and 1.

Corollary 4.1 On S = P
2, we have the following rank 2 generating functions for Euler

characteristics of moduli spaces of μ-stable torsion free sheaves

∑

c2

e(MP2(2, 0, c2))q
c2 = 1∏∞

k=1(1 − qk)6

∞∑

m=1

∞∑

n=1

qmn+m+n

1 − qm+n
,

∑

c2

e(MP2(2, 1, c2))q
c2 = 1∏∞

k=1(1 − qk)6

∞∑

m=1

∞∑

n=1

qmn

1 − qm+n−1 .

Proof The corollary follows from rewriting Eq. (8). Using the substitutions ξ = 1
2 (v1+v2−

v3), η = 1
2 (v1 − v2 + v3), ζ = 1

2 (−v1 + v2 + v3), the set
{
(v1, v2, v3) ∈ Z

3 : 2 | − f + v1 + v2 + v3, vi > 0, vi < v j + vk ∀ {i, j, k} = {1, 2, 3}}

becomes
{
(ξ, η, ζ ) ∈ Q

3
>0 : 2 | − f + 2ξ + 2η + 2ζ, ξ + η ∈ Z, ξ + ζ ∈ Z, η + ζ ∈ Z

}
.

Using the substitutions ξ = 2k− f
2 , η = m − 2k− f

2 , ζ = n − 2k− f
2 , this set becomes

{
(k,m, n) ∈ Z

3 : k >
f

2
, m > k − f

2
, n > k − f

2

}
.
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Applying these substitutions and setting f = 1 gives

∑

c2

e(MP2(2, 1, c2))q
c2 = 1∏∞

p=1(1 − q p)6

∞∑

k=1

∞∑

m=k

∞∑

n=k

qmn−k(k−1),

and a similar formula holds for c1 = 0. The result follows from the geometric series. ��

Comparison to existing literature. In [30], Yoshioka derives an expression for the generating
function of Poincaré polynomials ofMP2(2, 1, c2) using the Weil Conjectures. Specializing
his formula to Euler characteristics gives

∑

c2

e(MP2(2, 1, c2))q
c2

= 1∏∞
k=1(1 − qk)6

(
1

2
∑

m∈Z
qm2

) ∞∑

n=0

(
2 − 4n

1 − q2n+1 + 8q2n+1

(1 − q2n+1)2

)
q(n+1)2 .

Equating to the formula of Corollary 4.1 gives an interesting identity of formal power series.
Although it does not seem to be easy to show the equality directly, one can numerically check
agreement of the coefficients up to large order.

In [19], Klyachko computes
∑

c2 e(MP2(2, 1, c2))qc2 and our paper basically follows
his philosophy. In fact, the prequel to this paper [20] lays the foundations of many ideas
appearing in [19] in the case of pure sheaves of any dimension on any smooth toric variety.
This paper can be seen as a systematic application of these ideas to smooth toric surfaces.
Klyachko expresses his answer as

∑

c2

e(MP2(2, 1, c2))q
c2 = 1∏∞

k=1(1 − qk)6

∞∑

m=1

3H(4m − 1)qm,

where H(D) is the Hurwitz class number

H(D) =
(
number of integer binary quadratic forms Q of
discriminant − D counted with weight 2

Aut(Q)

)
.

4.1.2 Rank 2 on Fa

In this section, we consider the more complicated case of rank 2 on Fa (a ∈ Z≥0). The fan
of Fa is

����������

(−1, a)

so we obtain relations D1 = D3 and D4 = D2 + aD3 (Sect. 3.1). Defining E := D1,
F := D2, the cohomology ring is given by

H2∗(Fa,Z) ∼= Z[E, F]/(E2, F2 + aEF).
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A divisor H = αE + βF is ample if and only if β > 0 and α′ := α − aβ > 0 [6, Sect. 3.4].
Fix such an ample divisor and an arbitrary first Chern class c1 = f3D3+ f4D4 ∈ H2(Fa,Z).
By formula (9), the only interesting cases are ( f3, f4) = (0, 0), (1, 0), (0, 1), (1, 1).

Corollary 4.2 Let S = Fa, H = αD1 + βD2 an ample divisor, and c1 = f3D3 + f4D4.
Define λ := α

β
. The generating function

∏∞
k=1(1 − qk)8

∑
c2 e(M

H
Fa

(2, c1, c2))qc2 is given
by

−
∑

(i, j,k,l)∈C1

q
1
2 f3 f4+ a

4 f 24 + 1
2 j (i− a

2 j)

+ 2

⎛

⎝
∑

(i, j,k,l)∈C2

+
∑

(i, j,k,l)∈C3

⎞

⎠ q
1
2 f3 f4+ a

4 f 24 + 1
4 i j− 1

4 jk+ 1
4 il+ 1

4 kl− a
4 l

2

+
⎛

⎝2
∑

(i, j,k)∈C4

+
∑

(i, j,k)∈C5

+
∑

(i, j,k)∈C6

⎞

⎠ q
1
2 f3 f4+ a

4 f 24 + 1
2 j (i− a

2 j),

where C1,C2,C3 ⊂ Z
4,C5,C6 ⊂ Z

3 are the following sets

C1 := {
(i, j, k, l) ∈ Z

4 : 2 | f3 + i, 2 | f4 + j, 2 | i + k, 2 | j + l, λ j = i,− j < l < j,

−λ j + a( j + l) < k < λ j
}
,

C2 := {
(i, j, k, l) ∈ Z

4 : 2 | f3 + i, 2 | f4 + j, 2 | i + k, 2 | j + l, k < λl < i, l < j,

−i − a( j − l) < k, −λj < k},
C3 := {

(i, j, k, l) ∈ Z
4 : 2 | f3 + i, 2 | f4 + j, 2 | i + k, 2 | j + l, k < λl < i, l < j,

−i + a( j + l) < k, −λj + a( j + l) < k
}
,

C4 :=
{
(i, j, k) ∈ Z

3 : 2 | f3 + i, 2 | f4 + j, 2 | j + k, i < λj,
a

2
( j + k) < i,

− i

λ − a
+ aj

λ − a
< k < λ−1i

}
,

C5 := {
(i, j, k) ∈ Z

3 : 2 | f3 + i, 2 | f4 + j, 2 | i + k, λj < i, −λ j < k < λj
}
,

C6 := {
(i, j, k) ∈ Z

3 : 2 | f3 + i, 2 | f4 + j, 2 | i + k, λj < i, j > 0,

−λ j + 2aj < k < λj
}
.

Proof Since e(S) = 4 and r = 2, the spacesD(v,δ) of Theorem 3.5 are locally closed subsets
of (P1)4. The only possibly non-empty quotients Ds

(v,δ)/SL(2,C) occur for

all vi > 0 and all δi = 0,

all vi > 0 and exactly one δi = 1,

exactly one vi = 0 and δ j = 0 for all j �= i.

The first line corresponds to moduli of four distinct points on P
1, or moduli of four points

on P
1 such that p1 = p3 and p1, p2, p4 mutually distinct, or moduli of four points on

P
1 such that p2 = p4 and p1, p2, p3 mutually distinct. This gives cases 1–3. The second

line corresponds to moduli of four points on P
1 such that exactly two points coincide (the

remaining possibilities: either p1 = p2, or p1 = p4, or p2 = p3, or p3 = p4). This gives
cases 4–7. The third line corresponds to moduli of three distinct points on P

1. This gives
cases 8–11. When non-empty, e(Ds

(v,δ)/SL(2,C)) is −1 in case one and 1 in all other cases.
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Each of these eleven cases contributes one term to the generating function. Proceeding as in
the previous section, we find that

∏∞
k=1(1 − qk)8

∑
c2 e(M

H
Fa

(2, c1, c2))qc2 is equal to

−
∑

v1, v2, v3, v4 > 0 s.t.
2 | − f3 + v1 − av2 + v3

2 | − f4 + v2 + v4
βv1 < α′v2 + βv3 + αv4
α′v2 < βv1 + βv3 + αv4
βv3 < βv1 + α′v2 + αv4
αv4 < βv1 + α′v2 + βv3

q
1
2 f3 f4+ a

4 f 24 + 1
2 (v2+v4)(v1+ a

2 v2+v3− a
2 v4)

+
∑

v1, v2, v3, v4 > 0 s.t.
2 | − f3 + v1 − av2 + v3

2 | − f4 + v2 + v4
βv1 + α′v2 < βv3 + αv4
βv3 < βv1 + α′v2 + αv4
αv4 < βv1 + α′v2 + βv3

q
1
2 f3 f4+ a

4 f 24 − 1
2 (v2+v4)(v1− a

2 v2+v3+ a
2 v4)+v2v3+v3v4+v4v1 + 5 similar terms

+
∑

v2, v3, v4 > 0 s.t.
2 | − f3 − av2 + v3
2 | − f4 + v2 + v4
α′v2 < βv3 + αv4
βv3 < α′v2 + αv4
αv4 < α′v2 + βv3

q
1
2 f3 f4+ a

4 f 24 + 1
2 (v2+v4)(

a
2 v2+v3− a

2 v4) + 3 similar terms. (10)

Next, we rewrite the first term and two of the next six terms of this expression. Specifically,
we consider the term corresponding to all pi ’s mutually distinct and two of the terms cor-
responding to the cases where exactly two pi ’s coincide, namely the cases p1 = p3 and
p2 = p4. For these three terms, we use the substitutions i = v1 + v3 + av2, j = v2 + v4,
k = v1 − v3 + av2 and l = v2 − v4. After these substitutions, the terms combine to the first
term of the corollary.

For the other four termswhere exactly two pi ’s coincide, namely p1 = p2, p1 = p4, p2 =
p3, p3 = p4, we use the substitutions i = v1 + v3 − av2, j = v2 + v4, k = v1 − v3 − av2
and l = −v2 + v4. This gives terms two and three of the corollary.

The last four terms of Eq. (10) can be rewritten as the last three terms of the corollary. For
example, for the term corresponding to v1 = 0, we use the substitutions i = v3 + av2, j =
v2 + v4 and k = v2 − v4. The other three go similar. ��

Remark 4.3 Specializing the expression of Corollary 4.2 to a = 0 and setting λ = α
β
gives

−
∑

(i, j,k,l)∈C ′
1

q
1
2 f3 f4+ 1

2 i j + 4
∑

(i, j,k,l)∈C ′
2

q
1
2 f3 f4+ 1

4 i j− 1
4 jk+ 1

4 il+ 1
4 kl + 2

∑

(i, j,k)∈C ′
3∪C ′

4

q
1
2 f3 f4+ 1

2 i j ,

where

C ′
1 := {

(i, j, k, l) ∈ Z
4 : 2 | f3 + i, 2 | f4 + j, 2 | i + k, 2 | j + l, λ j = i, − j < l < j,

−λ j < k < λ j
}
,

C ′
2 := {

(i, j, k, l) ∈ Z
4 : 2 | f3 + i, 2 | f4 + j, 2 | i + k, 2 | j + l, k < λl < i, l < j,

−i < k, −λ j < k
}
,
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C ′
3 := {

(i, j, k) ∈ Z
3 : 2 | f3 + i, 2 | f4 + j, 2 | j + k, i < λ j, −λ−1i < k < λ−1i

}
,

C ′
4 := {

(i, j, k) ∈ Z
3 : 2 | f3 + i, 2 | f4 + j, 2 | i + k, λj < i, −λ j < k < λj

}
.

Specializing to λ = 1, i.e. H = D1 + D2, this expression can be simplified further. We
consider the case c1 = D3, all other cases being similar. In this case, the generating function∏∞

k=1(1 − qk)8
∑

c2 e(M
H
Fa

(2, c1, c2))qc2 is given by

∞∑

m=1

2m∑

n=1

4q(2m+3)m−2mn+1(q(2m+1)n − qn
2
)

(1 − qn)(q2m+1 − qn)
+

∞∑

m=1

2(2m − 1)q(2m−1)m

1 − q2m−1

+
∞∑

m=1

4mq(2m+1)m

1 − q2m
+

∞∑

m=1

∞∑

n=1

2m−1∑

p=1

4q(2m+1)m−2mp+1((qn+p−1)p − (qn+p−1)2m)

q − qn+p
.



Comparison to existing literature. In [9, Thm. 4.4], Göttsche gives an expression for generat-
ing functions of Hodge polynomials of moduli spaces of rank 2 μ-stable torsion free sheaves
on ruled surfaces S with −KS effective. We consider this expression in the case S = Fa .
Among the toric divisors, D1 is a fibre and D2 is a section. Let c1 = εD1+D2 with ε ∈ {0, 1},
let H be an ample divisor, and let c2 ∈ H4(Fa,Z) ∼= Z. Denote by MH,ss

Fa
(2, c1, c2) the

moduli space of rank 2 Gieseker semistable torsion free sheaves on Fa with Chern classes
c1, c2. Göttsche and Qin [9,27] have proved that the ample cone CS ⊂ Pic(S) ⊗Z R has a
chamber/wall structure such that the moduli space MH,ss

S (2, c1, c2) stays constant on each
chamber. In our current example, the non-empty walls of type (c1, c2) are

W ξ = {x ∈ Pic(Fa) ample | x · ξ = 0},
where ξ = (2n + ε)D1 + (2m + 1)D2 for any integers m, n satisfying m ≥ 0, n < 0, c2 −
m(m + 1)a + (2m + 1)n + mε ≥ 0 [9, Sect. 4]. Elements α

β
∈ Q>a with α, β > 0

coprime are in 1-1 correspondence with ample divisors H = αD1 + βD2 on Fa with
α, β coprime. Let � be the collection of elements α

β
∈ Q>a with α, β coprime satisfying

gcd(2, c1 · (αD1 + βD2)) = 1. We refer to the complement W = Q>a \ � as the collection
of walls.15 The elements λ ∈ � correspond to ample divisor H for which there are no rank 2
strictlyμ-semistable torsion free sheaves with Chern class c1 on Fa [12, Lem. 1.2.13, 1.2.14].
In this case MH,ss

S (2, c1, c2) = MH
S (2, c1, c2) for any c2. The elements of W are precisely

the rational numbers corresponding to ample divisors lying on a wall of type (c1, c2) for
some c2. For H not on a wall as above [9, Thm. 4.4] gives
∑

c2

e(MH
Fa

(2, c1, c2))q
c2

= 1∏∞
k=1(1 − qk)8

∑

(m,n)∈L(H)

(
a + 2ma − 2(2m + 2n + ε + 1)

)
q(m+1)ma−(2m+1)n−mε,

L(H) :=
{
(m, n) ∈ Z

2 | m ≥ 0, a − λ >
2n + ε

2m + 1

}
. (11)

Although Göttsche’s formula (11) is equal to the formula of Corollary 4.2, it is not easy to
obtain equality by direct manipulations. However, it is instructive to make expansions of both
expressions for various values of a, c1, H (not on a wall). One finds a perfect agreement in
such experiments.

15 The terminology “wall” might be slightly confusing in this context as W lies dense in Q>a .
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4.1.3 Wall-crossing for rank 2 on Fa

Theorem 3.5 also allows one to study the dependence on choice of polarization. This leads to
wall-crossing formulae. We illustrate this in the case of rank 2 sheaves on Fa . We start with
a few definitions. Denote by Z((q)) the ring of formal Laurent series over Z. For all values
λ ∈ Q>a of the stability parameter, the expression of Corollary 4.2 is a formal Laurent series.
Therefore, we can see the expression of Corollary 4.2 as a map Q>a −→ Z((q)). We define
the following notion of limit.

Definition 4.4 Let a ∈ Z≥0 and let F : Q>a −→ Z((q)), λ �→ F(λ) be a map. Let λ0 ∈ Q>a

and let F0 ∈ Z((q)). We define

lim
ε,ε′↘0

(
F(λ0 + ε) − F(λ0 − ε′)

) = F0

whenever for any N ∈ Z there exist ε, ε′ ∈ Q>0 such that a < λ0 − ε′ and

F(λ0 + ε) − F(λ0 − ε′) = F0 mod qN .

Note that if the limit exists, then it is unique. We refer to the expression

lim
ε,ε′↘0

(
F(λ0 + ε) − F(λ0 − ε′)

) = F0

as an infinitesimal wall-crossing formula. 

Applying this notion of limit to the expression of Remark 4.3 gives the following result.

Corollary 4.5 Let S = P
1 × P

1, let H = α0D1 + β0D2 be an ample divisor, and suppose
without loss of generality that gcd(α0, β0) = 1. Let c1 = f3D3+ f4D4 ∈ H2(S,Z). Defining
λ0 = α0

β0
, we have

lim
ε,ε′↘0

∞∏

k=1

(1 − qk)8
(
∑

c2

e
(
Mλ0+ε

P1×P1(2, c1, c2)
)
qc2 −

∑

c2

e
(
Mλ0−ε′

P1×P1(2, c1, c2)
)
qc2

)

= 4

⎛

⎝
∑

(i, j,k)∈C ′′
1

−
∑

(i, j,k)∈C ′′
2

⎞

⎠ q
1
2 f3 f4+ 1

4 i j− λ0
4 jk+ 1

4 ik+ λ0
4 k2

+ 4

⎛

⎝
∑

(i, j,k)∈C ′′
3

−
∑

(i, j,k)∈C ′′
4

⎞

⎠ q
1
2 f3 f4+ 1

4 i j− λ0
4 jk+ 1

4 ik+ λ0
4 k2

+
∑

(i, j)∈C ′′
5

2q
1
2 f3 f4+ λ0

2 i2 −
∑

(i, j)∈C ′′
6

2q
1
2 f3 f4+ λ

−1
0
2 i2

+
∑

(i, j)∈C ′′
7

4q
1
2 f3 f4+ λ

−1
0
2 i j −

∑

(i, j)∈C ′′
8

4q
1
2 f3 f4+ λ0

2 i j ,

where

C ′′
1 := {

(i, j, k) ∈ Z
3 : β0 | k, 2 | f3 + i, 2 | f4 + j, 2 | i + λ0k, 2 | j + k,

0 < λ0k < i, 0 < k < j
}
,
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C ′′
2 := {

(i, j, k) ∈ Z
3 : β0 | k, 2 | f3 + i, 2 | f4 + j, 2 | i + λ0k, 2 | j + k,

−i < λ0k < 0, − j < k < 0
}
,

C ′′
3 := {

(i, j, k) ∈ Z
3 : β0 | k, 2 | f3 + i, 2 | f4 + k, 2 | i + λ0k, 2 | j + k,

−k < j < k, λ0k < i
}
,

C ′′
4 := {

(i, j, k) ∈ Z
3 : β0 | k, 2 | f3 + λ0k, 2 | f4 + j, 2 | i + λ0k, 2 | j + k,

−λ0k < i < λ0k, k < − j
}
,

C ′′
5 := {

(i, j) ∈ Z
2 : β0 | i, 2 | f3 + λ0i, 2 | f4 + i, 2 | i + j, −i < j < i

}
,

C ′′
6 := {

(i, j) ∈ Z
2 : α0 | i, 2 | f4 + λ−1

0 i, 2 | f3 + i, 2 | i + j, −i < j < i
}
,

C ′′
7 := {

(i, j) ∈ Z
2 : α0 | j, 2 | f4 + λ−1

0 j, 2 | f3 + i, 2 | i + j, 0 < j < i
}
,

C ′′
8 := {

(i, j) ∈ Z
2 : β0 | j, 2 | f3 + λ0 j, 2 | f4 + i, 2 | i + j, 0 < j < i

}
.

Roughly speaking, the formula of the previous corollary is obtained from all possible
ways of changing an inequality involving λ in the formula of Remark 4.3 into an equality
and summing these terms with appropriate signs. The expression of the previous corollary
can only be non-zero when 2 | α0 f4 + β0 f3 or, equivalently, H lies on a wall.

Comparison to existing literature. It is easy to derive a nice infinitesimal wall-crossing for-
mula from Göttsche’s formula (11). Let c1 = εD1 + D2 (ε ∈ {0, 1}) and λ0 = α0

β0
∈ Q>a

arbitrary (i.e. corresponding to any ample divisor H = α0D1+β0D2 with β0 > 0, α0 > aβ0,
and gcd(α0, β0) = 1). Using Definition 4.4, one obtains

lim
ε,ε′↘0

∞∏

k=1

(1 − qk)8
(
∑

c2

e
(
Mλ0+ε

Fa
(2, c1, c2)

)
qc2 −

∑

c2

e(Mλ0−ε′
Fa

(2, c1, c2))q
c2

)

=
∑

m ∈ Z≥1 s.t.
1
2 (λ0 − a)(2m − 1) − 1

2 ε ∈ Z

2
(
1 + a

2
− λ0

)
(2m − 1) q

1
2 (λ0− a

2 )(2m−1)2− 1
4 a+ 1

2 ε . (12)

Since the complement of all walls � ⊂ Q>a lies dense, strictly μ-semistables do not play a
role in this formula.

We can also deriveEq. (12) using Joyce’smachinery forwall-crossing ofmotivic invariants
counting (semi)stable objects in an abelian category [14]. Joyce gives awall-crossing formula
for virtual Poincaré polynomials of moduli stacks of Gieseker semistable torsion free sheaves
on an arbitrary nonsingular complete surface S with−KS nef [14, Thm. 6.21].16 For S = Fa ,
these areP1×P

1,F1,F2. Nevertheless, we apply the formula of [14, Thm. 6.21] to any S = Fa

keeping a arbitrary. Let c1 = f3D3 + f4D4 ∈ H2(Fa,Z) and λ0 = α0
β0

as before. Part of
Joyce’s philosophy is to study wall-crossing phenomena for motivic invariants of moduli
stacks instead of moduli schemes (coming from GIT as in [12, Ch. 4]). Keeping track of
the stabilizers gives nice wall-crossing formulae. In this paper we are interested in Euler
characteristics of moduli schemes (coming from GIT as in [12, Ch. 4]), so we first make a
connection between the two.

For any smooth complete surface S, polarization H, r > 0, and Chern classes c1, c2 let
MH

S (r, c1, c2) be the coarse moduli scheme of rank r μ-stable torsion free sheaves on S
with Chern classes c1, c2 as before. Let Objchs (μ) be the Artin stack of μ-stable torsion free
sheaves on S with total Chern character ch = (r, c1,

1
2 (c

2
1 − 2c2)) [14]. Denote the virtual

16 The cited theorem also holds for μ-stability instead of Gieseker stability.
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Poincaré polynomial by P(·, z). Joyce proves one can uniquely extend the definition of virtual
Poincaré polynomial to Artin stacks of finite type over C with affine geometric stabilizers if
one requires

P([Y/G], z) = P(Y, z)/P(G, z)

for any special algebraic group G acting regularly on a quasi-projective variety Y [13,
Thm. 4.10]. We claim

e(MH
S (r, c1, c2)) = lim

z→−1

(
(z2 − 1)P(Objchs (μ), z)

)
. (13)

This equation can be proved as follows. Recall that MH
S (r, c1, c2) is constructed as a geo-

metric quotient π : Rs −→ MH
S (r, c1, c2), where Rs is an open subset of someQuot scheme

with an action of PGL(n,C) for some n [12, Ch. 4]. In fact,π is a principal PGL(n,C)-bundle
[12, Cor. 4.3.5] and we have isomorphisms of stacks [7, Prop. 3.3]

MH
S (r, c1, c2) ∼= [Rs/PGL(n,C)], Objchs (μ) ∼= [Rs/GL(n,C)].

The difficulty is that PGL(n,C) is in general not special. Let (C∗)n ≤ GL(n,C) be the
subgroup of diagonal matrices. Define P(C∗)n = (C∗)n/C∗ · id, where id is the n×n identity
matrix, and consider the geometric quotient Rs/P(C∗)n . We obtain a morphism

Rs/P(C∗)n −→ Rs/PGL(n,C),

and all fibres over closed points are isomorphic to F = PGL(n,C)/P(C∗)n . We obtain

e
(
MH

S (r, c1, c2)
)

= e (Rs/P(C∗)n)
e(F)

= e (Rs/P(C∗)n)
n! = lim

z→−1

P(Rs, z)

n!(z2 − 1)n−1

= lim
z→−1

(z2 − 1)P(Rs, z)

P(GL(n,C), z)
· (z2)

n(n−1)
2
∏n

k=1((z
2)k − 1)

n!(z2 − 1)n
,

where we use [14, Thm. 2.4] and [13, Lem. 4.6]. Using

lim
z→−1

(z2)
n(n−1)

2
∏n

k=1((z
2)k − 1)

(z2 − 1)n
= n!,

P(Rs, z)

P(GL(n,C), z)
= P([Rs/GL(n,C)], z),

we obtain formula (13).
Back to S = Fa , using Eqs. (13) and [14, Thm. 6.21] a somewhat lengthy computation

gives

lim
ε,ε′↘0

∞∏

k=1

(
1 − qk

)8
(
∑

c2

e
(
Mλ0+ε

Fa
(2, c1, c2)

)
qc2 −

∑

c2

e(Mλ0−ε′
Fa

(2, c1, c2))q
c2

)
(14)

=
∑

m ∈ Z
> 1

2 f4
s.t.

1
2 (λ0 − a)(2m − f4) − 1

2 ( f3 + a f4) ∈ Z

2
(
1 + a

2
− λ0

)
(2m − f4) q

1
2 (λ0− a

2 )(2m− f4)2− 1
4 a f

2
4 + 1

2 ( f3+a f4) f4 .

Note that [14, Thm. 6.21] is a wall-crossing formula for Artin stacks of semistable objects,
whereas we have been dealing with Artin stacks of stable objects only. In the cases f3 �= 0
mod 2 or f4 �= 0 mod 2, the complement of all walls, i.e. � ⊂ Q>a , lies dense, so strictly
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μ-semistables do not play a role in the above formula.17 Note that Eqs. (12) and (14) are
consistent. In fact, they are even consistent in the case a > 2 suggesting [14, Thm. 6.21]
holds more generally.

We now proved expressions (12) and (14) obtained from Göttsche’s and Joyce’s work
are equal to the wall-crossing formulae obtained from Corollary 4.2 (e.g. Corollary 4.5
when a = 0). This is by no means clear from direct manipulations of the expressions. It
is instructive to make expansions to a certain order for various values of a, λ0, f3, f4 and
verify consistency. Similar to Remark 4.3, the wall-crossing formula of Corollary 4.5 can be
simplified for specific values of λ0. We will not write down the explicit expressions.

4.2 Rank 3 on P
2

We now apply18 Theorem 3.5 to the case r = 3 and S = P
2. Similar computations can be

done in the case r = 3 and S = Fa , but the formulae become (even) lengthier.
Let c1 = f H , where H is the hyperplane class. Consider the expression of Theorem

3.5. Let vi := vi,1, wi := vi,2, pi := pi,1, and qi := pi,2. Moreover, let v := ∑
i vi and

w :=∑i wi . For vi , wi all positive and any choice of δ, we have

Ds
(v,δ) ⊂ {(p1, p2, p3, q1, q2, q3) : pi ⊂ qi ∀i} ⊂ Gr(1, 3)3 × Gr(2, 3)3 ∼= (P2)3 × (P2∗)3.

Suppose all δa,i = 0. Then Ds
(v,δ) is empty unless

(v,w) := (v1, v2, v3, w1, w2, w3) ∈ C1 ∪ C2,

where

C1 := {
(v,w) ∈ Z

6
>0 : 3 | − f + v + 2w,

vi + 2wi < 2v j + 2vk + w j + wk, wi + 2vi < 2w j + 2wk + v j + vk,

vi + v j < 2vk + w, wi + w j < 2wk + v ∀{i, j, k} = {1, 2, 3}},
C2 := {

(v,w) ∈ Z
6
>0 : 3 | − f + v + 2w,

vi + 2wi < 2v j + 2vk + w j + wk, wi + 2vi < 2w j + 2wk + v j + vk,

v < w, wi + w j < 2wk + v ∀{i, j, k} = {1, 2, 3}}.

The notation “for all {i, j, k} = {1, 2, 3}” means “for all i ∈ {1, 2, 3}, j ∈ {1, 2, 3} \ {i},
and k ∈ {1, 2, 3} \ {i, j}”. For (v,w) ∈ C1, Ds

(v,δ) is equal to the configuration space of

(p1, p2, p3, q1, q2, q3), where qi ⊂ P
2 are lines such that q1 ∩ q2, q2 ∩ q3, q3 ∩ q1 are

mutually distinct points, pi ⊂ qi are points not equal to q1 ∩ q2, q2 ∩ q3, q3 ∩ q1 and are not
colinear. We denote this space pictorially by

17 In the case f3 = f4 = 0 mod 2, we have � = ∅. However, for r = 2 and fixed c1, c2 one can show that
Objchss (μ) \ Objchs (μ) is the same for any polarization not on a wall of type (c1, c2). Therefore, formula (14)
also holds in this case, because strictly μ-semistables on either side of a wall cancel (compare [9, Thm. 2.9]).
18 During the final preparations of the first version of this paper, the author found out about recent independent
work of Weist [29], which also computes the case r = 3 and S = P

2 using techniques of toric geometry and
quivers. Weist has communicated to the author that his results are consistent with the expansions given at the
end of this section.
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incidence space 1
��������������������� ��

��
��

��
��

��
��

��
��

��
�

• •
•

p1 p2

p3

q1

q2

q3

After taking the quotient by SL(3,C), one obtains a space with Euler characteristic −1. This
can be seen by using that for any four points x1, x2, x3, x4 ofP2, no three ofwhich are colinear,
there exists an element g ∈ SL(3,C) mapping them to (1 : 0 : 0), (0 : 1 : 0), (0 : 0 : 1), and
(1 : 1 : 1) respectively. Moreover, g is unique up to multiplication by a 3rd root of unity. For
(v,w) ∈ C2, the incidence space is

incidence space 2
��������������������� ��

��
��

��
��

��
��

��
��

��
�

q1

q2

q3 � � � � �

� � � � � � � � � � �

��
��

��
��

��
�

•
•

•

p3

p2

p1

where the dashed lines means p1, p2, p3 are colinear. After taking the quotient by SL(3,C),
one obtains a reduced point. The contribution of these two incidence spaces to the generating

function q− 1
2 f 2 ∏∞

k=1(1 − qk)9
∑

c2 e(MP2(3, c1, c2))qc2 is

(
−

∑

(v,w)∈C1

+
∑

(v,w)∈C2

)
qQ1(v,w), where

Q1(v,w) := − 1

18
(− f − 2v − w)2 − 1

18
(− f + v − w)2 − 1

18
(− f + v + 2w)2

+
∑

i< j

(vi + wi )(v j + w j ).

Similarly, other choices of (v,w, δ) give rise to other systems of inequalities and corre-
sponding incidence spaces. We list all other incidence spaces which contribute.

incidence space 3
��������������������� ��

��
��

��
��

��
��

��
��

��
�

q1q2

q3

•p1 •p2

•p3
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incidence spaces 4–9
��������������������� ��

��
��

��
��

��
��

��
��

��
�

•
•

•pi

p j

pk

qi

q j

qk

incidence spaces 10, 11, 12
��������������������� ��

��
��

��
��

��
��

��
��

��
�

•
•

p j

pk

qi

q j

qk

incidence spaces 13, 14, 15
��������������������� ��

��
��

��
��

��
��

��
��

��
�

• •
•

pi p j

pk

qi

q j

for all {i, j, k} = {1, 2, 3}. For incidence spaces 3 and 13–15, p1, p2, p3 are not colinear. The
incidence spaces 4–9 all give the same contribution to the generating function. This also holds
for incidence spaces 10, 11, 12 as well as incidence spaces 13, 14, 15. The final answer is

q− 1
2 f 2

∞∏

k=1

(1 − qk)9
∑

c2

e(MP2(3, c1, c2))q
c2

=
⎛

⎝−
∑

(v,w)∈C1

+
∑

(v,w)∈C2

+
∑

(v,w)∈C3

⎞

⎠ qQ1(v,w)

+
∑

(v,w)∈C4

6qQ2(v,w) +
∑

(v,w)∈C5

3qQ1(v,w) +
∑

(v,w)∈C6

3qQ1(v,w),

where

Q1(v,w) defined above,

Q2(v,w) := Q1(v,w) − v1w3,

C1,C2 defined above,

C3 := {(v,w) ∈ Z
6
>0 : 3 | − f + v + 2w,

vi + 2wi < 2v j + 2vk + w j + wk, wi + 2vi < 2w j + 2wk + v j + vk,

w < v, vi + v j < 2vk + w ∀{i, j, k} = {1, 2, 3}},
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C4 := {(v,w) ∈ Z
6
>0 : 3 | − f + v + 2w, v1 + 2w1 < 2v2 + 2v3 + w2 + w3,

v2 + 2w2 < 2v1 + 2v3 + w1 + w3, w2 + 2v2 < 2w1 + 2w3 + v1 + v3,

w3 + 2v3 < 2w1 + 2w2 + v1 + v2, v1 + v2 < 2v3 + w, v2 + v3 < 2v1 + w,

w1 + w2 < 2w3 + v, w2 + w3 < 2w1 + v, v1 + v3 + 2w3 < 2v2 + w1 + w2

w1 + w3 + 2v1 < 2w2 + v2 + v3
}
,

C5 := C1 ∩ {(v,w) ∈ Z
6
>0 : v1 = 0

}
,

C6 := C1 ∩ {(v,w) ∈ Z
6
>0 : w1 = 0

}
.

By (9), the only relevant values for c1 = f H are f = −1, 0, 1. The above expression for
the generating function gives the following numerical expansions
∑

c2

e(MP3(3,−1, c2))q
c2 = 3q2 + 42q3 + 333q4 + 1968q5 + 9609q6 + 40881q7

+156486q8 + 550392q9 + 1805283q10 + O(q11),
∑

c2

e(MP3(3, 0, c2))q
c2 = −q3 − 9q4 − 60q5 − 309q6 − 1362q7 − 5322q8 − 18957q9

−62574q10 + O(q11),
∑

c2

e(MP2(3, 1, c2))q
c2 = 3q2 + 42q3 + 333q4 + 1968q5 + 9609q6 + 40881q7

+156486q8 + 550392q9 + 1805283q10 + O(q11).

This suggests the generating functions
∑

c2 e(MP2(3,±c1, c2))qc2 are the same. This can
be proved by observing that changing vi ↔ wi and f ↔ − f swaps terms two ↔ three
and five ↔ six of the generating function, while leaving terms one and four unchanged.
Geometrically, this can be understood as follows. Let S be a nonsingular complete surface,
H a polarization, r > 0, and c1, c2 Chern classes. Denote the moduli space of μ-stable
locally free sheaves on S of rank r and Chern classes c1, c2 by N H

S (r, c1, c2). Then taking
the dual (·)∗ = Hom(·,OS) gives an isomorphism

N H
S (r, c1, c2)

∼=−→ N H
S (r,−c1, c2), F �→ F∗.
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